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Astrometric perturbations of critical curves in strong lens systems are thought to be one of the most
promising probes of substructures down to small-mass scales. While a smooth mass distribution creates a
symmetric geometry of critical curves with radii of curvature about the Einstein radius, substructures
introduce small-scale distortions on critical curves, which can break the symmetry of gravitational lensing
events near critical curves, such as highly magnified individual stars. We derive a general formula that
connects the fluctuation of critical curves with the fluctuation of the surface density caused by
substructures, which is useful when constraining models of substructures from observed astrometric
perturbations of critical curves. We numerically check that the formula is valid and accurate as long as
substructures are not dominated by a small number of massive structures. As a demonstration of the
formula, we also explore the possibility that an anomalous position of an extremely magnified star, recently
reported as “Mothra,” can be explained by fluctuations in the critical curve due to substructures. We find
that cold dark matter subhalos with masses ranging from 5 × 107M⊙=h to 109M⊙=h can well explain the
anomalous position of Mothra, while in the fuzzy dark matter model, the very small mass of ∼10−24 eV is
needed to explain it.
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I. INTRODUCTION

Substructures within dark matter (DM) halos have been
intensively studied in recent decades, motivated by a wide
range of topics in cosmology. The abundance and distribu-
tion of substructures provide valuable insight into primordial
perturbations, which are the initial seeds of cosmological
structures. While observations of the cosmic microwave
background and the large-scale structures have tightly con-
strained statistical properties of primordial perturbations on
scales approximately larger than 1 Mpc, or roughly higher
than 1013M⊙ in terms of mass of DM halos, our under-
standing of smaller scales, specifically those corresponding
to substructures, remains limited [1–4].
Properties of substructures can also potentially reflect

the properties of DM. While current observations, espe-
cially of large-scale structures, strongly support cold dark
matter (CDM), several deviations from the CDM predic-
tion have been reported at smaller scales (see Refs. [5,6]
for review), which may hint alternatives to CDM, such as
warm dark matter [7–9] and dark matter with a macro-
scopic de Broglie wavelength, referred to as fuzzy dark

matter (FDM) [10–13]. In the CDM paradigm, masses of
substructures span a wide range, from approximately
10−6M⊙ to around 1016M⊙. In contrast, warm dark matter
or FDM predicts characteristic mass scales that preclude
the formation of smaller substructures. FDM also predicts
specific shapes of substructures, such as clumps resulting
from quantum interference patterns and cores resulting
from quantum pressure, often referred to as soliton cores.
Therefore, detailed studies of substructures down to
small mass scales may provide an important clue to the
nature of DM.
One promising method to study substructures down to

small mass scales is to use gravitational lensing effects [14].
In particular, strong gravitational lensing effects, which
exhibit high magnification and multiple images of the
distant source, are affected by substructures inside primary
lens objects, such as massive galaxies and galaxy clusters.
Several studies pointed out a link between strong gravita-
tional lensing systems with anomalous flux ratios and
substructures inside lens objects [15–24]. In Ref. [24], they
analyzed seven gravitational lensing events of radio quasars
which show flux anomalies using the lens model, including
substructures, stellar discs, and line-of-sight haloes.
Then they found a mass fraction of substructures fsat as
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0.8% < fsat < 1.9%, at the 68% confidence level, with a
median estimation of fsat ¼ 1.2%, which is in agreement
with the predictions from CDM hydrodynamical simula-
tions within 1σ. In addition, substructures can also be
probed by observing the distortions in the surface bright-
ness patterns of lensed giant arcs [25–28].
Reference [29] proposed a new method to search for

substructures inside galaxy clusters focusing on astro-
metric perturbations. A smooth mass distribution creates a
geometry that yields multiple images with symmetric
configurations and critical curves with radii of curvature
about the Einstein radius. Hereafter, we refer to such lens
models as “macro”-lens models. The existence of sub-
structures introduces small-scale distortions on such a
macrocritical curve, which can distort or break the
symmetry of the gravitational lensing events expected
from the macrocritical curve. Such distortions of macro-
critical curves can be probed by highly magnified indi-
vidual stars that are observed in the vicinity of critical
curves [30,31]. It is argued that CDM subhalos of masses
ranging from 106M⊙ to 108M⊙ produce fluctuations of the
macrocritical curve that could be detected with ∼10 hr
integrations with the James Webb Space Telescope
(JWST) in near-infrared bands (see also Ref. [32]).
In this paper, we derive a general formula that

connects fluctuations in macrocritical curves with the
fluctuation of the surface density caused by substruc-
tures. This formula allows us to analytically estimate the
amplitude of the fluctuations from the surface density
power spectrum of substructures, which is useful for
discussing the mass of the substructures in the context of
astrometric perturbations. As for the surface density
power spectrum, previous studies have proposed the
expressions for the different types of substructures
such as CDM subhalos [26] and quantum clumps of
FDM [33]. We verify the validity of this formula by
performing numerical simulations.
Recently, [34] reported an anomaly of an extremely

magnified (likely binary) star, nicknamed “Mothra,” in
which the counterimage is not seen yet even though nearby
stars are found in set with their counterimages (see Fig. 2 in
Ref. [34]). They have argued that the anomaly could be
explained by considering a local millilensing effect caused
by a substructure. In this paper, as an immediate application
of our formula, we discuss the possibility of explaining the
Mothra’s anomalous observed position by fluctuations in
the macrocritical curve due to substructures such as CDM
subhalos and quantum clumps of FDM.
This paper is organized as follows. In Sec. II, we first

review the macrolens model and derive the general formula
connecting fluctuations in macrocritical curves with the
fluctuation of the surface density caused by substructures
from the lens equation. In Sec. III, we numerically verify
the formula and examine a parameter region in which this
formula is accurate. In Sec. IV, we attempt an alternative

interpretation of the anomalous lensing events utilizing the
formula. In Sec. V, we conclude this paper.
Throughout this paper, we assume a flat ΛCDM cos-

mology and fix cosmological parameters to the Planck
2018 best-fit values [4].

II. FLUCTUATIONS OF MACROCRITICAL
CURVES

To study fluctuations of macrocritical curves by sub-
structures, let us first define a macrolens model in which
we set the origin of the coordinate system in the image
and source planes on the critical curve and the caustic,
respectively.
The lens equation relates the source position β ¼ ðβx; βyÞ

with the image position θ ¼ ðθx; θyÞ as

β ¼ θ −∇ψðθÞ; ð1Þ

with ψðθÞ being the lens potential. By expanding the lens
potential up to the third order at the origin, we obtain

ψðθÞ ¼ 1

2
ðψ ;xxθ

2
x þ 2ψ ;xyθxθy þψ ;yyθ

2
yÞ

þ 1

6
ðψ ;xxxθ

3
x þ 3ψ ;xxyθ

2
xθy þ 3ψ ;xyyθxθ

2
y þ ψ ;yyyθ

3
yÞ;
ð2Þ

where the subscripts ; x and ; y represent the derivative with
respect to θx and θy, respectively. Here, we drop the leading
two terms by setting the origin of the image plane to the
origin of the source plane. We denote the convergence at
the origin as κ0, which satisfies

κ0 ¼
1

2
ðψ ;xx þ ψ ;yyÞ: ð3Þ

With the condition that the critical curve and the caustic
pass through the origin and using Eq. (3), one can obtain

ψ ;xx ¼ κ0 þ ð1 − κ0Þ cosω;
ψ ;yy ¼ κ0 − ð1 − κ0Þ cosω;
ψ ;xy ¼ −ð1 − κ0Þ sinω; ð4Þ

using the arbitrary constant parameter ω. For simplicity,
we set ω ¼ 0 in this work. Additionally, we henceforward
consider a complete orthogonal coordinate system in which
the critical curve and multiple images are perpendicular to
each other by setting ψ ;xxy ¼ ψ ;xyy ¼ ψ ;yyy ¼ 0. Denoting
ψ ;xxx ¼ ϵ, the lens potential can be written by

ψðθÞ ¼ 1

2
½κ0ðθ2x þ θ2yÞ þ ð1 − κ0Þðθ2x − θ2yÞ� −

ϵ

6
θ3x: ð5Þ

ABE, KAWAI, and OGURI PHYS. REV. D 109, 083517 (2024)

083517-2



With this lens potential, the lens equation becomes very
simple as

βx ¼
θ2x
2
ϵ;

βy ¼ 2ð1 − κ0Þθy: ð6Þ
Note that ϵ has the dimension of the inverse of the angle,
whose value approximately corresponds to the inverse of
the Einstein radius of the macrolens model. The Jacobian
matrix is written by

�
∂βðθÞ
∂θ

�
¼

�
ϵθx 0

0 2ð1 − κ0Þ

�
: ð7Þ

One can find that the θy axis corresponds to the critical
curve by calculating the determinant of the matrix
in Eq. (7).
Now, let us consider the fluctuations of the macrocritical

curve due to substructures. Considering fluctuations of a
point on the original critical curve [i.e., θ̃ ¼ ðδθx; θy þ δθyÞ]
caused by substructures, the Jacobian matrix up to linear
order is given by

�
∂βðθ̃Þ
∂θ

�
≈
�
ϵδθx−δκ−δγ1 −δγ2

−δγ2 2ð1−κ0Þ−δκþδγ1

�
; ð8Þ

where δκ, δγ1, and δγ2 represent the convergence and two
components of the shear due to substructures, respectively.
The determinant of the Jacobian matrix is given by

det

�
∂βðθ̃Þ
∂θ

�
≈ðϵδθx−δκ−δγ1Þð2ð1−κ0Þ−δκþδγ1Þ−δγ22

≈2ð1−κ0Þðϵδθx−δκ−δγ1Þ: ð9Þ

Since the determinant must be equal to zero, the fluctuated
critical curve satisfies

δθx ¼
1

ϵ
ðδκ þ δγ1Þ: ð10Þ

From Eq. (10), we obtain the power spectrum of δθx as

Pδθx ¼
1

ϵ2
ðPδκ þ 2Pδκδγ1 þ Pδγ1Þ; ð11Þ

where Pδθx , Pδκ, and Pδγ1 are the auto two-dimensional
power spectrum of δθx, δκ, and δγ1, respectively, and Pδκδγ1
represents the cross power spectrum between δκ and δγ1.
Here, we define the two-dimensional power spectrum of X
and Y as

hXðkÞYðk0Þi ¼ ð2πÞ2δ2Dðkþ k0ÞPXY; ð12Þ

where k is a wave number on a two-dimensional plane.

Using the relations between δκ and δγ1,

Pδγ1 ¼ cos2ð2ϕlÞPδκ;

Pδκδγ1 ¼ cosð2ϕlÞPδκ; ð13Þ

we obtain

Pδθx ¼
1

ϵ2
ð1þ 2 cosð2ϕlÞ þ cos2ð2ϕlÞÞPδκ; ð14Þ

where ϕl is the azimuthal polar. Taking average of ϕl,
we finally obtain

Pδθx ¼
3

2ϵ2
Pδκ; ð15Þ

and

ϵ2hδθ2xi ¼
3

2

Z
d log k

k2

2π
Pδκ ¼

3

2
hδκ2i: ð16Þ

Note that ϵ2hδθ2xi ≈ hδθ2xi=θ2Ein, given that ϵ ≈ 1=θEin.
Deriving these simple formulae of Eqs. (15) and (16) is
the main result in this paper. Although previous work
has derived a formula between fluctuations of image
positions and the surface density perturbations from sub-
structures [19], as far as we are aware, this is the first time
to derive the formulas between the critical curve fluctua-
tions and the surface density perturbations. These formulas
allow us to analytically estimate the variance of Pδθx

or hδθ2xi1=2 from the surface density power spectrum of
substructures, Pδκ.
While Eq. (15) is derived assuming a complete orthogo-

nal coordinate system, we argue that Eq. (15) holds rather
generically because near the fold critical curve tangential
and radial magnifications generally behaves as [35]

μt ≈
μt0
δθ

; μr ≈ const; ð17Þ

where δθ denotes the distance from the critical curve. Since
the tangential magnification is defined by μ−1t ¼ 1 − κ − γ

with γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 þ γ22

p
, substructures modify the inverse of the

tangential magnification as

μ−1t ≈
δθ

μt0
− δκ −

γ1
γ
δγ1 −

γ2
γ
δγ2: ð18Þ

Since the perturbed critical curve satisfies μ−1t ¼ 0, we
obtain

Pδθ ¼ μ2t0

�
Pδκ þ

�
γ1
γ

�
2

Pδγ1 þ
�
γ2
γ

�
2

Pδγ2

�
;

¼ 3μ2t0
2

Pδκ; ð19Þ
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where we take an average of ϕl. Equation (19) is
essentially same as Eq. (15) if μt0 ¼ 1=ϵ.
While our analytic results are applicable to any form of

substructures, here let us describe a specific form of PδκðkÞ
when substructures are CDM subhalos. Using the halo
formalism [36] and assuming that the spatial correlation
between subhalos can be negligible (i.e., subhalos are
randomly distributed), we can compute the surface density
power spectrum as an integral over the mass function
weighted by their surface density profile as [26]

PδκðkÞ ¼
Z

Mmax

Mmin

dn2D

dM
jκ̃MðkÞj2dM; ð20Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, Mmin and Mmax are the minimum

and maximum mass of subhalos, respectively, dn2D=dM is
the surface number density of subhalos with masses of
½M;M þ δM�, and κ̃MðkÞ is the Fourier transform of the
convergence κM provided by a subhalo of mass M. Here
κ̃MðkÞ can be calculated by

κ̃MðkÞ ¼
MũMðK� ¼ ðkx; ky; 0ÞÞ

Σcr
; ð21Þ

where Σcr is the critical surface density, and ũMðKÞ is the
Fourier transform of their three-dimensional density pro-
file, ρM (see the Appendix),

ũMðKÞ ¼
Z

Rvir

0

4πR2

M
sinKR
KR

ρMðRÞdR; ð22Þ

where K ¼ jKj. In this paper, we simply adopt the
ordinal Navarro-Frenk-White (NFW) profile [37], which
is defined by

ρNFWðRÞ ¼
Mc3vir
4πR3

vir

fNFWðcvirÞ
ðRcvir=RvirÞð1þ Rcvir=RvirÞ2

; ð23Þ

where Rvir is the virial radius, cvir is the concentration
parameter for virial radius, and fNFWðcÞ≡ 1=½lnð1þ cÞ−
c=ð1þ cÞ�. Then ũMðKÞ can be expressed by [38]

ũMðKÞ ¼ fNFWðcvirÞ
�
sinK½SiðKð1þ cvirÞÞ−SiðKÞ�

þ cosK½CiðKð1þ cvirÞÞ−CiðKÞ�− sinðKcvirÞ
Kð1þ cvirÞ

�
;

ð24Þ

with K≡ KRvir, the sine integral functions, SiðXÞ ¼R
X
0 dt sinðtÞ=t, and the cosine integral function,
CiðXÞ ¼ −

R∞
X dt cosðtÞ=t.

III. VALIDITY OF THE FORMULA
CONNECTING hδθ2i AND hδκ2i

In the previous section, we derive Eqs. (15) and (16), the
simple analytical relations between fluctuations of the
macrocritical curve and the fluctuation of the surface
density due to substructures. Here, we check the validity
of Eq. (16) by comparing it with direct numerical esti-
mations of fluctuations of macrocritical curves due to
substructures.
We first set up macrolens models. We assume that the

macrolens object is a DM halo with a mass of Mhh ¼
1015M⊙=h located at redshift zl ¼ 0.5. We here focus on
the tiny surface area near the critical curve caused by
the DM halo adopting the lens potential defined by Eq. (5)
with ϵ ¼ 1=1000 and the convergence κ0 ¼ 0.5.
We next set up lens models of substructures hosted

by the DM halo. As an example, we here consider
CDM subhalos as substructures. For the mass distribution
of subhalos, we adopt the NFW profile in Eq. (23) with
the concentration parameter computed by the mass-
concentration relation presented in Ref. [39]. Note
that we multiply the concentration parameter by ½200=
ΔvirΩmðzÞ�1=3½HðzÞ=H0�−2=3 with the virial overdensity
computed from the spherical collapse model, Δvir, to
convert from c200 to cvir [40].
We also assume that the density profile of the DM halo

follows the NFW density profile, and the spatial distribu-
tion of subhalos also follows it. The surface number
density of subhalos is then proportional to the surface
NFW density as

n2D ≡ dNsub

dS
∝ ΣNFWðr;MhhÞ; ð25Þ

where dS ¼ 2πrdr with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, ΣNFWðrÞ is the

surface density of the NFW profile. The concentration
parameter for the host halos is estimated by the mass-
concentration relation presented in Ref. [41]. The surface
number density of subhalos with masses of ½M;M þ δM� in
Eq. (20) is given by

dn2D

dM
¼ dNsub

dM
ΣNFWðr;MhhÞ

Mhh
; ð26Þ

where dNsub=dM shows the total number of subhalos with
masses of ½M;M þ δM� inside their host halo. We adopt a
simple analytic model presented in Ref. [42] for calculating
dNsub=dM. We assume that the spatial correlation among
subhalos can be neglected and distribute them with a
constant surface number density assuming the Poisson
distribution, which is justified by the tiny surface area in
the vicinity of the critical curve considered here. This
assumption may be validated by the fact that subhalos are
exposed to the tidal gravity of their host halo.
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Distributing CDM subhalos near the macrocritical curve
by the Poisson distribution with the expected number
from Eq. (26), we numerically calculate fluctuations of
the macrocritical curves. We use an open software, Glafic

code, presented in Refs. [43,44]. To distribute subhalos,
it is necessary to set Mmin and Mmax and the box size
considered here. We explore 12 models with different
sets of ðMmin;MmaxÞ summarized in Table I. The box
size is basically set to 6.000 × 6.000 with the exception of
3.000 × 3.000 for model (iii). These box sizes are determined
for numerical reasons.
For each model of ðMmin;MmaxÞ, we run the calculations

for ten realizations. From the obtained critical curves, we
take the mean and variance of the fluctuations hθ2xi1=2.
A caveat is that Glafic outputs isolated critical curves that
are associated with subhalos as well. In order to compute
fluctuations of macromodel critical curves that are our main
interest here, those critical curves associated with subhalos
must be removed. To do so, we adopt a simple filtering
method with three steps: (1) sorting points representing
critical curves by θy coordinate, (2) subdividing the sorted
points into several blocks with Oð102Þ data points, and
(3) acquiring only the point with the smallest θx in each
block. Figure 1 shows the resulting fluctuated critical
curves for each model. In Fig. 1, the red dashed line shows
the original macrocritical curve described in Sec. II. The
gray points depict critical curves calculated in Glafic. The
blue points show the fluctuated critical curves obtained by
the filtering method described above. We find that the
original critical curves are shifted in the positive direction
of the θx axis. This is explained by the contribution of the
additional mass of subhalos that moves the macrocritical
curve to the outer radii, which corresponds to the position
θx in this coordinate system.
Table I also shows the numerical results of hθ2xi1=2

estimated in the manner described above. We find that
the values of hθ2xi1=2 for models (i)–(viii) agree well with

the analytically estimated values from Eq. (16). When the
Mmax becomes larger than 5 × 1010M⊙, the numerically
estimated values become smaller than the analytically
estimated ones. This deviation may come from the non-
Gaussianity due to massive subhalos; the probability of
their existence is rare, i.e., there seldom exists such massive
subhalos in our calculation box, while their analytical
contribution to hκ2i is significant. Thus, examining whether
the distribution of δθx is Gaussian or not should provide
useful guidance on this deviation. In addition, we may think
of this saturation as occurring in models that contain
subhalos so massive that none of them are present in
our computational region in many realizations. Since we
perform our calculations for the region of 10 × ð600 × 600Þ,
this mass scale corresponds to ∼1010M⊙, which indicates
the deviation at the scale of hδθ2xi1=2 ≳ 0.100. Moreover, our
filtering method to pick the smallest-θx data point in each
block could lead to systematic underestimations in some
simulations. In any case, we conclude that Eq. (16) is valid
and accurate, at least as long as the substructure power
spectrum is not dominated by a small number of massive
structures. We summarize the comparison between the
numerical and analytic values from Eq. (16) in Fig. 2.

IV. APPLICATION TO MOTHRA

This section will apply the formula in Eq. (16) for
discussing the origin of an extremely magnified binary
star at redshift z ¼ 2.091 recently reported in Ref. [34]
with JWST/NIRCam data, nicknamed “Mothra.” Mothra
is found in the strong lensing region in the galaxy cluster
of MACS J0416.1-403 at z ¼ 0.397. The Mothra, for-
mally called LS1, is observed only on one side of the
critical curve with negative parity, and its counterimage is
not seen even though nearby star clusters are found in a
pair on both sides of the critical curve as shown in Fig. 2
of Ref. [34].

TABLE I. Our models with different ðMmin;MmaxÞ for the validation. We show numerical results as well as
analytically estimated values of hθ2xi1=2 by Eq. (16) for individual models.

Model Mmin½M⊙=h� Mmax½M⊙=h� Numerical results [ 00] Analytic value [ 00] Remark

(i) 5 × 106 5 × 107 0.0334� 0.0055 0.0342 6.000 × 6.000, 10 realizations
(ii) 5 × 106 108 0.0459� 0.0123 0.0422 6.000 × 6.000, 10 realizations
(iii) 106 108 0.0476� 0.0114 0.0467 3.000 × 3.000, 10 realizations
(iv) 5 × 106 5 × 108 0.0631� 0.0108 0.0630 6.000 × 6.000, 10 realizations
(v) 5 × 106 109 0.0629� 0.0141 0.0730 6.000 × 6.000, 10 realizations
(vi) 5 × 106 5 × 109 0.113� 0.0391 0.103 6.000 × 6.000, 10 realizations
(vii) 5 × 106 1010 0.0995� 0.0320 0.119 6.000 × 6.000, 10 realizations
(viii) 5 × 106 5 × 1010 0.150� 0.055 0.163 6.000 × 6.000, 10 realizations
(ix) 5 × 106 6 × 1010 0.122� 0.044 0.170 6.000 × 6.000, 10 realizations
(x) 5 × 106 1011 0.112� 0.044 0.186 6.000 × 6.000, 10 realizations
(xi) 5 × 106 5 × 1011 0.122� 0.0529 0.256 6.000 × 6.000, 10 realizations
(xii) 5 × 106 1012 0.129� 0.041 0.291 6.000 × 6.000, 10 realizations
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Although Ref. [34] argued that the anomaly could be
explained by considering a local millilensing effect due to a
substructure that demagnifies and hides one of the multiple
images of Mothra, we here attempt to interpret this anomaly
as caused by fluctuations in the macrocritical curve due to
substructures. In our new interpretation, Mothra is regarded
as an event similar to Earendel [31] that is located exactly
on the macrocritical curve and whose multiple images are
unresolved, but due to a fluctuated macrocritical curve
Mothra is observed in an apparently offset position. With
our analytic formula, we check which substructure models
can explain the observed offset of Mothra.
The macrolens model for the Mothra is set up as

follows. We adopt zs ¼ 2.091 and zl ¼ 0.397. According
to Ref. [45], the virial halo mass of MACS J0416.1-403 is
estimated as ð1.24� 0.28Þ × 1015M⊙. Using the Glafic mass
model of MACS J0416.1-403 [43,46], the Einstein radius
for this source redshift is estimated as θEin ≈ 24.1300.

FIG. 1. An example of fluctuated critical curves by CDM subhalos for each model summarized in Table I. The red dashed vertical line
shows the original macrocritical curve described in Sec. II. The gray points show critical curves calculated in Glafic, while the blue
points show the fluctuated critical curves obtained by filtering, as explained in the text. We also show the value of hδθ2xi1=2 for each panel
in units of arcsec. For the mean value of each model, see Table I. Top left: model (i). Top center: model (ii). Top right: model (iii). Middle
left: model (v). Middle center: model (vii). Middle right: model (viii). Bottom left: model (ix). Bottom center: model (x). Bottom right:
model (xii). The acronym “CC” stands for “critical curve” in the figure.

FIG. 2. Comparison between analytically calculated values of
hδθ2xi1=2 from Eq. (16) and the ones numerically estimated using
Glafic. Here we set Mhh ¼ 1015M⊙=h.
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Combining the Einstein radius and the mass of the galaxy
cluster, we also fix the concentration parameter cvir ¼ 7.59.
Here, we assume the stellar-mass-halos-mass relation [47],
galaxy-size relation [42], the Hernquist density profile for
the stellar components [48], and the mass-concentration
relation [41]. Note that the total stellar mass is estimated as
1.09 × 1012M⊙, and the effective radius in the Hernquist
profile is θb ¼ 1.2200. The parameter ϵ should be deter-
mined by the local structure of the macromodel critical
curve around Mothra. Again, we adopt the Glafic mass
model to estimate the tangential magnification as a function
of the distance from the macrocritical curve δθ, finding
μt ≈ 800=δθ. Based on the discussion given in Sec. II, we set
ϵ ¼ 1=800 for our analytic estimates of fluctuations of
macrocritical curves.
In our new interpretation, the macrocritical curve needs

to be fluctuated by ∼0.0700, especially to the negative parity
side, as shown in Fig. 2 in Ref. [34]. Equation (16) allows
us to analytically estimate the fluctuation of the surface
density power spectrum by substructures necessary to
predict the fluctuation of the macrocritical curve needed
to explain Mothra. We obtain hδκ2i ∼ 3.27 × 10−5 for
hδθ2xi1=2 ∼ 0.0700. In the following, we consider two cases
as substructures as examples: CDM subhalos and quantum
clumps of FDM halos.

A. CDM subhalos

Combining Eq. (20) with Eq. (16), we estimate the
parameter set of (Mmin, Mmax) needed to explain
hδκ2i ∼ 3.27 × 10−5. We plot the contour of hδθ2xi1=2 as
a function of Mmax and Mmin=Mmax in Fig. 3. Since the
minimum mass of CDM subhalos is actually very small,
e.g., 10−12 − 10−3M⊙ for the supersymmetric neutralino
[49–52], the Mmin=Mmax ratio would be almost zero. From
Fig. 3, the value of Mmax to explain the Mothra-like lens
system becomes smaller than 109M⊙=h for such very small

Mmin=Mmax ratio, which is consistent with the fact that
there is no visible galaxy aroundMothra. Thus, we find that
CDM subhalos, especially with Mmax ∼ 108–109M⊙=h,
have the potential to explain the Mothra-like lens system.
In addition to Mothra, there are several multiple image

pairs of star clusters on both sides of the critical curves.
CDM subhalos considered in this paper may also affect the
positions and magnification ratios of these multiple image
pairs of star clusters. We further check the validity of our
model shown in Fig. 3 by exploring whether CDM
subhalos significantly affect the magnification ratios of
those multiple image pairs, focusing on the image pair c
and c0 defined in Ref. [34].1 We here choose a model with
ðMmin;MmaxÞ ¼ ð5 × 107M⊙=h; 109M⊙=hÞ as an example
that potentially explains the Mothra-like lens system for a
numerical reason. This model is represented in Fig. 3 by the
red cross. Reference [34] suggests that the ratio of the
magnification at the position of the image c against the one
of the image c0 should approximately be 1.22 from the
configurations of these multiple image pairs. We numeri-
cally calculate fluctuated critical curves for this model in
the same manner as in Sec. III. In the calculation, we here
also record the magnification at positions of the image c,
μc, and of the image c0, μc0 . Running the calculations in ten
realizations for each model, we take the 2000 parameter
sets of ðδθx; μc; μc0 Þ.
Figure 4 shows the correlation between δθx and the

magnification ratio μc=μc0 . The blue points show the
parameter sets obtained in our calculation, while the red
dotted vertical line indicates the value of δθx required to
reproduce the Mothra-like lens system. The red dotted
horizontal line shows the magnification ratio μc=μc0 ¼ 1.22

FIG. 3. Contour of hδθ2xi1=2 as a function of Mmax and
Mmin=Mmax for the Mothra-like lens system. The value of each
contour is shown in units of arcsec. The red cross shows the
model that we calculate in detail to interpret the Mothra’s
anomalous position.

FIG. 4. The correlation between δθx and the magnification ratio
between c and c0, multiple image pair near Mothra. From the
configuration of multiple images, the magnification ratio is
predicted to be about 1.22, represented by the horizontal red
dotted line. The vertical red line shows δθx to make the image at
the Mothra’s offset an unresolved pair of images.

1We have confirmed that Eq. (16) holds for the model as well.
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as suggested in Ref. [34]. When jδθxj ∼ 0.200, the fluctuated
critical curve passes near the position of the image c or the
image c0, which leads to the strong correlation between δθx
and μc=μc0 as shown in Fig. 4. However, we find that μc=μc0
does not strongly correlate with δθx when δθx ≲ 0.100,
indicating the possibility of reproducing the Mothra-like
lens system while keeping the observed magnification ratio
of μc=μc0 ∼ 1.22.
It should be noted that we also need to consider

perturbations on the image positions of several multiple
image pairs of star clusters around Mothra due to subhalos
to confirm that those subhalos do not significantly affect the
observed positions of those additional multiple images. We
leave them for future research.

B. Quantum clumps in FDM halos

Due to the wave nature of FDM, the quantum clumps
(granular structures), which originate from the interference
pattern, are observed in FDM halos. The size of each clump
corresponds to the de Broglie wavelength. The surface
density perturbations due to these clumps are analytically
studied in Ref. [33], in which the subgalactic matter power
spectrum is calculated under the assumptions that the
clumps are randomly distributed with the number density
hni ¼ 1=Vc, where Vc is the (constant) volume of each
clump, and that the mass of each clump is determined by
the local NFW density. In addition, the density profile of
each clump is assumed to be Gaussian.
Without baryon components, the surface density power

spectrum can be calculated as

Pδκ;FDMonlyðkÞ ¼
π
R
dzρ2NFWðRÞ
6Σ2

cr
λ3c exp

�
−
λ2ck2

4

�
; ð27Þ

where λc is the de Broglie wavelength. From Eqs. (15)
and (16), we can estimate the critical curve perturbation in
FDM halos as

hδθ2x;FDMonlyi ¼
λc
4ϵ2

R
dzρ2NFWðRÞ

Σ2
cr

: ð28Þ

Since the de Broglie wavelength is proportional to the
inverse of the FDM mass m, we find the simple relation of
hδθ2x;FDMonlyi ∝ 1=m. We can rewrite Eq. (28) as

ϵ2hδθ2x;FDMonlyi ¼
λc
4rh

κ2FDM; ð29Þ

where rh is the effective radius in FDM halos introduced in
Ref. [33]. From Eq. (29), the fluctuation of the macro-
critical curve is found to be proportional to the convergence
divided by the square root of the number of the clumps
along the effective radius.
In the case where the baryon components distribute

smoothly, the surface density power spectrum can be

expressed with the same form as Eq. (27), while the de
Broglie wavelength is modified due to the additional
baryon component. The critical curve perturbation can
be obtained as

ϵ2hδθ2x;FDMbaryoni ¼
λc
4rh

�
κFDM
κtot

�
2

κ2tot; ð30Þ

where κtot ¼ κFDM þ κbaryon denotes the convergence of the
total mass. We can find that the smooth baryon profile
reduces the fluctuation of the macrocritical curves.
Using these relations, we calculate the critical curve

perturbation in the specific case, Mothra. Figure 5 shows
the relation between the FDM mass and the fluctuation of
the macrocritical curve. It is shown that the FDM mass of
mc2 ≃ 5.5 × 10−25 eV is needed to explain the Mothra,
which is significantly smaller than the typical FDM mass
around mc2 ¼ 10−23 − 10−21 eV. We need a relatively
small FDM mass to produce a sizable effect because, in
galaxy clusters, the de Broglie wavelength is small due to
large velocity dispersions and also, the averaging effect is
larger due to the larger projection length along the line of
sight. The preferred mass mc2 ≃ 5.5 × 10−25 eV is actually
constrained by several works such as the analysis of the
Lyman-α forest [53–56], which might indicate that the case
where all DM is composed by FDM is ruled out. Although
this case might not be valid, we could show an example
of constraining DM properties based on the fluctuations
of the main critical curve. In order to provide an advanced
statement for DM properties, we may need further discus-
sions of hybrid dark matter models (e.g., FDMþ CDM),
where we expect our formalism to be useful.

FIG. 5. The relation between the critical curve perturbation and
the FDM mass in the case of Mothra. The horizontal dotted line
shows the fluctuation needed to explain the observed offset of
Mothra.
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V. CONCLUSION

Astrometric perturbations of critical curves in strong lens
systems serve as one of the most promising probes of small-
scale substructures. A smooth mass distribution creates a
geometry that yields multiple images with symmetric
configurations around critical curves with radii of curvature
about the Einstein radius. Substructures introduce small-
scale fluctuations on the macrocritical curves created by
smooth mass distributions, which indicates distortions or
breaking the symmetry appearing in the macrolens model.
In this work, we have derived a general formula connecting
fluctuations in the macrocritical curve with the fluctuations
of the surface density due to substructures. This formula
given in Eq. (16) allows us to analytically estimate the
amplitude of the fluctuations from the surface density
power spectrum of substructures.
We have explicitly checked the validity and accuracy of

the formula in Eq. (16) using an open source code Glafic.
Distributing subhalos near the macrocritical curve by the
Poisson distribution, we have numerically computed criti-
cal curves with several models with different mass ranges
of subhalos and calculated fluctuations of the macrocritical
curves. We have found that our formula is indeed valid and

accurate as long as substructures are not dominated by a
small number of massive structures. The numerical results
are summarized in Table I.
As a demonstration of our analytic formula, we have

explored the possibility that an extremely magnified binary
star recently reported in Ref. [34] with JWST/NIRCam
data, Mothra, can be explained by an unresolved magnified
star whose position is offset due to the fluctuation of
the macrocritical curve caused by substructures. We have
found that CDM subhalos with masses ranging from
5 × 107M⊙=h to 109M⊙=h can well explain the anomalous
position of Mothra. On the other hand, we have found that
the FDM with a very small mass of ∼10−24 eV is needed to
explain Mothra.
We expect that our analytic approach will be useful for

studying fluctuations of macrocritical curve probed by
highly magnified stars [29,32] as well as by detailed mass
modeling analysis of strong lensing systems [57–60].
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APPENDIX: THE FOURIER TRANSFORMATION OF κ

The two-dimensional Fourier transformation of the two-dimensional surface density fluctuation is written by

κ̃k ¼
Z

dxκðxÞeik·x; ðA1Þ

hκ̃kκ̃k0 i ¼
Z

dx
Z

dx0hκðxÞκðx0Þie−ik·xe−ik0·x0 ;

¼
Z

dX
Z

dX0 1

Σ2
cr
hρðXÞρðX0Þie−iK·Xe−iK0·X0 jKZ¼KZ0¼0;

¼ 1

Σ2
cr

Z
dX

Z
dX0e−iK·Xe−iK0·X0

	X
i

m2
i uðX −XijmÞuðX0 −XijmÞ


����
KZ¼KZ0¼0

;

¼ 1

Σ2
cr

Z
dX

Z
dX0

Z
dX00

Z
dm

dnðX00Þ
dm

m2uðX −X00jmÞuðX0 −X00jmÞe−iK·ðX−X00Þe−iK0·ðX0−X00ÞÞe−iðKþK0Þ·X00 jKZ¼KZ0¼0;

¼ 1

Σ2
cr

Z
dX00e−iðKþK0Þ·X00

Z
dm

dnðX00Þ
dm

m2ũKðmÞũK0 ðmÞjKZ¼KZ0¼0;

¼ ð2πÞ2
Σ2
cr

Z
dZ00

Z
dm

dnðZ00Þ
dm

m2ũkðmÞũk0 ðmÞδ2Dðkþ k0Þ;

¼ ð2πÞ2δ2Dðkþ k0Þ 1

Σ2
cr

Z
dm

dn2D

dm
m2ũkðmÞũk0 ðmÞ; ðA2Þ

where x and X are two- and three-dimensional coordinates, respectively, k ¼ ðkx; kyÞ, K ¼ ðkx; ky; KzÞ, and we assume that
the spatial correlations among subhalos can be neglected. We also assume that the subhalo number density depends only on
the coordinate along the line of sight, i.e., redshift. In this equation, we denote

ũKjKz¼0 ¼ ũk: ðA3Þ
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On the other hand, we can calculate hκ̃kκ̃k0 i directly like

hκ̃kκ̃k0 i ¼
Z

dx
Z

dx0hκðxÞκðx0Þie−ik·xe−ik0·x0 ;

¼ 1

Σ2
cr

Z
dx

Z
dx0

Z
dx00

Z
dm

dn2D

dm
m2u2Dðx − x00jmÞu2Dðx0 − x00jmÞe−ik·ðx−x00Þe−ik0·ðx0−x00Þe−iðkþk0Þ·x00 ;

¼ ð2πÞ2δðkþ k0Þ 1

Σ2
cr

Z
dm

dn2D

dm
m2ũ2Dk ðmÞũ2Dk0 ðmÞ: ðA4Þ

Then one can find that uk represented in Eq. (A3) is actually the two-dimensional Fourier transformation of the two-
dimensional (normalized) surface density profile.
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