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We develop an optimization-based maximum likelihood approach to analyze the cross-correlation of the
cosmic microwave background (CMB) and large-scale structure induced by the kinetic Sunyaev-Zeldovich
(kSZ) effect. Our main goal is to reconstruct the radial velocity field of the Universe. While the existing
quadratic estimator (QE) is statistically optimal for current and near-term experiments, the likelihood can
extract more signal-to-noise in the future. Our likelihood formulation has further advantages over the QE,
such as the possibility of jointly fitting cosmological and astrophysical parameters and the possibility of
unifying several different kSZ analyses. We implement an autodifferentiable likelihood pipeline in JAX,
which is computationally tractable for a realistic survey size and resolution, and evaluate it on the Agora
simulation. We also implement a machine-learning-based estimate of the electron density given an
observed galaxy distribution, which can increase the signal-to-noise for both the QE and the likelihood
method.
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I. INTRODUCTION

The kinetic Sunyaev-Zeldovich (kSZ) effect is the
dominant contribution to the total blackbody cosmic
microwave background (CMB) anisotropies at small scales,
overcoming CMB lensing around l ≃ 4000. It was pre-
dicted in the early 1970s [1] and first detected with the
Atacama Cosmology Telescope in 2012 [2]. The kSZ effect
is a Doppler shifting of CMB photons due to the Thompson
scattering on free electrons on the line of sight. The kSZ
signal is sensitive to bulk velocities as well as to galaxy and
cluster astrophysics. Measurements of the kSZ are
able to constrain different dark energy models [3–5],
neutrino masses [6,7], modified gravity [8,9], and compen-
sated isocurvature perturbations [10]. Further, the kSZ
signal can be used to tightly constrain inflationary models
that predict so-called local primordial non-Gaussianity
fNL [11,12].
To use the kSZ signal for cosmological constraints, it

needs to be combined with a tracer of the electron density
field, for example, using a galaxy survey. By cross-
correlating the temperature measurement from a CMB
experiment with the galaxy field from a large-scale struc-
ture survey, one can reconstruct the radial velocity (or
momentum) field vr on large scales [13]. One can then
convert this measurement to a measurement of the radial
matter overdensity using the continuity equation δmðkÞ ∼
k2vrðkÞ and obtain an extremely low noise measurement of
this field [14].

The canonical way to estimate vr from the kSZ effect is
to construct an analytic quadratic estimator (QE) in
spherical harmonics or Fourier space [13–16]. Studies of
this method on simulations were presented in [17,18]. Prior
to the QE approach, other kSZ estimators that are sensitive
to the velocity field were developed also in [19–21].
In the present work, we develop an alternative maximum
likelihood approach to kSZ velocity reconstruction. The
possible estimators for kSZ velocity reconstruction are
similar to those of gravitational lensing in the CMB. In fact,
the QE was first introduced in [22] for CMB lensing. In
CMB lensing, the QE is optimal at low signal-to-noise, but
at higher signal-to-noise (in particular where the total CMB
anisotropy is dominated by lensing) it is substantially
suboptimal. For this reason, several authors have developed
a maximum likelihood approach to CMB lensing,
which is optimal at all noise levels, but comes at the cost
of a computationally expensive optimization process. The
first maximum likelihood estimator for lensing was devel-
oped in [23]. A closely related method and code imple-
mentation (LENSIT) to find the maximum a posteriori
(MAP) iteratively was presented in [24]. A different lensing
likelihood was presented in [25,26], with associated code
CMBLENSING.JL, and recently applied to South Pole
Telescope data using Hamiltonian Monte Carlo (HMC)
to sample the likelihood [27]. For the small high-resolution
sky patch analyzed in [27], it was shown that the likelihood
outperforms the QE on real data. For CMB S4, it is
expected that lensing likelihood methods can improve
the signal-to-noise over the QE by up to a factor of 2 [28].*Corresponding author: kvasiuk@wisc.edu
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The goal of our present work is to develop a similar
likelihood approach to kSZ velocity reconstruction or,
more generally, to the cross-correlation of the kSZ signal
with a large-scale structure survey. As we will see, at high
enough signal-to-noise, the likelihood again outperforms
the quadratic estimator substantially. There are, however,
some important differences compared to the CMB lensing
likelihood. CMB lensing is a nonlinear remapping of the
primary CMB temperature, while the kSZ, at leading order,
is linearly added to the primary CMB. This should make it
easier to optimize the likelihood. Further, one needs to
model the relation of the galaxy distribution and the
electron distribution in the likelihood, which can only be
approximated. Recently, a different maximum likelihood
kSZ estimator was proposed in [29]. However, this esti-
mator is not optimization-based and instead makes some
analytic assumptions that allow for an analytic solution. We
will comment below in more detail on the relation to this
prior work. Another related work is [30], which developed
a pipeline to detect the kSZ signal using a forward-
modeling-based velocity template and a kSZ model at
the cluster level.
A number of autodifferentiable forward models for

cosmology have recently been proposed in other contexts.
In [31] an autodifferentiable likelihood is used to analyze
gravitational lensing of the CMB and patchy screening
during the epoch of reionization. For the study of large
scale structure (LSS) formation, pmwd [32], a differen-
tiable cosmological particle mesh, implemented with JAX,
has been presented. In the context of weak gravitational
galaxy lensing, recent developments include MADLENS

[33], a package for autodifferentiable calculation of non-
Gaussian convergence maps, and DLL [34], a GPU-based
differentiable weak lensing forward model which is differ-
entiable with respect to all cosmological parameters.
In the present work we develop an autodifferentiable

approach to kSZ analysis and aim to answer the following
main questions:

(i) What likelihood is the most useful for our purpose,
and what choices can be made? We perform a
separation of scales between the large-scale (linear)
velocity field and the small-scale galaxy/electron
distribution, which avoids the need for nonlinear
forward modeling of large-scale structures. We also
discuss different assumptions for the statistical
relation of galaxies and electrons.

(ii) Can we consider a realistically sized dataset (angular
resolution and redshift bins) and find the MAP
effectively on current hardware? To achieve this,
we implement the likelihood using the autodiffer-
entiable language JAX, which provides a highly
optimized GPU implementation.

(iii) How does the signal-to-noise in the likelihood
compare with the quadratic estimator as a function
of experimental parameters? As we discuss below,

for realistic current and next-generation data the kSZ
likelihood can probably not outperform the QE (see
below for details); however, we show that for more
futuristic experiments the improvement can be sub-
stantial, despite the presence of high redshift kSZ
from reionization.

(iv) Can machine learning be used to raise the signal-to-
noise by learning an improved template of the
electron distribution given observed galaxies, by
training on simulations? While a full exploration
of this idea requires a study on hydrodynamic
simulations, we show encouraging initial results
using the matter distribution that could already
improve the velocity reconstruction for Simons
Observatory.

We make forecasts for a number of idealized experi-
mental configurations. Our simulation study is not fully
realistic, since we do not take into account effects such as
photo-z errors (which would degrade forecasts) or halo
mass tracers (which could improve them). For the upcom-
ing Simons Observatory or CMB-S4 combined with the
Rubin Observatory, we do not predict a signal-to-noise
improvement of the likelihood over the QE, but our results
are not fully conclusive because we have not analyzed a
simulation with the full halo density of the Rubin
Observatory. However, even in the case where the QE is
statistically optimal, an optimization-based formulation has
several advantages over the QE, some of which we will
study in future work:

(i) The likelihood can include both cosmological and
astrophysical parameters, and it becomes thus pos-
sible to jointly fit both of these and obtain combined
constraints with covariances. In the present work, we
do not yet implement such a joint fit, but this is a
main goal for future work. This could also include a
model of the reionization kSZ.

(ii) A likelihood approach can naturally take into
account systematic uncertainties, such as calibration
issues, because it allows one to fit a joint model to
the data that takes into account all known exper-
imental effects. This was recently demonstrated for
CMB lensing in [26].

(iii) The kSZ likelihood can include several different
estimators. For example, the likelihood directly
provides us with a partially kSZ-cleaned primary
CMB map. So-called de-kSZing has recently been
studied in [35] using a template method. The signal
extracted by squared kSZ statistics (projected fields)
[36], which can probe the baryon distribution, is also
included in the likelihood formulation because the
likelihood includes a complete probabilistic model
of all relevant fields.

(iv) It is conceptually straightforward (but practically
and computationally difficult) to combine several
CMB secondary effects into an overall CMB × LSS
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likelihood. A joint lensing-kSZ likelihood could
estimate both the lensing potential and the radial
velocities, include the integrated Sachs-Wolfe effect
(e.g., [37]) and the moving lens effect (e.g., [38]),
include lensing of the kSZ, and include nonblack-
body contributions such as the thermal Sunyaev-
Zeldovich effect.

(v) In the likelihood formulation, we can use non-
Gaussian priors that capture the non-Gaussian small-
scale statistics of the galaxy and electron density. A
non-Gaussian prior could be implemented, for exam-
ple, with a normalizing flow [39,40], trained on
hydrodynamic simulations, and can increase the
signal-to-noise over a Gaussian prior, since these
fields are substantially non-Gaussian.

(vi) The kSZ likelihood can be included in amore general
forward modeling setup. In forward modeling of
large-scale structure, one starts with the Gaussian
initial conditions and then maps them to late-time
observables with a differentiable forward model of
structure formation (see, e.g., [41,42]). Radial veloc-
ities were recently used for reconstruction of the
initial conditions in [43].

(vii) Once a likelihood is available, one can, in principle
not only find the MAP but also perform a fully
Bayesian analysis, for example, using variants of
HMC or variational inference. It seems unlikely that
this is computationally tractable at the full resolution
of the data, but it may be possible to develop useful
approximations, for example, by approximately
integrating out the small-scale fields.

The paper is organized as follows. In Sec. II we set up
our notation and review the conventional quadratic esti-
mator formulation of kSZ velocity reconstruction in our
coordinates. In Sec. III we discuss the kSZ likelihood,
its relation to the QE, its implementation, and how to find
the MAP of field parameters and scalar parameters. In
Sec. IV we apply our method to simulations and evaluate
the improvement factor over the QE. In Sec. V we discuss
a machine learning method, which can improve the
velocity reconstruction for either the QE or the likelihood.
Our conclusions and future work are summarized
in Sec. VI.

II. REVIEW OF THE QUADRATIC ESTIMATOR
APPROACH

We start by reviewing the standard kSZ velocity
reconstruction. For computational simplicity, we will work
in binned flat-sky coordinates. This is appropriate, in
particular, for a photometric survey such as Rubin
Observatory. Redshift binning does not lose significant
information compared to a full three-dimensional analysis
if the photometric error bars are larger than the redshift
binning.

A. Notation

We adopt the following Fourier conventions for scalar
fields in a 2D flat-sky Cartesian basis:

fðxÞ¼ 1

ð2πÞ2
Z

eilxfðlÞd2l fðlÞ¼
Z

e−ilxfðxÞd2x: ð1Þ

The 2D power spectrum PfðlÞ1 is defined as

hfðl1Þf�ðl2Þi ¼ ð2πÞ2δð2Þðl1 − l2ÞPfðl1Þ: ð2Þ

In this work, we will use ΔT
T ≡ θ for the CMB anisotropy;

matter (galaxy, electron) overdensity is denoted by
δm;ðg;eÞ ≡ ρm;ðg;eÞ=ρ̄m;ðg;eÞ − 1 and should not be confused

with 2D Dirac δ function δ2DðxÞ or Kronecker symbol δðKÞα;β .
The radial velocity is denoted by vr and sometimes we will
omit the superscript r for notational simplicity. The data
required in this work are the CMB temperature fluctuation
θðlÞ and the binned galaxy field δαgðlÞ.

B. Binned kSZ signal

The temperature anisotropy generated by the kSZ is
proportional to the electron density and the velocity and is
given by the following line-of-sight integral:

θðn̂ÞjkSZ ¼ −σT
Z

dχ a neðn̂; χÞvrðn̂; χÞ; ð3Þ

over comoving distance χ. In this equation, σT is the
Thomson scattering cross section, a is the scale factor
[aðz ¼ 0Þ ¼ 1], and ne is the electron number density. We
now assume that we can probe the electron density ne with
a finite radial resolution, given roughly by the redshift error
of the experiment (or below by the radial binning of the
available simulations). Given a set of radial bins indexed by
α (60 bins for 0.5 < z < 3 in our main analysis), we can
write the binned kSZ as [13]

θðxÞjbinnedkSZ ¼
XNbins

α¼1

ταðxÞvαr ðxÞ: ð4Þ

Here ταðxÞ and vαðxÞ are the integrated optical depth and
radial velocity in the bin α as functions of 2D Cartesian
coordinate x. We further assume that

ταðxÞ ¼ fαð1þ δαeðxÞÞ; ð5Þ

where δe is the electron overdensity integrated over the bin.
Our binning is defined with a top-hat window function with
the width of the bin Δα,

1Relations between 2D flat-sky, 2D angular, and 3D power
spectra are reviewed in Appendix A 1 and A 2.
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δαm ¼ 1

Δα

Z
z�αþΔα=2

z�α−Δα=2
dzδmðzÞ: ð6Þ

The binned kSZ from the radially averaged τα and vαr do not
constitute the total kSZ that an experiment will see. Small-
scale fluctuations within the bin will contribute additional
kSZ, which however cannot be described by the binned
data. To have a realistic kSZ power in the map, including
contributions from smaller radial scales than the bin width,
occasionally we will add an additional “uncorrelated” kSZ
component. This component also includes kSZ from
redshifts where we have no galaxy data, including reioni-
zation. Thus we model the total kSZ temperature aniso-
tropy as

θðxÞjtotalkSZ ¼ θðxÞkSZ;binned þ θðxÞkSZ;uncorr: ð7Þ

We model θðxÞjuncorrkSZ as a Gaussian random field, which is
uncorrelated with the binned galaxy and velocity fields, and
adjust its power spectrum to have a realistic total kSZ
amplitude in our maps. The total measured CMB temper-
ature is thus

θobsðlÞ ¼ θðlÞpLCMB þ θðlÞkSZ;binned þ θðlÞkSZ;uncorr þ nθðlÞ;
ð8Þ

which includes contributions from lensed primary CMB,
kSZ effect, and noise. We write P̃θðlÞ for its corresponding
power spectrum.

C. Flat-sky quadratic estimator for the velocity field

We now derive the quadratic estimator in binned flat-sky
coordinates (see Appendix A), which closely follows the
binned spherical harmonics derivation in [13]. The kSZ-
induced correlation between total CMB temperature per-
turbation field θobsðlÞ and galaxy overdensity bin δgαobsðl0Þ
(the tildes here mean including instrumental noise) is

hθobsðl1Þδg;αobsðl2Þi

¼
X
β

1

ð2πÞ4
Z

d2l0d2l00ð2πÞ2δ2Dðl1 − l0 − l00Þvβðl00Þ

× hτβðl0Þδg;αðl2Þi

¼
Z

d2l0d2l00δ2Dðl1 − l0 − l00Þvβðl00ÞPτg
α ðl0Þδ2Dðl2 þ l0Þ

¼
Z

d2lδ2Dðl1 þ l2 − lÞvαðlÞPτg
α ðl2Þ; ð9Þ

where, under the assumption of independent bins, we
defined

hτβðl0ÞδgαðlÞi ¼ ð2πÞ2Pτg
α ðlÞδðKÞαβ δ2Dðl þ l0Þ: ð10Þ

The general quadratic estimator is then of the form

v̂αðlÞ¼
Z

d2l1d2l2Wαðl1; l2Þθobsðl1Þδg;αobsðl2Þδ2Dðl− l1− l2Þ:

ð11Þ

We demand that hv̂αðlÞi ¼ vαðlÞ and look for v̂αðlÞ that has
the smallest possible variance under the assumption that
fields are Gaussian. That yields

Wαðl1; l2Þ ¼ λðlÞ Pgτ
α ðl2Þ

P̃θðl1ÞP̃g
αðl2Þ

; ð12Þ

where λðlÞ is a normalization,

λ−1ðlÞ ¼
Z

d2l1d2l2δ2Dðl − l1 − l2Þ
ðPgτ

α ðl2ÞÞ2
P̃θðl1ÞP̃g

αðl2Þ
: ð13Þ

Assuming that the contribution to the kSZ signal comes
only from small scales jl2j ≫ jlj, we can simplify this
expression to get

λ−1ðlÞ ≈ 2π

Z
dl2l2

ðPgτ
α ðl2ÞÞ2

P̃θðl2ÞP̃g
αðl2Þ

: ð14Þ

When calculating the integral for vαðlÞ, we notice that
weights neatly factorize: Wαðl1; l2Þ ¼ Wθðl1ÞWgαðl2Þ. We
thus find the quadratic estimator of the radial velocity
field,2

v̂αðlÞ ¼ ð2πÞ2λðlÞ
Z

d2x½θobsðxÞ�WθðlÞ½δ
g;α
obsðxÞ�WgðlÞ; ð16Þ

2In [15] it was discussed that it is somewhat ambiguous what
the true velocity field vr is, which v̂r is supposed to reconstruct.
In the case of N-body simulations, which are a collection of
particles, one most directly obtains the sum over particles

qðxÞ ¼ 1

np

X
i

viδ3ðx − xiÞ; ð15Þ

where np is the number density average over the whole volume.
This quantity is the particle or mass-weighted velocity field,
i.e., the “momentum field.” From the momentum field, one can
define the “velocity field” by choosing a smoothing scale and
defining the velocity to be the smoothed momentum, divided by
the smoothed density (appropriately regulated to avoid dividing
by zero in voids). In [15] it was shown that the momentum field
correlates somewhat better with the estimator v̂r than the velocity
field defined in this way. However, on the theoretical side, it is
easier to work with velocities rather than momenta since they are
first order in the perturbations. For this reason, in this work, we
use the velocity field rather than the momentum field. On large
scales, the difference between the two quantities is small, because
the anisotropy in the radial momentum field qr ¼ ð1þ δÞvr is
dominated by the larger fluctuations in vr.
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where

½fðxÞ�WðlÞ ≡ 1

ð2πÞ2
Z

d2lfðlÞWðlÞeilx; WθðlÞ ¼
1

P̃θðlÞ ;

Wg;αðlÞ ¼
Pgτ
α ðlÞ

P̃g
αðlÞ : ð17Þ

The prefactor ð2πÞ2λðlÞ is the noise of the quadratic
estimator. We can split the correlation function of QE
velocities into two terms: hv̂αðlÞv̂βðl0Þi ¼ ðNQE þ SQEÞ
ð2πÞ2δ2Dðl þ l0Þ. Then the expression for noise is as
follows:

NQE¼ð2πÞ2
�Z

d2l1d2l2δ2Dðl− l1− l2Þ
ðPgτ

α ðl2ÞÞ2
P̃θðl1ÞP̃g

αðl2Þ
�−1

:

ð18Þ

The noise thus depends on the CMB noise θðlÞN as well as
the noise of the large-scale structure tracer. As a large-scale
structure tracer, we use the halo (or galaxy) field
δg;αobsðlÞ ¼ δgαðlÞ þ ngðlÞ. Here the stochastic shot noise term
ngðlÞ comes from discrete sampling and has a power
spectrum NgðlÞ ¼ nðzÞ−1, where nðzÞ is number of halos
per redshift interval per steradian. In this derivation, we

assumed that hταδgβi ∝ δðKÞα;β , i.e., that small-scale matter
fields are uncorrelated between different redshift bins. In
[16] it was shown how to include redshift bin correlations
of the small-scale fields in the QE. However, we found that,
for our study with 60 redshift bins, this correlation is small
and we neglect it both in our QE implementation and our
likelihood.

III. LIKELIHOOD APPROACH

We now discuss the different elements of our novel
likelihood formulation. We discuss several different like-
lihoods with different properties, in increasing order of
complexity.

A. Likelihood for the velocity field from a kSZ
observation assuming a known matter field

We can write a maximum likelihood estimator for the
velocities by writing down the Gaussian likelihood of CMB
perturbations including the kSZ,

−2 lnL
�
θobsjvr

� ¼ �
θobs − θkSZðδe; vrÞ

�
T

× P−1
θ

�
θobs − θkSZðδe; vrÞ

�þ const:

ð19Þ

Here θobs ¼ θpCMB þ θkSZ þ nθ is the lensed primary CMB
with added noise and P ¼ Sþ N is the covariance of
θpCMB þ nθ and θpCMB can also include uncorrelated kSZ

such as from reionization (however, assuming Gaussianity
thereof). We use a basis-independent notation where θ are
2D fields and δe and vr are redshift binned 2D fields, both
represented as a vector.
The kSZ is given in position space by the radial integral

θkSZðnÞ ¼ fτ

Z
dr δeðr; nÞ vrðr; nÞ ð20Þ

and we can write it as basis independent in index
notation as

θkSZl ¼ Kx;y
l δxvy; ð21Þ

where Kx;y
l is the kSZ projection matrix.

This likelihood is the same as in [29]. Assuming that one
has an estimate of δe, for example, from a galaxy survey
(see below), the maximum likelihood estimator for the
velocities can, in principle, be found analytically by
evaluating

δL
δv

¼! 0: ð22Þ

However, in the case of multiple redshift bins, this
estimator is ill defined, and even for a single bin it gives
a poor reconstruction in terms of residuals with the truth.
In [29] this problem was circumvented by introducing a
coarse-graining procedure. Here we follow a more
Bayesian approach and include a Gaussian prior on the
velocities, which is physically appropriate at large scales.
The posterior is then

−2 lnP
�
θobsjvr

� ¼ �
θobs − θkSZðδe; vrÞ

�
T

× P−1
θ

�
θobs − θkSZðδe; vrÞ

�
þ vTP−1

v vþ const; ð23Þ

and the MAP is given by

δP
δv

¼! 0: ð24Þ

We will derive an analytic solution for this case in the next
section, however, in practice we maximize the posterior
numerically. The simple posterior discussed in this section
has the advantage that there is only a single unknown field,
the velocities v. Below we will jointly fit the matter and
velocity fields as probabilistic degrees of freedom and we
will not use this likelihood in our main implementation.
However, in Appendix B we use the posterior in Eq. (23) to
demonstrate that we can obtain correct error bars from its
Hessian.
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B. Analytic MAP estimator for the velocity field

While ultimately we find MAP solutions numerically, it
is interesting to consider whether there is an analytic MAP
estimator. As we shall see, this is possible in the case of a
known τ field (or one that has been reconstructed from
galaxies independent of the kSZ data). The estimator we
develop here is different from the estimator in [29] in that
we include a Gaussian prior on the large-scale velocity
field, thus obtaining a maximum a posteriori (rather than
maximum likelihood) estimator.
We assume that we observe some θo which is sourced by

θp, primary CMB anisotropy, and θkSZ with Gaussian noise
with known covariance Nθ. In this section, we write the
binned electron field in terms of τ rather than in terms of δe
for compactness of notation. The two quantities are related
by Eq. (5). Following our discretization of the radial kSZ
integral (4), in position space we have θkSZ ¼ PNbins

i¼1 viτi,
with both vi and τi being 2D fields. We include Gaussian
priors on velocities and primary CMB and assume that we
know the optical depth τ. Then, we can write a posterior,

Pðvi;θpjθo;τiÞ
≃e−

1
2
½ðθo−θp−τiviÞTN−1

θ ðθo−θp−τiviÞþðvT ÞiðC−1
v ÞijvjþθTpC−1

θ θp�: ð25Þ

Weak equality ≃ here means equality up to a constant,
multiplicative normalization (or additive constant if log
quantities are considered) of N −1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

detCθ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffi
detCv

p
×ffiffiffiffiffiffiffiffiffiffiffiffi

detCθ

p
. In the expression of a type θTpN−1

θ θp, a sum over
some discretization (pixels) of a field is implied, i.e.,

θTN−1
θ θ≡PNpix

pi;pjðθÞpi
ðθÞpj

ðN−1
θ Þpi;pj

. We are interested
in the MAP for vi, hence we are going to neglect the
normalization (this is possible since vi does not appear in
covariance) and marginalize over the primary CMB θp,

Pðvijθo; τiÞ ¼
Z

DθpPðvi; θpjθo; τiÞ: ð26Þ

Let us consider the θp part,

�
−2 lnPðvi; θpjθo; τiÞ

�
θp
≃
�
θTpC−1

θ θp þ θTpN−1
θ θp − ðθo − τiviÞTN−1

θ θp − θTpN−1
θ ðθo − τiviÞ

�
: ð27Þ

We define C̃−1
θ ≡ C−1

θ þ N−1
θ and θ̃≡ C̃θN−1ðθo − τiviÞ. Then we can rewrite

�
−2 lnPðviÞ; θpjθo; τiÞ

�
θp
≃ θTpC̃

−1
θ θp − θ̃TC̃−1

θ θp − θTpC̃
−1
θ θ̃ ¼ ðθp − θ̃ÞTC̃−1

θ ðθp − θ̃Þ − θ̃TC̃−1
θ θ̃: ð28Þ

Now we can perform marginalization over θp easily. Since
R
Dθpe−

1
2
ðθp−θ̃ÞTC̃−1

θ ðθp−θ̃Þ ≃ 1, we are left with

−2 lnPðvijθo; τiÞ ≃ ðθo − τiviÞTN−1
θ ðθo − τiviÞ − ðθo − τiviÞTN−1

θ C̃θN−1
θ ðθo − τiviÞ þ ðvTÞiðC−1

v Þijvj: ð29Þ

We can try to rewrite this expression as we did before for θp. The velocity part is as follows:

�
−2 lnPðvijθo; τiÞ

�
v ≃ ðvTÞiððC−1

v Þij þ ðτTÞiðN−1
θ − N−1

θ C̃θN−1
θ ÞτjÞvj ð30Þ

−ðvTÞiðτTÞiðN−1
θ − N−1

θ C̃θN−1
θ Þθo − θToðN−1

θ − N−1
θ C̃θN−1

θ Þτjvj: ð31Þ

Assuming that the inverse exists, we can define a τ-dependent covariance,

ðC̃−1
v Þij ≡ ðC−1

v Þij þ ðτTÞiðN−1
θ − N−1

θ C̃θN−1
θ Þτj: ð32Þ

Then ṽi, which is the MAP estimator we were looking for, is given by

ṽi ¼ ðC̃vÞjiðτTÞjðN−1
θ − N−1

θ C̃θN−1
θ Þθo: ð33Þ

Now the log-likelihood takes the following form:

−2 lnPðvijθo; τiÞ ≃ ðvT − ṽTÞiðC̃−1
v Þijðv − ṽÞj − ðṽTÞiðC̃−1

v ÞijðṽÞj þ θToðN−1
θ − N−1

θ C̃θN−1
θ Þθo: ð34Þ

It is worth noting that had we instead treated τi as unknown, we could have added −2 lnPðτijτoÞ ¼ ðτTo − τTÞiðN−1
τ Þij

ðτo − τÞj þ ðτTÞiðC−1
τ ÞijðτÞj and, after marginalizing over θp, marginalized over τ. That procedure would result in a

posterior for velocity Pðvijθo; τoÞ that depends only on observed data. However, finding an analytical MAP would not be

YURII KVASIUK and MORITZ MÜNCHMEYER PHYS. REV. D 109, 083515 (2024)

083515-6



possible in that case, which is consistent with the fact that it
is not possible to further analytically marginalize the
posterior that we obtained over τi. We also note that our
MAP depends on an inverse of the operator that is explicitly
τi dependent. It is worth adding that one way to proceed
with an analytic MAP for the velocity, in this case, is to find
the MAP of τi alone from galaxy survey data and use those
values to evaluate the covariance operator [Eq. (32)].
Our result is consistent with the results of [29], where the

inverse was computed via the “coarse-graining” procedure.
Indeed, Eq. (14) in [29], which is the maximum likelihood
estimator (MLE) condition there, reads as follows:

ðταÞ†ðCpCMBÞ−1Θ ¼ ðταÞ†ðCpCMBÞ−1ðτβÞvβ: ð35Þ

That is equivalent to our case if we neglect the prior
and consider that we observe θp. As was mentioned
in the same work, QE is obtained if we approximate
ðταÞ†ðCpCMBÞ−1ðτβÞ with hðταÞ†ðCpCMBÞ−1ðτβÞiτ. In that
case, the covariance is independent of τ and the resulting
expression for MAP v is quadratic in the observed fields.
Our analytic MAP estimator given in Eq. (33) is not easy

to evaluate in practice because it includes several inverses
of large matrices. For this reason, even for the velocity field
likelihood presented in this section, we find the MAP by
gradient descent rather than from the analytic expression.

C. Joint likelihood for CMB and matter

We now describe a likelihood where the fields
v; δm; θCMB are treated probabilistically. In this section,
we assume that δe ¼ δm and that we can directly observe δm
with some Gaussian noise (which we will take to have a flat
shot noise power spectrum). We also assume that both the
galaxy survey and the CMB experiment have mutually
uncorrelated Gaussian noise. The likelihood is then
given by

− 2 lnL
�
θobs; δobsm jθpCMB; δm; vr

�
¼ �

θobs − θpCMB − θkSZðδm; vrÞ
�
TN−1

θ

×
�
θobs − θpCMB − θkSZðδm; vrÞ

�
þ �

δobsm − δm
�
TN−1

m

�
δobsm − δm

�þ const: ð36Þ

We again use a basis-independent notation where θ is a 2D
field and δm and vr are redshift binned 2D fields, both
represented as a vector.
To get the MAP estimate, we maximize the product of

the likelihood times priors for the unobserved quantities.
By Bayes theorem,

PðθCMB; δm; vrjθobs; δobsm Þ ∝ Lðθobs; δobsm jθCMB; δm; vrÞ
× PðTCMB; δm; vrÞ: ð37Þ

If we assume Gaussian priors for the fields, we get

−2 lnPðθCMB; δm; vrÞ ¼ ðθCMBÞTP−1
θ θCMB þ vTP−1

v v

þ δTmP−1
m δm þ const; ð38Þ

where Px are the signal covariance matrices (power spectra)
for fiducial cosmological parameters. In this prior we have
assumed a separation of scales, i.e., we draw the velocities
vLr from a Gaussian field on large scales, and we draw the
matter field δSm on small scales only. In our implementation,
we split these scales at lsplit ¼ 700. The analysis is not
sensitive to the precise choice of lsplit because kSZ is
induced by significantly smaller-scale fluctuations of mat-
ter overdensity that are modulated by substantially larger-
scale velocity fluctuations. In addition, we can only observe
kSZ at much higher l (where it becomes a dominant
anisotropy) and we can only reconstruct velocities at
much lower l (due to signal-to-noise). Our likelihood
thus treats the velocities on large scales vL independent
from the matter field on small scales δSm. This neglects the
gravitation-induced correlation between vL and δS, such as
the bispectrum of form hvLδSmδSmi. However, these squeezed
limit correlations are small and can be neglected. For some
applications of parameter fitting, one would also like to
include information from the large-scale galaxy field and
enforce a relation between matter density and velocity (i.e.,
the continuity equation on large scales). However, for our
present purpose of reconstructing the large-scale velocity
field, such an extended likelihood is not required.
We now want to maximize the posterior with respect to

vr, δm, θCMB. Unlike the case in Sec. III B, there is no
analytic solution to the MAP. We thus use optimization to
find the MAP of the fields. In particular, δm is now
constrained from both the observed matter data and the
observed kSZ data (for example, a cluster is visible both to
a galaxy survey and a high-resolution CMB experiment, so
they contain mutual information). Our likelihood formu-
lation is optimal if the noise covariances N and signal
covariances (in the prior) are correct, including bin-to-bin
correlations in the signal. This assumes Gaussianity in all
fields. We will discuss how to relax this assumption with
machine learning below.

D. Joint likelihood for CMB and galaxies

In realistic experiments, our datasets are the observed
CMB temperature anisotropy θobs and the observed galaxy
overdensity δobsg (rather than δm or δe). We assume that
these quantities are determined by the following underlying
unobserved fields: true radial velocity vr, true galaxy
overdensity δg (without stochastic shot noise), true electron
density δe, and true lensed primary CMB temperature
θpCMB. We also assume that both the galaxy survey and
the CMB experiment have mutually uncorrelated Gaussian
noise. In this case the log-likelihood of seeing θobs and δobsg

for given vr; δg; δe; θpCMB is the following:
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− 2 lnLðθobs; δobsg Þ
¼ �

θobs − θpCMB − θkSZðδe; vrÞ
�
T

× N−1
T

�
θobs − θpCMB − θkSZðδe; vrÞ

�
þ ðδobsg − δgÞTN−1

g ðδobsg − δgÞ þ const; ð39Þ

where NT is the noise covariance of the CMB experiment
and Ng is the shot noise of the galaxy survey due to the
finite number of observed galaxies. A crucial question is
now how to relate the galaxy density δg and the unobserved
electron density δe. There are two general options how to
accomplish this, deterministic or stochastic, as we now
discuss. In our numerical tests below we will only imple-
ment the deterministic approach.
In the expression above we have assumed that the noise

of the CMB field and the noise of the galaxy field are
uncorrelated. This holds exactly true in our main analysis
(Sec. IV C) because we approximate the galaxy noise by a
constant pixel-independent shot noise, which is not corre-
lated with the primary CMB, CMB instrumental noise,
or kSZ. In reality, however, a part of the kSZ, as well as
foreground residuals which we do not model, come from
the halos that the galaxy survey resolves, which leads to a
correlation between CMB and galaxy noise residuals. To
take into account a noise correlation we define nt ¼ θobs −
θpCMB − θkSZðδe; vrÞ and ng ¼ δobsg − δg. Then we can
define a vector nT ¼ ðnt; ngÞ and a covariance matrix CN ,

CN ¼
�

NT Covðnt; ngÞ
Covðng; ntÞ Ng

�
: ð40Þ

Then the likelihood equation takes the usual correlated
Gaussian form,

−2 lnLðθobs; δobsg jθpCMB; δg; δe; vrÞ ¼ nTðCNÞ−1nþ const:

ð41Þ

The correlated noise Covðnt; ngÞ could be estimated from
simulations or perhaps be calculated in the halo model. We
also note that the noise PDF on small scales is not
guaranteed to be Gaussian and could be learned with a
machine learning approach. In the following, we do not
take into account noise correlation and instead work with
Eq. (39), which, as we discussed, holds exactly for our
Poisson noise setup (Sec. IV C) and also performs well for
the halo analysis (Sec. IV D).

1. Using an estimator for δe given δg
The most straightforward way to estimate δe from δg is

the following template estimator (e.g., [14,29]):

δ̂eðkÞ ¼
Peg

Pgg
δgðkÞ; ð42Þ

where the small-scale power spectra Peg and Pgg can be
calculated in the halo model (see Ref. [14]) or estimated
from simulations (which we do here).
We can then write the likelihood as

− 2 lnLðΘobs; δobsg jθpCMB; δg; vrÞ
¼ �

θobs − θpCMB − θkSZðδ̂eðδgÞ; vrÞ
�
TN−1

T

×
�
θobs − θpCMB − θkSZðδ̂eðδgÞ; vrÞ

�
þ ðδobsg − δgÞTN−1

g ðδobsg − δgÞ þ const: ð43Þ

The kSZ calculated from δ̂e will only include the resolved
kSZ, i.e., the one that can be explained by the galaxy
distribution. The estimator in Eq. (42) is not guaranteed to
be the optimal estimator since these small-scale fields are
non-Gaussian. Below in Sec. V we will explore a machine
learning method, using a convolutional neural network to
learn a better template δ̂eðδgÞ. If we assume Gaussianity for
the fields we also get the prior

−2 lnPðθpCMB; δg; vrÞ ¼ ðθpCMBÞTP−1
T θpCMB þ vTP−1

v v

þ δTg P−1
g δg þ const; ð44Þ

where Px are the signal covariance matrices for fiducial
cosmological parameters.

2. Coupling δe and δg with a correlated prior

A second, more Bayesian, option is to impose a
stochastic relation between δe and δg. In this case, the
likelihood is

− 2 lnLðθobs; δobsg jθpCMB; δg; δe; vrÞ
¼ �

θobs − θpCMB − θkSZðδe; vrÞ
�
TN−1

T

×
�
θobs − θpCMB − θkSZðδe; vrÞ

�
þ ðδobsg − δgÞTN−1

g ðδobsg − δgÞ þ const: ð45Þ

To impose a relation between δe and δg, we need a
correlated prior. If we assume the Gaussianity of the
small-scale fields, the prior is

−2 lnPðδe;δgÞ¼
�
δe δg

��Pee Pge

Pge Pgg

�−1�δe

δg

�
þconst;

ð46Þ
where the covariance matrix must be invertible, i.e., the two
fields cannot be fully correlated (as is the case if one
naively assumes δg ∝ δe). The posterior is then

PðθpCMB; δg; vr; δejTobs; δobsg Þ
∝ LðTobs; δobsg jTpCMB; δg; δe; vrÞ × PðTpCMB; δe; δg; vrÞ:

ð47Þ
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In this approach, again the assumption of Gaussianity could
be circumvented by machine learning. A non-Gaussian
prior Pðδe; δgÞ can, in principle, be learned from simu-
lations using the technique of normalizing flows [39,40].
We are planning to explore this idea in the future.

E. Outlook: Jointly estimating cosmological
and astrophysical parameters

So far we have discussed how to estimate fields,
assuming that the priors are known, i.e., they have been
evaluated for known astrophysical and cosmological
parameters. We now generalize the posterior to include
such parameters. We are splitting this discussion into two
types of parameters, according to our separation of scales.
We defer an application of such a fit to simulations to
future work.
Astrophysical parameters affect the small-scale δe and δg

fields, in the deeply nonlinear regime where most of the
observed kSZ signal is generated. For example, one can
calculate Pge in the halo model as a function of the slope of
the radial electron profile (see Ref. [14]). Pge appears in the
likelihood above in Eqs. (42) and (46). For example, if we
assume Gaussian fields, the prior in Eq. (46), written in
terms of the vector δge ¼ ðδeδgÞ becomes

−2 lnPðδe; δgjΛSÞ ¼ δTgeC−1
ge ðΛSÞδge þ log detCgeðΛSÞ:

ð48Þ

Note that now we need to keep track of the determinant
factor since it depends on the ΛS parameters for which we
optimize. We can use a prior on the astrophysical parameter
ΛS to express Pðδe; δg;ΛSÞ ¼ Pðδe; δg; jΛSÞPðΛSÞ.
Cosmological parameters affect vr and δg at large scales.

To avoid complications due to nonlinear evolution (which
could be included with a differentiable forward model of
structure formation), we can probe cosmological para-
meters on linear scales k ≪ kNL. In particular, we can
constrain local non-Gaussianity fNL [11], galaxy bias bg,
kSZ optical depth bias bv [29], and the Hubble constant H.
To include constraining power from the galaxy field on
large scales, we need to add a field likelihood for the large-
scale galaxy field δg;L given by

−2 lnLðδobsg;Ljδg;LÞ ¼ ðδobsg;L − δg;LÞTN−1
g ðδobsg;L − δg;LÞ: ð49Þ

The joint prior Pðδg;L; vrÞ of the fields δg;L and vr on large
(linear) scales as a function of cosmological parameters λL
is Gaussian. Written in terms of the vector δgv ¼ ðδg;Lvr Þ it is
given by

−2 lnPðδg;L; vrjΛLÞ ¼ δTgvC−1
gv ðΛLÞδgv þ log detCgvðΛLÞ:

ð50Þ

Analytic expressions for the covariance matrix Cgv on
linear scales are given for example in [11].
Including all these parameters, in full generality, the

posterior is

PðθpCMB; δg; δe; vr;ΛS;ΛLjθobs; δobsg Þ
∝ Lðθobs; δobsg jθpCMB; δg; δe; vrÞ
× PðθpCMB; δe; δg; vr;ΛS;ΛLÞ: ð51Þ

Physical constraints are then various joint or marginal
distributions of this complicated posterior. Finding the
MAP and marginalizing over fields will be challenging
and is deferred to future work.

F. Implementation and optimization of the likelihood

We implement the likelihood equations in JAX—a
PYTHON package with a versatile and highly optimized
autodifferentiation. In this way, we can take analytic
derivatives with respect to all fields and scalar parameters.
We then find the MAP, i.e., the parameter and field
configuration which maximizes the posterior probability
density. We now give a detailed description of our PYTHON
implementation, which is based on the JAX library.
Data dimensionality. Given n redshift bins and for an

angular side lengthNside,
3 we have in total N2

side × ð2nþ 1Þ
parameters to solve for (n velocities, n electron densities,
and the primary CMB).
Masking the data. Since we have nonperiodic simulation

data, we need to apodize the data with a smooth mask at the
boundary. An exact treatment would deal with the mask by
Wiener filtering with an inhomogeneous noise covariance
matrix. However, Wiener filtering at high signal-to-noise
converges very slowly, so instead we use the common but
somewhat suboptimal apodization technique (as imple-
mented, e.g., in [44]).
Data representation. The CMB likelihood term [e.g.,

Eq. (36)] is naturally represented in pixel space (x space)
because the kSZ is obtained with a simple pixelwise
multiplication and the noise covariance is diagonal in pixel
space (even for inhomogeneous uncorrelated noise). The
prior terms, however, are naturally represented in Fourier
space (l space), since covariance matrices are diagonal
there. We thus use both representations and FFT between
the two.
Optimizer. We minimize the negative log posterior

numerically for parameters of interest, for example, we
minimize Eq. (37) with respect to fδm; vr; θpCMBg. We

3Nside here represents the number of pixels per side of a square
patch. In our simulation results presented below, it also coincides
with the Nside parameter for the input HEALPIX maps, since the
total number of pixels in a HEALPIX map with given Nside is
Npix ¼ 12 × N2

side and we analyze exactly 1=12 of the full-sky
HEALPIX map, projected to a flat patch.
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freely switch from x to l space and vice versa utilizing JAX
FFT routines. We found that the popular Adam optimiza-
tion algorithm, which is widely used for neural network
training, works well for our setup. We used the imple-
mentation of Adam from the Optax library. Convergence of
the optimization depends on the noise levels and required
some tuning. We found that convergence can be improved
by setting different initial learning rates for each field (for
example, ∼10−3 for velocity, ∼10−2 for density, and ∼10−5
for primary CMB anisotropy worked in many cases). We
also used the exponential decline of learning rates during
the optimization (using a decay factor of 0.83 every 150
optimization steps).
Initialization. We initialize fδg ¼ δobsg ; vr ¼ v̂QEr ;

θpCMB ¼ θobsg. Here, v̂QEr is the quadratic estimator for
vr. Although all the results in this paper were obtained with
vr ¼ v̂QEr initialization, we noticed that this is not essential
and one can start with vr ¼ 0 as well.
Multi-GPU parallelization. Because of GPU memory

limitations, there is a trade-off between resolution (both
pixel- and binwise) and physical volume. However, we also
found it possible to make use of several GPU devices in
parallel to increase the size of the redshift interval of our
analysis. We kept different groups of redshift bins on
different GPUs and calculated kSZ temperature anisotropy
after each optimization step via collective communication.
Hardware and convergence time. We can include up to

23 redshift bins with maps of 20482 pixels on a single
16 GB RTX-A4000. We also note that, in addition to
parameters, one also needs to keep various constants in
memory, such as the observed fields δobsg ; θobs and theo-
retical covariances of the parameters. The optimization
process on one GPU takes of order 10 min. With the help of
three GPUs we are able to include exactly 3 times more
bins. For three GPUs, the optimization time increased to
approximately one hour, which includes inter-GPU and
GPU-CPU communication. In our main analysis presented
in Sec. IV, we use 60 redshift bins spread over three GPUs.

G. Joint posterior, marginal posterior, and error bars

The full posterior, including cosmological and astro-
physical parameters, which we keep fixed in our results
below, is given by

PðθpCMB; δg; δe; vr;ΛS;ΛLjθobs; δobsg Þ: ð52Þ

We will refer to this posterior as the “joint posterior”
(following the naming of lensing posteriors in [26]). From
this posterior one can, at least in principle, obtain various
“marginalized posteriors.” In particular, if one is only
interested in reconstructing the velocity field, one may
want to marginalize over the small-scale fields, i.e.,

Pðvr;ΛS;ΛLjθobs; δobsg Þ

¼
Z

dθpCMBdδgdδePðθpCMB; δg; δe; vr;ΛS;ΛLjθobs; δobsg Þ:

ð53Þ

In the CMB lensing likelihood analysis, Refs. [23,24]
maximize the marginal posterior, while [25,26] maximize
the joint posterior. In the lensing case, it is possible to
analytically marginalize over the CMB fields, but maxi-
mizing the marginal posterior comes at the cost of
repeatedly evaluating a computationally expensive deter-
minant. In our present work, we maximize the joint
posterior of the fields, but physically both the joint and
marginal posteriors are interesting. To make unbiased
estimates of cosmological or astrophysical parameters, it
is, in principle, necessary to marginalize over the field
variables. How this can be achieved in the case of CMB
lensing was recently shown in [45], and we defer the kSZ
case to future work.
In addition to finding the MAP, we need to give error

bars for the modes of the reconstructed velocity field vr
(and ultimately also for cosmological and astrophysical
parameters ΛS and ΛL). This can be done by considering
the curvature of the posterior (or, at least in principle, by
sampling from the posterior). Assuming that the posterior is
not multimodal, it can be expanded around the MAP to
second order and error bars can be given in terms of the
second derivatives of the posterior. As usual, we define the
Hessian of the posterior,

Fij ¼ −
∂
2 lnP
∂λi∂λj

				
λ¼λ̂

; ð54Þ

where λ are all parameters of the posterior and λ̂ is their
MAP. One can obtain their unmarginalized error bars from
the diagonal part as σi ¼ 1ffiffiffiffiffi

Fii
p and the marginalized ones as

σi ¼ ðF−1Þii if this inversion is tractable. Unfortunately,
inverting the full Hessian for the high-dimensional pos-
terior with all fields is not computationally tractable. Here
we restrict ourselves to a simpler setup. In Appendix B we
show that for the simplest likelihood, given in Eq. (23), we
can obtain error bars on the reconstructed velocity field
from the Hessian of the posterior, which match the
residuals with the truth (which are available in simulations
but not in real data). For this simpler likelihood, it is even
possible to invert the full Hessian. At least in this simple
case, we can thus set error bars on the reconstructed
velocity field without the need to run large numbers of
simulations, by using autodifferentiation to calculate the
likelihood curvature at the MAP. We will investigate error
bars in the full likelihood formulation, including methods
to integrate out the small-scale fields either analytically or
numerically, in future work.

YURII KVASIUK and MORITZ MÜNCHMEYER PHYS. REV. D 109, 083515 (2024)

083515-10



IV. APPLICATION TO SIMULATIONS

In this section, we apply our likelihoods to a simulation.
We explore under which conditions the MAP outperforms
the QE and find that both a low CMB noise and a low large-
scale structure noise are required for a significant improve-
ment factor.

A. Agora simulation

There are currently not many available simulations that
have high-resolution halos, light-cone coordinates, include
CMB, and cover a large sky fraction. The simulation
requirements for kSZ velocity reconstruction are particu-
larly challenging because one both needs the large velocity
scales and the small scales where the kSZ is visible, and
here we also require a high halo density. One suitable
simulation is the recently published Agora simulation,
which we use here. Agora [46,47] is a multicomponent
simulation on a light cone that uses halos and particles from
Multidark-Planck2 N-body simulation and also models
CMB primary and secondary anisotropies including lens-
ing, kSZ, thermal Sunyaev-Zeldovich effect (tSZ), and
cosmic infrared background (CIB). While here we only
include the kSZ effect, other secondary anisotropies may be
helpful in the future.
With our hardware setup of three 16 GB memory

RTX-A4000 GPUs, we found the following resolution to
be tractable. We downgrade the original full-sky maps from
HEALPIX Nside ¼ 8192 to Nside ¼ 2048, where the latter
corresponds to the resolution of 1.72 arcmin. We then apply
flat-sky approximation, keeping 1=12 of the maps and
treating them as fields on a 2D Cartesian grid of resolution
20482 pixels (see footnote 2 above). For this purpose, we
found the reproject function from the PIXELL library
useful. We consider the redshift interval of z ¼ 0.5–3 and
use N ¼ 60 equidistant comoving radial bins so that each
bin has a width of 50 Mpc. This binning merges the original
120 bins of Agora into pairs of two. Our optimization for
three-dimensional fields thus uses arrays of size [60, 2048,
2048]. In the future, when we apply our method to real data
(CMB-S4), it would be useful to raise the angular reso-
lution further, which would require a larger bank of GPUs.
For our present goal of testing our likelihood method, the
current resolution is sufficient.

B. Velocity field, galaxy density, and CMB map

The first required simulation product in our analysis is the
radial velocity field. Since the Agora simulation is patched
together by repeating the same base simulation several times,
this could potentially lead towrong powers on large scales. In
Fig. 1 we show the radial velocity field and thematter field of
theAgora simulation for the radial bin at z ¼ 1.15, compared
to the expectation from CAMB. The power spectra here and
below were estimated from the simulation after taking a
1=12th of the sky flat-sky projection and apodizing the mask.

We find generally good agreement with theory at all redshifts,
sufficient for our purpose.
The second required simulation product is the halo/

galaxy catalog. In Fig. 2 (left) we show the differential
number density of the halo catalog from the Agora4

simulation, as well as the expected galaxy number density
of the Rubin Observatory Legacy Survey of Space and
Time (LSST) Y10 gold sample [48]. We note that we used
the light-cone halo catalog from Agora which is not tailored
for a specific survey. Agora does provide an LSST-Y1
galaxy catalog, but we are not using it in this analysis.
Given the densities in Fig. 2 (left), we thus expect weaker
constraints with Agora halos (due to the mass threshold
of the Agora halo catalog of 1011⊙ solar masses) than
can be obtained with Rubin Observatory LSST-Y10.
Unfortunately, as we shall find, to increase the signal-to-
noise with the likelihood, a larger number density than
Agora is required. For this reason, in addition to analyzing
the actual halo catalog in Agora, we also test our analysis
on Poisson sampled biased matter density maps for various
shot noise levels. More precisely, we emulate higher-
density halo maps by multiplying Agora matter densities
by halo biases and adding Poisson shot noise n−1g corre-
sponding to the target density. While Poisson shot noise is
certainly not a perfect approximation of small-scale halo
formation, this allows us to approximately extend our
analysis to very high galaxy densities. Figure 2 (right)
shows the power spectrum of both the real Agora halo map
as well as the emulated one with Rubin Observatory
density. In all of our results below we do not include
photo-z redshift errors; however, the redshift resolution is
limited by the choice of 60 radial bins.
The third required simulation product is the observed

CMB map. While Agora comes with its own simulated
CMB map, which includes properly correlated CMB
lensing and various CMB secondary anisotropies, for
our present purpose it is more convenient to generate
our own CMB map. We generate primary CMB from the
lensed CMB power spectrum of CAMB. We then add kSZ
generated according to the binned kSZ model described in
Sec. II B, by multiplying the binned radial velocity maps
with the binned electron density maps (assuming δe ¼ δm)
at full resolution and adding all 60 bins up to redshift 3.
This is the kSZ generated by our simulation volume. The
real data will include some additional kSZ. First, some kSZ
will be generated by radial distances below our binning
resolution (see Ref. [16]). Second, kSZ from higher red-
shifts including reionization kSZ will also contribute. To
approximate both of these effects, we add uncorrelated kSZ
to the CMB map, as described in Eq. (8). Below we both
show results for the simulation kSZ alone, as well as for an
added uncorrelated kSZ with the same power spectrum and
amplitude as the simulation kSZ. We made this choice

4https://yomori.github.io/agora/index.html.
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because high-z kSZ (here z > 3 including reionization)
may have a similar total amplitude as low-z kSZ [35,49].
In our analysis, we consider three different CMB noise

levels, as shown in Fig. 3. CMB-S4 noise corresponds to
the CMB-S4 ultradeep internal linear combination (ILC)
curve taken from [50]. Finally, the curve named “1,1” was

generated from the power spectrum NðlÞ ¼ N2
Te

lðlþ1Þθ2
FWHM

8 ln 2

with NT ¼ 1 μKarcmin and θFWHM ¼ 1 arcmin (without
ILC foreground cleaning) to be comparable to the forecast
in [11]. The CMB-HD noise curve was generated according
to [51] by coadding instrumental noises from the frequency
channels of 150 and 90 GHz. The level of foregrounds in
150 and 90 GHz, which is left after foreground cleaning, is
shown with a blue line in Fig. 1 of [51]. We note that it is
dominated by the reionization kSZ signal, the influence of
which is discussed later in this work. The level of CIB
foreground that is left is much less than the instrumental
noise. Whether CMB-HD can reach such low foreground
levels (using other frequency channels for foreground
cleaning) is currently being investigated by the CMB-
HD Collaboration. In this work, we do not include
correlated foreground residuals, which need to be studied
in more detail even in the case of the standard quadratic

FIG. 3. Lensed CMB power spectrum along with three different
instrumental noise levels and generated kSZ signal (simulation
volume only). For CMB-S4, the kSZ (shown only for our
simulation volume 0.5 < z < 3) is below the noise level, while
for the futuristic experiments, it is above the noise level. Here the
CMB-S4 noise curve includes ILC foreground deprojection, while
the 1, 1 noise means white noise with NT ¼ 1 μKarcmin and
θFWHM ¼ 1 arcmin (without ILC). For either of these experiments,
our analysis uses only scales up to l ≃ 6000 to limit the GPU
requirements of this theoretical study.

FIG. 1. Example of power spectra of radial velocity (left) and matter density (right) from Agora simulations (solid blue) compared to
theoretical values calculated with CAMB (dashed black) at z ¼ 1.15. The power spectra were estimated from the apodized flat-sky
projection of 1=12 of the full-sky AGORA simulation.

FIG. 2. Left: halo density (Agora) and galaxy density (LSST Y-10) per sterad per redshift as a function of redshift. Right: power
spectra of halo overdensity from Agora and emulated halo overdensity (i.e., Poisson sampled biased matter overdensity) for LSST-Y10
gold sample galaxy density level. At the kSZ length scales of l > 4000 the Agora map is noise dominated, while the emulated LSST
map is signal dominated.
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estimator method. We show these noise spectra as well as
the kSZ from our simulation volume in Fig. 3.

C. Results for observed matter δm
with Poisson shot noise

We now test our likelihood pipeline on the Agora
simulations, assuming that we observe the Poisson
noise-corrupted biased matter field (see Fig. 2 right) in
addition to the CMB. We thus find the MAP to the
posterior, Eq. (37), which includes the likelihood, Eq. (36).
In the next section, we will then analyze the Agora halo
catalog instead of the matter field.
We first consider the shot noise that corresponds to the ng

prediction for Rubin Observatory (Fig. 2 left) and the
NpCMB ¼ NpCMB

1;1 CMB noise as described in Sec. IV B.
Note that we do not take into account photo-z errors
(except by redshift binning), so the results for real Rubin
Observatory galaxies would be somewhat weaker. Figure 4
shows the cross-correlation coefficient and reconstruction
noise for QE and MAP estimator for three different
redshifts z ¼ 0.7, 1, 2. The reconstruction noise is defined
as NðlÞ ¼ hjvtrue − bv̂j2i and the cross-correlation coef-

ficient is rðlÞ ¼ hvtruev̂iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv̂ v̂ihvtruevtruei

p . For this configuration the

MAP estimator performs significantly better than QE,
especially at lower and intermediate redshifts, giving
lower reconstruction noise and higher cross-correlation
coefficient.

Let us discuss the curves in Fig. 4 in somewhat more
detail. First, the quadratic estimator has lower noise at
intermediate redshift z ¼ 1 than at both lower and higher
redshift bins. This is expected because the volume of the
z ¼ 1 bin is larger than at z ¼ 0.7, and the number density
is larger at z ¼ 1 than at z ¼ 2 (see Fig. 2), resulting in the
lowest noise at intermediate redshift. Second, cosmic
variance fluctuations (due to having only a single simu-
lation) between the QE and the MAP are similar, as
expected. Third, the noise of the MAP (as well as the
amplitude of the reconstructed velocity signal) goes down
at large l, while the noise of the QE stays flat. This is the
expected behavior because the MAP includes inverse
variance weighting so that noisy scales are being sup-
pressed by SðSþ NÞ−1 (where S is the signal covariance
and N is the noise covariance). If we were to Wiener filter
the QE result, we would get the same behavior, i.e., the QE
reconstructed power spectrum would fall at large l. To
estimate the unbiased power spectrum from the Wiener-
filtered field, one would include a power spectrum transfer
matrix, as is commonly done in power spectrum estimation.
Finally, a somewhat surprising result is that the improve-
ment of MAP over QE is larger at z ¼ 0.7 than at z ¼ 1,
even though the QE performs better at z ¼ 1. However, it is
difficult to predict the improvement factor analytically
because it depends on several redshift-dependent factors,
in particular, the number density n per sky angle (which
first grows and then falls toward higher z), as well as the
amplitude of the cross power spectrum Pgτ (which grows

FIG. 4. Velocity reconstruction based on δm and θCMB. Cross-correlation coefficient rl (upper row) and noise power spectra (lower
row) of QE and MLE as a function of multipole number l for three different redshifts. CMB noise and galaxy density are, respectively,
NpCMB

1;1 (NT ¼ 1 μKarcmin and θFWHM ¼ 1 arcmin, without foregrounds) and ngLSST (LSST gold sample). We include data in 60 redshift
bins (0.5 < z < 3) with angular resolution lmax ¼ 6000 in the reconstruction, which is the resolution limit with our GPU memory.
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toward lower z) and perhaps the non-Gaussianity of the
small-scale fields (which grows toward lower z). As a final
note, we cannot exclude the fact that our likelihood is not
fully converged on small scales, despite our best effort to
achieve convergence (see Sec. III F). In particular, in the
high redshift bin z ¼ 2, at high l, the MAP power should
be below the true velocity field power, due to the inverse
variance weighting. However, on large scales, which are
those most interesting for cosmology, convergence appears
to be robust.
In all plots of the reconstruction power spectrum, we

have adjusted an overall (scale-independent) amplitude
parameter to match the theory power. This is equivalent
to fixing the “velocity bias” described in [14], which also
has to be marginalized over in the case of the QE. The
velocity bias is physically associated with the unknown
normalization of the electron density in the real Universe.
In simulations, it could be fixed by carefully tracking
normalizations and the masking bias, but we have not done
this here. We also estimated the small-scale power spectrum
that appears in the prior term from simulations. In the
future, we aim to fit a parametrization of the small-scale
power spectrum jointly with the field parameters to take
into account baryonic uncertainty.
We now explore the influence of different experimental

configurations. As a futuristic case, we consider an experi-
ment with 10 times the number density of Rubin
Observatory. While no experiment with such a low shot
noise is planned in the near term, this configuration allows
us to probe how the signal-to-noise scales with galaxy
number density. As described in Sec. IV B we also consider
three different CMB noise configurations, CMB-S4 (ILC),
“1,1 noise,” and CMB-HD. As before, we include data in
60 redshift bins up the lmax ¼ 6000 in the reconstruction,
which is the resolution limit with our GPU memory (three
GPUs with each 16 GB). The absolute SNR is thus lower
than could be achieved with a larger lmax (especially for a
CMB noise better than CMB-S4), but our main concern
here is to demonstrate the improvement over the QE, for
which our GPU setup suffices. For these configurations, we
provide signal-to-noise improvement factors in Table I,
ranging in values from 1 to 4. Unfortunately, with CMB-S4
ILC noise curves we do not find an improvement. Note,
however, that this result could be different with halos, a
more complicated halo-based kSZ model, and halo mass
weighting in the galaxy field, which we aim to explore in
the future with a more high-resolution simulation. With the
present simulation, the question of whether an improve-
ment with CMB-S4 is possible cannot be definitively
answered. Comparing the 1,1 noise case and the CMB-HD
noise, we only find a substantial improvement in the
z ¼ 0.7 bin, indicating that the galaxy shot noise is the
limiting factor at higher redshifts for this extremely low
noise configuration. In some bins, we find a slightly better
result with the 1,1 noise than with the HD noise, which may

be due to small fluctuations in the convergence of our
optimization procedure.
Next, we explore how additional kSZ power influences

our results. In Fig. 4, the CMB map contained the primary
CMB, the simulation kSZ, as well as the instrument noise.
We now include an additional uncorrelated kSZ component
as described in Sec. IV B, by adding it to the map and
modifying the covariance of the CMB prior. This situation
is more realistic, as our simulation generates kSZ only at
the redshift of 0.5–3, but there is an additional kSZ signal
coming from z > 3 including the reionization epoch. Since
the level of the reionization kSZ is not well known, we set it
to be equal in power to the modeled kSZ signal
(DukSZ

l¼2000 ¼ DkSZ
l¼2000 ≈ 1 ½μK�2). We summarize the average

improvement of MAP reconstruction with respect to QE,
Nv

QE=N
v
MAP both with and without adding unresolved kSZ

signal in Table I. We find that the extra kSZ reduces the
improvement factor, but significant improvement remains.
As an interesting consistency check, we now investigate

whether our likelihood has succeeded in reconstructing the
“kSZ-corrupted” primary CMB. The likelihood approach
naturally provides a kSZ-reduced temperature anisotropy
field. In Fig. 5 (left) we demonstrate this showing the cross-
correlation coefficients rðlÞ for θpCMB − θ̂MAP and θpCMB −
θobs for two MAPs obtained for two different noise
configurations. We see that, indeed, the reconstructed
primary CMB cross-correlates better with the true primary
CMB than the observed CMB. In Fig. 5 (right) we show the
reduced power in the reconstructed primary CMB map.
Despite the futuristic experimental configuration, de-
kSZing is not very efficient in our setup. This is because
we only reconstruct velocities on large scales, while all
velocity scales contribute to the total kSZ signal. For

TABLE I. Improvement of the likelihood over the QE for
futuristic noise levels (reconstruction based on δm with Poisson
shot noise). Nv

QE=N
v
MAP, averaged over l ¼ 10–60 at three

different redshifts for various shot noise and CMB noises
configurations. ukSZ means that we include an uncorrelated
kSZ component of the same magnitude (DukSZ

l¼2000 ¼ DkSZ
l¼2000≈

1 ½μK�2) as the simulation kSZ to approximate kSZ contributions
from outside the redshift range of the simulation. We include data
in 60 redshift bins (0.5 < z < 3) with angular resolution lmax ¼
6000 in the reconstruction. For CMB-S4 ILC noise we do not find
an improvement.

z ¼ 0.7 z ¼ 1 z ¼ 2

NpCMB
1;1 and nLSSTg

3.2 1.7 1.3

NpCMB
1;1 and nLSSTg and ukSZ 2.2 1.6 1.1

NpCMB
1;1 and 10 × nLSSTg

3.4 2.6 1.6

NpCMB
1;1 and 10 × nLSSTg and ukSZ 2.8 2.2 1.5

NpCMB
HD and 10 × nLSSTg

4.0 2.7 1.4

NpCMB
HD and 10 × nLSSTg and ukSZ 2.9 2.0 1.4
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example, in [35], galaxies were used to make a template for
velocities on small scales. It is possible to modify the
likelihood to reconstruct the velocities jointly from the kSZ
and the galaxy catalog, which would substantially improve
de-kSZing. However, we leave this to future work as it
involves nonlinear modeling.

D. Results for observed halos δh
In this section, we perform the same MAP analysis, but

now using halos (rather thanmatter plus Poisson noise) from
the AGORA simulations. The posterior is now given by
Eq. (44) and the likelihood is given by Eq. (43). A difference
to the previous section is that we now observe the halo/
galaxy field δg, but we model the kSZ from δm ¼ δe. As
discussed in Sec. III D 1 we need to make a template for δe
given observed δg. In this section, we use the simplest
possible template, given by Eq. (42), with small-scale power
spectra Pgg and Pge estimated from the simulations.
Because the Agora halo density is lower compared to the

LSST “gold sample” (Fig. 2) by an order of magnitude, we
expect less signal-to-noise andMAP improvement than in the
previous section. The cross-correlation rðlÞ and noise power
spectra for reconstruction with halos and NpCMB ¼ NpCMB

1;1

are shown on Fig. 6 (left), finding about a factor of 2
improvement. Interestingly, we find improvements even
though the galaxy density is not as large as for LSST. The
same plots but for higher CMB noise, NpCMB ¼ NpCMB

S4 , are
depicted in Fig. 6 (right). We see that, at CMB-S4 noise, the
MAP estimator performs equivalent to the QE in terms of
signal-to-noise.

V. A MACHINE-LEARNING-BASED ESTIMATOR
FOR THE ELECTRON DENSITY

To estimate the velocity field, with both the QE or the
likelihood, one needs an estimate or statistical connection

between δe and δg, as we discussed in Sec. III D. In the
previous section, we used the linear template estimate,
Eq. (42), which is also the assumption usually made for QE
reconstruction. However, in principle, this estimator can be
an arbitrary nonlinear function of δg. In this section, we
explore a neural-net-based estimator which we train on the
Agora simulations. In a more complete exploration of this
idea, one would train on hydro simulations to reconstruct
a true baryon distribution, while on Agora we can only
reconstruct δm ≈ δe. We defer an exploration of this idea on
CAMELS [52] or IllustrisTNG [53] to future work.
Our goal is to train a neural network to increase the

cross-correlation between the electron template derived
from the galaxy field and the true electron density field.
Let us first show how this cross-correlation affects the
reconstruction noise of the QE, where we have an analytic
expression for the noise. The QE velocity reconstruction
noise is sensitive to the cross-correlation between the true
electron field and its tracer as follows:

ðNv
lÞ−1 ∝

Z
dll

ðPgτ
α ðlÞÞ2

P̃θθðlÞP̃ggðlÞ ¼
Z

dll
f2τr2egðlÞPee

P̃θθðlÞ ;

r2egðlÞ ¼
ðPegÞ2
P̃ggPee ; ð55Þ

where we had δg as a tracer of δe. Hence, we can reduce
noise by having a tracer with better r2eg. In the region
of high l, primary CMB is suppressed. If CMB noise is
small, the cross-correlation coefficient of the true electron
density field with its tracer defines noise completely.
Indeed, assuming that at high l, P̃θθðlÞ ∼ const, we
know that PeeðlÞ ∼ l2

χ2�
Peeðjkj ¼ l

χ�
Þ ∼ const × l−1, so that

ðNv
lÞ−1 ∝

R
r2ðlÞdl. Hence, in the case of perfect

reconstruction, the noise is only limited by resolution.

FIG. 5. Left: “de-kSZing” of primary CMB. Cross-correlation coefficient rðlÞ of θ̂MAP or θobs with θpCMB for two noise
configurations: NpCMB

HD ; 10 × nLSSTg and NpCMB
1;1 ; nLSSTg . As expected, the reconstructed primary CMB cross-correlates better with the

true primary CMB than the observed CMB does. The de-kSZing is not large here because we do not include an estimate of small-scale
velocities from small-scale galaxies (see main text). Right: power spectra of reconstructed and true kSZ signal (red and purple) and
pCMB (green and orange) for the NpCMB

HD ; 10 × nLSSTg noise configuration (correspondent to blue curves on the left).
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We train an eight-block residual network (ResNet) [54]
with 3 × 3 convolutional layers on pairs of ðδe; δgÞ to
minimize the standard rms loss for the three cases of matter
tracer used in the preceding sections. In our simulation
δe ¼ δm and the matter tracer δg here is either Poisson
noise corrupted δm with noise N ¼ 1=ng;LSST and N ¼
0.1=ng;LSST or the Agora halo field. The network converges
fast (the whole training takes a couple of minutes on RTX-
A4000). We implement it with JAX and Haiku—a neural
network library, compatible with JAX. This allows us to
effortlessly include this piece in likelihood optimization for
velocity reconstruction (although the neural network tem-
plate is equally applicable to the QE).
As can be seen in Fig. 7, the neural network (NN)

estimator for electron density gives an improvement in
cross-correlation, especially for higher multipoles, where
the kSZ signal is observable. We do not see any improve-
ment on the lower-density Agora halo catalogs. Instead of a
ResNet, it would also be interesting to train a more physical
low-parameter model such as Lagrangian deep learn-
ing [55].
Next, we investigate how the improved electron template

affects velocity reconstruction. Here we consider a more
realistic case of high CMB noise—Gaussian white noise
with NT ¼ 5 μKarcmin and θFWHM ¼ 1.5 arcmin, which

is closer to the target noise of Simons Observatory. We also
take halo shot noise at the LSST level, so this forecast is
oriented toward an LSST × SO analysis. We use the QE
velocity estimator, but at these noise levels, we expect the
likelihood to perform likewise, as was seen in the previous
section. Figure 8 shows approximately a factor of 1.25
improvement in reconstruction noise in the low l region
resulting from our NN-based estimator of electron density
applied to the QE.
As we saw, in our setup the possible improvements due

to the neural network are not very large. However, this
conclusion could change with more realistic hydrodynamic
simulations where the baryon density is being simulated,
as well as by considering the properties (such as mass) of
halos and galaxies. We plan to explore this question in more
detail in future work on hydrodynamic simulations. One
may also ask whether the neural network technique is
sensitive to baryonic uncertainty. Here we point out that an
analytic template, as used in the QE, is also not correct in
nature. As shown in [14], on large scales, such baryonic
uncertainty can be included by marginalizing over a
velocity bias on large scales. This is still true in the neural
network case. All we require is that the neural network
increases the cross-correlation coefficient in reality over the
analytic template. Further, we did not take into account

FIG. 6. Velocity reconstruction based on δh (Agora simulation halos) and θCMB. Cross-correlation coefficient rl (upper row) and noise
power spectra (lower row) of QE and MLE as a function of multipole number l for two different CMB noise levels: NpCMB

1;1 (left) and

NpCMB
S4 (right) at z ¼ 0.8. In the reconstruction, we include data in 60 redshift bins (0.5 < z < 3) with angular resolution lmax ¼ 6000 in

the reconstruction. For NpCMB
1;1 , we see an improvement by a factor of 2, while for NpCMB

S4 (including ILC) we see no improvement.

YURII KVASIUK and MORITZ MÜNCHMEYER PHYS. REV. D 109, 083515 (2024)

083515-16



CMB foreground residuals, and a detailed study of our
method should take them into account.

VI. CONCLUSION

In this paper, we developed an autodifferentiable like-
lihood pipeline for the cross-correlation of the CMB and a
large-scale structure survey due to the kSZ effect. As is the
case for CMB lensing, which has been developed in more
detail in the literature because of its larger signal-to-noise
for current experiments, a likelihood pipeline is more
statistically sensitive than the quadratic estimator at low
experimental noises. Beyond the increased statistical sen-
sitivity, a likelihood approach provides a general frame-
work to fit a complete model to the data, which can include

both physical and experimental parameters. Likelihood-
based kSZ velocity reconstruction is computationally
tractable because the relevant scales of the large-scale
velocity field and the small-scale matter field can be
separated to a good approximation, so nonlinear differ-
entiable forward modeling of structure formation is not
necessary. We show that our approach is computationally
tractable for a realistic survey size and provide expected
improvement factors over the QE for different idealized
experimental configurations. We further developed a
machine learning approach to the estimation of the electron
density given observed galaxies, which may be able to
improve the signal-to-noise for Simons Observatory,
although a more detailed study using hydrodynamic sim-
ulations is required.

FIG. 8. Left: cross-correlation coefficient rvv̂ðlÞ of true and QE-reconstructed velocity field based on the standard and the neural
network estimate of the electron density. Right: corresponding power spectra and residuals. The experimental parameters are similar to
an LSST × SO analysis. We find a small 25% improvement when the QE uses the neural network template, rather than the analytic
template [Eq. (42)].

FIG. 7. Cross-correlation 1 − r2eêðlÞ of the true electron field with its estimate from the analytic template, Eq. (42), compared to the
neural network estimate for two halo density levels: ng;LSST (left) and 10 × ng;LSST (right). We find a significant improvement in the
cross-correlation due to the neural network, which turns out to be larger with higher shot noise (lower galaxy density). Note, however,
that in our simulations δe ¼ δm and results may change with realistic hydrodynamic simulations and galaxy properties.
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There are two main directions of future work which we
will explore. The first direction is to make our forecasts
more realistic. Based on the results in the present work,
we do not find significant gains in signal-to-noise at the
resolution of CMB-S4 and Rubin Observatory (LSST).
However, the available Agora simulations do not fully
satisfy the required simulation constraints for this forecast,
and to probe LSST density we made the simplified
assumption that we observe the matter field of Agora with
Poisson shot noise. In a simulation with realistic galaxies,
with sufficient density, one could take into account galaxy
properties, in particular, tracers of the halo mass. Halo
masses significantly reduce the shot noise in the galaxy
field [56] and could improve our forecast. Fortunately,
more realistic high-resolution simulations are starting to
become available. A more elaborate forecast would also
take into account photo-z errors beyond the simple redshift
binning we have performed here. A future study should
also take into account foregrounds that correlate with large-
scale structure and can affect both the QE results and the
likelihood. In particular, the tSZ and CIB correlate with the
galaxy field and their remnants (after foreground cleaning)
could bias the reconstruction. Our improvement factors can
be sensitive to these effects, however, this is a complicated
topic that is beyond the scope of the present work. The
second main goal for future work is the inclusion of
cosmological and astrophysical parameters in the like-
lihood as outlined in Sec. III E. Jointly fitting such
parameters together with fields is, in principle, possible,
but achieving convergence in the fit can be difficult. In
addition, to obtain unbiased parameter measurements and
error bars, one would need to integrate out the field level
variables, perhaps with a Gaussian approximation around
their MAP. Recent related work in the case of CMB lensing
includes [27,31,45]. We will explore these questions in
future work.
To obtain results quoted in this work, we extensively

used JAX [57] for construction of the autodifferentiable
posterior, as well as tools from DeepMind JAX Ecosystem
[58], such as Optax for the optimization via gradient
descent and Haiku [59] for the construction of a NN-based
estimator of electron density. We also benefited from
PIXELL and PYTHON implementation of HEALPIX

5 [60]
HEALPY for data preprocessing, along with NUMPY,
SCIPY, and MATPLOTLIB [61–63] for various calculations
and plotting, and CAMB [64] for theory computations.
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APPENDIX A: RELATIONS BETWEEN
ANGULAR POWER SPECTRUM Cl, FLAT-SKY

APPROXIMATION PðlÞ, AND POWER
SPECTRUM OF THE 3D FIELD PðkÞ

We review the known correspondence between multipole
and flat-sky coordinates, apply them to our case of binned
flat-sky coordinates, and calculate the radial velocity power
spectrum.

1. Equivalence of Cl and PðlÞ
Given some field on a 2D sphere Aðn̂Þ, we define its

spherical harmonics transform coefficients as

alm ¼
Z

dΩY�
lmðθ;ϕÞAðn̂Þ; ðA1Þ

and if the field is rotationally symmetric, its angular power
spectrum is defined, as usual

hal1m1
a�l2m2

i ¼ Cl1δl1l2δm1m2
: ðA2Þ

If we consider a small enough solid angle, we can
approximate that part of a sphere as flat. Without loss of
generality, we can choose ẑ as radial direction. As in [65],
we may write then

n̂Ω ¼ fsin θ cosϕ; sin θ sinϕ; cos θg ⟶
θ⟶0

ẑþ α

¼ fθ cosϕ; θ sinϕ; 1g; ðA3Þ

so that

alm ≈
Z

d2αY�
lmðθ;ϕÞAðn̂Þ: ðA4Þ

Now we introduce continuous flat-sky fields

aðlÞ ¼
Z

e−ilαAðαÞd2α; ðA5Þ

with power spectrum PðlÞ defined as

haðl1Þa�ðl2Þi ¼ ð2πÞ2δð2Þðl1 − l2ÞPðl1Þ: ðA6Þ

We are going to show that, defined this way, PðlÞ is an
exact continuous analog of Cl. Approximation from [65]
tells us that

Ylm ⟶
θ⟶0

ffiffiffiffiffiffi
l
2π

r
JðlθÞeimϕα : ðA7Þ

5http://healpix.sourceforge.net.
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Using this formula and Jacobi-Anger expansion,
eiαl ¼ eilθ cosðϕα−ϕlÞ ¼ P

nðiÞnJnðlθÞeinðϕα−ϕlÞ, we can write

aðlÞ ¼
X
n

ð−iÞn
Z

AðαÞd2αJnðlθÞe−inðϕα−ϕlÞ

alm ¼
Z

AðαÞd2αJnðlθÞ
ffiffiffiffiffiffi
l
2π

r
e−imϕα : ðA8Þ

Comparing two formulas and employing an orthogonality
relation

R dϕ
2π e

iϕðm−nÞ ¼ δmn, we can finally get

aðlÞ ¼
ffiffiffiffiffiffi
2π

l

r X
m

ð−iÞmalmeimϕl ;

alm ¼
ffiffiffiffiffiffi
l
2π

r
im

Z
dϕl

2π
aðlÞe−imϕl : ðA9Þ

Then,

hal1m1
a�l2m2

i ¼
ffiffiffiffiffiffi
l1
2π

r ffiffiffiffiffiffi
l2
2π

r Z
dϕl1

2π

Z
dϕl2

2π

× haðl1Þa�ðl2Þieim1ϕl1e−im2ϕl2 ðA10Þ

¼
ffiffiffiffiffiffi
l1
2π

r ffiffiffiffiffiffi
l2
2π

r Z
dϕl1Pðl1Þeiϕl1

ðm1−m2Þ δðl1 − l2Þ
l1
ðA11Þ

¼ Pðl1Þδl1;l2δm1m2
: ðA12Þ

The other way round, the result may be obtained if we
formally consider high l, so that

P
l
m¼−l e

imϕl≈P∞
m¼−∞ eimϕl ¼ 2πδðϕlÞ,

haðl1Þa�ðl2Þi ¼
X
m1

X
m2

ð−iÞm1 im2
ffiffiffiffiffiffi
2π

l1

s ffiffiffiffiffiffi
2π

l2

s
hal1m1

a�l2m2
i

ðA13Þ

¼
X
m1

2π

l1
δl1;l2e

im1ðϕl1
−ϕl2

ÞCl1 ðA14Þ

≈ ð2πÞ2Cl1

δðl1 − l2Þ
l1

δðϕl1 − ϕl2Þ

¼ ð2πÞ2Cl1δðl1 − l2Þ: ðA15Þ

In these derivations, we made associations of discrete and
continuous δ functions, mainly δl1;l2 ¼ δðl1 − l2Þ, and
considered the expression of δ function in polar coordi-

nates: δðlÞ ¼ δðlÞ
l δðϕlÞ.

2. Relation between Cl and PðkÞ
We define redshift binned fields via integrals with a

window function,

film ¼
Z

dzWziðzÞ
Z

dΩxY�
lmðx̂Þfðx; zÞ: ðA16Þ

In our case, the window function is a top-hat filter:
WziðzÞ¼ 1

Δz
ðθðzþðziþΔz

2
ÞÞ−θðz−ðzi−Δz

2
ÞÞÞ. Here θðzÞ

is a Heaviside step function. Then for the densitylike field
δm, it is easy to get

Cδδ
l ðzi; zjÞ ¼

2

π

Z
dzdz0WziðzÞWzjðz0Þ

×
Z

dkk2PmmðkÞjlðkχðzÞÞjlðkχðz0ÞÞ; ðA17Þ

where we have used the Rayleigh expansion:
eikx ¼ 4π

P
lm iljlðkχÞYlmðk̂ÞY�

lmðx̂Þ. For velocity vðxÞ,
we have a continuity equation that connects it to density
mode on linear scales vðkÞ ¼ ifaH

k δmðkÞk̂. To compute
radial velocity angular power spectrum, we define

vrlmðz�Þ ¼ −i
Z

dzWz�ðzÞ
Z

dΩxY�
lmðx̂ÞðvðxÞx̂Þ ðA18Þ

¼
Z

dzWz� ðzÞ
Z

dΩxY�
lmðx̂Þ

×
Z

d3k
ð2πÞ3

faH
k

δmðkÞðk̂ x̂Þeikx: ðA19Þ

We can notice that ðk̂ x̂Þeikx ¼ ∂

∂ðkχÞ e
ikx ¼ ∂

∂ðkχÞ e
ikχk̂ x̂, so

that the radial velocity angular correlation function is

Cvv
l ðzi; zjÞ ¼ 2

π

Z
dzdz0WziðzÞWzjðz0Þ

×
Z

dkfðzÞaðzÞHðzÞðfðz0Þaðz0ÞHðz0ÞÞ

× PmmðkÞj0lðkχðzÞÞj0lðkχðz0ÞÞ: ðA20Þ

Here jlðxÞ and j0lðxÞ are the spherical Bessel function of the
first kind and its derivative correspondingly.

APPENDIX B: ERROR BARS FROM THE
HESSIAN WITH THE VELOCITY-ONLY kSZ

LIKELIHOOD

As we discussed in Sec. III G, autodifferentiation makes
it easy to evaluate the Hessian which can be used to obtain
error bars under the approximation that the posterior is
Gaussian around the MAP. For our full posterior, including
the small-scale fields, we cannot evaluate the full Hessian.
We will explore methods to integrate out the small-scale
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fields in future work. Here instead we consider the simpler
likelihood of Sec. III A [Eq. (23)] where the only degrees
of freedom are the velocity modes vðkÞ. We further simplify
the problem to a single redshift bin and make all fields
Gaussian and periodic (no mask). We consider the case
where all kSZ signals comes from one bin with known
electron density so that the optical depth field τ is
fully known. While in this case, in principle, there is an
analytic MAP estimator, as discussed in Sec. III B, we
instead use optimization to find the MAP as in our main
analysis.
To obtain error bars after finding the MAP, we evaluate

the Hessian. For a complex random field with symmetry
vðkÞ ¼ vð−kÞ†, we have

covðvðkÞvðk0ÞÞ ¼ 1

2

�
−∂2 lnP

∂vðkÞ∂vðk0Þ†
�−1				

v¼v̂
: ðB1Þ

We show the results of the MAP reconstruction in Fig. 9.
It depicts power spectra of MAP estimator v̂ for two
different levels of generated kSZ signal, power spectra of
residuals ϵ ¼ vtrue − v̂, and analytic errors σhess. Analytic
errors were evaluated via inversion of Hessian at MAP
according to Eq. (B1). Because reconstructed modes are
(nearly) independent, Hessians can be computed in narrow

bins of l, which significantly simplifies the evaluation and
inversion process. Depicted values correspond to an aver-
age over the l bins. We see that the error bar from the
Hessian matches the true residual error very well.
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