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Recent measurements of the 4-point correlation functions (4PCF) from spectroscopic surveys provide
evidence for parity violations in the large-scale structure of the Universe. If physical in origin, this could

point to exotic physics during the epoch of inflation. However, searching for parity violations in the 4PCF
signal relies on a large suite of simulations to perform a rank test, or an accurate model of the 4PCF
covariance to claim a detection, and this approach is incapable of extracting parity information from the

higher-order N-point functions. In this work we present an unsupervised method which overcomes these
issues, before demonstrating the approach is capable of detecting parity violations in a few toy models
using convolutional neural networks. This technique is complementary to the 4-point method and could be

used to discover parity violations in several upcoming surveys including DESI, Euclid, and Roman.
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I. INTRODUCTION

A detection of parity violation in the large scale structure
of the Universe would break the standard cosmological
model. Such a measurement could provide crucial insights
into the physics of the early Universe [1-7] or exotic
physics [8—15], and parity violations may even be respon-
sible for the observed matter-antimatter asymmetry [16].

Searches for parity violations have concentrated on the
polarized cosmic microwave background (CMB) signal
[8,17-21], gravitational waves [22-25] and most recently
the clustering of galaxies in the late Universe [26-28],
which is the primary focus of this work.

Several of these studies have found tantalizing hints of
parity violation. Two recent CMB EB-measurements report
detections at the 2.4¢ [19] and 3.60-level [29], although it
has been suggested this could be due to dust emission
(see e.g. the discussions in [30-32]).

More recently two studies have reported detections of
parity violations in the Baryon Oscillation Spectroscopic
Survey (BOSS) [33] CMASS sample at the 2.90 [28]
(hereafter Ph22) and 7.1¢ [27] (hereafter Hou22). These
detections are made from measurements of the 4PCF which
are enabled by recent computational advances [34-37].
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If physical in origin, the cause of this signal must also be
consistent with the null detection of parity violation in the
temperature trispectrum of the CMB [20].

In three dimensions the 4PCF is the lowest order N-point
correlation function which is sensitive to parity viola-
tions [26]. To see this, it is useful to refer to Fig 1 where
galaxies are treated as vertices of a tetrahedron. After
defining a notion of the tetrahedra handedness about a
prespecified primary vertex, we see that mirroring a
tetrahedron about a vertex, which is equivalent to a parity
transformation up to a rotation, switches the handedness of
the tetrahedron. This is in contrast to a triangle or a line
segment, where a reflection about a point is equivalent to a
three-dimensional rotation.

The 4PCF approach has three main drawbacks:

(i) First, even in the absence of observational system-
atics, quantifying the statistical significance is theo-
retically and computationally demanding. Hou22
quantified the uncertainty by computing the covari-
ance of the 4PCF. The covariance has both a large
number of terms and potentially poorly understood
8-point function contributions. This approach also
assumes that the parity odd 4-point function is
Gaussian distributed. Meanwhile, Ph22 performed
arank test and compared the level of parity violation
in the data to a suite of 2048 MultiDark-Patchy
mock realizations [38,39] of the CMASS footprint.
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FIG. 1. In three dimensions, a tetrahedron is the lowest order
polyhedron which is sensitive to parity i.e., handedness. Top: for
the purposes of this work we say a tetrahedron is right-handed if
when moving the right hand to the primary vertex with the thumb
pointed into the tetrahedron, the fingers curl from the shortest to
longest edges connected to the primary. It is impossible to rotate a
left-handed tetrahedron (left) onto its mirror image (right), which
is equivalent to a parity transform up to a 180° rotation. Bottom:
in contrast the left-handed triangle (left) is equivalent to rotating
the right-handed triangle (right) on the right “out of the page.”

These simulations have not been extensively verified
at the 4-point level, and may lead to an under-
estimate of the uncertainty.

(ii) Second, while it is in principle possible to extract
parity information from the higher order N-point
functions [40], this quickly becomes intractable for
larger N. This potentially leaves a large-part of the
parity odd signal untapped.

(iii) Since the 4PCF is a global measure, it is difficult to
localize which physical regions contribute most to
the parity asymmetry. Ideally one could identify the
regions where parity violations are strongest and
perhaps even cross-correlate with known systemat-
ics to determine whether systematics are responsible
for observed parity violations.

To address these shortcomings, we propose an unsuper-

vised method which can in principle detect parity violation

using information from all N-point functions from the data
alone. This technique may be employed to search for parity
violations in large spectroscopic surveys including Euclid'
[41,42], the Nancy Grace Roman Space Telescope2 [43],
the Dark Energy Spectroscopic Instrument (DESI)® [44].

Intuitively, the algorithm described in this paper is
simple. The first step is to divide the large-scale structure
map into a large number of subvolumes. Then, for each
subvolume, one can parity flip the volume before passing
both the original and parity flipped subvolumes through a
convolutional neural network (CNN). If the CNN can
reliably classify which is the true realization and which
has been parity flipped, this implies that the data is not
parity invariant.

Similar techniques have been employed to determine
whether a photograph has been mirrored [45], distinguish
images of mirrors from transparent glass [46] and classify
chirality in medical imaging [47]. In high-energy physics, a
similar technique has been developed to search the Large
Hadron Collider’s calorimeter data for evidence of parity
violation [48,49]. It is the technique of these former two
works which this paper follows most closely. While we
focus exclusively on CNNs in this paper, the method is
generalizable to any architecture. In a follow up paper [50],
we also consider neural fields and scattering networks and
demonstrate that these can significantly outperform CNNs.

The unsupervised parity detection algorithm is described
in Sec. II. It is then applied to 2D and 3D toy models in
Sec. IT and III. Finally in Sec. IV we conclude, by outlining
a road map for future work.

I1. UNSUPERVISED SEARCHES FOR PARITY
VIOLATIONS USING CONVOLUTIONAL
NEURAL NETWORKS

A. Algorithm

The algorithm described below and summarized in Fig. 2
was originally proposed in [48] (hereafter Le2l) in the
context of particle physics.

Consider a CNN, g, which maps some input, x, to
g(x) €R. In the context of this work, one should think of x
as a subvolume of a pixelized (or voxelized) galaxy over-
density map. Let us also define a parity operator, P. In two
dimensions, P is equivalent to mirror symmetry, while in
three-dimensions the parity operator flips a volume along
all axes.

Intuitively, to detect a parity violation we would like the
network, g, to maximize the distance between g(x) and
g(Px). To build such a network, define a new function

lhttp://euclid—ec.org.

https://www.nasa.gov/roman.

3https://www.desi.lbl.gov/.

“In practice, the problem is recast as a maximization problem
rather than a classification problem. See Sec. IT A.
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FIG. 2. Schematic showing the algorithm presented in Sec. IT A. Some data, x, and the parity flipped data, Px, are both passed through
a CNN denoted, g, such that g(x) € R. For every pair we define, f(x) = g(x) — g(Px). The network learns to maximize the difference
between g(x) and g(Px) during training (see Sec. Il A for more details). As shown in Sec. I B, the expected value of f(x) is exactly zero
if no parity violations are present. Any deviation from zero is indicative of parity violation, while the statistical significance can be

estimated from boostrapping over the validation set.

f(x) = g(x) — g(Px). (1)

Then for a batch, B = {x;,x, -+, xy}, one might naively
expect that choosing a loss function to maximize the mean
output of the batch would achieve the objective. However,
trivially rescaling all the weights and biases of the network
by some constant &« > 1 achieves a smaller loss, so instead
we define the loss-function,

—Ly = pp/og, (2)

where the mean, pp, and variance, oy, over the batch are
defined as

pr = S F(0), 3)

xX€EB

and

= (S0 ) - @)

XEB

After splitting the data into training and validation sets,
the network can be trained in the usual fashion before using
the validation set to detect parity violations. We describe
this procedure in detail in the following section.

B. Network behavior, robustness to overtraining
and parity violation detection criteria

Given the choice of loss in Eq. (2), the network learns to
return a maximal positive number with small variance over
the training set. Thus, if the mean value of f(x) over the
validation set, (f(x)), ¢y (hereafter written (f),), is greater
than zero, then we have detected parity violation and the
statistical significance can be quantified by bootstrapping
over the validation set. Alternatively one could use (f), as

an extremely compressed parity odd summary and perform
arank test against a large number of simulations as in Ph22.

Our technique does not make false detections even when
the network is overtrained. To see this it is useful to
consider the case that no parity violations are present in the
data. Then the probability that any given x is in the valida-
tion set is the same as the probability that Px is in the
validation set. This observation has an important conse-
quence. Let us suppose that after training f(x) = n, for
some positive number 7, then by design, f(Px) = —n. This
implies that if no parity violations are present in the data,
the expected mean value of f(x) over the validation set,
(f)y., is precisely zero. As noted in [48], this is true even if
the network is overtrained.

It is worth noting that in order for the bootstrap un-
certainties to remain valid, we implicitly assume that there
is no covariance between the subvolumes in the valida-
tion set. In practice this can likely be achieved by choosing
validation set subvolumes that are separated by large
physical separations in the survey. This must be explicitly
checked when working with real data. In [50], we also
explicitly confirm that the distribution of the bootstrap
resampled means is the same as the likelihood computed
from simulations of independent universes.

III. RESULTS

In this section, we showcase how the method described
in Sec. II A can be used to search for parity violations in the
context of galaxy surveys. In this paper we use a parity-
violating toy model described in Sec. III A. We show how
the unsupervised technique is capable of detecting parity
violations in these fields. We start by building intuition in
2D (see Sec. III B) before demonstrating that the technique
extends to 3D (see Sec. III B). All CNNs are implemented
in TensorFlow [51] Keras [52].5

>pyTorch [53] was also used during the development phase.
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Left: in this example, parity-violating “fields” are generated by mapping a fixed right-handed triangle, 7', to a random location

in the field and assigning a galaxy to each vertex (see Sec. III B 1 for more details). Right: histogram of the mean of the validation set
over bootstrap resamplings, (f) 5, while N, gives the number of occurrences in the resampling in each histogram bin. This is greater than
zero (indicated by a dashed line) at high-confidence (>5¢), so we have detected parity violations.

A. A toy model with parity and mirror asymmetries

To generate a 2D mirror asymmetric field, we:
(1) start with a left-handed® triangle (see Fig. 1 for more
details) with a vertex placed at the origin,
(2) apply a random isometry to the triangle in the plane,
(3) place a galaxy inside each voxel containing a vertex
of the triangle,
(4) and repeat steps 1-3N times to generate a galaxy
field with 3N galaxies.
In 3D, rather than triangles we use right and left-handed
tetrahedra. More complex parity-violating fields can be
built by mixing right and left-handed tetrahedra or triangles
(see e.g. Sec. Il B 2).

B. Toy models in two dimensions

1. 2D model 1: 1 triangle per field

Following the procedure described in Sec. III A, we use
the triangle, T, with vertices in the plane at (0, 0), (4, 0)
and (0, 8) to generate a set of “random fields.” We apply
a random isometry by applying a random rotation, 8 €
[0,2x], and uniformly drawing a translation, Ax, Ay €
[—23,23] inside each field.” The field is then pixelized on a
32 x 32 grid centred on the origin. A randomly chosen
realization is shown on the left of Fig. 3.

We produce a training set of 10* realizations and a
validation set of 103 realizations before training a network
to detect parity violations following the procedure outlined
in Sec. IT A. A full description of the network architecture
and training is given in Appendix A 1.

oIt is equally valid to use a right-handed triangle instead.
"This choice ensures that all the vertices of the triangle remain
inside the field.

An example of the training data is shown on the left hand
side of Fig. 3. Meanwhile a histogram of the mean of the
validation set over bootstrap samples is shown on the right
hand side. This is greater than zero at every resampling so
we have made a clear detection of mirror asymmetry. Even
by eye, one can easily “detect” mirror asymmetries, SO we
now consider a more challenging example.

2. 2D model 2: Complex triangle example

We use the triangle, 7, defined in the previous example
and the mirror image, PT. In each field we draw N copies
of triangle 7 and N py copies of triangle PT where Ny and
N pr are respectively drawn uniformly from the discrete sets
{31, 32,33,34,35,36,37} and {42,41,40,39,38,37,36}
inducing a small amount of parity violation. Given all the
possible triangles that can be formed from these vertices,
this represents less than a 1% relative overabundance of
right-handed triangles on average. We then apply an inde-
pendent isometry to each galaxy as in the previous
example, before placing a galaxy at each vertex and
pixelizing. Hence, on average there are 72.5 triangles
per field, but with a slightly different amount of mirror
asymmetry per field.

We generate 10° training realizations and 10* realiza-
tions for validation so that there are ~7.5 x 10° “galaxies”
in total. This is similar to the expected number of galaxies
in upcoming spectroscopic surveys including Euclid, DESI
and Roman.

A randomly chosen example of one of the fields
generated following this procedure is shown on the top
left of Fig. 4. Unlike the example in the previous section, it
is impossible to detect parity violations by eye.

To search for parity violations, we train the network
described in Appendix A 2. A histogram of the mean over

083518-4
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FIG. 4. Top left: an example of a parity-violating “field” generated by mapping left-handed and right-handed triangles (with an
overabundance of one kind) to a random location in the field and placing a galaxy at each vertex. The fields have on average 72.5
triangles per field and we place on average 5 more right-handed compared to left-handed triangles per field. Given all the possible
triangles that can be formed from these vertices, this represents less than a 1% relative overabundance of right-handed triangles on
average. See Sec. III B 2 for more details. Top right: histogram of the mean of f from bootstrap resampling the validation set. Parity-
violations are detected at the 3.9¢ level. Bottom left: same as top left, but generated as a null test using a procedure where there is no
overabundance of left versus right handed triangles (see Sec. III B 2) for more details). Bottom right: same as above. No parity violations

are detected in the data as (f)y is consistent with zero.

bootstrap resamples of the validation set displayed in the
top right of Fig. 4. We clearly detect parity violations at the
3.9 level.

As anull test, we repeat the experiment described above,
but this time in each field we draw Ny copies of triangle T
and Npy copies of triangle PT from the same discrete set:
{33, 34,35, 36,37, 38,39}. With this choice, we expect 72
galaxies per field on average with no overabundance of
right-handed or left-handed triangles.

A randomly chosen example of such a field is shown on
the bottom left of Fig. 4. It is virtually indistinguishable
from the parity-violating field in the top panel.

We generate a null training set of 10° training realiza-
tions and 10* validation realizations before training a
network with the same architecture as before. The results
are shown on the bottom right of Fig. 4. As expected, the

network does not detect parity violations when they are not
present.

C. Toy models in three dimensions

1. 3D model 1: 1 tetrahedron per field

In this example we use a tetrahedron, 7', with vertices at
(1, 0, 0), (-3,3,0), (-5,-5,-5) and (0, O, 3). Following
the procedure outlined in III A, we apply a random rotation
defined by 3 Euler angles and a translation Ax, Ay, Az €
[-10, 10]. Each vertex is then mapped onto a 28 x 28 x
28-grid before a galaxy is place inside each pixel contain-
ing a vertex.

We generate 10* training realizations and 10° validation
realizations before training the network described in
Sec. A3 to search for parity violations. We are able to

083518-5
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FIG. 5. Same as the right hand side of Fig. 3 but for this

example we use a single right-handed tetrahedron per field. We
make a clear detection (>50) of parity violation.

make a clean detection (>50) of parity violation as shown
in Fig. 5.

The purpose of this exercise has been to demonstrate that
we can in principle detect parity violations in 3D. However,
in contrast to the 2D case, we find that the CNN fails to
extract parity information with a more realistic number of
galaxies in each field. In particular given the large number
of free parameters in the model, we find that the CNN is
prone to overtraining and the model does not generalize
well to the validation set, which we use for detection.
Convolutions in 3D are also prohibitively expensive and
inefficient as much of the data volume contains empty
pixels. For these reasons we will need to find a more
efficient architecture before attempting to detect parity
violations with real data. This is the subject of a follow-
up paper [50].

IV. CONCLUSION

This paper presents a method to perform an unsupervised
search for parity violations from spectroscopic galaxy
surveys. This follows possible detections using the 4PCF
method in Ph22 and Hou22. In principle a similar technique
could be used to search for EB parity violations in weak
lensing (see e.g. [54]) or CMB data.

We have demonstrated that CNNs are readily capable of
detecting small amounts of mirror asymmetry in two-
dimensions, but find that this result does easily generalize
to three dimensions. In a follow-up paper, we investigate
deep scattering networks and neural fields and show they
outperform the CNNs presented in this work. In the future
we will explore architectures which are known to perform
well on sparse three dimensional data [55], and point
clouds [56-59] which have already been shown to perform
well in the context of galaxy clustering [60-62].

Compared to 4PCFs, the unsupervised approached can
be trained from the data alone and is not limited by the

number and accuracy of available simulations, nor does the
detection significance rely on an accurate model of 8-point
convariance contributions. The method is also in principle
capable of extracting information from the higher-order
N-point configurations, which quickly becomes computa-
tionally infeasible for N-point correlation functions at
higher order. Furthermore one can make a map of f over
the survey volume to determine whether the parity-
violating signal is spatially correlated with known
systematics.

Despite these advantages, the unsupervised approach has
several drawbacks. First, it is not possible to fit a parity-
violating physical model to constrain parameters of interest.
Second, as with many machine learning algorithms the
method suffers from a lack of interpretability. For these
reasons, the unsupervised and 4PCF approach should be
thought of as complementary.

The next step is to find an architecture which is capable
of detecting parity violations in simulations where we know
the signal is present e.g. [63,64]. We will then search for
parity violations in the CMASS sample to verify the results
of Ph22 and Hou22. A detection would provide the first
confirmation using an independent technique.

The unsupervised approach presented in this work may
become a powerful tool in the search for parity violations in
the large-scale structure of the Universe. The next gen-
eration of spectroscopic surveys will prove an important
testing ground. Euclid, Roman and DESI will employ very
different survey strategies, so parity-violating observational
systematics are unlikely to be shared across all three
datasets. Thus, confirmation of parity violations using the
methods presented in this paper in all three next generation
datasets would put the existence of physical parity viola-
tions on firmer ground.
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APPENDIX: NETWORK ARCHITECTURES

The network architectures used in Sec. III are summa-
rized in this section. The networks are optimized up to the
point where they are capable of detecting parity violations,
but we make no claims that these architectures are optimal.

1. 2D model 1 architecture

For ¢, we take a fairly common network architecture
using ReLu [68] activation functions with a single con-
volution layers of 10 filters with filter size of (10, 10) pixels,
followed by a max pool layer of size (2, 2) with no strides.
This is connected to a dense layer with 10 neurons before
the final layer outputs a single value, g(x). The network is
trained for 10 epochs, using the Adam optimizer [69] with a
constant learning rate of 10~ and a batch size of 64. The
learning rate and batch size are fixed for every network in
this paper.

2. 2D model 2 architecture

The network architecture used in this example is loosely
based on AlexNet [70]. The network starts with a con-
volution layer of 100 filters of size (11, 11) padded so that

input and output size remains unchanged, followed by a
max pool layer of size (2, 2) with no strides. This is
followed by two convolution layers with 100 filters of size
(5, 5) padded so that input and output size remains
unchanged, then three convolution layers with 100 filters
of size (3, 3), followed by a max pool layer of size (2, 2)
with no strides. This is then sequentially passed to two
dense layers with 4000 neurons with a 50% dropout rate
before being passed to a dense layer with 1000 neurons and
before outputting g(x). ReLu activation functions are used
throughout. The network is trained for 10 epochs.

3. 3D model 1 architecture

The network starts with a 3D convolution layer with 100
filters of size 11 padded so that the size of the training data
remains the same. This is followed by a max pool layer of
size 2 with a stride length of 1. This is followed by four 3D
convolutions of 100 filter of size 3 before being passed to a
max pool layers 2 with a stride length of 1. After flattening,
this is followed by 3 dense layers of size 4000, 1000 and
200 with a 50% dropout rate between each before out-
putting g(x). ReLu activation functions are used through-
out. The network is trained for 10 epochs.
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