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The inflationary reheating phase begins when accelerated expansion ends. As all Standard Model
particles are coupled to gravity, gravitational interactions will lead to particle production. This includes the
thermal bath, dark matter, and gravitational radiation. Here, we compute the spectrum of gravitational
waves from the inflaton condensate during the initial phase of reheating. As particular examples of
inflation, we consider the Starobinsky model and T models, all of which are in good phenomenological
agreement with cosmic microwave background anisotropy measurements. The T models are distinguished
by the shape of the potential about its minimum and can be approximated by V ∼ ϕk, where ϕ is the
inflaton. Interestingly, the shape of the gravitational wave spectrum (when observed) can be used to
distinguish among the models considered. As we show, the Starobinsky model and T models with k ¼ 2,
provide very different spectra when compared to models with k ¼ 4 or k > 4. Observation of multiple
harmonics in the spectrum can be interpreted as a direct measurement of the inflaton mass. Furthermore, the
cutoff in frequency can be used to determine the reheating temperature.
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I. INTRODUCTION

The basic inflationary paradigm [1] makes several test-
able predictions. For example, it is expected that the
Universe is flat [2], probably to very high precision. That
is, the total energy density relative to the critical energy
density, ρc, is very close to unity, Ω ¼ 1. Generally infla-
tionary models predict a spectrum of density fluctuations
close to but slightly redder than the Harrison-Zeldovich
spectrum [3,4], i.e., a scalar spectral index, ns ≲ 1 [5].
Models also predict a nonvanishing ratio of tensor to scalar
perturbations, though the exact value is more model depen-
dent. The first two of these three predictions have been borne
out by experiment, primarily observations of cosmic micro-
wave background (CMB) anisotropies [6,7]. Limits on the
tensor-to-scalar ratio [8,9] have been able to exclude some
simple models of inflation.
Additional signatures and experimental verification of

inflation and inflationary models are clearly needed. One
possible signature is the production of gravitational waves
during reheating [10–31]. Recently, several works have

considered the Bremsstrahlung production of gravita-
tional waves from inflaton decay [20,21,25,26,29–31].
This is dominated by processes at the end of reheating.
But it is also possible to produce gravitational waves from
scattering within the inflaton condensate [17,18,22]. Since
these processes depend on the (square of) the inflaton
density, the production of these waves are dominated by
scatterings at the onset of reheating as the oscillatory
phase begins.
Recognizing that reheating is not an instantaneous event

[32–35], there has been considerable interest in particle
production during the reheating period [34–47]. Many of
these processes are related to the so-called freeze-in
mechanism [48,49] for which the gravitino is a prime
example [50–52]. There are also processes which rely only
on gravitational interactions [17,18,44,47,53–81]. Here we
will concentrate on the direct production of gravitational
waves from scattering within the inflaton condensate. As
these processes are unavoidable (they rely only on the
coupling of the inflaton to gravity), they are a minimal
source of gravitational waves present in inflationary the-
ories. In particular, they do not rely directly on the
couplings of the inflaton to matter leading to inflaton
decay, though the final frequency spectrum of gravitational
waves will depend on the reheating temperature as it will
affect the degree to which the frequencies redshift from the
moment of their creation to the present time.
As concrete examples, we will consider both the

Starobinsky model of inflation [82] with a scalar potential
given by
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where ϕ is the inflaton, MP ≃ 2.4 × 1018 GeV is the
reduced Planck mass and the related α-attractor T models
[83] with scalar potential

VðϕÞ ¼ λM4
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Both examples are phenomenologically viable [84]. When
the T-model potential is expanded about its minimum, the
potential can be approximated by

VðϕÞ ¼ λM4
P

�
ϕ

MP

�
k
; ϕ ≪ MP: ð3Þ

For k ¼ 2, the T models, as well as the Starobinsky model,
can be approximated by a quadratic potential providing a
source of harmonic oscillations of the inflaton condensate
when the period of inflationary expansion ends. For k ≠ 2,
the T models give rise to anharmonic oscillations.
In analogy with the gravitational production of matter

produced by inflaton scattering in [47,61,66,81], here we
consider the pair production of gravitons from inflaton
scattering. In Sec. II, we provide our computation of the
amplitudes for the processes considered with some details
reserved for the Appendix. These are employed in Sec. III
and we solve the Boltzmann equations for the simple case
of the Starobinsky potential as well as the T-model potential
with k ¼ 2 for the production of the gravitational wave
spectrum. In Sec. IV, we generalize to the T models with
k > 2. Our conclusions are given in Sec. V.

II. PRODUCTION RATES

We consider the minimal production of gravitational
waves from inflaton annihilation, independent of the matter
couplings. We start from the Einstein-Hilbert action and the
inflaton (ϕ) action minimally coupled to gravity:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2κ−2Rþ 1

2
gμν∇μϕ∇νϕ − VðϕÞ

�
; ð4Þ

where κ ≡ ffiffiffiffiffiffiffiffiffiffiffi
32πG

p ¼ 2=MP. In the weak field limit, the
metric gμν can be expanded in powers of κ as

gμν ¼ ημν þ κhμν þ � � � ;
gμν ¼ ημν − κhμν þ κ2hμλhλν þ � � � ; ð5Þ

and hμν is identified with the canonically normalized
graviton. The first order of the expansion yields the scalar
coupling to a graviton (see, e.g., [85]):

L ⊃ −
κ

2
hμνT

μν
ϕ ; ð6Þ

where Tμν
ϕ ¼ ∂

μϕ∂νϕ − gμν½1
2
∂
αϕ∂αϕ − VðϕÞ� is the scalar

energy-momentum tensor. The quartic vertex hhϕϕ arises at
second order with a coupling constant κ2. Besides, in this
expansion, the Ricci scalar gives rise to graviton self-
interactions, where the trilinear vertex comes with a coef-
ficient κ. With this minimal content, the dominant source of
graviton production is through inflaton annihilation, by
inflaton exchange, graviton exchange, or the contact term.
The relevant Feynman diagrams are given in Fig. 1. All

four diagrams contribute to the matrix element Mðϕϕ →
hμνhμνÞ at order Oðκ2Þ. The Feynman rules and details
about each amplitude will be provided in the Appendix.
Here we note that the graviton polarization vector is simply
the product of two photon polarization vectors:

ε�2
μν ¼ ε�μ ε�ν ; ð7Þ

which is transverse, traceless, symmetric in ðμνÞ and forms
an orthonormal basis. For the squared amplitude, we will
need the polarization sum:

X
pol

ε�μνεαβ ¼ η̂μαη̂νβ þ η̂μβη̂να − η̂μνη̂αβ

2
; ð8Þ

with

η̂μν ≡ ημν −
υμῡν þ υνῡμ

2E2
ω

; ð9Þ

and υ ¼ ðEω; υ⃗Þ, ῡ ¼ ðEω;−υ⃗Þ for a graviton of energy Eω

and momentum υ⃗. The inflaton condensate is by construc-
tion at rest, and for a quadratic potential, its four momen-
tum is pμ

1 ¼ pμ
2 ¼ ðmϕ; 0⃗Þμ, where mϕ is the inflaton mass.

Momentum conservation then implies kμ1 ¼ ðmϕ; υ⃗Þμ,
kμ2 ¼ ðmϕ;−υ⃗Þμ with υ⃗ · υ⃗ ¼ m2

ϕ. In this setup, Figs. 1(a)
and 1(b) vanish,1 and the remaining two add up to yield the
following squared amplitude summed over polarizations:

X
pol

jMj2 ¼ 2m4
ϕ

M4
P
×
1

4
: ð10Þ

The factor 1=4 accounts for the symmetry factors of the
initial and final states. The rate of production of gravita-
tional waves is2

1Note that in [86,87], the production of gravitational waves
from the thermal plasma is considered, which involves similar
diagrams as shown in Fig. 1, but Figs. 1(a) and 1(b) do contribute
because the initial states are not at rest.

2In [17,18,22], Γh was discussed in connection to the scalar
production rate and by relying on the fact that graviton equation
of motion is the same as that of the scalar. Here, we perform a
direct computation of the graviton production amplitude in
Eq. (10) and thus obtain an analytic form for Γh.
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Γh ¼
ρϕ
mϕ

P
pol jMj2
32πm2

ϕ

¼ 2ρϕmϕ

64πM4
P
; ð11Þ

where ρϕ is the energy density of the inflaton, and the factor
of 2 accounts for the production of two gravitons per
interaction.

III. GRAVITATIONAL WAVE SPECTRUM

The density of gravitational waves, ρGW, produced from
inflaton scattering is determined from the Boltzmann
equation

ρ̇GW þ 4HρGW ¼ ð1þ wϕÞΓhðtÞρϕ; ð12Þ

where H is the Hubble parameter, Γh is the rate for
producing gravitational waves computed in the previous
section, and the equation of state parameter is

wϕ ¼ k − 2

kþ 2
: ð13Þ

The Boltzmann equation (12) is coupled to the correspond-
ing equation for the evolution of ρϕ,

ρ̇ϕ þ 3Hð1þ wϕÞρϕ ≃ −Γϕð1þ wϕÞρϕ; ð14Þ

where Γϕ is the inflaton decay rate that is responsible for
reheating. For Γϕ ≪ H and using d

dt ¼ aH d
da, where a is the

cosmological scale factor, this equation can be easily
integrated to give

ρϕðaÞ ¼ ρend

�
aend
a

� 6k
kþ2

; ð15Þ

¼ ρend

�
aend
a

�
3

; k ¼ 2: ð16Þ

Here aend is the value of the scale factor when inflation
ends, i.e., when ä ¼ 0 and ρend is the inflaton energy
density at a ¼ aend. This evolution is valid untilH ≃ Γϕ. At
this time, decays become rapid and the density of inflatons

becomes exponentially suppressed. In this section, we will
fix k ¼ 2 corresponding to wϕ ¼ 0.
Finally, we need to determine the reheating temperature

that we assume is a result of inflaton decay. The density of
the radiation bath is also given by a Boltzmann equation

ρ̇R þ 4HρR ≃ ð1þ wϕÞΓϕðtÞρϕ: ð17Þ

For k ¼ 2, when a ≫ aend, the solution to this is [39]

ρR ¼ 2

5

Γϕρend
Hend

�
aend
a

�3
2

; ð18Þ

where Hend ¼ ρ
1
2

end=
ffiffiffi
3

p
MP. Defining the “moment” of

reheating when ρϕðaRHÞ ¼ ρRðaRHÞ gives

TRH ¼ α−
1
4

�
2

ffiffiffi
3

p

5
ΓϕMP

�1
2

; ð19Þ

where α ¼ gRHπ2=30 and gRH is the number of relativistic
degrees of freedom at reheating. Here, we will not concern
ourselves with the specifics of the reheating mechanism,
but we assume there is an appropriate coupling of the
inflaton to matter leading to a decay rate, Γϕ, and the reheat
temperature given in Eq. (19).
The Boltzmann equation (12) for the gravitational

radiation can also be reexpressed as

1

a4
dða4ρGWÞ

da
¼ Γh

aH
ρϕ; ð20Þ

which is easily solved using Eq. (11) for Γh. Remembering
that Γh ∝ ρϕ, we find that by integrating the Boltzmann
equation from a ¼ aend to a ¼ aRH, the total energy density
in gravitational waves is

ρGWðaRHÞ ¼
ffiffiffi
3

p
mϕρ

3
2

end

16πM3
P

�
aend
aRH

�
4

; ð21Þ

or using ρRH ¼ αT4
RH ¼ ρendðaend=aRHÞ3, we have

FIG. 1. (a),(b) Feynman diagrams for graviton pair production from inflation annihilation mediated by the scalar. (c) Feynman
diagrams for graviton pair production from inflation annihilation mediated by the graviton. (d) Feynman diagrams for graviton pair
production from inflation annihilation by the contact interaction. The momenta p1, p2 are incoming and k1, k2 are outgoing.
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ρGWðaRHÞ ¼
ffiffiffi
3

p
α

4
3mϕρ

1
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endT
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16πM3
P

: ð22Þ

In order to compare this result with the current and future
experimental limits, we are interested in the frequency
distribution of this gravitational wave background. Because
the source for the Boltzmann equation for ρGW in Eq. (12)
is proportional to a3ρ2ϕ=H ∝ a−

3
2, the bulk of the energy

density in the background was produced immediately after
inflation ends, at a ¼ aend. These gravitons are produced
monochromatically with energy Eh ¼ mϕ. The frequency
of these waves at a ¼ aRH is redshifted by ðaend=aRHÞ and
then further redshifted to today by another factor of
ðaRH=a0Þ ¼ ξðT0=TRHÞ, where T0 is the temperature of
the cosmic microwave background today. The factor ξ is
due to entropy conservation and ξ≡ ðg0=gRHÞ1=3 with
gRH ¼ 427=4 and g0 ¼ ð43=4Þð4=11Þ so that ξ ≃ 0.332.
Thus most of the gravitational waves are produced with
frequency 2πfe ¼ mϕðaend=a0Þ, where the subscript on f
denotes those waves produced at a ¼ aend.
Despite the drop in the inflaton energy density as the

Universe expands, gravitational waves continue to be
produced (initially at a frequency 2πf ¼ mϕ) until H ≃
Γϕ when the inflaton density begins to decrease exponen-
tially and the production of new gravitational waves ceases.
The frequency today of a gravitational wave produced at
some value of the scale factor, a, is then 2πf ¼ mϕða=a0Þ
and the fraction of gravitational waves with frequency
between f and f þ df evaluated at a ¼ aRH is

dρGW
df

¼
ffiffiffi
3

p
α

3
2T6

RH

16M3
P

�
mϕ

2πf

�3
2

�
T0

TRH

�1
2 ffiffiffi

ξ
p

: ð23Þ

Integrating this expression over f between fe ¼
ðmϕ=2πÞðaend=a0Þ and fRH ¼ ðmϕ=2πÞðaRH=a0Þ results
in Eq. (22). The integration limits result from recognizing
that no frequencies below fe are ever produced and the
density with frequencies above fRH are cut off exponen-
tially as the inflaton decays. More precisely we have

fe ¼
mϕ

2π
α

1
3T

1
3

RHξT0ρ
−1
3

end

≃ 4 × 106 Hz
�

mϕ

3 × 1013 GeV

��
TRH

1010 GeV

�1
3

×

�ð5.5 × 1015 GeVÞ4
ρend

�1
3

: ð24Þ

We are now in a position to compute the relative
contribution to ΩGWh2 ¼ ðdρGW=d ln fÞ=ðρc;0h−2Þ,3

ΩGWh2 ¼
h2

ρc

ffiffiffi
3

p
α

4
3T

16
3

RHmϕρ
1
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end

32πM3
P
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ffiffi
α

p
=4Þf2=f2RH ;

¼ 1.3 × 10−24
�
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�
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1010 GeV
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3

×

�
ρend

ð5.5 × 1015 GeVÞ4
�1

6

�
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�

× Θðf − feÞe−ð5
ffiffi
α

p
=4Þf2=f2RH ; ð25Þ

where the factor ξ4ðT0=TRHÞ4 accounts for the redshifting
of the spectrum from a ¼ aRH to today and ρc ≃
8.1 × 10−47h2GeV4; h ¼ H0=100 km=Mpc=s is the scaled
present-day Hubble parameter. We have also included the
step function indicating the minimal frequency is fe and the
approximate exponential cutoff at frequencies larger than
fRH¼ðρend=ρRHÞ13fe¼ðmϕ=2πÞξðT0=TRHÞ≃5.6×1013Hz
for the same set of normalizations.
We can now apply this result to the inflationary models

we described by the potentials in Eqs. (1) and (2). Starting
with the Starobinsky potential, we recall that the inflaton
mass is determined by the normalization of the CMB
anisotropy spectrum [88],

m2
ϕ ≃

24π2As

N2�
M2

P; ð26Þ

where As ¼ 2.1 × 10−9 from the quadrupole normalization
[7], and N� is the number of e-foldings from the Planck
pivot scale (k� ¼ 0.05 Mpc−1) to the end of inflation. For
N� ¼ 55, this gives mϕ ≃ 3 × 1013 GeV. We also need to
determine ρend, which follows from the determination of
ϕend. Recall that ϕend is defined as the value of the inflaton
background field value when the Universe exits the phase
of exponential expansion, when ä ¼ 0. For the Starobinsky
potential, ϕend is given by [84,89]

ϕend ¼
ffiffiffi
3

2

r
ln

�
2

11
ð4þ 3

ffiffiffi
3

p
Þ
�
MP ≃ 0.63MP: ð27Þ

When inflation ends, ϕ̇2
end ¼ VðϕendÞ and ρend ¼

3
2
VðϕendÞ ≃ 0.175m2

ϕM
2
P ≃ ð5.5 × 1015 GeVÞ4. We have

used these normalizations to determine fe in Eq. (24).
The prompt gravitational wave spectrum from Eq. (25)

using the Starobinsky model inputs is shown in Fig. 2.
Shown is the contribution to ΩGWh2 for four different
assumed reheat temperatures, TRH ¼ 1010; 1011; 1012, and
1013 GeV. For each temperature, the spectrum begins at a
different frequency as fe has a slight dependence on TRH as
seen in Eq. (24). At higher frequencies, we see the cutoff in
the spectrum due to inflaton decay. Note that the energy
density of the inflaton condensate becomes exponentially

3Note that in [22], a similar form of the spectrum is obtained
based on dimensional analysis for k ¼ 2. Here, we have per-
formed a concrete computation of the spectrum and generalize to
other values of k.
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suppressed near reheating, and the production of gravitons
from inflaton scattering effectively ceases. This is encoded
in the exponential factor in Eq. (25), which makes the
cutoff of ΩGWh2 sensitive to the choice of TRH. Therefore,
TRH can be independently read off from fe and fRH and this
helps us extract values of ðmϕ; ρendÞ from the strength of
ΩGWh2 as ΩGWh2 depends on mϕ, ρend, and TRH. Also
shown as the gray dotted line is the potential sensitivity of
the proposed GW detector using resonant cavities [90,91].
Similarly, for the T models with k ¼ 2 we can approxi-

mate the coupling λ [84]

λ ≃
3π2As

N2�
; ð28Þ

and ϕend is given by [84]

ϕend ¼
ffiffiffi
3

2

r
ln

�
1

11
ð14þ 5

ffiffiffi
3

p
Þ
�
MP ≃ 0.88MP: ð29Þ

In this case, the inflaton mass is slightly lower, mϕ ≃ 2.2 ×
1013 GeV and ρend ≃ ð5.2 × 1015 GeVÞ4. This gives fe ≃
3.2 × 106 Hz and fRH ≃ 4.1 × 1013 Hz. We find that
ΩGWh2 from T-model inflaton scattering is indistinguish-
able (on the scale of the plot) from the Starobinsky model in
Fig. 2 because of the similarity in ðmϕ; ρendÞ between the
two models.

IV. GENERALIZED POTENTIALS

In the previous section, we computed the gravitational
wave spectrum from an inflaton potential with a quadratic
minimum. More generally, the T models admit potentials

which can be expanded about the minimum with the form
in Eq. (3). The gravitational wave spectrum will then also
depend on the power k and we analyze its effect in this
section.
The time dependence of the inflaton energy density for

a > aend is given by the solution of Eq. (15). We can
parametrize the time dependence of the inflaton by

ϕðtÞ ¼ ϕ0ðtÞPðtÞ; ð30Þ

where the function PðtÞ is quasiperiodic and characterizes
the (an)harmonicity of the short timescale oscillations in
the potential. The amplitude ϕ0ðtÞ is characterized by the
solution Eq. (15) and varies on longer timescales.
The inflaton oscillations can be understood by writing

VðϕÞ ¼ Vðϕ0Þ · PðtÞk, wherePðtÞ is expanded as a Fourier
series [39,92,93]:

PðtÞ ¼
X∞
n¼−∞

Pne−inωt: ð31Þ

Solving the equation of motion leads to [39]

ω ¼ mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πk

2ðk − 1Þ

s
Γð1

2
þ 1

kÞ
Γð1kÞ

: ð32Þ

The inflaton mass and energy density are

m2
ϕ ¼ V 00ðϕ0Þ; ρϕ ¼ Vðϕ0Þ ¼

1

2
m̃2

ϕϕ
2
0; ð33Þ

where we defined

m̃2
ϕ ≡

2m2
ϕ

kðk − 1Þ : ð34Þ

The Feynman rules for computing the diagrams in Fig. 1
are the same, except that the energy of the nth oscillation
mode is En ¼ nω (and ω ¼ mϕ for k ¼ 2), and the total
four-momentum of the condensate is pn ¼ p1 þ p2 ¼ffiffiffi
s

p ¼ ðEn; 0⃗Þ. For each oscillation mode n, we replace
the inflaton legs ϕ2 by ϕ2

0ðPkÞn, treating ðPkÞn as an
interaction coefficient. Here, ðPkÞn is the Fourier coeffi-
cient of PðtÞk. The final total amplitude is obtained by
summing each jMnj2 over n.
We find that when summed over polarizations of out-

going gravitons, the squared amplitude for mode n equals
that of the k ¼ 2 case in Eq. (10) multiplied by an
interaction coefficient:

X
pol

jMnj2 ¼ ϕ4
0jðPkÞnj2

m̃4
ϕ

2M4
P
: ð35Þ

FIG. 2. Gravitational wave spectra in Eq. (25) resulting from
the inflaton condensate pair annihilation in the Starobinksy model
with mϕ ¼ 3 × 1013 GeV and ρend ¼ ð5.5 × 1015 GeVÞ4. Each
solid line of different colors is differentiated by the specified
distinct reheating temperature. The gray dotted line shows the
sensitivity of the resonant cavities proposal [90,91].
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The energy transfer rate per unit spacetime volume
(Vol4) is defined as4

ΔE
Vol4

≡ ð1þwϕÞΓhρϕ

¼
X∞
n¼1

Z
d3pA

ð2πÞ32p0
A

d3pB

ð2πÞ32p0
B
ðp0

Aþp0
BÞ

×
X
pol

jMnj2ð2πÞ4δ4ðpϕ;1þpϕ;2−pA−pBÞ: ð36Þ

We then obtain the energy transfer rate

ð1þ wϕÞΓhρϕ ¼ ρ2ϕω

4πM4
P
Σk; ð37Þ

where we replaced ϕ0 using Eq. (33) and defined

Σk ¼
X∞
n¼1

Σk
n ≡

X∞
n¼1

njðPkÞnj2: ð38Þ

When k ¼ 2, the solution for ϕ is approximately ϕðtÞ ¼
ϕ0 cosðωtÞ where ω ¼ mϕ, and the energy density is
ρϕ ¼ m2

ϕϕ
2
0=2. Then for positive energy, the nonvanishing

Fourier coefficient is ðP2Þ2 ¼ 1=4 and thus Σ2 ¼ 1=8.
Consequently, for k ¼ 2, we correctly reproduce the rate
in Eq. (11). For k ¼ 4ð6Þ, Σk is approximately 0.141
(0.146). In a complete analysis, one should take into
account the contribution of each mode n to the power
spectrum, which is weighted by the coefficient Σk

n.
Note that the graviton carries the energy nω=2, so the
sum over all modes gives rise to very high frequency waves
in addition to the dominant n ¼ 2 mode. The Fourier
coefficients decrease rapidly with n if k is not too large
(k≲ 10). In practice, as we will see, the sum is mostly
dominated by the first mode (n ¼ 2) and the subleading
modes (n > 2) affect a tail of the spectrum at higher
frequencies that gradually falls off in the frequency.
For the T models with k > 2, an approximate solution for

ϕend is [39]

ϕend ¼
ffiffiffi
3

8

r
MP ln

�
1

2
þ k
3

�
kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3

p ��
: ð39Þ

The CMB normalization is generalized to

λ ¼ 18π2As

6
k
2N2�

; ð40Þ

giving λ¼3.4×10−12ð5.7×10−13Þ for k¼4ð6Þ. These val-
ues then determine ρ

1
4

end¼4.8×1015GeV (4.8 × 1015 GeV).
The frequency spectrum is obtained in the same way as

in the previous section. At the end of reheating, the graviton
energy density is

ρGWðaRHÞ ¼
ffiffiffi
3

p ðkþ 2Þγk
8ð4k − 7Þπ Σkρ

4k−7
3k
endM

4−4k
k

P ðαT4
RHÞ

4þ2k
3k ; ð41Þ

where

γk ≡
ffiffiffi
π

2

r
k
Γ
�
1
2
þ 1

k

�
Γ
�
1
k

� λ
1
k: ð42Þ

Note that in Eq. (41), the contribution of all modes (all
values of n) have been included. As we mentioned before,
for general k, the energy of the gravitational waves at the
moment of production is not alwaysmϕ, but given by Eω ≃
ω of the dominant n ¼ 2 mode. In this case, the frequency
today of the gravitational wave produced at a is

fðaÞ ¼ ω

2π

a
a0

¼ γkM
4−k
k
P ρ

k−2
2k
end

2πa0
a

3k−6
kþ2

enda
8−2k
kþ2 : ð43Þ

For k ¼ 2, we recover the relation f ∝ a, while for k ¼ 4, f
is constant in a, meaning that the gravitational wave
spectrum is almost monochromatic today for each har-
monic mode, up to oscillation effects that we have
neglected so far. If we sum up all inflaton modes, then
the k ¼ 4 spectrum will then feature multiple peaks with
increasing frequency and decreasing intensity. Finally,
when k > 4, f decreases with a, hence the observed
frequency of gravitational waves produced at the end of
inflation is higher than that produced at the end of
reheating.
Let us start with k > 4. Requiring the integral of

dρGW=df from fRH to fe to coincide with Eq. (41) gives
for the dominant n ¼ 2 mode:

dρGW
df

¼ ð2πfÞ3k−3k−4T
3þ4k
k

RH ðξT0Þ4k−74−k

×

ffiffiffi
3

p ðkþ 2Þ
4ðk − 4ÞM3

k
P

γ
3−3k
k−4
k α

3ðkþ2Þ
2kð4−kÞΣk

2: ð44Þ

Accordingly, we find the resulting gravitational wave
spectrum for n ¼ 2

5:

4In practice, the sum starts at n ¼ 2 because two inflatons
scatter, and only Fourier coefficients with even n are nonvanishing.

5For n ¼ 2 and k ¼ 6, the contribution is Σ6
2 ¼ 0.083 com-

pared with Σ6 ¼ 0.146.
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ΩGWh2 ¼
h2

ρc

�
f
fe

�4k−7
k−4

γkΣk
2

�
ξT0

TRH

�
4

T
16þ8k
3k

RH ρ
4k−7
3k
endα

2kþ4
3k

×

ffiffiffi
3

p
M

4−4k
k

P

8πðk − 4Þ ðkþ 2Þ × Θðfe − fÞ × CðfÞ;

¼ 1.4 × 10−15
�
f
fe

�17
2

�
TRH

1010 GeV

�
−4
9

×

�
ρend

ð4.8 × 1015 GeVÞ4
�17

18

× Θðfe − fÞ × CðfÞ ðk ¼ 6Þ; ð45Þ

where

CðfÞ ¼ Θðf − fRHÞ þ ΘðfRH − fÞ
�

f
fRH

� 8k
k−2
: ð46Þ

The cutoff function CðfÞ encodes how rapid ρϕðtÞ2
decreases near the reheating time.6 Here we focus on the
inflaton perturbative decay to a pair of fermions. For the
decay to a pair of bosons, we find the cutoff to be faster than
CðfÞ since the decay rate increases in time. Note that the
relation ρϕ ∝ ðT=TRHÞ4k=ðk−2Þ does not depend on a value
of k > 4 although a proportionality constant does [39].7

For general k > 4, the spectrum increases with frequency
as ΩGWh2 ∼ f

4k−7
k−4 , which gives f

17
2 , f

25
4 for k ¼ 6, 8,

respectively. The frequency spectrum for n ¼ 2 is shown
as colored solid lines in Fig. 3 for k ¼ 6. Here we see the
decay cut off at lower frequencies in contrast to the case of
k ¼ 2 where the high frequency waves were cut off.
Reiterating, for k ¼ 2, independent of the time the wave
is produced, the only mode produced is n ¼ 2 with
frequency ω ¼ mϕ, which gets redshifted to today.
Waves produced earlier are redshifted more, and appear
at lower frequency today. In contrast, for k > 4, while the
n ¼ 2 mode is produced with frequency ω, ω is no longer
constant and decreases in time. Indeed this decrease more
than compensates for the decrease in redshift, and waves
produced later now have lower observed frequency. For the
case k ¼ 4, the change in mass (frequency) exactly com-
pensates for the redshift and all waves are produced with
the same frequency today.
So far, we havemade the approximation that thewaves are

produced with energy ω corresponding to the dominant

inflaton mode n ¼ 2. To study the effect of n > 2 modes,
one uses the energy transfer rate (37), replacing the sum by
Σk
n. The frequency (43) becomes fnðaÞ ¼ nωa=ð4πa0Þ, and

the same computation can be carried out to obtain the final
spectrum summed over n. In Fig. 3, for the reheating
temperature TRH ¼ 1010 GeV and k ¼ 6, we show the
spectra induced by the scattering of the highermode inflaton
condensates with n ¼ 4, 6, 8, 10, 12 as the red dashed lines.
In principle, there are contributions from much higher
modes, i.e., k > 12. Since it is difficult to distinguish the
higher mode given the log scale in the plot, we display only
up to n ¼ 12. For k ¼ 6, the similar dashed lines of other
colors corresponding to other reheating temperatures are
expected to be present although we intentionally avoided
showing them for the clarity of the plot.
For the case of k ¼ 4, as we just noted, according to

Eq. (43), the frequency observed today is a constant f4 ¼
γ4ξT0α

1=4=ð2πÞ ≃ 1.06 × 108 Hz for n ¼ 2, and is inde-
pendent of the reheating temperature. In reality, however,
the spectrum is not exactly a Dirac delta function, but small
fluctuations of the frequency—due to the oscillations of
ϕ0—will result in a finite peak. The same reasoning holds
for higher inflaton modes n > 2, and we expect a series of
peaks in the spectrum with frequency nf4=2, with
n ¼ 4; 6; 8 � � �. Using the Boltzmann equation, the energy
density of the graviton at the end of reheating is, for k ¼ 4,

ρGWðaRHÞ ¼
3

ffiffiffi
3

p
ρ

3
4

endαT
4
RH

36πM3
P

Σ4γ4: ð47Þ

FIG. 3. Gravitational wave spectra in Eqs. (45), (46), and (51)
resulting from the inflaton condensate pair annihilation in the T
model with λ ¼ 3.4 × 10−12ð5.7 × 10−13) for k ¼ 4ð6Þ and
ρend ¼ ð4.8 × 1015 GeVÞ4. Each solid line of different colors is
differentiated by the specified distinct reheating temperature and
shows the GW spectrum for k ¼ 6. The k ¼ 4 case with the
narrow frequency range in Eq. (50) is shown as the vertical black
line. Solid lines show the contribution from n ¼ 2, and the dashed
lines show the contributions for the higher modes n ¼ 4, 6, 8, 10,
12. The gray dotted line shows the sensitivity of the resonant
cavities proposal [90,91].

6For k > 2, the cutoff is no longer exponential, but falls over
slower (as a power law) for decays to fermions and faster for
decays to scalars. This can be understood since the decay rate to
fermions is proportional to the decreasing inflaton mass, and
decays to scalars is inversely proportional to the decreasing
inflaton mass.

7Given ρϕ ∝ t2k=ð2−kÞ, a ∝
ffiffi
t

p
, and mϕ ∝ ρðk−2Þ=2kϕ near the

reheating [39], one finds ω ∝ mϕ ∝ a−2 and thus T ∝ a−1 ∝ f,
which converts the temperature dependence of ρϕ into the
frequency dependence.
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The n ¼ 2 mode included in Eq. (47) can be obtained
from the integral

ρGWðaRHÞ ¼
Z

f4þδf

f4−δf
df

1

f
FðfÞ; ð48Þ

and other modes can be obtained by changing the integra-
tion bounds to nf4=2� δf. Here FðfÞ≡ dρGW=d ln f. For
simplicity, the integrand is approximated to be constant
over the interval ðf4 − δf; f4 þ δfÞ. Therefore,

ρGWðaRHÞ ≃ 2
δf
f4

F: ð49Þ

Typically, the fluctuation of ϕ0 scales as δϕ0 ∼Hend ∼
10−5MP. As a result, the graviton energy oscillates as
δω ¼ γ4λ

1
4δϕend ≃ γ4λ

1
4Hend, which gives rise to the follow-

ing frequency fluctuation:

δf
f4

¼ δω

ω
¼ δϕ0

ϕ0

≃ 10−5: ð50Þ

Then the height of the power spectrum for n ¼ 2 is
evaluated from

ΩGWh2¼
h2

ρc

�
ξT0

TRH

�
4

F×θðf−f4þδfÞθðf4þδf−fÞ;

¼h2

ρc

ðξT0Þ4
2ðδf=f4Þ

3
ffiffiffi
3

p
ρ

3
4

endα

36πM3
P

Σ4
2γ4

×θðf−f4þδfÞθðf4þδf−fÞ;
≃7.7×10−14×θðf−f4þδfÞθðf4þδf−fÞ; ð51Þ

which is independent of the reheating temperature. This
(nearly) monochromatic spectrum is shown by the solid
vertical line in Fig. 3. Also shown are the higher mode
contributions corresponding to n ¼ 4, 6, 8, 10, 12 as
dashed vertical lines.
A comparison of the spectra for k ¼ 2, 4, 6, and 8 is

shown in Fig. 4 for n ¼ 2 and TRH ¼ 1010 GeV. Here we
see clearly the remarkable difference in the spectra deter-
mined by the inflaton potential.
Before concluding, it is important to note that for inflaton

potentials with k ≥ 4, the oscillations of the inflaton can be
affected fragmentation processes which destroy the inflaton
condensate producing inflaton quanta [94–100]. These
effects were not included in this study. However, in
[100], this effect was studied both analytically and numeri-
cally. It was found that the fragmentation process is not
instantaneous and that so long as reheating occurs suffi-
ciently fast, results neglecting fragmentation remain valid.
Thus for a given value of k, there is a lower limit on the
reheating temperature such that the effects of fragmentation
can be safely neglected. For k ¼ 4, this is TRH ≳ 1013 GeV,

while for k ¼ 6 it is TRH ≳ 1010 GeV and the lower limit
drops precipitously for larger k. Thus all of the results
presented in Figs. 3 and 4 for k ≥ 6 would remain
unchanged. For k ¼ 4, they are unchanged for sufficiently
large TRH (the results for k ¼ 4 do not depend on TRH) and
for lower TRH in this case gravitational waves would still be
produced directly from inflaton quanta, though we have not
performed this calculation explicitly.

V. SUMMARY

One of the pressing problems confronting inflationary
models is degeneracy among the few available observables.
Most inflation models predict Ω ¼ 1 (i.e., they are nearly
all degenerate in the curvature). Among the T models, all
give nearly equivalent values of ns and r for any value of k.
The Starobinsky models give very similar results to the
k ¼ 2 T model. Breaking this degeneracy is of prime
importance.
Here, we have computed the production of gravitational

waves directly resulting from inflaton scattering within the
condensate. This production is inevitable as it relies only on
the interactions of the inflaton with gravity. While the
production mechanism is completely independent of any
other interaction of the inflaton, the final gravitational wave
spectrum is redshifted from its initial production to the
present day. This redshifting depends on the epoch of
reheating and hence on the interactions of inflation with the
Standard Model.
However, we have shown that unlike the predictions for

the CMB anisotropy observables, the resulting gravitational
wave spectrum is very sensitive to the model parameter, k.
Indeed we have seen that for k ¼ 2, the intensity of the
spectrum decreases from a maximum at low frequencies
(those produced at the onset of reheating when the energy
density is highest) to higher frequencies that are eventually

FIG. 4. Gravitational wave spectra from the dominant n ¼ 2
mode resulting from the inflaton condensate pair annihilation
in various ks in the T model [see Eq. (3)] for a fixed
TRH ¼ 1010 GeV. The gray dotted line shows the sensitivity
of the resonant cavities proposal [90,91].
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cut off when the inflaton decays (and reheating is com-
plete). This is shown in Fig. 2. In contrast, we have shown
that for k ¼ 4, we expect a nearly monochromatic signal as
each wave produced between the end of inflation and
reheating result in a common frequency (≃108 Hz). In
further contrast, for k > 4, we have seen thatΩGW increases
in frequency, with the maximum intensity now occurring at
the largest frequencies (produced at the end of inflation)
and the reheating cutoff occurs at low frequencies. This is
shown in Fig. 3. For fixed TRH, a comparison of the spectra
for different k is shown in Fig. 4.
It is also important to note that, if in addition to a

measurement of the shape of the spectrum (which could
determine k), a measurement of the frequency at which the
cutoff occurs can be directly related to the reheating
temperature. This provides us with a rare potential sig-
nature of the reheating process. Furthermore, if multiple
harmonic modes are measured, then these can be translated
into a direct measurement of the inflaton mass. To be fair,
the gravitational wave intensity predicted in these models is
not large. While the prediction is robust, it is only within
reach of future resonant cavity detectors. But we remain
hopeful that improved technology will produce detectors
that may probe this unique signal.
We conclude by commenting on a similar spectrum for

the cosmic axion background (axion dark radiation) result-
ing from the inflaton scattering. In the preinflationary
scenario, the third vertex in the Appendix applies to the
axion as well. Then, there can be axion pair production
from, for instance, the s-channel inflaton condensate
scattering mediated by the graviton. Given that (1) the
corresponding amplitude is of the same order of magnitude
as that of graviton production and (2) as long as the axion
mass is smaller than T0, the axion serves as dark radiation
from the time of its production, and we expect the spectrum
of axions Ωah2 ¼ ðdρa=d ln fÞ=ðρc;0h−2Þ from inflaton
scattering to be very similar to ΩGWh2 which we have
presented in this work. Although the future sensitivity of
DMRadio in the frequency range of interest hardly reaches
the expected Ωah2 [101–103], this new production mecha-
nism may be of help in the future search for the cosmic
axion background.
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APPENDIX: FEYNMAN RULES
AND AMPLITUDES

We provide below the Feynman rules for the propagators
and trilinear as well as quartic vertices [104], generalized to

arbitrary k ≥ 2. The curly lines represent the graviton and
the dashed lines are the scalar,

where [Sym] means symmetrizing the indices μα; νβ; σγ,
and Pi is the sum of all possible (i terms) permutations
among ðp1μαÞ, ðp2νβÞ, and ðp3σγÞ. We also defined

Iαβ;γδ ¼
1

2
ðηαγηβδ þ ηαδηβγÞ: ðA1Þ

Combining these Feynman rules, the first diagram in Fig. 1
evaluates to (for k ¼ 2)

Ma ¼ −i
κ2

4
½p1μðk1ν − p1νÞ þ p1νðk1μ − p1μÞ

− ημνðp1 · k1 − p1 · p1 þm2
ϕÞ�

× ½p2αðp1β − k1βÞ þ p2βðp1α − k1αÞ
− ηαβðp2 · p1 − p2 · k1 þm2

ϕÞ�

× εμνðk1Þεαβðk2Þ ×
1

ðp1 − k1Þ2 −m2
ϕ

: ðA2Þ
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Meanwhile, for the inflaton condensate, there is no spatial
momentum p1 ¼ ðmϕ; 0⃗Þ; hence, the contractions p1με

μν or
p1νε

μν only pick up the zeroth components ε0ν or εμ0 that
are 0. In addition, the polarization vector is traceless
ημνε

μν ¼ 0, therefore, Ma ¼ 0. The same reasoning holds
for the second diagram, Mb ¼ 0, and this is true also for
general k. The remaining two diagrams give the following
nonvanishing contributions to the total squared amplitude,
for k ¼ 2:

X
pol

jMbj2 ¼
9m4

ϕ

2M4
P
;

X
pol

jMcj2 ¼
8m4

ϕ

M4
P
;

X
pol

ðMbM�
c þM�

bMcÞ ¼ −
12m4

ϕ

M4
P

: ðA3Þ

The sum of them is then (10). For general k, each mode n
receives the contributions:

X
pol

jMc;nj2 ¼ ϕ4
0jðPkÞnj2

ðn2ω2 þ 2m̃2
ϕÞ2

8M4
P

;

X
pol

jMd;nj2 ¼ ϕ4
0jðPkÞnj2

ðn2ω2 þ 4m̃2
ϕÞ2

8M4
P

;

X
pol

M�
c;nMd;n þ c:c: ¼ −ϕ4

0jðPkÞnj2

×
ðn2ω2 þ 2m̃2

ϕÞðn2ω2 þ 4m̃2
ϕÞ

4M4
P

:

ðA4Þ
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