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This work compares cosmological matching conditions used in approximating generic pre-inflationary
phases of the Universe. We show that the joining conditions for primordial scalar perturbations assumed by
Contaldi et al. [J. Cosmol. Astropart. Phys. 07 (2003) 002] are inconsistent with the physically motivated
Israel junction conditions; however, performing general relativistic matching with the aforementioned
constraints results in unrealistic primordial power spectra. Eliminating the need for ambiguous matching,
we look at an alternative semianalytic model for producing the primordial power spectrum allowing for
finite duration cosmological phase transitions.
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I. INTRODUCTION

The standard model of cosmology consists of a universe
filled with cold dark matter and a cosmological constant
known as ΛCDM [1–3]. Inflation is a period of exponential
expansion in the very early Universe, which is an additional
ingredient to the current paradigm that solves several issues
of standard big bang cosmology such as the cosmological
horizon, flatness, and monopole problems [4–6]. Most
notably, inflation provides a causal theory of structure
formation whereby quantum fluctuations deep inside the
comoving horizon grow to macroscopic scales with the
accelerated expansion of the Universe [7,8]. The primordial
power spectrum provides a statistical measure of these
scalar fluctuations and is found to be nearly scale invariant
by current observations [2,3].
We consider a cosmological scenario in which the

Universe evolves from the initial singularity into a non-
inflating state, termed kinetic dominance, where the poten-
tial energy of the inflaton is exceeded by its kinetic energy
[9–13]. Generating a power spectrum of scalar primordial
perturbations generally requires numerical solutions to the
equations describing the background evolution of the
Universe which in turn demands a choice of the functional
form of the inflationary potential. The ability to produce
primordial power spectra which do not require a selection

of inflationary potential is useful in that it allows for generic
analyses of the early Universe [14–16]. Contaldi et al. [9]
present a model of this form wherein the background
Universe is approximated by an instantaneous transition
between a primordial phase of kinetic dominance and
inflation.
Our focus will be on formulating physically acceptable

matching conditions which join scalar perturbations across
cosmological phase transitions defined by a jump in the
equation of state of the scalar field. We are concerned both
with the primordial power spectrum for the cosmological
scenario of interest and coming to general conclusions as to
the effects of instantaneous phase transition on the pri-
mordial power spectrum. A theory on the propagation of
primordial perturbations through a cosmological transition
is present in the literature with application to three
scenarios. These are, transitions between inflation and a
slow-roll violating phase [17–25], the change from con-
traction to expansion in an inflationary alternative known as
a bouncing universe [26–31], and finally, to evolve the
primordial power spectrum to current observations, the
transition between inflation and reheating is considered
[32–36]. These references provide a starting point for the
novel analysis contained in this work which applies Israel
junction conditions to the matching of primordial scalar
perturbations in the Contaldi approximation.
We subsequently introduce an alternative model which

smoothly joins the analytic scaling of the comoving
horizon for a phase of kinetic dominance preceding
inflation, which can be used to generate the primordial
power spectrum from finite duration cosmological phase
transitions. Power spectra produced from arbitrarily sudden
cosmological phase transitions will prove fruitful in com-
paring to those arising from instantaneous transitions in the
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Contaldi approximation. Although this method does not
demand a choice in functional form of the inflationary
potential, the Hamilton-Jacobi formalism presents the
opportunity for phenomenological study.
This paper is organized as follows. Section II details

theoretical background and establishes notation for gauge
invariant variables and the primordial power spectrum.
In Sec. III, the Contaldi approximation is introduced as a
potential independent method for producing an analytic
primordial power spectrum. Section IV proposes the use of
Israel junction conditions to derive cosmological matching
conditions for primordial scalar perturbations. In Sec. V, the
primordial power spectra produced from applying cosmo-
logical matching conditions to the Contaldi approximation
are shown. Section VI presents an alternative model for
generating the primordial power spectrum from a smooth
analytic background. Conclusions and directions for future
work are presented in Sec. VII.

II. BACKGROUND

Cosmic time derivatives, dt, will be represented by
overdots and conformal time derivatives, dτ, by primes
unless otherwise specified. As well V;ϕ ¼ dV

dϕ and partial
derivatives are denoted by commas. All equations are given
in natural units such that c ¼ ℏ ¼ 8πG ¼ 1. We work in
the case of a flat universe where the curvature of back-
ground space is K ¼ 0. The metric signature used is
ðþ;−;−;−Þ.
The background theory developed in this section uses

Refs. [7,8] unless otherwise stated.

A. Single-field inflation

The simplest models of inflation involve a single scalar
field, ϕ, known as the inflaton, whose self-interactions
are characterized by the inflationary potential, VðϕÞ. The
action is composed of the summation of the Einstein-
Hilbert action and the action of a scalar field with a
canonical kinetic term,

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
Rþ 1

2
∇μϕ∇μϕ − VðϕÞ

�
; ð1Þ

where gμν is the metric and R is the Ricci scalar. Under the
assumptions of the cosmological principle of homogeneity
and isotropy the Friedmann-Robertson-Walker (FRW)
metric is utilized,

ds2 ¼ dt2 − aðtÞ2δijdxidxj: ð2Þ

Using the stress-energy tensor, Tμν, for a perfect fluid in
thermodynamic equilibrium and applying the FRW metric
to the Einstein field equations, the Fridemann and Klein-
Gordon equations can be obtained which comprise the

background expressions governing the dynamics of the
geometry and evolution of the scalar field. These are
Eqs. (3)–(4) and Eq. (5), respectively,

H2 ¼ 1

3

�
1

2
ϕ̇2 þ VðϕÞ

�
; ð3Þ

Ḣ þH2 ¼ −
1

3
ðϕ̇2 − VðϕÞÞ; ð4Þ

ϕ̈þ 3Hϕ̇þ V;ϕ ¼ 0; ð5Þ

where a is the scale factor and H ¼ ȧ
a is the Hubble

parameter. Specifying initial conditions on ϕ, ϕ̇ and
knowing the form of the scalar field potential, Eqs. (3)
and (5) can be solved to fully specify the evolution of a
flat universe.

B. Mukhanov-Sasaki equation

The early Universe was very nearly homogeneous;
therefore, it is sufficient to consider linear perturbations
of the scalar field about its homogeneous background,

ϕðt;xÞ ¼ ϕ̄ðtÞ þ δϕðt;xÞ; ð6Þ

and linear perturbations of the metric about its background,

gμνðt;xÞ ¼ ḡμνðtÞ þ δgμνðt;xÞ: ð7Þ

In real space, the scalar vector tensor (SVT) decom-
position of the metric perturbations is

ds2 ¼ ð1þ 2ΦÞdt2 þ 2aðtÞð∂iB − SiÞdxidt
− aðtÞ2ð1 − 2ΨÞδijdxidxj
− aðtÞ2ð2∂i∂jEþ 2∂ðiFjÞ þ hijÞdxidxj: ð8Þ

In the case of linear perturbations, scalar, vector, and
tensor components do not dynamically mix, and hence, we
can neglect vector and tensor perturbations in the following
derivations. Threading and slicing of perturbed spacetime is
not unique, and thus, it is useful to define a gauge invariant
combination of the scalar type metric and scalar field
perturbations to ensure fluctuations cannot be removed by a
coordinate transformation. The comoving curvature per-
turbation, R, is defined as

R≡Ψ −
H
˙̄ϕ
δϕ; ð9Þ

which can be geometrically interpreted as a measure of
the spatial curvature of comoving or constant scalar field
value (δϕ ¼ 0) hypersurfaces.
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Using Eq. (6) for the perturbed scalar field and Eq. (9)
for the gauge invariant comoving curvature perturbation,
the action to second-order in R is

SR ¼ 1

2

Z
d4xa3

�
ϕ̇

H

�
2
�
Ṙ2 −

�
∂iR
a

�
2
�
; ð10Þ

where the Mukhanov variable, v, is assigned as

v≡ zR; ð11Þ

specifying z as the following function of cosmic time:

z≡ aϕ̇
H

: ð12Þ

Changing to conformal time, τ ¼ R dt
a , gives

Sv ¼
1

2

Z
d3xdτ

�
ðv0Þ2 − ð∂ivÞ2 þ

z00

z
v2
�
: ð13Þ

Taking the Fourier transform in spatial coordinates
followed by extremizing the resulting action gives the
Mukhanov-Sasaki (MS) equation in terms of the
Mukhanov variable and derivatives with respect to con-
formal time,

v00k þ
�
k2 −

z00

z

�
vk ¼ 0: ð14Þ

This equation in the form of a simple harmonic oscillator
with time dependent mass, z00

z , describes the evolution of
comoving curvature perturbations with comoving wave
number k. Solutions to the MS equation in general
require numeric integration of the coupled background
expressions (3) and (5) in order to determine the evolution
of the scale factor and Hubble parameter which control the
behavior of z00

z .

C. Primordial power spectrum

The primordial power spectrum is the Fourier transform
of the two-point function of comoving curvature perturba-
tions. This is

PRðkÞ ¼
���� vkz
����2: ð15Þ

Recalling Eq. (11) for the Mukhanov variable in terms of
the comoving curvature perturbation, the dimensionless
power spectrum can be written as

PRðkÞ ¼ lim
k≪aH

k3

2π2
jRkj2; ð16Þ

where the limit k ≪ aH indicates that modes are evaluated
upon exiting the comoving horizon and freezing-out.
In the six parameter ΛCDM cosmology, the primordial

power spectrum is parametrized by ns, the scalar spectral
index and As, the amplitude of fluctuations, through the
following power law:

PRðkÞ ¼ As

�
k
k�

�
ns−1

: ð17Þ

Here, k� is an arbitrary reference scale referred to as the
pivot scale which sets the location of the cutoff in the power
spectrum [3].

III. CONTALDI APPROXIMATION

As previously mentioned, the MS equation defined
by (14) has in general no analytic solutions; however,
analytic primordial mode functions can be obtained in a
number of special cases such as when the approximation
z00
z ≈

a00
a holds [9].

The first slow-roll parameter, ε, in terms of the scalar
field and cosmic time derivatives is [7]

ε ¼ 1

2

ϕ̇2

H2
: ð18Þ

Using the above expression and recalling Eq. (12), we
can equivalently define z as

z ¼ �a
ffiffiffiffiffi
2ε

p
; ð19Þ

where working with the positive root corresponding to
the choice that ϕ̇ > 0. From Eq. (19), it is clear that
z ∝ a and thus, z00

z ≈
a00
a when ε is constant in time. When

these conditions hold, the following expression may
be taken as an approximation for the perturbation
evolution equation:

v00k þ
�
k2 −

a00

a

�
vk ¼ 0: ð20Þ

This MS equation approximation has analytic solutions
during kinetic dominance and inflation which will be used
to define the analytic primordial power spectrum in the
Contaldi approximation [9].
Figure 1 shows the analytic evolution of the background

in the Contaldi approximation with a comoving horizon
which instantaneous transitions between an era of kinetic
dominance and de Sitter inflation. We set for mathematical
convenience the transition to be at τ ¼ 0. The comoving
horizon is matched at the transition taking the value of
1
kt
≡ 1

atHt
as a and H are required to be matched in this

model [9]. The Contaldi approximation demands a jump in

ANALYTIC APPROXIMATIONS FOR THE PRIMORDIAL POWER … PHYS. REV. D 109, 083513 (2024)

083513-3



the first-slow roll parameter, ε, and equally, a discontinuity
in the equation of state of the scalar field,

wϕ ¼ 2

3
ε − 1: ð21Þ

A. Kinetic dominance

We refer to a slow-roll violating phase obeying
ϕ̇2 ≫ VðϕÞ as kinetic dominance [9–13]. The motivation
for including this preinflationary phase follows from the
original construction by Contaldi et al. [9] so to provide an
early universe mechanism for suppression of the CMB
power spectrum at low multipoles, l, as compared to that
predicted by ΛCDM [2,37]. This is, reduction in power at
large scales is introduced via the primordial spectrum with
a period of kinetic dominance. During such an epoch [9],

εKD ¼ 3: ð22Þ

This implies the following scaling of the comoving
horizon:

HKD ∝
1

a3
: ð23Þ

Rearranging and changing to conformal time, one can
obtain

aKDðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ktτ

p
: ð24Þ

Solving the MS equation approximation defined by (20)
using the scale factor given above, results in the following
primordial mode equation during kinetic dominance:

vKDðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kτ þ k

2kt

r �
AkH

ð1Þ
0

�
kτ þ k

2kt

�
þ BkH

ð2Þ
0

�
kτ þ k

2kt

��
; ð25Þ

where Ak and Bk are coefficients of integration representing
the nonuniqueness of the primordial mode functions,

and Hð1Þ
0 , Hð2Þ

0 denote Hankel functions of the first and
second kind.

B. de Sitter inflation

de Sitter inflation is a regime defined by a constant
Hubble parameter, Ḣ ¼ 0 [7], which immediately gives

εKD ¼ 0: ð26Þ

The comoving horizon then scales as�
1

aH

�
I
∝
1

a
: ð27Þ

Rearranging and changing to conformal time, during
de Sitter inflation the scale factor can be expressed as

aIðτÞ ¼
1

1 − ktτ
: ð28Þ

Again solving the MS equation approximation expressed
by (20) using the scale factor defined by Eq. (28), the
primordial mode equation during de Sitter inflation is

vIðτÞ ¼ Cke
−iðkτ− k

kt
Þ
 
1 −

i
kτ − k

kt

!

þDke
þiðkτ− k

kt
Þ
 
1þ i

kτ − k
kt

!
; ð29Þ

where Ck and Dk are coefficients of integration.

C. Analytic primordial power spectrum

The primordial power spectrum is formed during the
inflationary epoch when comoving curvature perturbations
exit the comoving horizon and cease to evolve. The analytic
primordial power spectrum in the Contaldi approximation
can be derived from the dimensionless primordial power
spectrum defined by Eq. (16) with use of the analytic
functions for v and z during de Sitter inflation. The power
spectrum becomes

PRðkÞ ¼ lim
τ→ 1

kt

k3

2π2

���� vIðτÞzIðτÞ
����2; ð30Þ

FIG. 1. Instantaneous transition in the comoving horizon
between a period of kinetic dominance and de Sitter inflation
as used in the Contaldi approximation. We have set a ¼ 0 at the
Planck epoch; however, the convention that a ¼ 1 at the present
epoch is not used but instead denotes the time of the instanta-
neous phase transition. Based on Fig. 3 in [14].
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where the condition for the modes to be superhorizon,
k ≪ aH, is implemented by determining the value of τ at
late times when all relevant modes are far outside the
horizon [9,14]. From Eq. (28), for the scale factor in terms
of conformal time during de Sitter inflation, the condition
for a → ∞ corresponds to τ → 1

kt
. Taking this limit in

Eq. (30), the resulting analytic primordial power spectrum
is expressed in terms of constants of integration for the
primordial mode functions during de Sitter inflation which
will be shown to depend on those during the kinetic
dominance era. This is

PRðkÞ ¼
k2t k
4π2εI

jCk −Dkj2; ð31Þ

where εI is the first slow-roll parameter during inflation. εI
should be set to zero to be consistent with the solution to the
MS equation solved using approximations valid during a
period of pure de Sitter inflation. Although, this would
make the power spectrum divergent and in the case that
ε ≪ 1, H ≈ const., Eqs. (27)–(28) describing the back-
ground for de Sitter inflation are still approximately true
thus the perturbation mode functions defined by Eq. (29)
may be used as a valid approximation [7]. In consequence,
the Contaldi approximation will evaluate the power spec-
trum where choice of εI affects the amplitude of the power
spectrum but not the scale dependence. The amplitude of
the power spectrum can be absorbed into the parameter

As ¼ k2t
4π2εI

, with kt ¼ k�.
In order to obtain an expression for the analytic pri-

mordial power spectrum defined by Eq. (31), the functions
Ak, Bk, Ck, and Dk must be determined. The coefficients of
integration for the kinetic dominance mode functions, Ak
and Bk, are solved by setting v and v0 to quantum vacuum
initial conditions such as those in Table I [9,14]. Initial
vacuum states are generally set far back in the inflationary
epoch when all relevant modes are subhorizon. If scales
have initial conditions set at a time when they are not
sufficiently deep within the comoving horizon, the choice
of quantum vacuum may generate observationally distin-
guishable primordial power spectra [14,38]. Introducing a

preinflationary phase of kinetic dominance such a con-
sideration becomes important and lends itself to the
decision of setting perturbation mode initial conditions
at the time in which the comoving horizon is at a
maximum using the equations for the kinetic dominance
regime. A detailed treatment of observational conse-
quences of choice of initial conditions is emphasized in
the work of Gessey-Jones and Handley [14].
To obtain the coefficients of integration of the primordial

mode equations during the phase of de Sitter inflation, the
scalar perturbations must be matched to the kinetic domi-
nance era. These are fixed in the Contaldi approximation by
imposing continuity of v and v0 across the transition in
regimes [9]. The coefficients of integration Ck and Dk are
then determined by equating the expression for v and v0 in
each era at the time of the transition. The absence of
theoretical justification for propagating scalar primordial
perturbations through a cosmological phase transition in
this way initiates the need to derive physically acceptable
cosmological matching conditions for the Contaldi
approximation.
Figure 2 shows the analytic primordial power spectra

generated from the Contaldi approximations for BD, RHM,
HD, and RSET vacuum initial conditions. The analytic
expression for Ck and Dk are written out in Appendix C by
Eqs. (C1)–(C8). A low k cutoff exists around k

kt
≈ 2 for BD,

RSET, and HD and at k
kt
≈ 1 for RHM. Below the low k

cutoff the spectra experience power law distributions with
BD and RSET ∝ k2, HD ∝ k3 and RHM ∝ k3 logðkÞ2. In
addition, there exists an intermediate region of damped
oscillations before the spectrum plateaus at high k values.
The behavior at intermediate and high k is all very similar
for the initial conditions in consideration with the exception
of RSET whose oscillations die down much more slowly

TABLE I. Definitions of quantum vacuum perturbation mode
initial conditions for Bunch-Davies vacuum (BD), Hamiltonian
diagonalization (HD), renormalized stress energy tensor (RSET),
and right-handed mode (RHM) [14].

Initial condition

BD vk ¼ 1ffiffiffiffi
2k

p v0k ¼ −ikvk
HD vk ¼ 1ffiffiffiffi

2k
p v0k ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − z00

z

q
vk

RSET vk ¼ 1ffiffiffiffi
2k

p v0k ¼ ð−ikþ z0
zÞvk

RHM vkðτÞ ¼
ffiffiffiffiffi
π
8kt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ktτ

p
Hð2Þ

0 ½kτ þ k
2kt
�

FIG. 2. Analytic primordial power spectra generated from the
Contaldi approximation for BD, RHM, HD, and RSET vacuum
initial conditions. εI is set to 0.0127 in order to normalize the
power spectrum to 1. Based on Fig. 4 from [14].

ANALYTIC APPROXIMATIONS FOR THE PRIMORDIAL POWER … PHYS. REV. D 109, 083513 (2024)

083513-5



before plateauing [14]. The scale invariance (zero tilt) of the
power spectrum is the result of the inflation phase being
derived from approximations for a pure de Sitter regime.
Note that it is intermediate values of k, which correspond to
scales in the observable range [2,3,14].
A full numerical evolution of the background equations

and perturbation evolution equation allows for a com-
parison to the spectra produced above which does not
require matching of the scalar perturbations across a jump
in approximated background. Figure 3 shows primordial
power spectra with background evolution arising from a
Starobinsky inflationary potential where initial condi-
tions for ϕ, ϕ̇ have resulted in a preinflationary phase of
kinetic domination. BD, RHM, HD, and RSET initial
conditions for the perturbation equation are set at the
maximum of the comoving horizon. The distinct behavior
of each power spectra produced from applying the various
initial conditions is comparable to those in Fig. 2, with the
exception of RHMwhich looks much more similar to BD.
The three regions of behavior of the power spectrum
obtained by the Contaldi approximation are present in all
spectra. These are, a power law at low k, damped region
of oscillation in an intermediate regime and a plateauing
at high k.
Figure 4 compares the primordial power spectrum

produced from the Contaldi approximation and the numeri-
cal spectrum produced from the Starobinsky background
for BD initial perturbation conditions. The spectra are very
similar for small k and both experience a low k cutoff at
k ≈ 1. The distinction emphasized in this plot is that the
power spectrum produced from the Starobinsky inflation-
ary potential with the given background initial conditions,
ϕ and ϕ̇, results in a small tilt to the power spectrum which

corresponds to a period of inflation that is not pure de Sitter
with H slowly varying.
The similarity of the behavior of the analytic power

spectra produced by the Contaldi approximation to the full
numerical solutions would suggest that the joining of scalar
perturbations across the instantaneous phase transition as
done in the Contaldi model is the correct approach. We will
nonetheless proceed with a precise analysis of acceptable
general relativistic matching conditions to show this is not
the case.

IV. COSMOLOGICAL MATCHING CONDITIONS

Despite the resemblance between the analytic and
numerical primordial power spectra produced above from
the Contaldi approximation and specification of an infla-
tionary background, respectively, we wish to verify the use
of physically consistent matching conditions for primor-
dial perturbations which experience a jump in equation
of state of the scalar field. We begin by introducing the
junction conditions originally outlined by Israel [39],
which look at boundary surfaces and thin shells in general
relativity to gain clarity regarding the appropriate treat-
ment of surfaces of discontinuity. The proposed constraints
allow the union of spacetime described by distinct metrics
to smoothly join forming valid solutions to the Einstein
field equations. The Israel junction conditions may be
summarized as continuity of the first and second funda-
mental forms across the hypersurface, assumed not to be
null, in the absence of a surface stress-energy tensor. For a
complete derivation of the Israel junction conditions, one
may refer to Appendix A.

A. Contaldi matching conditions

In Contaldi et al. [9], the coefficients for the primordial
mode functions during the de Sitter inflation era are

FIG. 3. Numerical primordial power spectrum for a Starobinsky

potential, VðϕÞ ¼ Λ4ð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕÞ2, with Λ4 ¼ 0.01, where

initial conditions for ϕ, ϕ̇ have resulted in a preinflationary
phase of kinetic domination. The spectra have been normalized to
1 for comparison with the spectra produced from the Contaldi
approximation.

FIG. 4. Comparison of analytic primordial power spectrum
from the Contaldi approximation and numerical primordial power
spectrum from a Starobinsky potential for BD initial perturbation
conditions. kt is set to 1 in the Contaldi approximation.
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obtained by requiring continuity of v and v0 across the
phase transition. We will refer to these as Contaldi match-
ing conditions and in our notation are as follows.
Defining a spacelike hypersurface for the transition

Σ∶τ ¼ 0, continuity of the Mukhanov variable, v, across
the hypersurface is

½v�� ¼ 0: ð32Þ

For continuity of the first derivative of the Mukhanov
variable in terms of conformal time, v0, across the hyper-
surface, we have

½v0�� ¼ 0: ð33Þ

It should also be noted that the scale factor and the
Hubble parameter are matched at the transition in the
model, giving the additional constraints,

½a�� ¼ ½H�� ¼ 0: ð34Þ

We will start with the formation of general cosmological
matching conditions from the Israel junction conditions and
then interpret the Contaldi matching conditions in light of
such conclusions.

B. Perturbation matching conditions
from the Mukhanov-Sasaki equation

We begin by deriving matching conditions for scalar
perturbations with a method for effectively implementing
the Israel junction conditions as has been done in much
of the literature concerning propagating primordial pertur-
bations through a jump in equation of state of the scalar
field [20–22]. Demanding the equation of motion for the
comoving curvature perturbations does not contain singu-
larities at the transition, the Israel junction conditions are
assumed to be satisfied and cosmological matching con-
ditions for the scalar perturbations can be obtained.
The first requirement is continuity of the curvature pertur-
bation itself,

½R�� ¼ 0: ð35Þ

The MS equation in terms of conformal time derivatives
and the comoving curvature perturbation is

R00 þ 2
z0

z
R0 þ k2R ¼ 0: ð36Þ

In Sturm–Liouville form, this becomes

d
dτ

ðR0z2Þ ¼ −z2k2R: ð37Þ

Integrating both sides of Eq. (37) around the transition at
τ ¼ 0, where δ is a small displacement, we have

Z þδ

−δ
dðR0z2Þ ¼

Z þδ

−δ
−z2k2Rdτ:

Recalling z as defined in Eq. (19),

½R0z2�� ¼ −2
Z þδ

δ
a2εk2Rdτ: ð38Þ

The following change of variables can be made using the
definition of the first-slow roll parameter,

εdτ ¼ −
1

a
d

�
1

H

�
: ð39Þ

This substitution applied to Eq. (38) eliminates ε, which
is the single parameter that jumps across the transition, and
we arrive at the second cosmological matching condition,

½R0z2�� ¼ 0: ð40Þ

The two linearly independent matching conditions
derived from this integral formulation are then

½R�� ¼ 0; ð41aÞ

½R0z2�� ¼ 0: ð41bÞ

It should be emphasized that matching conditions
(41a)–(41b) do not directly correspond to the first and
second junction conditions respectively but are required to
fulfil the conditions of continuity of the induced metric and
extrinsic curvature, that which is not made clear in previous
literature [20–22]. In addition, a more careful investigation
in the next section will show that assuming continuity of the
comoving curvature perturbation given by condition (41a)
amounts to making a choice for the definition of the
hypersurface at the phase transition, which should not be
held as trivial.

C. Perturbation matching conditions defining
a hypersurface at the transition

We now implement the Israel junction conditions to
obtain cosmological matching conditions for scalar pri-
mordial perturbations by explicitly defining a spacelike
hypersurface at the transition and determining the functions
which must be smooth in order for continuity of the
induced metric and extrinsic curvature as demanded by
the relevant constraints. We begin by making use of the
work of Deruelle and Mukhanov [17], who sketch a
procedure by which to derive cosmological matching
conditions on a generic hypersurface.
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The general perturbed FRW metric in conformal time is

ds2 ¼ aðτÞ2ð1þ 2ΦÞdτ2 − 2Bidxidτ

− ½ð1 − 2ΨÞδij þ 2Eij þ hij�dxidxj: ð42Þ
Suppose the stress-energy tensor which governs the

evolution of Eq. (42) undergoes a finite discontinuity at
a spacelike hypersurface Σ∶φðτ; xiÞ ¼ φ̄ðτÞ þ δφðτ; xiÞ ¼
const, where φðτ; xiÞ is an arbitrary four-scalar with a
homogeneous part, φ̄ and a small inhomogeneous part, δφ.
Under the coordinate transformation,

τ → τ̃ ¼ τ þ α; ð43aÞ

x̃i ¼ xi þ δijβ;j: ð43bÞ

The perturbation δφ transforms as

δφ → fδφ ¼ δφ − φ̄0α: ð44Þ
Going into the tilde coordinate system, τ̃ ¼ const

where fδφ ¼ 0,

α ¼ δφ

φ̄0 : ð45Þ

Immediately following from this is that the scale factor, a,
and its first time derivative must be continuous across
the hypersurface. From the first Israel junction condition,
continuity of the metric defined by Eq. (42) implies the
following two conditions in the tilde coordinate system:

½Ψ̃�� ¼ 0; ð46Þ

½Ẽ�� ¼ 0: ð47Þ

From the second Israel junction conditions, continuity of
the extrinsic curvature reads

½ ˜δKi
j�� ¼ −

1

a
½δijðHΦ̃þ Ψ̃0Þ þ ðB̃ − Ẽ0Þ;i;j�� ¼ 0; ð48Þ

where the conformal Hubble parameter is H ¼ a0
a .

Moving back into the original coordinate system gives
matching conditions on Σ∶φ̄þ δφ ¼ const in an arbitrary
coordinate system, �

ΨþH
δφ

φ̄0

�
�
¼ 0; ð49aÞ

�
B − E0 þ δφ

φ̄0

�
�
¼ 0; ð49bÞ

�
HΦþΨ0 þ ðH0 −H2Þ δφ

φ̄0

�
�
¼ 0: ð49cÞ

In the absence of anisotropic stress, the ij Einstein
equations give Φ ¼ Ψ. The following analysis will be
done in the Newtonian/longitudinal gauge ðE ¼ B ¼ 0Þ
where the linearly independent conditions (49a)–(49c) for a
hypersurface defined by an arbitrary scalar become

½Ψ�� ¼ 0; ð50aÞ�
δφ

φ̄0

�
�
¼ 0; ð50bÞ�

HΦþΨ0 þ ðH0 −H2Þ δφ
φ̄0

�
�
¼ 0: ð50cÞ

Recovering cosmological matching conditions that can
be applied to the joining of scalar primordial perturbations
in the Contaldi approximation requires specification of
the scalar, φ, defining the hypersurface at the transition
between kinetic dominance and inflation. We now will
consider the joining conditions emerging from two choices
of φ.

1. Hypersurface of constant energy density

A hypersurface defining the cosmological phase tran-
sition in which the energy density, ρ, is constant expressed
as Σ∶ρ̄þ δρ ¼ const has been motivated in previous
literature [17,33,34]. Equations (50a)–(50c) become

½Ψ�� ¼ 0; ð51aÞ�
δρ

ρ̄0

�
�
¼ 0; ð51bÞ

�
HΦþ Ψ0 þ ðH0 −H2Þ δρ

ρ̄0

�
�
¼ 0: ð51cÞ

Working in the Newtonian gauge, Eq. (51a) may be
written as

½Φ�� ¼ 0: ð52Þ

Equation (51b) can be rewritten so that ρ̄0 and δρ are
in terms of a and H. Using the 00 linearized Einstein
equations in the Newtonian gauge,

ρ̄0 ¼ 6H
ka2

ðH0 −H2Þ; ð53Þ

δρ ¼ 6

ka2

�
1

3
ΔΦ −HðHΦþΦ0Þ

�
: ð54Þ

Equation (51b) is then�
δρ

ρ̄0

�
�
¼
�

H
H2−H0 ðΦ0 þHΦÞþ1

3

ΔΦ
ðH0−H2Þ

�
�
¼0: ð55Þ
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One can additionally obtain Eq. (56a) for cosmological
perturbations in a universe dominated by a scalar field and
the background equation (56b) from the Friedmann equa-
tions written in conformal time [8],

Φ0 þHΦ ¼ 1

2
δϕϕ̄0; ð56aÞ

H0 −H2 ¼ −
1

2
ϕ̄02: ð56bÞ

Redefining the comoving curvature perturbation from
Eq. (9) using relations (56a)–(56b) gives

R ¼ Φþ H
H0 −H2

ðΦ0 þHΦÞ: ð57Þ

From condition (55) and R as defined above,�
δρ

ρ̄0

�
�
¼
�
−RþΦþ 1

3

ΔΦ
ðH0 −H2Þ

�
�
¼ 0: ð58Þ

Equation (51c) is then redundant and the linearly
independent matching conditions for a hypersurface
defined by constant ρ are�

R −
1

3

ΔΦ
ðH0 −H2Þ

�
�
¼ 0; ð59aÞ

½Φ�� ¼ 0: ð59bÞ

Writing conditions (59a)–(59b) in terms of R and z, the
following expression derived in Appendix B is required:

ΔΦ ¼ 1

2

ϕ02

H
R0: ð60Þ

Using Eq. (56b) gives

1

3

ΔΦ
ðH0 −H2Þ ¼ −

1

3H
R0: ð61Þ

Additionally in Appendix B, the following relation is
derived:

Φ ¼ z2H
2ak2

R0: ð62Þ

With k, H, and a matched across the transition, the
cosmological joining conditions defined by (59a)–(59b)
become �

Rþ 1

3H
R0
�
�
¼ 0; ð63aÞ

½z2R0�� ¼ 0: ð63bÞ

Comparing with the matching conditions arrived at
though the integral formulation in the previous section,
condition (63a) differs from condition (41a) except in the
long wavelength limit where the second term of Eq. (63a)
may be ignored as R0 is conserved. Condition (63a) is also
equivalent to requiring the uniform-density curvature per-
turbation, ζ, be continuous across the transition, where
ζ ¼ −Ψþ H

˙̄ρ δρ [7,34]. This is physically consistent as the
hypersurface in consideration is one of uniform energy
density.

2. Hypersurface of constant scalar field

An alternative choice of scalar defining the hypersurface
at the transition is taking a surface of constant scalar field
value [19–21,31,33]. Expressing the hypersurface at the
transition as Σ∶ϕ̄þ δϕ ¼ const, the matching conditions
take the form,

½Ψ�� ¼ 0; ð64aÞ�
δϕ

ϕ̄0

�
�
¼ 0; ð64bÞ

�
HΦþΨ0 þ ðH0 −H2Þ δϕ

ϕ̄0

�
�
¼ 0: ð64cÞ

Equation (64a) may again be written as

½Φ�� ¼ 0: ð65Þ

Noting the definition of R from Eq. (9), condition (64b)
can conveniently be taken in linear combination with
constraint (65) as

½R�� ¼ 0: ð66Þ

Additionally, recalling Eqs. (56a)–(56b) it is clear that
Eq. (64c) is trivially satisfied. The resulting cosmological
matching conditions for a hypersurface defined by constant
ϕ are

½R�� ¼ 0; ð67aÞ

½Φ�� ¼ 0: ð67bÞ

In terms of R and z, these are

½R�� ¼ 0; ð68aÞ

½z2R0�� ¼ 0: ð68bÞ

These conditions are the same as that constructed via the
MS equation expressed by constraints (41a)–(41b).
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D. A hypersurface for Contaldi matching

In further consideration of the Contaldi matching con-
ditions, one may look to see if the conservation of v and v0
across the phase transition can be assigned as cosmological
matching conditions for some choice of hypersurface.
This will be done by working backwards from conditions
(32)–(33) in the Newtonian gauge to determine δφ

φ̄0 for
the generic cosmological matching conditions defined in
Eqs. (50a)–(50c) with corresponding hypersurface
Σ∶φ̄þ δφ ¼ const. Noting the definition of the
Mukhanov variable, v, the Contaldi matching conditions
in terms of R become

½zR�� ¼ 0; ð69aÞ

½zR0 þ z0R�� ¼ 0: ð69bÞ

Recalling Eq. (62) for Φ in terms of R0, Eq. (69b) may be
written as �

2ak2ΦH
z

þ z0

z
zR
�
�
¼ 0: ð70Þ

Taking Eq. (69a) in linear combination with Eq. (70)
with z0

z , a, H and k conserved across the hypersurface in
the Contaldi approximation, the Contaldi matching con-
ditions become

½zR�� ¼ 0; ð71aÞ�
Φ
z

�
�
¼ 0: ð71bÞ

The cosmological matching conditions for any choice of
hypersurface requiresΦ be matched across the transition as
stated by condition (50a). ½Φ�� ¼ 0 can only be trivially
satisfied for the matching of v and v0 as there does not exist
a condition for z to independently be conserved across
the transition. It is then that Contaldi matching does not
correspond to a choice of hypersurface with cosmological
matching conditions as it fails to satisfy the requirements of
the Israel junction conditions. Importantly, this illustrates
that the Contaldi matching conditions are not physically
acceptable for reason that they do not account for the jump
in z from one regime to another, which is the result of a
jump in the first-slow roll parameter, ε, or equally the scalar
field equation of state, wϕ, from kinetic dominance to de
Sitter inflation.

E. On the choice of hypersurface

This analysis has carefully considered the quantities
which must not jump across a spacelike hypersurface
defining a cosmological phase transition in order to ensure
continuity of the first and second fundamental forms as

demanded by the Israel junction conditions. By choosing
different physical parameters to define the hypersurface of
discontinuity the quantities that must be continuous across
the transition differ on subhorizon scales. The matching
conditions all reduce to Contaldi matching in the case that
there is no jump in scalar field equation of state. This is
clear in that z becomes a conserved quantity across the
transition; however, we are concerned with a cosmological
scenario, which includes a phase transition defined by a
jump in the equation of state of the scalar field and so the
choice of hypersurface for the transition, which emits
different matching conditions becomes crucial to construct-
ing an accurate primordial power spectrum.
Justification for the choice of scalar defining the hyper-

surface of discontinuity is present in previous literature
investigating the propagation of scalar perturbations
through phase transitions [19–21,31,33]. It is conveyed
in [17,33,34], that if the scalar field is an adiabatic perfect
fluid, a jump in equation of state implies a jump in pressure
and from the Friedmann equations the energy density
remains constant. This lends itself to the choice that
the hypersurface of discontinuity be Σ∶ρ̄þ δρ ¼ const.
From [19,21,31], it is stressed that if a transition in equation
of state is triggered by a local physical quantity, the
hypersurface must be a function of of ϕ, suggesting
Σ∶ϕ̄þ δϕ ¼ const. Although both choice of scalars defin-
ing the hypersurface look to be allowable, there remains no
theoretical motivation for a canonical definition for the
hypersurface of transition.

V. PRIMORDIAL POWER SPECTRUM WITH
COSMOLOGICAL MATCHING CONDITIONS

We now consider the behavior of the primordial power
spectra produced by applying the two sets of cosmological
matching conditions derived in the previous section to the
Contaldi approximation.
Figure 5 shows the primordial power spectrum resulting

from the Contaldi approximation using cosmological con-
ditions (63a)–(63b) arrived at by applying Israel junction
conditions to a hypersurface of constant energy density, ρ,
defining the transition between kinetic dominance and
inflation. The coefficients of integration Ck and Dk are
written out in Appendix C in Eqs. (C9)–(C16). The
behavior of the power spectrum is clear through looking
at these expressions. The amplitude of the power spectrum
is modified, where there exists a scaling of ε−2I as compared
to ε−1I which is present in Contaldi matching. This alters the
normalization of the power spectrum. Enhancement of
oscillations which are no longer damped at high k corre-
spond to vI and v0I being in phase. Moreover, the power
spectrum is no longer scale independent as leading order in
k has become

ffiffiffi
k

p
rather than 1ffiffi

k
p as in Contaldi matching.

This gives a k2 dependence of the primordial power
spectrum recalling Eq. (31).
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Figure 6 gives the primordial power spectrum generated
by the Contaldi approximation using cosmological con-
ditions (68a)–(68b) resulting from Israel junction condi-
tions applied to a hypersurface of constant scalar field
value, ϕ, defining the transition which coincide with those
arrived at through considering singular terms in the MS
equation. The coefficients of integration Ck and Dk are
written out in Appendix C in Eqs. (C17)–(C24). As with
the choice of a constant energy density hypersurface, the
amplitude of the power spectrum changes due to a ε−2I
dependence. This agrees with conclusions from Carney
et al. [19]. Oscillations no longer plateau at high k due to vI

and v0I being in phase. Importantly, scale invariance is
retained as leading order in k remains 1ffiffi

k
p .

Although the behavior of the power spectra produced
from applying the cosmological matching conditions to the
Contaldi approximation falls directly from the joined
coefficients, Ck and Dk, unphysical features in the spectra
that result from applying such physically motivated con-
ditions suggests a closer look should be taken at the impact
of instantaneous transitions on the primordial power
spectrum. We do this by presenting an alternative model
to the Contaldi approximation which generates primordial
power spectra from background evolution permitting arbi-
trary sharp cosmological phase transitions.

VI. A SMOOTH SEMIANALYTIC MODEL FOR
THE PRIMORDIAL POWER SPECTRUM

The following section details a novel semianalytic
method for computing the primordial power spectrum.
This is done by smoothly joining the approximations to the
comoving horizon for a phase of kinetic dominance and
inflation. With analytic solutions to the background uni-
verse one may express the MS equation analytically giving
an expression which can be solved numerically. The
motivations for this approach are threefold; the produced
primordial power spectrum remains independent of a
choice of the inflationary potential, it does not require
matching conditions for the scalar perturbations, and
finally, control is gained over the duration of the cosmo-
logical phase transition. The catalyst for this model is both
in an alternative to the Contaldi approximation and the
ability to produce a power spectrum from an arbitrarily
sudden cosmological transition which will prove useful for
comparing to spectra produced from applying cosmological
matching conditions to an instantaneous transition in the
Contaldi approximation.

A. Constructing a solution with pure
de Sitter inflation

The MS equation in terms of analytic functions of HðNÞ
and zðNÞ and derivatives with respect to number of e-folds,
N ¼ loga, is

R00 þ
�
1þH0ðNÞ

HðNÞ þ 2
z0ðNÞ
zðNÞ

�
R0 þ

�
k

aðNÞHðNÞ
�

2

R¼ 0:

ð72Þ

The expressions for HðNÞ, H0ðNÞ
HðNÞ , zðNÞ and z0ðNÞ

zðNÞ may be

obtained by setting an analytic equation for the comoving
horizon. This is done via the following procedure:

Set
1

aH
⟶
solve

H⟶
differentiate H0

H
:

FIG. 5. Analytic primordial power spectra produced from the
Contaldi approximation using cosmological matching conditions
for a hypersurface defined by Σ∶ρ̄þ δρ ¼ const. BD, RHM, HD,
and RSET initial conditions are shown. εI has been set to 0.0127
for comparison with Contaldi matching.

FIG. 6. Analytic primordial power spectra produced from the
Contaldi approximation using cosmological matching conditions
for a hypersurface defined by Σ∶ϕ̄þ δϕ ¼ const. BD, RHM, HD,
and RSET initial conditions are shown. εI has been set to 0.0127
for comparison with Contaldi matching.

ANALYTIC APPROXIMATIONS FOR THE PRIMORDIAL POWER … PHYS. REV. D 109, 083513 (2024)

083513-11



The comoving horizon during kinetic dominance
scales as �

1

aH

�
KD

∝ a2;

and that during de Sitter inflation is�
1

aH

�
I
∝
1

a
:

The smooth comoving horizon obtained by combining
the scaling of the horizons in kinetic dominance and de
Sitter inflation may be generalized to produce increasingly
sharp transitions by introducing a parameter, α∈R>0,
giving a comoving horizon with the resulting functional
form,

1

aHðaÞ ¼
1

ðaα þ 1
a2αÞ1=α

: ð73Þ

In terms of e-folds, the comoving horizon is defined as

1

aðNÞHðNÞ ¼ ðe−2αN þ eαNÞ−1
α: ð74Þ

HðNÞ can be obtained by rearranging

HðNÞ ¼ ð1þ e−3αNÞ1α: ð75Þ

Differentiating with respect to e-folds gives

H0ðNÞ
HðNÞ ¼ −

3

1þ e3αN
: ð76Þ

The first slow-roll parameter defined in terms of deriv-
atives with respect to e-folds is

εðNÞ ¼ −
H0ðNÞ
HðNÞ : ð77Þ

Therefore, the analytic expression for the first-slow roll
parameter with the background specified by Eq. (74) is

εðNÞ ¼ 3

1þ e3αN
: ð78Þ

Noting that Eq. (78) is divergent, resulting from the stage
of pure de Sitter inflation, a primordial power spectrum
cannot be constructed using this background. We proceed
by implementing a non-de Sitter inflationary stage obtained
through modifying the functional form of the first slow roll-
parameter.

B. Constructing a solution with modified
de Sitter inflation

An equation for εðNÞ which does not tend to zero during
the period of inflation can be determined by using the
following reverse procedure:

Modify ε ¼ −
H0

H
!solveH →

1

aH
; ð79Þ

giving a comoving horizon which smoothly connects an
epoch of kinetic dominance to a period of modified de Sitter
inflation. This so-called modified de sitter inflation era is
characterized by the slow-roll parameters εI; jηðNÞj ≪ 1,
where η is the second slow roll parameter. These conditions
capture a slowly decreasing Hubble parameter.
We modify Eq. (78) to take the following form:

εðNÞ ¼ 3 − εI
1þ e3αN

þ εI; ð80Þ

such that a nonzero first slow-roll parameter is attained
at the end of the finite duration phase transition,
limN→∞εðNÞ ¼ εI ≠ 0. The general form of the back-
ground equations can be solved starting from the following
equation, which has derivatives in terms of e-folds,

H0ðNÞ
HðNÞ ¼ −3þ εI

1þ e3αN
− εI: ð81Þ

Solving for HðNÞ, the relevant equations become

HðNÞ ¼ e−3Nð1þ e3αNÞ3−εI3α ; ð82Þ

1

aðNÞHðNÞ ¼ e2Nð1þ e3αNÞ−3þεI
3α ; ð83Þ

zðNÞ ¼ eN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 2εIe3αN

1þ e3αN

s
; ð84Þ

z0ðNÞ
zðNÞ ¼

6þe3αNð3αð−3þεIÞþ2ð3þεIþεIe3αNÞÞ
2ð1þe3αNÞð3þεIe3αNÞ

: ð85Þ

Equations (81), (83), and (85) comprise the analytic
equations necessary to write Eq. (72) fully analytically;
however, the functional forms of these expressions require
the MS equation be solved numerically. Evolving pertur-
bations until they are superhorizon, a numeric primordial
power spectrum can be generated from the constructed
background.
The second slow roll-parameter in terms of derivatives

with respect to e-folds is

ηðNÞ ¼ εðNÞ − ε0ðNÞ
2εðNÞ : ð86Þ
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After the transition from kinetic dominance, this model
assumes a constant first-slow roll parameter, εI . That is
ε0ðNÞ
εðNÞ ¼ 0, which demands the second slow-roll parameter

evaluated at observationally relevant k follow from the
choice of εI and αwhere limN→∞ ηðNÞ ¼ εI. Allowing for a
time varying first slow-roll parameter during inflation gives
an end to inflation and results in a model for producing the
primordial power spectrum where the first and second
slow-roll parameters at the pivot scale can be set. A sketch
of the procedure by which to obtain such a model is present
in Appendix D; however, the analytic background pre-
sented in this section is sufficient for our considerations
which concentrate on attaining spectra from sudden finite
transition to compare to those of instantaneous cosmologi-
cal transition produced in the Contaldi approximation.

C. Cosmological phase transition duration

In the semianalytic model we have presented, the
duration of the cosmological phase transition can be
approximated by looking at Eq. (80) giving the analytic
equation for the first slow-roll parameter and determining
the number of e-folds it takes to change from εKD to εI. We
shall define the cosmological transition as when εðNÞ is
further than 1% away from the associated value of the first
slow-roll parameter during the kinetic dominance and
inflation epochs. This choice captures the difference in
the length of the transition with a change in εI, which is not
encompassed by simply requiring the slow-roll conditions
are met. The end of the period of kinetic dominance
corresponds to the start of the phase transition,

εðNÞ ≤ εKD − 0.01εKD; ð87Þ

and the beginning of the modified de Sitter inflation period
is equally the end of the cosmological phase transition,

εðNÞ ≤ εI þ 0.01εI: ð88Þ

The cosmological phase transition then occurs
when εI þ 0.01εI < εðNÞ < εKD − 0.01εKD.
Figure 7 shows primordial power spectra produced from

the model presented in this section with a change in the
duration of the cosmological transition which is charac-
terized by α in Eq. (81)–(85) for the background. It is
evident that the length of the phase transition has a large
effect on the resulting spectra. An approximate duration of
the cosmological transition for each background can be
calculated by taking the difference between the end of the
kinetic dominance period and the beginning of inflation
defined by Eqs. (87) and (88). The spectra are all identical
at sufficiently large k; however, distinct behavior is
particularly noticeable at intermediate k, where for a
sufficiently fast transition there exists an enhancement of
oscillations at some scales. Importantly, this intermediate
region of k corresponds to the observationally relevant

scales. The change in behavior occurs for a greater range
in scale, the shorter the transition duration. That is,
oscillations begin to be enhanced at the same scale but
are effected up to higher k when the cosmological phase
transition occurs over a shorter duration. Additionally,
although we only show the primordial power spectrum
with BD conditions in Fig. 7, the affects of choice of
initial conditions for the perturbation modes is more
pronounced at observationally relevant scales the shorter
the duration of the transition.
Figure 8 compares the primordial power spectrum pro-

duced from an instantaneous transition in the Contaldi
approximation using cosmological matching conditions
for a transition hypersurface defined by constant ϕ and
the power spectrum produced from a sufficiently fast finite
duration phase transition. For a specified range of k, the
power spectra differ by less than 1%. The scales at which this
occur are those corresponding to enhanced scales in the
sudden finite duration transition power spectrum. The
conditions for which a power spectrum resulting from a
finite duration transition looks like that produced from
an instantaneous transition has been consider by Carney
et al. [19] and Aravind et al. [21] as follows.
A primordial power spectrum produced from a cosmo-

logical scenario which transitions between inflation and a
slow-roll violating phase over a time scale, T, can be
approximated by a primordial power spectrum produced
from an instantaneous transition for scales obeying

k
at

≪
1

T
; ð89Þ

where at is the scale factor at the maximum of the analytic
comoving horizon defined by Eq. (83). In the limit of an

FIG. 7. Numerical primordial power spectra for increasingly
sharp cosmological phase transitions generated by the semi-
analytic model presented in this section. εI ¼ 0.0001 and α ¼ 2,
10, 60 with BD initial conditions for perturbation modes set at the
maximum of the analytic comoving horizon. The duration of the
transitions are 3.25, 0.65, and 0.12e-folds, respectively.
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instantaneous transition, all modes will be enhanced by the
phase transition.
Primordial power spectra produced with no enhancement

in oscillations at intermediate k occur for transition lengths
on the order of a single e-fold depending on choice of εI;
thus, if the cosmological phase transition is not sudden it
does not imprint on the primordial power spectrum. This
may explain why the power spectra produced by the
Contaldi approximation using Contaldi matching in
Fig. 2 looks similar to numerical power spectra computed
with Oð1Þ transitions specified by an inflationary potential
in Fig. 3. Specifically, it has been concluded that Contaldi
matching does not join the primordial scalar perturbations
in a way that takes into account the instantaneous jump in
equation of state of the scalar field. The resulting primordial
power spectrum that does not encode the effects of an
instantaneous phase transition could reasonably be
expected to exhibit similar behavior to a power spectrum
produced by a transition which is too slow to enhance the
power spectrum at any relevant scale, as quantified by
Eq. (89). Cosmological phase transitions are thought to
occur over the duration of several e-folds [33]. The
difference between primordial power spectrum produced
from slow and sudden transitions suggests that producing a
primordial power spectrum from a background, which is
described by an instantaneous transition should be done
with caution if cosmological phase transitions are thought
to happen over longer timescales.

We then suggest that the procedure for producing the
primordial power spectrum presented here may be used as
an alternative model to the Contaldi approximation which
allows for greater control over both the scale dependence
of the power spectrum through specification of εI and the
duration of the cosmological phase transition controlled
by α. Although we have introduced this model as a potential
independent method for computing the primordial power
spectrum, the following section considers the implicit
inflationary potential of the background model.

D. Scalar field potential reconstruction

The Hamilton-Jacobi formalism treats the Hubble
parameter as the fundamental quantity changing with time.
This approach allows for reconstruction of a scalar field
potential, VðϕÞ, for a specified HðϕÞ. In terms of deriv-
atives with respect to number of e-folds, this is

VðNÞ ¼ 3HðNÞ2 þH0ðNÞHðNÞ: ð90Þ

Specifying HðNÞ for a cosmological evolution smoothly
joining an era of kinetic dominance with inflation as
denoted by Eq. (82), gives the reconstructed potential,
which in turn admits the equation HðNÞ as an exact
inflationary solution. A function for ϕðNÞ can be used
in order to write the potential as a function of the scalar
field. Changing Eq. (18) into derivatives with respect to
number of e-folds gives the following equation which may
be solved to obtain ϕðNÞ,

ϕðNÞ ¼ ϕ0 �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2
H0ðNÞ
HðNÞ

s
dN: ð91Þ

Plotting the potential expressed by Eq. (90) parametri-
cally as a function of the solution to Eq. (91) gives the
behavior of the associated VðϕÞ for a background specified
by Eq. (83).
Figure 9 shows the reconstructed potential for this model

with εI ¼ 0.0001 and α ¼ 1. Taking note of the region of
the potential in which inflation occurs, the potential
produced from these parameters is a convex (V;ϕϕ > 0),
small field potential where the conditions for inflation
are met in that the magnitude of the first and second
derivatives of the potential with respect to ϕ, V;ϕ and V;ϕϕ,
are small [3,7]. The convex form of this potential is
characteristic for the associated background for εI ≪ 1
and α < 3, which corresponds to transitions of at least one
e-fold in duration. The form of this potential is not ruled out
observationally as in the case of usual convex large field
inflationary potentials through high values of the tensor-to-
scalar ratio, r [3,7].
Figure 10 shows the reconstructed potential for this

model with εI ¼ 0.0001 and α ¼ 10. The corresponding
primordial power spectrum is seen in Fig. 7. This example

FIG. 8. The upper plot compares primordial power spectra
produced from an analytic background with a sufficiently sudden
duration phase transition defined by Eq. (83) taking α ¼ 60 and
that from cosmological matching conditions with hypersurface of
constant ϕ applied to the instantaneous phase transition in the
Contaldi approximation. εI is set to 0.0001 and kt is set to
0.98945 in the analytic power spectrum to align with the
background of the numerical solution. RSET initial conditions
have been used. The lower plot shows the percent error which
remains small for scales obeying the condition expressed by (89).
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again results in a small field inflationary potential; however,
the form of the potential is close to that of a step function,
which is not supported by current observation. Moreover, it
is unphysical to require the scalar field be pushed up the
potential towards inflation. Potentials of this form are
generic for εI ≪ 1 and α > 3, where the steplike potential
is required to achieve a transition on the time scale of
fractions of an e-fold. Note that the Contaldi approximation
has an implicit inflationary potential which is a Heaviside
step function.
Through the Hamilton-Jacobi formalism, one can see

that although the semianalytic model we have presented in
this section does not demand a choice for the inflationary
potential to emit the desired background evolution,

the generic construction has associated an implicit poten-
tial. This allows for phenomenological analyses in
which an observationally constrained primordial power
spectrum admits an acceptable functional form for the
inflationary potential.

VII. CONCLUSION

We have considered analytic and numeric procedures for
generating the power spectrum of primordial scalar per-
turbations in the case of a background universe which
undergoes a jump in equation of state of the scalar field.
Although there exits interest in a closed universe [40], we
consider the simplest case of a flat universe for the purpose
of isolating our conclusions wherein further analysis can be
used to extended the results to the case of a curved universe.
The Contaldi approximation provides an inflationary
potential independent method for producing the primordial
power spectrum by implementing an instantaneous tran-
sition between a phase of kinetic dominance and de Sitter
inflation where approximate primordial mode equations
exist. The aim of this analysis is the application of Israel
junction conditions to determine the physically acceptable
way in which to propagate primordial scalar perturbations
across cosmological phase transitions allowing for clarifi-
cation of previous work. The resulting joining conditions
are seen to require specification of the scalar defining
the spacelike hypersurface at the transition. Cosmological
matching conditions corresponding to hypersurfaces of
constant scalar field value and energy density were theo-
retically motivated. Both conditions derived from the
MS equation and numerical studies suggest a hypersurface
of constant scalar field may be the appropriate choice;
however, future work should look to clarify a canonical
hypersurface for the transition. Furthermore, the joining of
v and v0 as originally prescribed in the Contaldi approxi-
mation has been shown to be insufficient to allow con-
tinuity of the first and second fundamental forms describing
regions of spacetime separated by a jump in equation of
state of the scalar field.
A novel semianalytic approach for producing the pri-

mordial power spectrum, which smoothly transitions from
a phase of kinetic dominance to inflation over a finite
duration, was subsequently introduced. The difference
between primordial power spectra produced from slow
and sudden transitions suggests that models describing an
instantaneous transition may not adequately characterize
primordial power spectra resulting from transitions occur-
ring over several e-folds, as is thought to arise in nature.
This is supported by the unphysical spectra produced from
cosmological matching conditions applied to the Contaldi
approximation and the steplike form of the implicit infla-
tionary potential which is demanded to produce sufficiently
sudden finite cosmological phase transitions. That is, the
alternative model for generating the primordial power
spectrum presented in this work whilst it does not require

FIG. 10. Characteristic steplike inflationary potential from
parametric reconstruction for a smooth comoving horizon defined
by Eq. (83) with a sudden transition corresponding to εI ≪ 1 and
α > 3. This example has α ¼ 10 and εI ¼ 0.0001. The regions of
the potential corresponding to kinetic dominance and inflation are
specified using Eqs. (87) and (88).

FIG. 9. Characteristic convex inflationary potential from para-
metric reconstruction for a smooth comoving horizon defined by
Eq. (83) with a slow transition corresponding to εI ≪ 1 and
α < 3. This example has α ¼ 1 and εI ¼ 0.0001. The regions of
the potential corresponding to kinetic dominance and inflation
specified using Eqs. (87) and (88).
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a choice of the form of the inflationary potential, it has an
associated potential which can be reconstructed. Further
work must be done to constrain primordial power spectra
produced from this model and the extended model in
Appendix D for low α corresponding to a small field
implicit inflationary potentials which may be bound obser-
vationally via (ns, r) [2,3].

ACKNOWLEDGMENTS

We would like to thank Enrico Pajer and Carlo Contaldi
for valuable feedback on this work as well as Thomas
Gessey-Jones for many useful conversations.

APPENDIX A: FORMULATION OF THE ISRAEL
JUNCTION CONDITIONS

The Israel junction conditions are formulated as in
Poisson [41], where necessary background is first intro-
duced. Consider a hypersurface (timelike or spacelike),
Σ, partitioning spacetime into two regions Vþ with metric
gþαβ expressed with coordinates xαþ and V− with metric g−αβ
expressed with coordinates xα−. The conditions that must be
imposed on the metrics to allow the regions of spacetime
Vþ and V− to join smoothly at Σ to allow for the union of
the metric to form valid solutions to the Einstein field
equations are studied [41–44].
Assume the coordinates ya may be installed on both

sides of the hypersurface and select the unit normal to Σ,
nα, to point from V− to Vþ. There also exists a distinct
coordinate system xα that may be installed on both sides of
the hypersurface which overlaps with the coordinates
defined on either side of the hypersurface in an open
region containing Σ. Imagine Σ to be pierced by a
congruence of geodesics that intersect it orthogonally. l
is taken to denote proper distance or time along the
geodesics (l ¼ 0 when the geodesic crosses the hypersur-
face) and should be thought of as a scalar field. The point P
denoted by the coordinates xα is linked to Σ by a member of
the congruence and lðxαÞ is the proper distance or time
from the hypersurface along the geodesic described by

dxα ¼ nαdl; ðA1Þ

nα ¼ σ∂αl; ðA2Þ

where nαnα ¼ σ.
The tensor quantity, A, exists on both sides of the

hypersurface and ½A�� denotes a jump across the hyper-
surface. This jump notation is defined as follows. Using
coordinates such that the equation of Σ is fðxÞ ¼ 0 and Vþ
is fðxÞ > 0 and V− is fðxÞ < 0. For a function hðxÞ defined
on either side of the hypersurface, if h has at most a simple
discontinuity at Σ,

½h�ðPÞ ¼ lim
Q→P

hþ − lim
R→P

h−;

where P∈Σ and Q and R tend to P through Vþ and V−,
respectively. For a small displacement, δ, takingQ ¼ Pþ δ
and R ¼ P − δ this can be written as

½h�� ¼
Z

Pþδ

P−δ
h0dx ¼ hðPþ δÞ − hðP − δÞ:

Using Eq. (A1) and continuity of l and xα across the
hypersurface gives

½nα�� ¼ 0: ðA3Þ

Recalling that the coordinate ya are the same on both sides
of Σ,

½eαa�� ¼ 0: ðA4Þ

Here, the Heaviside distribution is introduced,

ΘðlÞ ¼
�
1 l > 0

0 l < 0
; ðA5Þ

where if l ¼ 0 the function is indeterminate. It should be
noted that the product of the Heaviside distribution and
Dirac distribution, δðlÞ, is not defined as a distribution.
As well, the Dirac distribution, δðlÞ, is not be confused
with the small displacement, δ, used above to define the
jump notation.
Looking at the first Israel junction condition, the metric,

gαβ, in coordinates xα as a distribution-valued tensor is

gαβ ¼ ΘðlÞgþαβ þ Θð−lÞg−αβ; ðA6Þ

where g�αβ is the metric in V� expressed in the coordinates
xα. Whether Eq. (A6) makes a valid distributional solution
to the Einstein equations must be considered by verifying
geometrical quantities constructed from the metric defined
by this equation. To do this requires differentiating, which
yields

gαβ;γ ¼ ΘðlÞgþαβ;γ þ Θð−lÞg−αβ;γ þ σδðlÞ½gαβ��nγ: ðA7Þ

The last term is singular and causes problems when
computing the Christoffel symbols as it generates terms
proportional to ΘðlÞδðlÞ, which would make the con-
nection not a valid distribution. Eliminating the last term
in Eq. (A7) imposes continuity of the metric across the
hypersurface through the following condition:

½gαβ�� ¼ 0: ðA8Þ
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As a coordinate invariant statement, by Eq. (A4),

½gαβeαaeβb�� ¼ 0; ðA9Þ

and the first junction condition may be interpreted as
continuity of the induced metric on either side of the
hypersurface,

½hab�� ¼ 0: ðA10Þ

The second Israel junction condition requires a look at
the distribution-valued Riemann tensor. The Christoffel
symbols are

Γα
βγ ¼ ΘðlÞΓþα

βγ þ Θð−lÞΓ−α
βγ : ðA11Þ

Differentiating the above equation, the Riemann tensor
follows as

Rα
βγδ ¼ ΘðlÞRþα

βγδ þ Θð−lÞR−α
βγδ þ δðlÞAα

βγδ; ðA12Þ

where

Aα
βγδ ¼ σð½Γα

βδ��nγ − ½Γα
βγ��nδÞ: ðA13Þ

The second junction condition aims to eliminate the final
term in Eq. (A12) as although it is properly defined as a
distribution, the δðlÞ function term represents a curvature
singularity at Σ. The first junction condition implies
continuity of the metric across Σ in the coordinates xα

and requires tangential derivatives to also be continuous.
Therefore, if gαβ;γ is discontinuous it must be along the
normal vector nα, and there must exist a tensor field, καβ
such that

½gαβ;γ�� ¼ καβnγ; ðA14Þ

with

καβ ¼ σ½gαβ;γ��nγ: ðA15Þ

Equation (A15) implies

½Γα
βγ�� ¼ 1

2
ðκαβnγ þ καγnβ − κβγnαÞ:

Then the δðlÞ function part of the Riemann tensor is

Aα
βγδ ¼

σ

2
ðκαδnβnγ þ καγnβnδ − κβδnαnγ þ κβγnαnδÞ:

One can obtain the distribution-valued function for the
stress-energy given in the following equation by con-
tracting indices twice to attain the δðlÞ function part of
the Ricci scalar. The stress-energy tensor is given by

Tαβ ¼ ΘðlÞTþ
αβ þ Θð−lÞT−

αβ þ δðlÞSαβ; ðA16Þ

where the surface stress-energy surface layer, Sab, is
given by

16πσSab ¼ κμαnμnβ þ κμβnμnα − κnαnβ

− σκαβ − ðκμνnμnν − σκÞgαβ: ðA17Þ

Through careful calculation detailed in Ref. [41], one
arrives at an expression for the surface stress-energy tensor
in terms of a jump in extrinsic curvature, Kab,

Sab ¼ −
σ

8π
ð½Kab�� − ½K��habÞ; ðA18Þ

and for a smooth transition across Σ, the second junction
condition is concluded as requiring the extrinsic curvature
on either side of the hypersurface to be the same. This is

½Kab�� ¼ 0: ðA19Þ

In the absence of a surface stress-energy tensor, the
Israel junction conditions are then given by Eqs. (A10)
and (A19), which demand continuity of the induced
metric and extrinsic curvature for a smooth joining of
two metrics.

APPENDIX B: SCALAR METRIC RELATIONS

Equation (60) is derived using Mukhanov et al. [8].
Working in the Newtonian/longitudinal gauge, expression
(56a) describes cosmological perturbations for a universe
dominated by a scalar field,

Φ0 þHΦ ¼ 1

2
δϕϕ̄0:

Varying the action for a scalar field with respect to ϕ and
ψ and setting B − E0 ¼ 0 gives the equation,

ΔΨ−3HΨ0−ðH0 þ2H2ÞΦ¼1

2
ðδϕϕ̄0 þV;ϕa2δϕÞ: ðB1Þ

Recall the definition of R from Eq. (57),

R ¼ Φ −
H

H2 −H0 ðΦ0 þHΦÞ:

Using Eqs. (56a), (B1), and (57) as well as noting that
in the Newtonian/longitudinal gauge Φ ¼ Ψ, Eq. (60) is
recovered

ΔΦ ¼ 1

2

ϕ̄02

H
R0: ðB2Þ

ANALYTIC APPROXIMATIONS FOR THE PRIMORDIAL POWER … PHYS. REV. D 109, 083513 (2024)

083513-17



Next, the relationship in Eq. (62) is derived following
Namjoo et al. [20]. The gauge-invariant Bardeen
potentials are

ΦB ¼ Φ − θ̇; ðB3Þ

ΨB ¼ ΨþHθ; ðB4Þ

where θ ¼ a2½Ė − B=a�. Working in an isotropic back-
ground with no anisotropic stress ΨB ¼ ΦB. In the comov-
ing gauge (δq ¼ 0, E ¼ 0), the comoving curvature
perturbation is

R ¼ Ψ: ðB5Þ

The 0i components of the Einstein equations in the
comoving gauge give

ṘþHΦ ¼ 0: ðB6Þ

Differentiating, we have the relation,

R̈ ¼ −HΦ̇ − ḢΦ: ðB7Þ

In the absence of anisotropic stress, the 00 and ii
components of the Einstein equations in the comoving
gauge are

3HðṘþHΦÞ þ k2

a2
ðaHB −RÞ ¼ δρ

2
; ðB8Þ

−R̈ − 3HṘ −HΦ̇þ ð2Ḣ − 3H2ÞΦ ¼ δp
2
: ðB9Þ

Using Eqs. (B6) and (B7) to simplify (B8) and (B9) gives

k2

a2
ðaHB −RÞ ¼ δρ

2
; ðB10Þ

Ḣ
H
Ṙ ¼ δp

2
: ðB11Þ

The sound speed of perturbations, cs is defined on
comoving slices as δpc ¼ c2sδρc, where δpc and δρc are
the pressure and energy density perturbations on the
comoving slices. Using Eqs. (B10) and (B11),

ΦB ¼ −
a2Ḣ
Hk2c2s

Ṙ: ðB12Þ

Changing to conformal time, recalling the definition of z
and taking cs ¼ 1, the gauge-invariant potential is

ΦB ¼ z2H
2ak2

R0: ðB13Þ

Switching to the Newtonian/longitudinal gauge,Φ¼ΦB,
Eq. (62) is obtained

Φ¼ z2H
2ak2

R0: ðB14Þ

APPENDIX C: CONSTANTS OF INTEGRATION

Solving Ak and Bk for each vacuum initial conditions
outlined in Table I and imposing Contaldi matching,
Eqs. (32)–(33), the constants of integration are
For right-handed mode (RHM),

CðRHMÞ
k ¼

ffiffiffiffiffiffiffiffiffi
π

32kt

r
e−i

k
kt

�
Hð2Þ

0

�
k
2kt

�
−
�
kt
k
þ i

�
Hð2Þ

1

�
k
2kt

��
;

ðC1Þ

DðRHMÞ
k ¼

ffiffiffiffiffiffiffiffiffi
π

32kt

r
eþi kkt

�
Hð2Þ

0

�
k
2kt

�
−
�
kt
k
− i

�
Hð2Þ

1

�
k
2kt

��
:

ðC2Þ

For Bunch-Davies vacuum (BD),

CðBDÞ
k ¼

ffiffiffiffiffi
1

8k

r
e−i

k
kt

��
kt
k

�
2

þ 2i

�
kt
k

�
− 2

�
; ðC3Þ

DðBDÞ
k ¼

ffiffiffiffiffi
1

8k

r
eþi kkt

�
kt
k

�
2

: ðC4Þ

For Hamiltonian-diagonalization (HD),

CðHDÞ
k ¼

ffiffiffiffiffi
1

8k

r
e−i

k
kt

��
kt
k

�
2

þ i

�
1þ ωk

k

�
kt
k
−
�
1þ ωk

k

��
;

ðC5Þ

DðHDÞ
k ¼

ffiffiffiffiffi
1

8k

r
eþi kkt

��
kt
k

�
2

− i

�
1 −

ωk

k

�
kt
k
−
�
1 −

ωk

k

��
;

ðC6Þ

where ωk ¼ k2 þ k2t . For renormalized stress energy tensor
(RSET),

CðRSETÞ
k ¼

ffiffiffiffiffi
1

8k

r
e−i

k
kt

�
i
kt
k
− 2

�
; ðC7Þ

DðRSETÞ
k ¼

ffiffiffiffiffi
1

8k

r
eþi kkt

�
i
kt
k

�
: ðC8Þ
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For a hypersurface defined by Σ∶ρ̄þ δρ ¼ const with
matching conditions (63a)–(63b). The constants of inte-
gration for the vacuum conditions in Table I are
For right-handed mode (RHM),

CðRHMÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

864ktεI

r
e−i

k
kt

�
−3εIH

ð2Þ
0

�
k
2kt

�
þ
�
−3

k
kt
þ9iþ9

kt
k
þεI

k
kt

�
Hð2Þ

1

�
k
2kt

��
; ðC9Þ

DðRHMÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

864ktεI

r
eþi kkt

�
−3εIH

ð2Þ
0

�
k
2kt

�
þ
�
−3

k
kt
−9iþ9

kt
k
þεI

k
kt

�
Hð2Þ

1

�
k
2kt

��
: ðC10Þ

For Bunch-Davies vacuum (BD),

CðBDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

216kεI

s
e−i

k
kt

�
−3i

k
kt
− 12

þ 18i
kt
k
þ 9

�
kt
k

�
2

þ iεI
k
kt
− 2εI

�
; ðC11Þ

DðBDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

216kεI

s
eþi kkt

�
−3i

k
kt
þ 6þ 9

�
kt
k

�
2

þ iεI
k
kt
− 2εI

�
: ðC12Þ

For Hamiltonian-diagonalization (HD),

CðHDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

216kεI

s
e−i

k
kt

�
3−9i

kt
k
−9

�
kt
k

�
2

þ3i
ωk

kt
þ9

ωk

k
−9i

kt
k
ωk

k
− iεI

ωk

kt
þ2εI

�
; ðC13Þ

DðHDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

216kεI

s
eþi kkt

�
3þ9i

kt
k
−9

�
kt
k

�
2

þ3i
ωk

kt
−9

ωk

k
−9i

kt
k
ωk

k
− iεI

ωk

kt
þ2εI

�
; ðC14Þ

where ωk ¼ k2 þ k2t . For renormalized stress energy tensor
(RSET),

CðRSETÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

216kεI

s
e−i

k
kt

�
3i

k
kt
þ 9 − 9i

kt
k
− iεI

k
kt
þ 3εI

�
;

ðC15Þ

DðRSETÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

216kεI

s
eþi kkt

�
3i

k
kt
− 9 − 9i

kt
k
− iεI

k
kt
þ 3εI

�
:

ðC16Þ

For a hypersurface defined by Σ∶ϕ̄þ δϕ ¼ const with
matching conditions (68a)–(68b). The constants of inte-
gration for the vacuum conditions in Table I are
For right-handed mode (RHM),

CðRHMÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
π

96ktεI

r
e−i

k
kt

�
εIH

ð2Þ
0

�
k
2kt

�
− 3

�
kt
k
þ i

�
Hð2Þ

1

�
k
2kt

��
; ðC17Þ

DðRHMÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
π

96ktεI

r
eþi kkt

�
εIH

ð2Þ
0

�
k
2kt

�
− 3

�
kt
k
− i

�
Hð2Þ

1

�
k
2kt

��
: ðC18Þ

For Bunch-Davies vacuum (BD),

CðBDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

24kεI

s
e−i

k
kt

�
3

�
1−2i

kt
k
−
�
kt
k

�
2
�
þεI

�
; ðC19Þ

DðBDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

24kεI

s
eþi kkt

�
−3
�
1þ

�
kt
k

�
2
�
þ εI

�
: ðC20Þ

For Hamiltonian-diagonalization (HD),

CðHDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

24kεI

s
e−i

k
kt

�
3

�
−i

kt
k
−
�
kt
k

�
2

þ ωk

k
− i

kt
k
ωk

k

�
þ εI

�
; ðC21Þ

DðHDÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

24kεI

s
eþi kkt

�
3

�
i
kt
k
−
�
kt
k

�
2

−
ωk

k
− i

kt
k
ωk

k

�
þ εI

�
; ðC22Þ

where ωk ¼ k2 þ k2t . For renormalized stress energy tensor
(RSET),

CðRSETÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

24kεI

s
e−i

k
kt

�
3

�
1 − i

kt
k

�
þ εI

�
; ðC23Þ

DðRSETÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

24kεI

s
eþi kkt

�
−3
�
1þ i

kt
k

�
þ εI

�
: ðC24Þ
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APPENDIX D: CONSTRUCTING A SOLUTION
WITH SLOW-ROLL INFLATION

The following procedure will be used to obtain back-
ground equations with a slowly increasing εðNÞ:

Modify
ε0

ε
!solveε ¼ −

H0

H
!solveH →

1

aH
; ðD1Þ

giving a comoving horizon which transitions from kinetic
dominance to a slow-roll inflationary phase described by
εðNÞ; jηðNÞj ≪ 1. Beginning with Eq. (80) for εðNÞ for a
model with a phase of modified de Sitter inflation,

ε0ðNÞ
εðNÞ ¼ 3αe3αNðεI − 3Þ

ð1þ e3αNÞð3þ εIe3αNÞ
; ðD2Þ

with

lim
N→−∞

ε0ðNÞ
εðNÞ ¼ 0; ðD3Þ

lim
N→∞

ε0ðNÞ
εðNÞ ¼ 0: ðD4Þ

Then, the limits of the second-slow roll parameter are

lim
N→−∞

ηðNÞ ¼ εKD; ðD5Þ

lim
N→∞

ηðNÞ ¼ εI: ðD6Þ

Modifying the Eq. (D2) to be

ε0ðNÞ
εðNÞ ¼ 3αe3αNðεI − 3Þ − 3C

ð1þ e3αNÞð3þ εIe3αNÞ
þ C; ðD7Þ

will allow for a time varying εðNÞ parametrized by C. The
solution to Eq. (D7) gives the following equation:

εðNÞ ¼ ð1þ e3αNÞ−1þ C
3α−αεIð3þ εIe3αNÞ1þ

CεI
3αðεI−3Þ; ðD8Þ

with inflation ending when the slow-roll conditions are
violated, that is at εðNendÞ ¼ 1 [7]. The relevant limits of
Eq. (D8) are

lim
N→−∞

ε0ðNÞ
εðNÞ ¼ 0; ðD9Þ

lim
N→Nend

ε0ðNÞ
εðNÞ ¼ C: ðD10Þ

The limits of the second-slow roll parameter become

lim
N→−∞

ηðNÞ ¼ εKD; ðD11Þ

lim
N→Nend

ηðNÞ ¼ 1 −
C
2
: ðD12Þ

Using Eq. (D8), the background equations are

H0ðNÞ
HðNÞ ¼−ð1þe3αNÞ−1þ C

3α−αεIð3þεIe3αNÞ1þ
CεI

3αðεI−3Þ; ðD13Þ

z0ðNÞ
zðNÞ ¼ 6

2ð1þ e3αNÞð3þ εIe3αNÞ

þ e3αNð3αðεI − 3Þ þ ð2þ CÞð3þ εI þ εIe3αNÞÞ
2ð1þ e3αNÞð3þ εIe3αNÞ

:

ðD14Þ

The analytic equation for 1
aðNÞHðNÞ may be found by

solving Eq. (D14) in terms of HðNÞ and can be written in
terms of Appell series and hypergeometric functions with
parameters εI, α, and C. Using these analytic equations
for the background, the MS equation (72) can be solved
numerically in order to produce a primordial power
spectrum.
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