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It is natural to wonder whether there may be observational relics of new fundamental fields, beyond the
inflaton, in large scale structure. Here we discuss the phenomenology of a model in which compensated
isocurvature perturbations (CIPs) arise through the action of a primordial vector field that displaces dark
matter relative to baryons. The model can be tested best by kinematic-Sunyaev-Zeldovich tomography,
which involves the cross-correlation of cosmic microwave background and galaxy surveys, with next-
generation observatories. There are also signatures of the vectorial nature of the new field that may be
detectable in forthcoming galaxy surveys, but the galaxy survey cannot alone indicate the presence of a CIP.
Models that induce a parity breaking four-point correlation in the galaxy distribution are also possible.
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Cosmologists have long wondered whether there may be
fossils of new fundamental fields, beyond the inflaton, in
large-scale structure. The majority of such work has
involved a new scalar field (e.g., the curvaton [1]), but it
is conceivable that higher-spin fields may also have been
active in the early Universe. One obvious example is
the graviton field, which can be excited during standard
single-field slow-roll inflation [2–5] and the higher-order
correlations that it may induce in the cosmological mass
distribution through cross-correlation with the inflaton [6].
Other possibilities include higher-order correlations in the
matter distribution, induced by coupling of primordial pertur-
bations to a primordial magnetic field during inflation [7]. A
general description of the effects of couplings of an inflaton
to spin-1 or spin-2 fields was provided in Ref. [8], and
related ideas have recently been developed [9–15], with the
addition of parity-breaking physics, to account for recently
reported evidence for parity violation in the four-point
correlation function in galaxy surveys [16,17].
In this paper we describe a toy model in which the effects

of a primordial vector field are imprinted into large-scale-
structure observables in a novel way: compensated iso-
curvature perturbations (CIPs) [18–21]—perturbations to
the baryon and dark-matter densities of equal but opposite
amplitude—are induced by displacements of baryons and
dark matter that are described by a transverse vector field. If
we start with a perfectly homogeneous Universe and then
induce a transverse displacement of the baryons relative
to the dark matter, the Universe remains homogeneous.

The CIP in this model is thus induced only if the Universe
has some nonzero adiabatic density perturbation (as it does).
As recent work has shown [22], the sensitivity to CIPs will
improve by several orders of magnitude with forthcoming
kSZ-tomography surveys, as compared to current cosmic
microwave background (CMB) and galaxy-survey bounds. It
is thus reasonable to consider new observables, such as those
we describe below, that can be used to characterize such CIPs.
The CIP induces perturbations to the baryon (b) and

cold-dark-matter (c) densities,

ρbðxÞ ¼ ρ̄b½1þ ΔðxÞ�;
ρcðxÞ ¼ ρ̄c½1 − fbΔðxÞ�; ð1Þ

in terms of a CIP field ΔðxÞ, where ρ̄i are the mean
densities, and fb ¼ ρ̄b=ρ̄c.
Here we surmise that the CIP is induced by a displace-

ment AðxÞ of the baryons and dark matter, in a way that
conserves the total-matter density. More precisely, if
ρmðxÞ ¼ ρbðxÞ þ ρcðxÞ is the total nonrelativistic-matter
density, then the new matter densities in the presence of the
displacement field are

ρbðxÞjA ¼ fb
1þ fb

ρmðxþAÞ ≃ ρbðxÞ þA ·∇ρbðxÞ;

ρcðxÞjA ¼ 1

1þ fb
ρmðx − fbAÞ ≃ ρcðxÞ −A ·∇ρbðxÞ:

ð2Þ
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Here we have assumed that there is a curvature perturbation
in place with fractional nonrelativistic density perturbation
δmðxÞ ¼ δρmðxÞ=ρ̄m ¼ δbðx ¼ δcðxÞ. The prediction of
the theory is thus that

ΔðxÞ ¼ AðxÞ ·∇δmðxÞ: ð3Þ

Most generally, the displacement field AðxÞ can be decom-
posed into a longitudinal and transverse part. The longi-
tudinal component, however, can be written as the gradient
of a scalar function and thus reproduce the standard CIP
phenomenology. We therefore consider only a transverse
(i.e., ∇ ·AðxÞ ¼ 0) vector field in what follows.
Here we describe how to characterize a CIP field from a

transverse field AðxÞ in the event that δmðxÞ and ΔðxÞ are
measured. We do not attempt here to embed this phenom-
enological model in a more complete theory. We surmise,
though, that this might be accomplished in variants of
models of asymmetric dark matter [23,24] in which baryons
and dark matter are in some representation that is charged
under a gauge group related to AðxÞ.
The vector field is taken to be a random field with power

spectrum PAðkÞ defined so that the cartesian components of
the Fourier transform AðkÞ satisfy [25] (assuming for now
parity conservation—more on parity breaking later),

hA�
i ðkÞAjðk0Þi ¼ ð2πÞ3δDðk − k0Þðδij − kikj=k2ÞPAðkÞ:

ð4Þ

Given Eq. (3), the CIP field will be a convolution in
Fourier space. Assuming that the vector field is uncorre-
lated with the total matter density fluctuations, this yields
a CIP power spectrum PΔðkÞ, defined by hΔ�ðkÞΔðk0Þi ¼
ð2πÞ3δDðk − k0ÞPΔðkÞ, given by

PΔðkÞ ¼ k2
Z

d3k1

ð2πÞ3 ð1 − μ2ÞPmðjk − k1jÞPAðk1Þ; ð5Þ

with μ ¼ k̂ · k̂1 and PmðkÞ is the matter power spectrum.
The result of the convolution, with the standard ΛCDM
matter power spectrum, is plotted in Fig. 1, for a power-law
power spectrum PAðkÞ ¼ AknθHðk − kcutÞ cutoff at a wave
number kmax.
In order to assess the prospects for this model to be

probed by future measurements, we fix the normalizationA
of the vector-field power spectrum so that the induced CIP
perturbation takes on the highest amplitude consistent with
current constraints. Strictly speaking, CMB constraints
to CIPs have been obtained for a CIP power spectrum
PΔðkÞ ∝ k−3, which is different from that shown in Fig. 1.
However, the CMB bound is weighted primarily by Fourier
modes near k ∼ 0.05 Mpc−1. We therefore take

PΔðkÞ ≲ 2π2α2As

k3
; ð6Þ

at k ¼ 0.05 Mpc−1 with α ∼ 450 [26], but the actual upper
bound to A may be a bit higher or lower.
Suppose now that a nonzero CIP perturbation has been

detected, and that we would like to figure out if it, or any
part of it, arises from a vector field through Eq. (3). To do
so, we derive a quadratic estimator for the components
of AðxÞ as follows. Given a realization of the A field, the
Fourier components of the CIP and matter perturbation
have expectation values,

hδmðkÞΔðk0Þi ¼
X
k1

Aðk0 − k1Þ · ik1hδmðkÞδmðk1Þi

¼ −ik ·Aðkþ k0ÞPmðkÞ: ð7Þ

This implies that every pair δmðkÞ and Δðk0Þ with kþ
k0 ¼ K provides an estimator,

k · dAðKÞk;k0 ¼ i
δmðkÞΔðk0Þ

PmðkÞ
: ð8Þ

Strictly speaking, Eq. (8) provides an estimator only for the
projection ofAðKÞ along the component of k parallel toA.
To be a bit more precise, suppose we align the ẑ direction
with the direction of the wave vector K for the Fourier
mode under consideration. We can then choose two other
directions x̂ and ŷ orthogonal to ẑ and take θ to be the angle
between K and k and ϕ to be the azimuthal angle in the
x − y plane. We then arrive at a vector-valued estimator,

FIG. 1. The CIP power spectrum with a power-law PAðkÞ ¼
AknθHðk − kcutÞ power spectrum for the vector field, for different
cutoff scales; the results for n ¼ −6, n ¼ −5, and n ¼ −7 are
similar. The normalization A is obtained by matching the ampli-
tude of the CIP power spectrum at k ¼ 0.05hMpc−1 to the upper
bound, obtained from the CMB for a scale-invariant CIP
spectrum.
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dAðKÞk;k0 ¼ i
δmðkÞΔðk0Þ
k sin θPmðkÞ

�
cos−1ϕ; sin−1ϕ

�
; ð9Þ

for the two nonzero components of AðKÞ. We now take
as our null hypothesis a CIP power spectrum PΔðkÞ,
but AðxÞ ¼ 0. The variance of Eq. (9) under the null
hypothesis is

hj dAðKÞk;k0 j2i ¼ Ptot
m ðkÞPtot

Δ ðk0Þ
k2sin2θPmðkÞ2

; ð10Þ

Ptot are the observed power spectra including the noise. We
can then add the estimators built from all δmðkÞ − Δðk0Þ
pairs with kþ k0 ¼ K with inverse-variance weighting to
obtain the minimum-variance estimator,

dAðKÞ ¼ PA
nðKÞi

X
kþk0¼K

k sin θPmðkÞ
Ptot
m ðkÞPtot

Δ ðk0Þ
× δmðkÞΔðk0Þ�cos−1ϕ; sin−1ϕ�; ð11Þ

where the inverse variance is, given our shorthand
P

k forR
d3k=ð2πÞ3, the noise power spectrum,

½PA
nðKÞ�−1 ¼

1

4π2

Z
kmax

kmin

dk k4
PmðkÞ2
Ptot
m ðkÞ

×
Z

1

−1
dμ

1 − μ2

Ptot
Δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ k2 − 2Kkμ
p � ; ð12Þ

with kmin ¼ 2π=V1=3 in terms of the volume V of the
survey.

If the amplitudes dAðKÞ arise as a realization of a random
field with power spectrum PðKÞ ¼ APfðKÞ, for some
fiducial power spectrum PfðKÞ ¼ Knf and amplitude A,
then each Fourier mode K provides an estimator,

ÂK ¼ 1

PfðKÞ
h�� dAðKÞ��2 − PA

nðKÞ
i
; ð13Þ

for that amplitude with variance 2½PA
nðKÞ�2=½PfðKÞ�2. The

minimum-variance estimator for A is then,

Â ¼ σ2A
X
K

PfðKÞ
2PnðKÞ2

h�� dAðKÞ��2 − PA
nðKÞ

i
; ð14Þ

which has a variance,

σ−2A ¼
X
K

½PfðKÞ�2
2½PA

nðKÞ�2 ; ð15Þ

where again K ranges from kmin to kmax.
In order to estimate the variance σ2A and thus the smallest

detectable A, we need the expected noise contributions to

PmðkÞ and PΔðkÞ from kSZ tomography. kSZ tomography
reconstructs the radial component of the peculiar-velocity
field from which the total-matter density field is recon-
structed. The noise power spectrum expected for the dark
energy spectroscopic instrument (DESI) and CMB-S4 is
shown in Fig. 5 in Ref. [27] and can be approximated by,

Pn
mmðk; μlosÞ ¼

1

μ2los
a

�
k
k0

�
b
; ð16Þ

with k0 ¼ 0.05Mpc−1, and a¼ 36091 ðMpc=hÞ3, b¼ 1.99,
and where μlos is the cosine of the angle that the mode
makes with the line of sight.
For the CIP field, we suppose that the fractional galaxy-

density perturbation can be modeled as [26],

δgðxÞ ¼ bmδmðxÞ þ bΔΔðxÞ; ð17Þ

with bias parameters bm and bΔ. We then obtain [22]
Δ̂ ¼ ðδg − bmδmÞ=bΔ, which then has a noise power
spectrum,

Pn
ΔΔðkÞ ¼

1

b2Δ

�
1

n̄g
þ b2mPn

mmðkÞ
	
; ð18Þ

where n̄g is the galaxy number density.
Strictly speaking, Eq. (12) is written assuming that the

matter and CIP reconstruction noises are isotropic, whereas
they are in fact dependent on μlos, as seen above. However,
a rough estimate can be obtained by assuming that all three
components (rather than just the line-of-sight component)
of the peculiar-velocity field can be reconstructed and then
by increasing the noise by a factor of 3.
The dependence in Eq. (17) on the CIP field and the

dependence in Eq. (3) of the CIP field on the vector field
imply a characteristic nongaussianity in the galaxy-density
field that can also be sought. There is a correlation between
two modes δgðkÞ and δgðk0Þ, with k ≠ k0,

hδgðkÞδgðk0Þi ¼ −iAðkþ k0Þ · ½kPmðkÞ þ k0Pmðk0Þ�:
ð19Þ

This then implies that every such pair with kþ k0 ¼ K
provides an estimator,

dAðKÞk;k0 ¼ i
δgðkÞδgðk0Þ

bΔbmk sin θ½PmðkÞ − Pmðk0Þ�
×
�
cos−1ϕ; sin−1ϕ

�
; ð20Þ

with variance


�� dAðKÞk;k0
��2� ¼ Ptot

gg ðkÞPtot
gg ðk0Þ

b2mb2Δk
2sin2θ½PmðkÞ − Pmðk0Þ�2

: ð21Þ
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Following the same reasoning that led to Eq. (12), we
find that the noise for AðKÞ obtained with a galaxy survey
will be

½PA
nðKÞ�−1 ¼ b2mb2Δ

8π2

Z
kmax

kmin

dkk4
Z

1

−1
dμð1− μ2Þ

×

�
PmðkÞ−Pm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ k2 − 2Kkμ

p �
2
Ptot
gg ðkÞPtot

gg

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ k2 − 2Kkμ

p � : ð22Þ

The additional factor of two in the denominator is there to
account for double counting of equivalent k-k0 pairs.
The detection threshold 3σA is plotted in Fig. 2 for

n ¼ −6 and for three different choices of the cutoff; the
results for n ¼ −5, n ¼ −7 are similar. The DESI × S4
configuration is not enough to achieve detection for the
cases considered; however, depending on the cutoff scale of
the vector-field power spectrum, a factor-of-ten improve-
ment in the kSZ reconstruction noise may allow detection.
For the galaxy-galaxy estimator, DESI is not sufficient, but
SPHEREx [28] or MegaMapper [29] might perform nearly
as well as kSZ tomography for kcut ¼ 10−3h=Mpc and up
to an order of magnitude better for kcut ¼ 10−2h=Mpc. Here
we took the maximum CIP amplitude A to be consistent
with CMB bounds as an estimate, but the actual value
might turn out to be a bit higher or lower.
Given the timescales of the projects considered

(SPHEREx is coming online soon), the prospects to soon
seek the signatures of this model are better for galaxy

surveys. However, these vector-induced correlations in a
galaxy survey, if detected, would not signal detection of
CIPs. This galaxy correlation does not indicate unambig-
uously a spatially varying baryon-to-dark-matter ratio, as it
probes only the galaxy distribution, not the dark-matter
distribution. That would require a signal to be seen in kSZ
tomography [22].
If the correlation in Eq. (19) exists, then another with

some other pair of modes with wave numbers k1, k0
1 with

k1 þ k0
1 ¼ −K will also exist. This thus indicates a non-

zero four-point correlation (in Fourier space) for the four
modes with kþ k0 þ k1 þ k0

1 ¼ 0 and is thus equivalent
to a nonzero four-point correlation function. In Eq. (4), it
was assumed that the vector-field correlations were parity
conserving. If, however, some mechanism gives rise to a
preference of right-circularly polarized vector modes over
left-circularly polarized modes—a chiral vector-field
background—then this four-point function will be parity
breaking [8]. The model considered here might, with
a bit more development, provide an explanation for the
types of parity-breaking four-point correlations discussed
in Refs. [16,17]. Such a model could be distinguished from
other parity-violating models with better characterization of
the four-point function.
To close, we have discussed a novel model of CIPs that

are induced by a transverse-vector-valued baryon-dark-
matter displacement field. The CIP and vectorial features of
the model can be probed with kSZ tomography. The
vectorial nature can be probed with the galaxy four-point

FIG. 2. Detection threshold 3σA for a vector-field power spectrum PAðkÞ ¼ AknθHðk − kcutÞ, at fixed n ¼ −6, for three different
choices of the wave number cutoff. This is to be compared to the value of the maximum amplitude A (orange lines) consistent with
current CIP constraints. DESI specifications are taken from Ref. [27]: the mean redshift is z ¼ 0.75, the survey volume
V ¼ 36 ðGpc=hÞ3, galaxy number density ng ¼ 5.5 × 10−4 ðh=MpcÞ3, and galaxy bias bm ¼ 1.51. The reconstruction noise from

kSZ tomography for DESI × CMB-S4 is that given in Eq. (16), setting μlos ¼ 1 and multiplying the final result by
ffiffiffi
3

p
as a rough

estimate of anisotropic reconstruction effects. In order to investigate the prospects for improvements beyond DESI × CMB-S4, the kSZ
reconstruction noise amplitude a is multiplied by an improvement factor 0.05, 0.08, 10−4 from left to right (gray, dash-dot lines), or
decreased to a ¼ 1665 ðMpc=hÞ3 that we estimate for MegaMapper ðMMÞ × CMB-HD (gray, dotted lines). We then see that for the
two leftmost panels the expected signal may be within reach of MegaMapper × CMB-HD, with z ¼ 0.75, V ¼ 31 ðGpc=hÞ3,
ng ¼ 0.01 ðh=MpcÞ3, and bm ¼ 1.6. For the galaxy-galaxy correlation, a SPHEREx-like survey (black, dashed lines) with z ¼ 1,
V ¼ 100 ðGpc=hÞ3, ng ¼ 5 × 10−3 ðh=MpcÞ3, and bm ¼ 1.5 may be able to detect these vector-field CIPs with kcut ≳ 10−3h=Mpc.
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correlation function. The model provides an implementa-
tion of the vector fossil fields considered in Ref. [8], and it
also allows for a new way to generate parity-breaking
correlations in the galaxy distribution. It should be inter-
esting, in future work, to take the next steps in building and
considering these models.
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