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Many theories of physics beyond the Standard Model predict the existence of large or infinite towers of
decaying states. In a previous paper [K. R. Dienes et al., Phys. Rev. D 105, 023530 (2022)], we pointed out
that this can give rise to a surprising cosmological phenomenon that we dubbed “stasis” during which the
relative abundances of matter and radiation remain constant across extended cosmological eras even though
the universe is expanding. Indeed, such stasis epochs are universal attractors, with the universe necessarily
entering (and later exiting) such epochs for a wide variety of initial conditions. Matter/radiation stasis is
therefore an important and potentially unavoidable feature of many BSM cosmologies. In this paper we
extend our arguments to universes containing significant amounts of vacuum energy, and demonstrate that
such universes also give rise to various forms of stasis between vacuum energy and either matter or
radiation. We also demonstrate the existence of several forms of “triple stasis” during which the abundances
of matter, radiation, and vacuum energy all simultaneously remain fixed despite cosmological expansion.
We further describe several close variants of stasis which we call “quasi-stasis” and “oscillatory stasis,” and
discuss the circumstances under which each of these can arise. Finally, we develop a general formalism for
understanding the emergence of stasis within BSM cosmologies irrespective of the number or type of
different energy components involved. Taken together, these results greatly expand the range of theoretical
and phenomenological possibilities for the physics of the early universe, introducing new types of
cosmological eras which may play an intrinsic and potentially inevitable role within numerous BSM
cosmologies.
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I. INTRODUCTION, MOTIVATION,
AND BASIC IDEA

Many theories of physics beyond the Standard Model
(BSM) predict the existence of infinite towers of unstable
states. In theories involving extra spacetime dimensions,
such states might be the Kaluza-Klein (KK) states asso-
ciated with the spectra of quantized momenta in the
compactified dimensions. Alternatively, in theories with
dark sectors consisting of strongly coupled gauge theories,
such states might be the infinite towers of increasingly
heavy bound-state resonances. Likewise, in string theory,
such towers of states can take the form of not only the
Kaluza-Klein and winding-mode states associated with the
compactification geometry but also the infinite towers of

fundamental string resonances which represent the quan-
tized excitations of the fluctuating strings and branes
themselves. In fact, some BSM models can contain
mixtures of all of these states, with mass scales that depend
on the particular BSM model under study.
In general, such states are likely to be unstable. As a

result, they will decay, either to lighter states within the
same tower or directly to Standard-Model states. The
heavier states will generally decay first since they are
likely to have the largest decay widths for a given final
state. Likewise, for a given initial state, the largest decay
widths will generically arise for decays to the lightest
available final states, thereby endowing such states with
considerable kinetic energies and rendering them relativ-
istic. Such decay products may therefore be considered as
functionally equivalent to radiation. Of course, the detailed
properties of such decays will depend on the particular
BSM model under study. However, as a general feature, we
can expect the different states in our tower to decay
sequentially to very light states, with the heavier states
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decaying first, then the next-heaviest states, and so forth
down the tower. With exceedingly large (or infinite) towers
of states, this decay sequence may extend over a significant
period of time before finally terminating once the lightest
states have decayed.
In Ref. [1], we considered the cosmological implications

of such extended decay sequences occurring in the early
universe and found that such extended decay sequences can
lead to a surprising cosmological phenomenon which we
called “stasis.” During this form of stasis, the abundances
of matter and radiation in the universe remain constant
across extended cosmological epochs even though the
universe continues to expand. At first glance, it might
seem that such a phenomenon is impossible. After all, any
cosmological epoch consisting of both radiation and matter
will transition from radiation dominated to matter domi-
nated, purely as a result of cosmological expansion. This
simple observation is a consequence of the fact that the
energy density associated with matter scales as a−3 where a
is the cosmological scale factor, while that of radiation
scales as a−4. Thus, as the universe expands, an increasing
fraction of the total energy density takes the form of matter
rather than radiation, thereby causing the matter abundance
to rise and the radiation abundance to fall. However, such a
transition from radiation domination to matter domination
need not occur if the BSM model in question gives rise to
counterbalancing effects which convert matter back into
radiation [1–3].
In Ref. [1], we demonstrated that such an extended decay

sequence can furnish precisely the sort of counterbalancing
effect that is needed, converting matter (in the form of the
original infinite towers of heavy states) into radiation (in the
form of the decay products, either photons or other highly
energetic light states). Indeed, as demonstrated in Ref. [1],
this counterbalancing process can persist across many
e-folds of cosmological expansion as the decays work
their way down the tower. Moreover, this counterbalancing
effect can precisely compensate for the effects of cosmo-
logical expansion, so that a period of bona fide stasis ensues
during which the abundances of matter and radiation
remain constant throughout this entire epoch. Quite
remarkably, this possibility requires no fine-tuning and
actually emerges as a global attractor within the relevant
cosmological framework [1–3]. Moreover, despite this
attractor behavior, we demonstrated in Ref. [1] that such
matter/radiation stasis epochs ultimately have a finite
duration, ending naturally when the lightest states at the
bottom of the tower decay. Thus, the universe not only
enters into a stasis epoch but also emerges from it in a
natural way. Indeed, a similar kind of stasis between matter
and radiation can also arise through the decays of primor-
dial black holes [2,3].
The primary goal of this paper is to extend this

discussion to include universes which contain significant
amounts of vacuum energy. First, we will investigate the

extent to which BSM physics can give rise to a two-
component stasis within a universe consisting of vacuum
energy and matter. We will then seek to understand whether
we can similarly achieve a two-component stasis between
vacuum energy and radiation. Finally, we will go for broke
and ask whether it is possible to have a “triple stasis” in
which vacuum energy, matter, and radiation can all simul-
taneously be in stasis with each other. Equally importantly,
wewill also investigate whether such forms of stasis require
fine-tuning, or whether they follow the example of matter/
radiation stasis and also emerge as cosmological attractors.
We will also construct a “phase diagram” for stasis which
will enable us to understand how all of these different forms
of stasis can merge and transition between each other as we
change the underlying parameters within our BSM models.
Ultimately, we shall find that all of these new forms of

stasis can indeed exist and emerge naturally from BSM
physics. This in turn reinforces our belief that the stasis
phenomenon is in fact a fairly generic and robust feature in
certain types of cosmologies involving BSM physics.
One important subtlety in our work concerns the manner

in which we incorporate vacuum energy into our discussion
of stasis. At first glance, it might seem that vacuum energy
can be treated simply as just another cosmological fluid
whose pressure p and energy density ρ are related via the
equation of state p ¼ −ρ (i.e., with an equation-of-state
parameter w ¼ −1). However, as we shall discuss, naïvely
taking w ¼ −1 leads to a slew of important mathematical
and physical complications. For this reason, one important
aspect of our work is to develop a method in which we
might successfully model vacuum energy. However, as we
shall demonstrate here and in Ref. [4], stasis is possible and
emerges naturally regardless of the particular manner in
which vacuum energy is modeled.
How to model vacuum energy is not the only subtlety we

shall encounter. For example, we shall find that there are
often multiple ways of performing certain critical calcu-
lations. While some methods work best in certain contexts,
other methods work best in other contexts. Accordingly,
with an eye towards potential future applications of our
work, in this paper we shall outline all relevant methods of
performing certain calculations and demonstrate how they
relate to each other.
This paper is organized as follows. First, in Sec. II A, we

review the results of Ref. [1] which focused on stasis
between matter and radiation. We do this not only as
review, but also in order to establish our overall notation
and calculational procedures. In Sec. II B, we then extract
certain general lessons from this example—general lessons
which will prove critical later in this paper as we expand the
scope of our analysis. Then, in Sec. III, we begin our
discussion of how vacuum energy may be introduced into
this picture. It is here that we discuss the subtleties
associated with the introduction of vacuum energy into
the stasis framework, but we ultimately demonstrate that a

DIENES, HEURTIER, HUANG, TAIT, and THOMAS PHYS. REV. D 109, 083508 (2024)

083508-2



similar stasis can be achieved between vacuum energy and
matter once these subtleties are satisfactorily addressed. In
Sec. IV we then demonstrate that a similar pairwise stasis
can exist between vacuum energy and radiation. Finally, we
conclude our discussion of pairwise stases in Sec. V by
outlining various elements of their common algebraic
structure.
Section VI in some sense serves as the central focal point

of this paper. In this section, pulling together our results
from previous sections and extending them in certain
critical ways, we demonstrate that we can even achieve
a triple stasis involving vacuum energy, matter, and
radiation simultaneously. As we shall see, this is a highly
nontrivial result because the existence of three different
pairwise stases between three different energy components
does not generally imply the existence of a triple stasis
amongst them all simultaneously. Indeed, we shall find that
several additional constraints must be satisfied in order to
allow such a triple stasis to exist. Fortunately, these
constraints are not severe, and many BSM cosmologies
give rise to triple stasis as well.
In Sec. VII, we then turn our attention to the attractor

behavior associated with these new forms of stasis.
We ultimately find that all of the stasis solutions we
examine in this paper are indeed global attractors.
Likewise, in Sec. VIII, we present a “phase diagram” for
the stasis phenomenon and demonstrate how the different
types of stasis we have examined in this paper are actually
different “phases” of the same stasis phenomenon in
different limits of the underlying parameter space.
Along the way we also develop a general formalism

which enables a general study of stasis regardless of the
number and types of different energy components involved.
In this way we also isolate the underlying ingredients that
allow stasis to exist. With these insights in hand, in Sec. IX
we then investigate what happens when some, but not all, of
these ingredients are present. In this way, we discover
several new “variants” of the original stasis idea. One of
these, discussed in Sec. IX A, is a new theoretical pos-
sibility in which the cosmological abundances of different
energy components are not strictly constant but instead
exhibit highly suppressed time evolution. This too is not
seen in the standard cosmological timelines, but may also
represent a valid possibility for early-universe physics in
certain situations. We shall refer to this phenomenon as
quasi-stasis. We also discover a different variant of stasis—
one in which the abundances are again not constant but
instead oscillate around their central stasis values. This
phenomenon, which we shall call oscillatory stasis, is
discussed in Sec. IX B. Yet another possibility is discussed
in Sec. IX C. We then make concluding remarks and
present ideas for further research in Sec. X.
Just as in Ref. [1], our main interest in this paper is the

stasis phenomenon itself—i.e., the existence of stable
mixed-component cosmological eras—and the manner in

which such cosmologies emerge from BSM physics.
Needless to say, phenomenological constraints may make
it difficult for an epoch of stasis to appear within certain
portions of the standard ΛCDM cosmological timeline
(particularly those near or after big-bang nucleosynthesis).
Indeed, such phenomenological constraints in turn might
be used in order to constrain the range of possible BSM
theories governing physics at higher energy scales.
However, other regions of parameter space may be able
to accommodate stasis epochs without difficulty. In this
paper we shall therefore study our BSM-inspired realiza-
tions of stasis as general theoretical phenomena, and defer
discussion of their various phenomenological implications
and constraints to future work. That said, the emergence of
these different forms of stasis within BSM cosmologies
gives rise to a host of new theoretical and phenomeno-
logical possibilities for early-universe model-building
across the entire cosmological timeline. Such possibilities
are therefore ripe for future exploration.

II. MATTER/RADIATION STASIS

In this section we begin by reviewing the results of
Ref. [1] concerning the possibility of stasis between matter
and radiation. As discussed in the Introduction, our purpose
for including this review is two-fold. First, our analyses of
each kind of stasis that we shall be discussing in subsequent
sections can be patterned after our discussion of this case.
This section will therefore introduce the main ideas and
establish our notation. But second, we shall find that many
of the ingredients of this matter/radiation stasis will become
part of the larger triple-stasis structure that we shall
eventually construct in Sec. VI. Thus it will be important
to recall the details of this case before proceeding further.

A. Algebraic analysis

We begin, as in Ref. [1], by assuming a flat Friedmann-
Robertson-Walker (FRW) universe containing two compo-
nents: a tower of matter states ϕl where the indices
l ¼ 0; 1; 2;…; N − 1 are assigned in order of increasing
mass; and radiation (collectively denoted γ) into which the
ϕl can decay. This radiation may consist of photons or
other highly relativistic particles. We shall let ρl and ργ
denote the corresponding energy densities and Ωl and Ωγ

the corresponding abundances. We shall also assume that
the dominant decay mode of the ϕl is into radiation, and let
Γl denote the corresponding decay rates. Note that in this
section we shall not require that the ϕl components be
scalars, and indeed any (nonrelativistic) matter fields are
acceptable. We shall also implicitly assume that N is large
(or potentially even infinite).
Recall that for any energy density ρi (where i denotes

matter, radiation, or vacuum energy), the corresponding
abundance Ωi is given by
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Ωi ≡ 8πG
3H2

ρi; ð2:1Þ

where H is the Hubble parameter and G is Newton’s
constant. From this it follows that

dΩi

dt
¼ 8πG

3

�
1

H2

dρi
dt

− 2
ρi
H3

dH
dt

�
: ð2:2Þ

We can simplify this expression through the use of the
Friedmann “acceleration” equation for dH=dt, which in a
universe consisting of only matter and radiation takes the
form

dH
dt

¼ −H2 −
4πG
3

�X
i

ρi þ 3
X
i

pi

�

¼ −
1

2
H2ð2þΩM þ 2ΩγÞ

¼ −
1

2
H2ð4 −ΩMÞ: ð2:3Þ

Note that in passing to the second line we have defined the
total matter abundance ΩM ≡P

lΩl, and in passing to the
third line we have imposed the constraint ΩM þ Ωγ ¼ 1, as
suitable for a universe containing only these two energy
components. Substituting Eq. (2.3) into Eq. (2.2) we then
obtain

dΩi

dt
¼ 8πG

3H2

dρi
dt

þHΩið4 −ΩMÞ; ð2:4Þ

whereupon taking i ¼ M (for the total matter abundance) or
i ¼ γ (for the total radiation abundance) yields

dΩM

dt
¼ 8πG

3H2

X
l

dρl
dt

þHΩMð4 −ΩMÞ;

dΩγ

dt
¼ 8πG

3H2

dργ
dt

þHΩγð4 −ΩMÞ: ð2:5Þ

These are thus general relations for the time evolution of
ΩM and Ωγ in terms of dρl=dt and dργ=dt in a universe
consisting of matter and radiation.
Given the relations in Eq. (2.5), our final step is to insert

appropriate “equations of motion” for dρl=dt and dργ=dt.
Since each ϕl is assumed to decay into radiation γ with rate
Γl, and given that each decay process conserves energy,
these equations of motion are given by

dρl
dt

¼ −3Hρl − Γlρl;

dργ
dt

¼ −4Hργ þ
X
l

Γlρl: ð2:6Þ

While the final term on each line reflects the effects of the
decays, the first term on the right side of each line reflects

the redshifting effects of cosmological expansion for matter
and radiation respectively. Given these expressions for
dρl=dt and dργ=dt, we find that Eq. (2.5) then takes the
form

dΩM

dt
¼ −

X
l

ΓlΩl þHðΩM −Ω2
MÞ ð2:7Þ

with dΩγ=dt ¼ −dΩM=dt.
We are seeking a steady-state “stasis” solution in

which ΩM and Ωγ are constant. Clearly such a solution
will arise if the effects of the ϕl decays are precisely
counterbalanced by the cosmological expansion. We
therefore wish to impose, at the very minimum, the
condition that dΩM=dt ¼ 0, which from Eq. (2.7) yields
the constraint

X
l

ΓlΩl ¼ HðΩM −Ω2
MÞ: ð2:8Þ

However, it is not sufficient for this condition to hold only
for an instant of time—we want this condition to hold over
an extended interval of time. In order to achieve this, we
shall actually demand something stronger, namely that
this condition hold for all times t. In imposing this latter
constraint we are actually implicitly demanding an eternal
stasis, one without beginning or end. However, once we
understand the conditions that characterize such an eternal
stasis state, we shall then discuss the physics that will
actually restrict this stasis state to finite duration, essen-
tially introducing not only a natural entrance into the
stasis state but also a natural exit from it.
Demanding that Eq. (2.8) hold for all time requires not

only that this equation hold at one given time, but also that
both sides of this equation have precisely the same time
dependence when the abundances are held fixed (which is
the defining property of the stasis configuration we are
hoping to understand). Let us therefore assume thatΩM and
Ωγ are fixed to their stasis values Ω̄M and Ω̄γ . Under these
stasis conditions, we can actually solve for the Hubble
parameter directly via Eq. (2.3), obtaining the exact
solution

HðtÞ ¼
�

2

4 − Ω̄M

�
1

t
⇒ κ̄ ¼ 6

4 − Ω̄M
ð2:9Þ

where κ̄ generally corresponds to the parametrization
HðtÞ ¼ κ̄=ð3tÞ during stasis. Indeed, from Eq. (2.9) we
verify the standard results that HðtÞ ¼ 2=ð3tÞ for Ω̄M ¼ 1
(i.e., for a matter-dominated universe), while HðtÞ ¼
1=ð2tÞ for Ω̄M ¼ 0 (i.e., for a radiation-dominated uni-
verse). Substituting Eq. (2.9) into Eq. (2.8) then yields our
matter/radiation stasis condition
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X
l

ΓlΩlðtÞ ¼
κ̄

3
Ω̄Mð1 − Ω̄MÞ

1

t

¼ �
2 − κ̄

�
Ω̄M

1

t
; ð2:10Þ

where the individual matter abundances ΩlðtÞ within this
eternal-stasis cosmology are given by

ΩlðtÞ ¼ Ω�
l

�
t
t�

�
2−κ̄

e−Γlðt−tð0ÞÞ: ð2:11Þ

Here t� is some fiducial time within this stasis epoch, while
Ω�

l ≡Ωlðt�Þ and Ω̄M ≡P
lΩlðtÞ for all t. By contrast, the

quantity tð0Þ within Eq. (2.11) denotes the (presumed
common) production time for the ϕl states, and thus serves
as the zero of the clock according to which the decay
lifetimes of these states are measured.
Of course, given our tower of components ϕl, the

condition in Eq. (2.10) cannot be strictly satisfied for all
times. Thus, we cannot truly have an eternal stasis. For
example, regardless of whether the tower of ϕl states is
finite or infinite, there is an early time immediately after
these states are produced at tð0Þ during which the decay
process is just beginning and thus will not yet have grown
sufficient to counterbalance cosmological expansion.
Indeed, the very presence of a production time tð0Þ within
Eq. (2.11) in some sense invalidates the assumption of a
truly eternal stasis. Likewise, there will eventually come a
time at which all of the decays will have essentially
concluded, at which point we expect our period of stasis
to end. However, the critical issue is whether there exist
solutions for the spectrum of decay widths fΓlg and
abundances fΩlg across our tower of states which will
lead to an extended period of stasis during the sequential
decay process.
Our assertion in this paper is that many well-motivated

theories of physics beyond the Standard Model give rise to
towers of states with exactly this property. In order to study
this question in a general way, we observe—as discussed in
the Introduction and in Ref. [1]—that many well-motivated
BSM theories give rise to infinite towers of states ϕl whose
decay widths and initial abundances either exactly or
approximately satisfy scaling relations of the forms

Γl ¼ Γ0

�
ml

m0

�
γ

; Ωð0Þ
l ¼ Ωð0Þ

0

�
ml

m0

�
α

; ð2:12Þ

where α and γ are general scaling exponents, where the ϕl
mass spectrum takes the form

ml ¼ m0 þ ðΔmÞlδ ð2:13Þ

with m0 ≥ 0, Δm > 0, and δ > 0 all treated as general free
parameters, and where the superscript “(0)” within

Eq. (2.12) denotes the time t ¼ tð0Þ at which the ϕl states
are initially produced (thereby setting a common clock for
the subsequent ϕl decays). For example, if the ϕl
are the KK excitations of a five-dimensional scalar field
compactified on a circle of radius R (or a Z2 orbifold
thereof), we will have either fm0;Δm; δg ¼ fm; 1=R; 1g or
fm0;Δm; δg ¼ fm; 1=ð2mR2Þ; 2g, depending on whether
mR ≪ 1 or mR ≫ 1, respectively, where m denotes the
four-dimensional scalar mass [5,6]. Alternatively, if the ϕl
are the bound states of a strongly coupled gauge theory, we
have δ ¼ 1=2, where Δm and m0 are determined by the
Regge slope and intercept of the strongly coupled theory,
respectively [7]. The same values also describe the exci-
tations of a fundamental string. Thus δ ¼ f1=2; 1; 2g can
serve as compelling “benchmark” values. Likewise, the
exponent γ is ultimately governed by the particular ϕl
decay mode. For example, we will have γ ¼ 2d − 7 if each
ϕl state decays to photons through a dimension-d contact
operator of the form Ol ∼ clϕlF=Λd−4 where Λ is an
appropriate mass scale and where F is an operator built
from photon fields. Thus, values such as γ ¼ f3; 5; 7g serve
as relevant benchmarks. Indeed, γ ¼ 1 is also relevant in
cases in which ϕl are scalars decaying into fermions.
Finally, α is determined by the original production mecha-
nism for the ϕl fields. For example, it is easy to see that
α < 0 for misalignment production [5,6], while α can
generally be of either sign for thermal freeze-out [8].
Our goal will then be to determine for which combina-

tions of these scaling exponents ðα; γ; δÞ and other dimen-

sionful parameters ðm0;Δm;Γ0;Ω
ð0Þ
0 Þ an extended stasis

state may arise. In this way, through a general study of these
scaling exponents and dimensionful parameters, we can
survey the effects of many different BSM theories at
once. Of course, within the context of this model, we shall
assume that ΩM ¼ 1 at t ¼ tð0Þ before the decay process
has begun. This reflects the fact that no radiation has yet
been generated at t ¼ tð0Þ, and that our universe at that
time consists of only the initial ϕl states. This in turn
requires that we choose the overall normalization

Ωð0Þ
0 ¼ �P

N−1
l¼0ðml=m0Þα

�−1.
For future use, it will prove convenient to define

two different dimensionless combinations of the above
parameters:

η≡ αþ 1

δ
; ξ≡ 2

κ̄

m0

Γ0

: ð2:14Þ

Roughly speaking, we shall find that η describes how the
energy density scales per unit mass across the tower, while
ξ describes the decay rates of our tower components (as
parametrized through Γ0) relative to the overall rate of
cosmological expansion during stasis (as parametrized
through κ̄). Indeed many of our future results will depend
directly on these two quantities. Unlike η, however, we
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shall find that ξ makes its appearance in our equations only
after our system has reached stasis. It is for this reason that
ξ has been defined directly in terms of κ̄ rather than κ itself.
Thus ξ has a fixed value during stasis.
Given the scaling relations in Eqs. (2.12) and (2.13), we

can now evaluate the conditions for stasis by evaluating the
sum which appears on the left side of our constraint
equation in Eq. (2.10). Let us first focus on the behavior
of ΩlðtÞ. In Eq. (2.11), we provided an expression for
ΩlðtÞ in terms of a fiducial time t� already within stasis, but
in order to connect with the abundance-scaling relation in
Eq. (2.12) we would like to replace t� with the production
time tð0Þ. However, the expression in Eq. (2.11) assumed an
eternal stasis that was already in effect at the fiducial time
t�. Indeed, it is for this reason that we were able to assume
within Eq. (2.11) that ΩlðtÞ accrues a net gravitational
redshift factor ðt=t�Þ2−κ̄ between t� and t. However, as
discussed above, these assumptions will no longer be true if
t� is replaced by tð0Þ, since we now expect that stasis will
not emerge until some time after tð0Þ.
For simplicity and generality, we shall therefore let

hðti; tfÞ denote the net gravitational redshift factor that
accrues between any two times ti and tf. We thus have

ΩlðtÞ ¼ Ωð0Þ
l hðtð0Þ; tÞe−Γlðt−tð0ÞÞ: ð2:15Þ

Note that this h-factor is necessarily l-independent since
the gravitational redshift affects all components equally. It
turns out that there are important subtleties associated with
our use of an h-factor in this way, but these subtleties will
not affect our results. We shall therefore defer a more
detailed discussion of this h-factor until Sec. VI E.
However, given Eq. (2.15), we then find that

X
l

ΓlΩlðtÞ ¼ Γ0Ω
ð0Þ
0 hðtð0Þ; tÞ

×
X
l

�
ml

m0

�
αþγ

e−Γ0

�
ml
m0

�
γðt−tð0ÞÞ; ð2:16Þ

where we have used the scaling relations in Eq. (2.12).
In order to evaluate this sum, we can pass to a continuum

limit in which we have a large number of ϕl states. We
can therefore imagine that the spectrum of decay times
τl ≡ Γ−1

l is nearly continuous, merging to form a continu-
ous variable τ. We can likewise view the discrete spectrum
of energy densities ρl and abundances Ωl as continuous
functions ρðτÞ and ΩðτÞ where the states are now indexed
by the continuous τ-variable corresponding to their decay
times. This allows us to rewrite our expressions such that l
is eliminated in favor of τ. For example, we replace ml=m0

with ðΓ0τÞ−1=γ . We can then convert the l-sum over states
to a τ-integral, i.e.,

X
l

⟺

Z
dτ nτðτÞ; ð2:17Þ

where nτ ≡ jdl=dτj is the density of states per unit τ.
Of course, this passage from the sum to the integral

involves a number of approximations whose effects are
discussed in Ref. [1]. One important observation is that this
approximation becomes increasingly accurate for times t
which are far from the “boundary” (or “edge”) effects
associated with the initial entry into or exit from the stasis
epoch. For a finite tower ϕl with l ¼ 0; 1;…; N − 1 with
N ≫ 1, this implies that our integral approximation will be
especially valid for times t within the range

τN−1 ≪ t ≪ τ0 ð2:18Þ

where of course we recall our original assumption that
tð0Þ < τN−1, where tð0Þ is the initial production time for the
ϕl tower. The requirement that t ≫ τN−1 implies that we
are focusing on a time interval after which a sizable number
of states at the top of the tower have already decayed from
matter to radiation. This allows our integral approximation
to capture the general behavior of our system after any
initial transient effects have dissipated and the flow of
energy density from matter to radiation is well underway.
Evaluating the sums in Eq. (2.16) in this way and

assuming γ > 0 and η > 0 leads to the result

X
l

ΓlΩlðtÞ ¼
Γ0Ω

ð0Þ
0

γδ

�
m0

Δm

�
1=δ

Γ
�
η

γ
þ 1

�

× hðtð0Þ; tÞ�Γ0ðt − tð0ÞÞ�−1−η=γ; ð2:19Þ

where ΓðzÞ is the Euler gamma function. Likewise, letting
t� continue to denote a fiducial time at which stasis has
already developed, we can write [1]

hðtð0Þ; tÞ ¼ hðtð0Þ; t�Þhðt�; tÞ

¼ hðtð0Þ; t�Þ
�
t
t�

�
2−κ̄

: ð2:20Þ

Substituting this result into Eq. (2.19), we see thatP
l ΓlΩl will scale as 1=t—as required by Eq. (2.10)—

only if we take t ≫ tð0Þ and require

η

γ
¼ 2 − κ̄: ð2:21Þ

Equivalently, through Eq. (2.9), this yields

Ω̄M ¼ 2γ − 4η

2γ − η
: ð2:22Þ

Thus, for t ≫ tð0Þ and for any values of η and γ within the
ranges
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γ > 0; 0 < η ≤
γ

2
; ð2:23Þ

our system has a stasis configuration during which Ω̄M is
given in Eq. (2.22). Indeed, it is further shown in Ref. [1]
that this state is a global attractor, and thus our system will
evolve into the stasis state even if it does not begin in stasis
at t ¼ tð0Þ. This attractor behavior is discussed further in
Sec. VII. The stasis state then ends when the last ϕl has
decayed. Indeed, it is shown in Ref. [1] that this stasis state
will generally last for N s e-folds, where

N s ≈
2γδ

4 − Ω̄M
logN: ð2:24Þ

Here N is the number of ϕl states in the tower. We thus see
that we can adjust the number N s of e-folds associated
with the stasis epoch simply by adjusting N.
In Fig. 1 we illustrate this matter/radiation stasis by

plotting the numerical results that emerge from an exact
Boltzmann evolution of our individual abundances within
the cosmology defined by the successive decays of our ϕl
states. In the left panel we plot the individual abundances
Ωl (shown in orange/blue) as well as the corresponding
total matter abundanceΩM (red) as functions of the number
N of e-folds since the initial time of production. The
individual abundances ΩlðtÞ exhibit complex behaviors,
first rising due to cosmological expansion and then falling
due to ϕl decay. However, as time advances, this happens

in such a way that the identity of the ϕl state with the
largest abundance keeps changing as the decays work their
way down the ϕl tower. This causes the individual ΩlðtÞ
abundances to keep crossing each other in an interleaving,
cross-hatched fashion, as shown. This cross-hatched behav-
ior for the individual abundances is a hallmark of the stasis
state. Indeed, despite the complex behaviors exhibited by
the individual abundances ΩlðtÞ, we see that the system
quickly evolves into a stasis state in which their sum ΩM
becomes constant.
In the right panel of Fig. 1 we plot the total matter

abundances ΩM as functions of N for a variety of different
values of ðα; γÞ satisfying the constraints in Eq. (2.23). In
each case we see that the system settles into a prolonged
stasis epoch lasting many e-folds, with a corresponding
stasis abundance Ω̄M predicted by Eq. (2.22). Ultimately, in
all cases, the stasis epoch ends as we approach the final
decays of the lightest modes.

B. General lessons going forward

Having reviewed the main results of Ref. [1], let us now
extract several lessons from this analysis which will serve
as critical guideposts for our subsequent work in this paper.
First, we note that our main stasis constraint in Eq. (2.10)

has been formulated by demanding that dΩM=dt ¼ 0 for all
times t during stasis. It is this which led to the constraint
equation in Eq. (2.21) and to the result for Ω̄M in Eq. (2.22).
However, an alternative approach would have been to
proceed by demanding the condition

FIG. 1. Matter/radiation stasis. Left panel: the individual matter abundances Ωl (shown with colors ranging from orange to blue) and
the corresponding total matter abundance ΩM (red), plotted as functions of the numberN of e-folds since the initial time of production.
Even though the individual abundances Ωl exhibit complex behaviors which are affected by cosmological expansion as well as ϕl
decay, the system quickly evolves into a stasis state in which their sum ΩM becomes constant. These curves were generated through a
direct numerical solution of the Boltzmann equations corresponding to our discrete tower of decaying states without invoking any
approximations, and correspond to the parameter choices ðα; γ; δÞ ¼ ð1; 7; 1Þ—for which Ω̄M ¼ 1=2—with Δm ¼ m0, N ¼ 300, and
ΓN−1=Hð0Þ ¼ 0.01. Right panel: the total matter abundances ΩM, plotted as functions of N for different values of ðα; γÞ satisfying the
constraints in Eq. (2.23). For each plot we have taken δ ¼ 1, Δm ¼ m0, N ¼ 105, and Hð0Þ=ΓN−1 ¼ 0.1. In each case we see that the
system settles into a prolonged stasis epoch lasting many e-folds, with a corresponding stasis abundance Ω̄M predicted by Eq. (2.22).
Ultimately, in all cases, the stasis epoch ends as we approach the final decays of the lightest modes. Both figures are taken from Ref. [1].
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X
l

ΩlðtÞ ¼ Ω̄M ð2:25Þ

where each ΩlðtÞ is given in Eq. (2.11). This simple
condition would then replace the condition in Eq. (2.10).
Evaluating the sum within Eq. (2.25) would then lead to an
integral that is similar to the one we encountered between
Eqs. (2.16) and (2.19), and demanding that the resulting
quantity be independent of time would then produce the
same results as in Eqs. (2.21) and (2.22).
Of course, these two approaches are not distinct: the

former is simply the time derivative of the latter. Indeed, the
requirement that

P
l ΩlðtÞ be time independent during

stasis is ultimately tantamount to the constraint that the
quantities in Eq. (2.10) scale as 1=t during stasis. We shall
therefore refer to these two possible formulations of our
stasis constraints as employing either the differential
approach or the integral approach. However, these
approaches generally have different advantages. The inte-
gral approach is more direct, but it requires having an
explicit solution for the abundances ΩlðtÞ such as in
Eq. (2.11) or Eq. (2.15). For complicated cosmologies,
these solutions may not always be easily determined. By
contrast, the differential approach does not require this
information. Moreover, because the differential approach is
the time derivative of the integral approach, it explicitly
describes the flow of energy densities and abundances
between our different energy components. Indeed, as we
shall see more explicitly in Sec. VI, the left side of
Eq. (2.10) functions as the driving “pump” of energy
density from matter to radiation, while the right side
depends on the Hubble parameter and thus captures the
redshifting effects of cosmological expansion.
Thus, going forward, we shall utilize either the derivative

forms of our stasis constraints, as in Eq. (2.10), or the
integral forms of such stasis constraints, as in Eq. (2.25),
choosing whichever form is calculationally cleaner given
the particular stasis scenario under study. Indeed, we shall
even occasionally find that a mixture of both approaches is
needed in order to obtain certain results.
A second relevant issue concerns whether there are any

further constraints that should be imposed in order to
achieve a stasis epoch. After all, our analysis in Sec. II A
merely ensured that the left side of the stasis constraint in
Eq. (2.10) has the required 1=t scaling dependence. Indeed,
this is what gave rise to the constraint in Eq. (2.21). We
shall refer to such constraints as scaling constraints.
However, it might seem that there is an additional con-
straint that we should also impose, namely that which
ensures the correct prefactor in Eq. (2.10). In general such
prefactor constraints may contain additional information
beyond that which emerges from the scaling constraints.
This issue is more subtle than it may at first appear.

Given the result in Eq. (2.19), we see that we can writeP
l ΓlΩlðtÞ ¼ C0t−1 where the prefactor C0 is given by

C0 ≡ 1

γδ

�
m0

Δm

�
1=δ

Γ
�
η

γ
þ 1

�
hðtð0Þ; t�Þ

Ωð0Þ
0

ðΓ0t�Þη=γ

¼ 1

γδ

�
m0

Δm

�
1=δ

Γ
�
η

γ
þ 1

�
Ω0ðτ0ÞeΓ0ðτ0−tð0ÞÞ: ð2:26Þ

In writing Eq. (2.26) we have used Eq. (2.21) in order to
simplify our expressions, and we have likewise defined
τ0 ≡ Γ−1

0 . In this connection, we note that in passing to the
second line of Eq. (2.26) the value of C0 has become
independent of the choice of t�, as it must, since t� is only a
fiducial time with no physical significance.
In principle the result for C0 in Eq. (2.26) bears no

relation to the desired prefactor ð2 − κ̄ÞΩ̄M in Eq. (2.10).
However, if we calculate Ω̄M by directly evaluating the sum
in Eq. (2.25) by similarly utilizing our integral approxi-
mation and imposing the constraint in Eq. (2.21), we find
that

P
lΩlðtÞ ¼ C where C is the same expression as in

Eq. (2.26) except that the argument of the Euler gamma
function is now given by η=γ rather than η=γ þ 1. Using the
identity Γð1þ zÞ ¼ zΓðzÞ, we can therefore bundle these
results together in order to find that our two prefactors are
related to each other via

C0 ¼
�
η

γ

�
C ¼ ð2 − κ̄ÞC: ð2:27Þ

Of course, this is only a relative relation between C and
C0—one which is independent of their individual absolute
sizes. However, it eliminates all of the complicated factors
such as those in Eq. (2.26) which arose from our conversion
of the discrete sum to an integral, and it is also consistent
with Eq. (2.10).
Given these results, the final remaining step is to

demonstrate that either of our two prefactors C or C0 takes
the correct absolute size—i.e., that

C ¼ Ω̄M; ð2:28Þ

or that

C0 ¼
�
η

γ

�
Ω̄M ¼ ð2 − κ̄ÞΩ̄M; ð2:29Þ

where Ω̄M is the matter abundance that ultimately emerges
during stasis. In conjunction with Eq. (2.27), this would
then guarantee the correct prefactors in Eq. (2.10). Indeed,
from Eq. (2.29) and the definition of C0 above Eq. (2.26),
we find that

X
l

ΓlΩlðtÞ ¼
�
η

γ

�
Ω̄M

1

t
ð2:30Þ

during stasis. However, this final absolute-prefactor con-
straint in Eq. (2.28) or (2.29) is unlike the others. Whereas
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our overall scaling constraint and relative-prefactor con-
straint are independent of the specific approximations
involved in passing from Eq. (2.16) to Eq. (2.19) [or
equivalently in obtaining a precise value for the discrete
sum

P
l ΩlðtÞ], the absolute-prefactor constraint in

Eq. (2.28) or (2.29) is highly sensitive to the details of
these approximations.
Fortunately, as discussed in Ref. [1], we need not worry

about this absolute-prefactor constraint because it basically
functions as an overall normalization constraint, and the
proper normalizations of these sums are ultimately guar-
anteed by the attractor behavior of this system. Indeed, even
if this overall normalization constraint is not initially
satisfied, the system will inevitably flow towards the stasis
attractor solution in which the proper overall normalization
comes into balance. This feature is illustrated explicitly in
Fig. 1 and in Ref. [1].
It is important to understand how this balancing occurs.

A priori, the individual abundances are given in Eq. (2.15)
where hðtð0Þ; tÞ represents the net gravitational redshift
factor that accrues between the original production time tð0Þ

and any later time t. Thus, hðtð0Þ; tÞ carries with it an
explicit time dependence. Indeed, because this factor is l
independent, this same factor also appears within the total
sum

P
l ΩlðtÞ. However, once our system settles into a

stasis configuration, hðtð0Þ; tÞ factorizes as in Eq. (2.20)
where t� is any fiducial time during stasis. The factor
ðt=t�Þ2−κ̄ within Eq. (2.20) is then cancelled as part of the
overall scaling constraints, leaving behind the time-
independent factor hðtð0Þ; t�Þ which appears in Eq. (2.26).
This factor thus represents the part of the net redshift that
occurs between tð0Þ and t�, and its value has already been
dynamically adjusted during the prestasis epoch so as to
ensure that C ¼ Ω̄M.
Phrased somewhat differently, we may define

hðtÞ≡ hðtð0Þ; tÞ
�
t
t�

�
−2þκ̄

: ð2:31Þ

In general, this quantity is time dependent and evolves
significantly during the time interval from tð0Þ to t� prior to
the emergence of stasis. However, upon reaching t�, we
know that our system has entered the stasis regime. The
quantity hðtÞ is then a constant, and from Eq. (2.20) we see
that this constant is what we have been calling hðtð0Þ; t�Þ.
Indeed, during the prestasis epoch when hðtÞ was still
evolving, this quantity was heading towards (and ultimately
assumed) precisely the value hðtð0Þ; t�Þ needed to ensure
that C ¼ Ω̄M. We will discuss these h-factors in further
detail in Sec. VI E.
There is also one additional constraint that is worthy of

note. As indicated below Eq. (2.16), it was necessary to
assume in passing from Eq. (2.16) to Eq. (2.19) that γ > 0
and that

η > 0: ð2:32Þ

Indeed, if our initial parameters had satisfied η ¼ 0, we
would have obtained a logarithmic (rather than power-law)
dependence on t, and there would have been no hope of
achieving a true stasis in such a case because of the
resulting logarithmic drift.
Of course γ > 0 is a perfectly natural assumption for our

underlying model, since this implies that our decay widths
grow with l—i.e., that the more massive ϕl states decay
more rapidly than do the lighter ϕl states. By contrast, it is
not a priori required that η > 0 (or equivalently that
αþ 1=δ > 0). In principle, this therefore becomes an
additional constraint that must be imposed on our model
in order to avoid logarithmic drift and achieve stasis.
However, it turns out that this constraint is already
guaranteed by Eq. (2.21): since purely matter-dominated
and radiation-dominated universes have κ̄ ¼ 2 and κ̄ ¼ 3=2
respectively, any universe exhibiting a two-component
stasis between matter and radiation must necessarily have
3=2 < κ̄ < 2. Eq. (2.21) then implies that η > 0. The
constraint η > 0 is also already implicit within Eq. (2.23).
Thus, to summarize, we see that in general there are

several kinds of constraints that must be satisfied in order to
achieve stasis:

(i) overall scaling constraints such as that in Eq. (2.21);
(ii) relative prefactor constraints such as that

in Eq. (2.27);
(iii) absolute prefactor constraints such as that in

Eq. (2.28) or (2.29) which ensure the correct overall
normalizations; and

(iv) constraints such as that in Eq. (2.32) which ensure
that there is no logarithmic drift, and that a true
power-law time dependence emerges from our sums
over states, ultimately to be cancelled through
cosmological redshifting effects.

In general, the absolute-prefactor constraints will be sat-
isfied as a consequence of the attractor behavior associated
with our stasis solutions when these solutions are indeed
attractors. However, a priori, each of the other constraints
is generally capable of yielding new restrictions on our
model or independent information concerning the proper-
ties of the resulting stasis. Of course, for the case of the
pairwise matter/radiation stasis we have examined here, we
have found that the relative-prefactor and logarithm-
avoidance constraints are already satisfied whenever the
overall scaling constraint is satisfied. In other words,
matter/radiation stasis may be viewed as an over-
constrained system which nevertheless gives rise to stasis
solutions because these different constraints happen to be
redundant (or subsumed within each other) without provid-
ing additional information. However, as we shall shortly
see, this will not always be the case.
We close this section with one final comment.

Throughout this section, we have been referring to
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Eq. (2.21) as a constraint equation. In reality, however, this
equation is not a constraint on our scaling exponents
ðα; γ; δÞ so much as a prediction for the value of κ during
the resulting stasis. Indeed, so long as our scaling expo-
nents are chosen to lie within the ranges specified in
Eq. (2.23), we see that Eq. (2.21) simply allows us to
calculate the corresponding value of κ̄, and this in turn
allows us [via Eq. (2.9)] to determine the stasis abundance
Ω̄M, as in Eq. (2.22). Thus, so long as our scaling exponents
are chosen to lie within the ranges specified in Eq. (2.23),
we will always obtain a stasis. We see, then, that our desire
to achieve matter/radiation stasis does not impose any
actual constraints on our model beyond those in Eq. (2.23);
indeed, stasis emerges quite robustly for all values of the
relevant parameters within these ranges. We shall never-
theless often refer to Eq. (2.21) and its cousins as constraint
equations in what follows.

III. VACUUM-ENERGY/MATTER STASIS

We now turn our attention to one of the main tasks of this
paper: the inclusion of vacuum energy into the stasis
discussion. In this section we begin by exploring the
possibility of a stasis between vacuum energy and matter,
and the ways in which this might arise from BSM
physics. Of course, we know that any epoch in which both
matter and vacuum energy are present and which is
initially matter-dominated will evolve—simply as the
result of cosmological expansion—into a vacuum-energy-
dominated epoch. This is because the matter energy density
falls like ρM ∼ a−3 as the universe expands, while the
vacuum-energy density ρΛ remains constant. Achieving
stasis between matter and vacuum energy therefore requires
a mechanism to counterbalance this effect and convert
vacuum energy back to matter.

A. Modeling vacuum energy
and the transition to matter

To study this, we begin with a discussion of how we
might introduce vacuum energy into our analysis. As we
shall see, this issue turns out to be surprisingly subtle and
requires some care.
By definition, vacuum energy has equation-of-state

parameter w ¼ −1. Indeed, such a state is pure potential
energy (this is the “vacuum energy”) and no kinetic energy.
One natural approach towards studying a stasis involving
vacuum energy and matter would therefore be to repeat the
analysis in Sec. II for matter/radiation stasis, only replacing
the equation of state of the initial ϕl components from
w ¼ 0 to w ¼ −1 until the moment they each undergo some
sort of transition to matter. We would then replace the
posttransition equation of state in Sec. II from w ¼ 1=3
(radiation) to w ¼ 0.
Of course, it would also be necessary to identify a

mechanism for this “transition”—i.e., to identify a general

process through which vacuum energy can be converted
into matter, in much the same way as the process of particle
decay converted matter into radiation in Sec. II. However, it
is not difficult to identify such a process. Let us consider the
coherent state consisting of the zero-momentum modes of a
scalar field ϕ of mass m. At early times, when the Hubble
parameter is large (with 3H ≫ 2m), this field is severely
overdamped and thus has little kinetic energy. This is
therefore a situation in which the energy of the field can be
considered pure potential energy (vacuum energy), with
equation-of-state parameter w ≈ −1. However, as the uni-
verse expands, the Hubble parameter generally drops. As a
result, the field eventually becomes underdamped (with
3H ≲ 2m) and begins to experience damped oscillations. In
general, these oscillations quickly virialize, whereupon the
energy of this field is split equally between potential and
kinetic energy. The corresponding equation-of-state param-
eter is then w ¼ 0, and the corresponding energy density
behaves as matter as far as issues pertaining to cosmologi-
cal expansion are concerned.
We thus see that the overdamped/underdamped transi-

tion at 3HðtÞ ¼ 2m provides a natural mechanism for
converting vacuum energy to matter, in exactly the same
way as particle decay at t ¼ 1=Γ provided a natural
mechanism in Sec. II for converting matter into radiation.
Of course, near the transition time, our field has a nonzero
kinetic energy and thus has neither w ¼ −1 nor w ¼ 0.
Indeed, during such a transition period, the energy density
of our field can be interpreted as a mixture of vacuum
energy and matter. However, our main point is that an
overdamped/underdamped transition has the net effect of
converting vacuum energy to matter. In the following
discussion, for the purpose of calculational simplicity,
we shall idealize this transition by disregarding the “tran-
sient” effects that arise near 3HðtÞ ≈ 2m, and instead
approximate our scalar field as having w ¼ −1 whenever
3HðtÞ > 2m and w ¼ 0 otherwise.
Given this understanding, we might attempt to generate a

long-lived vacuum-energy/matter stasis by initially assum-
ing a tower of coherent overdamped scalar fields ϕl with
masses ml and equations of state wl ¼ −1, in complete
analogy with the initial configuration in Sec. II. We would
then allow these ϕl states to undergo successive transitions
to an underdamped phase as the falling Hubble parameter
HðtÞ crosses the successive critical transition points 2ml=3.
Such underdamping transitions would then proceed down
the ϕl tower, just as before, and potentially establish a
stasis epoch along the way. Indeed, at any moment, the
lighter fields would still be in the overdamped phase while
the heavier fields will have already transitioned to the
underdamped phase.
This approach would clearly be the most straightforward

analog of the scenario discussed in Sec. II. Ultimately,
however, this approach does not work. The reason is
simple: such a system begins as pure vacuum energy, with
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a total equation-of-state parameter wtot ¼ −1. Such a
universe therefore has a Hubble parameter which is con-
stant and never falls. As a result, there is no possibility of
any fields becoming underdamped, and likewise no pos-
sibility of any subsequent transitions from vacuum energy
to matter. Indeed, such a system simply remains “stuck” in
its initial state, with no subsequent dynamics at all. There is
thus no way in which a true stasis can develop in such a
theory—we simply have the total initial abundances
ΩΛ ¼ 1 and ΩM ¼ 0 in perpetuity. Of course, this is itself
a kind of degenerate “stasis,” but it is uninteresting for our
purposes.
We shall therefore need to modify this naïve picture in

such a way that our system will actually evolve away from
its initial state, with ensuing cascading overdamped/under-
damped transitions that convert vacuum energy to matter.
There are several approaches we might follow in order to
achieve this:

(i) We could begin by positing that the initial state of our
system also includes some additional nonvacuum-
energy component. Such an additional energy com-
ponent would then introduce a nontrivial time
dependence for theHubble parameter, and this would
in turn eventually trigger the cascading overdamped/
underdamped transitions that we require. Unfortu-
nately, doing this requires that ourmodel now include
extra components beyond our initial tower of states
ϕl. While there is nothing wrong with this (and
indeed such additional components may ultimately
be well motivated on phenomenological grounds),
the introduction of such extra components beyond
our tower of ϕl states is not in the spirit of our
previous analysis and would introduce arbitrary new
features and parameters into our model.

(ii) A second option—indeed, one which is more
“minimal” and which does not introduce new
fields—would be to deform our model slightly by
imagining that our overdamped ϕl fields actually
have a small kinetic energy (i.e., a “slow roll”) in
addition to their potential energies. For algebraic
simplicity, we can incorporate this kinetic energy
into our model by imagining that each of our ϕl
fields has an arbitrary common fixed equation-of-
state parameter w in the range −1 < w < 0 prior to
becoming underdamped (after which we can assume
that each field transitions to having w ¼ 0, as
above). For example, we might consider w to be
extremely close to (but slightly greater than) −1. Our
model would then proceed exactly as before, with
sharp overdamped/underdamped transitions occur-
ring when 3HðtÞ ¼ 2ml. Indeed, in such a model,
nonzero values of the quantity wþ 1 would essen-
tially function as a “regulator” which allows us to
avoid the difficulties associated with taking w ¼ −1.
We could then define our case of interest—namely

that with “vacuum energy”—as the w → −1 limit of
this model. Indeed, as we shall find, the w → −1
limit is typically well behaved even if the precise
w ¼ −1 endpoint is not.

(iii) Finally, we could consider the full equations of
motion for the scalar fields ϕl without any approx-
imations. These equations are those of a damped
driven oscillator in which the Hubble damping terms
carry a nontrivial time dependence. Within an
arbitrary universe that has not yet reached stasis,
such equations of motion lack analytical solutions,
so this approach would necessarily be numerical.

The latter two approaches have complementary strengths
and weaknesses. Within the w > −1 approach we are
positing a relatively simple behavior for the ρl energy
densities, and thus this model can be understood and solved
analytically. Moreover, taking w > −1 as a regulator
successfully allows us to avoid having an initial Hubble
parameter which remains constant, thereby allowing the
dynamics of our system to “start” on its own. Indeed, we
shall find that this model yields results in the w → −1 limit
which match much of what we expect from a naïve
treatment in which we simply allow the vacuum-energy
component to have w ¼ −1 at the outset but in which the
dynamics is somehow “started” in other ways. Finally, this
model has the side benefit of allowing us to study the
prospects for achieving stasis for arbitrary w. In this way we
could thereby understand how the properties of the result-
ing stasis, if any, depend on w.
Unfortunately, this model, while suitable for under-

standing overall cosmological features associated with
stasis, lacks a microscopic (particle-physics) Lagrangian
description. By contrast, the full scalar-dynamics model has
a bona fide realization in terms of the physics of a scalar
field evolving in an external cosmology (i.e., subject to
Hubble friction). Such a model is thus the rigorous setting
for the 3H ¼ 2m transition that allows us to convert from
overdamped to underdamped behavior, or equivalently
from vacuum energy to matter. Although this model cannot
be solved analytically outside the stasis regime, a numerical
analysis is possible. Of course, within this approach, the
equation-of-state parameter w for each field during the
overdamped phase is not an input parameter over which we
have direct control, but is instead an output of the numerical
simulation. Indeed, w may not even be constant, nor will it
necessarily be the same for each field. In a similar way, the
value of w for each field after the field becomes under-
damped will not be strictly zero, but will also continue to
have a nontrivial time dependence. Thus, within this model
it is only an approximation to assert that the underdamped
phase results in pure “matter,” just as it is an approximation
to state that the overdamped phase is pure “vacuum energy”
with fixed w ¼ −1.
In this paper we shall adopt the general-w model (as

described in the second list item above), allowing w to lie

STASIS, STASIS, TRIPLE STASIS: A THEORETICAL … PHYS. REV. D 109, 083508 (2024)

083508-11



anywhere within the range −1 < w < 0. As we have
discussed, this will enable us to study the stasis phenome-
non analytically. This in turn will also allow us to determine
the conditions for stasis and ultimately study the behavior
of this model as w → −1. However, we shall study the full
dynamical-scalar model in Ref. [4], and we shall find that
stasis emerges within the dynamical-scalar model as well.
Indeed, our results here and in Ref. [4] will together allow
us to verify that these two models, despite their differences,
yield similar results. We shall therefore regard both models
as demonstrating that vacuum energy can be successfully
introduced into the overall stasis framework.

B. Stasis analysis for general w

As discussed above, we shall begin our analysis of
a possible vacuum-energy/matter stasis in the same way
as we did in Sec. II, specifically by assuming a flat
Friedmann-Robertson-Walker (FRW) universe containing
a tower of scalar fields ϕl with masses ml, where the
indices l ¼ 0; 1; 2;…; N − 1 are assigned in order of
increasing mass. At any time t, the fields for which
3HðtÞ > 2ml will be assumed to be overdamped with a
fixed equation-of-state parameter w which we can imagine
is close to (but greater than) −1. By contrast, the fields for
which 3HðtÞ < 2ml will be assumed to be underdamped,
with a fixed equation-of-state parameter w ¼ 0. Thus the
overdamped/underdamped transition at 3H ¼ 2ml con-
verts vacuum energy (or its close approximation) to matter
and proceeds down the tower as time advances. We shall let
ρΛ and ρM denote the total energy densities of this system
attributable to vacuum and matter respectively, while ρl
will denote the energy density associated with the indi-
vidual scalar field ϕl while it is still overdamped. We shall
also let ΩΛ, ΩM, and Ωl represent the corresponding
abundances.
Our analysis begins just as for matter/radiation stasis

in Sec. II. Indeed, for any energy density ρi (where
i ¼ Λ;M;l), the corresponding abundance Ωi continues
to be given by Eq. (2.1), from which Eq. (2.2) continues to
follow. However, the Friedmann “acceleration” equation
now takes the form

dH
dt

¼ −H2 −
4πG
3

�X
i

ρi þ 3
X
i

pi

�

¼ −H2 −
4πG
3

�ð1þ 3wÞρΛ þ ρM
�

¼ −
3

2
H2ð1þ wΩΛÞ; ð3:1Þ

or equivalently

κ ¼ 2

1þ wΩΛ
ð3:2Þ

where we generally identify κ through the parametrization

dH
dt

¼ −
3

κ
H2: ð3:3Þ

Substituting Eq. (3.1) into Eq. (2.2) we then obtain

dΩi

dt
¼ 8πG

3H2

dρi
dt

þ 3HΩið1þ wΩΛÞ; ð3:4Þ

yielding

dΩΛ

dt
¼ 8πG

3H2

dρΛ
dt

þ 3HΩΛð1þ wΩΛÞ;
dΩM

dt
¼ 8πG

3H2

dρM
dt

þ 3HΩMð1þ wΩΛÞ: ð3:5Þ

These are thus general relations for the time evolution of
ΩΛ and ΩM in terms of dρΛ=dt and dρM=dt.
Given the relations in Eq. (3.5), our final step is to insert

an appropriate equation of motion for dρΛ=dt (with the
understanding that dρM=dt ¼ −dρΛ=dt by conservation of
energy). It is here that we introduce the idea that vacuum
energy is converted to matter when the individual states ϕl
become underdamped and begin oscillating. For each field,
this is presumed to occur precisely at the time tl when
3HðtlÞ ¼ 2ml. In this paper, we shall refer to tl as a
critical “underdamping” time. Thus, whereas the equations
of motion given in Eq. (2.6) corresponded to the case in
which the transition from matter to radiation occurred
through an exponential decay term ρlðtÞ ∼ e−Γlðt−tð0ÞÞ, we
shall now model the corresponding vacuum-energy/matter
transition term as ρl ∼ Θðtl − tÞ where ΘðxÞ denotes the
Heaviside Θ-function [for which ΘðxÞ ¼ 1 for x ≥ 0 and
ΘðxÞ ¼ 0 otherwise]. This enforces our expectation that ρl
is nonzero (and can thus be attributed to vacuum energy)
only for t ≤ tl. Likewise, the energy density for a fluid with
equation-of-state parameter w generally scales as a−3ð1þwÞ.
The corresponding equation of motion for each individual
(vacuum) energy density ρl is therefore given by

dρl
dt

¼ ρl
d
dt

Θðtl − tÞ − 3ð1þ wÞHρl

¼ −ρlδðtl − tÞ − 3ð1þ wÞHρl; ð3:6Þ

whereupon we see that the equation of motion for the total
vacuum-energy density ρΛ in this system is given by

dρΛ
dt

¼ −
X
l

ρlδðtl − tÞ − 3ð1þ wÞHρΛ: ð3:7Þ

Just as in Sec. II, let us now evaluate this sum by passing
to a continuum limit in which we truly have a large number
of ϕl states. However, in this case it will prove more useful
to imagine that it is the spectrum of underdamping times tl
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which is nearly continuous, merging to form a continuous
variable t̂. We can likewise view the discrete spectrum of
energy densities ρl and abundances Ωl as continuous
functions ρðt̂Þ and Ωðt̂Þ where the states are now indexed
by the continuous t̂-variable corresponding to their under-
damping times. We can then convert the l-sum over states
to a t̂-integral, i.e.,

X
l

⟺

Z
dt̂ nt̂ðt̂Þ; ð3:8Þ

where nt̂ ≡ jdl=dt̂j is the density of states per unit t̂. Of
course, this passage from the sum to the integral involves a
number of approximations whose effects are similar to
those discussed in Sec. II and in Ref. [1]. In particular, our
integral approximation will be especially valid for times t
within the range

tN−1 ≪ t ≪ t0 ð3:9Þ

where we are of course assuming tð0Þ < tN−1. In other
words, we are focusing on a time interval after which a
sizable number of states at the top of the tower have already
transitioned from vacuum energy to matter.
Within this integral approximation, Eq. (3.7) then

becomes

dρΛ
dt

¼ −
Z

dt̂ nt̂ðt̂Þρðt̂Þδðt̂ − tÞ − 3ð1þ wÞHρΛ

¼ −nt̂ðtÞρðtÞ − 3ð1þ wÞHρΛ: ð3:10Þ

In a similar way we also find that

dρM
dt

¼ þnt̂ðtÞρðtÞ − 3HρM ð3:11Þ

where the first term results from the conservation of energy
that governs the process of converting vacuum energy to
matter while the second term incorporates the gravitational
redshifting that is experienced by matter under cosmologi-
cal expansion. Substituting these results into Eq. (3.5) we
then find

dΩΛ

dt
¼ −nt̂ðtÞΩðtÞ − 3wHΩΛð1 −ΩΛÞ ð3:12Þ

with dΩM=dt ¼ −dΩΛ=dt. Note that ΩΛð1 −ΩΛÞ ¼
ΩΛΩM ¼ ΩMð1 −ΩMÞ.
The differential equation for ΩΛ in Eq. (3.12) is

completely general, describing the time evolution of ΩΛ
and ΩM. One necessary (but not sufficient) condition for
stasis is that dΩΛ=dt ¼ 0. This then yields the constraint

nt̂ðtÞΩðtÞ ¼ −3wHΩΛð1 −ΩΛÞ: ð3:13Þ

Of course, for stasis we wish to have situations in which
Eq. (3.13) holds not only instantaneously, but also over an
extended period of time. This requires not only that
Eq. (3.13) hold instantaneously, but that both sides of
Eq. (3.13) have the same time dependence.
However, it is straightforward to determine the time

dependence of the Hubble parameter H during an assumed
period of stasis during which ΩΛ and ΩM are fixed at stasis
values Ω̄Λ and Ω̄M, respectively. Under such conditions, we
can solve Eq. (3.1) directly to find the exact solution

HðtÞ ¼
�

2

3ð1þ wΩ̄ΛÞ
	
1

t
⟹ κ̄ ¼ 2

1þ wΩ̄Λ
; ð3:14Þ

in agreement with the result in Eq. (3.2). Note that this
result holds for all Ω̄Λ, including Ω̄Λ ¼ 1, so long as
w > −1. Indeed, for Ω̄Λ ¼ 0, we verify from Eq. (3.14) the
standard result that HðtÞ ¼ 2=ð3tÞ for a matter-dominated
universe. The solution forHðtÞ in Eq. (3.14) in turn implies
that our underdamping times tl during stasis are given by

tl ¼ κ̄

2ml
¼ 1

1þ wΩ̄Λ

1

ml
: ð3:15Þ

Likewise, this solution forHðtÞ implies that the scale factor
grows during stasis as

aðtÞ ¼ a�

�
t
t�

�
κ̄=3

¼ a�

�
t
t�

�
2=ð3þ3wΩ̄ΛÞ ð3:16Þ

with t� representing an arbitrary early fiducial time during
stasis, as in Sec. II, and the “�” subscript indicating that the
relevant quantity is evaluated at t ¼ t�. It then follows from
Eq. (3.6) that

ΩlðtÞ ¼ Ω�
l

�
t
t�

�
2
�
aðtÞ
a�

	
−3ð1þwÞ

Θ
�

κ̄

2ml
− t

�

¼ Ω�
l

�
t
t�

�
2−ð1þwÞκ̄

Θ
�

κ̄

2ml
− t

�
ð3:17Þ

where we have further assumed that the fiducial time t� is
prior to the transition of ϕl from vacuum energy to matter
at tl. This final assumption will be discussed further and
justified in Sec. VI E.
Given the result in Eq. (3.14), we find that Eq. (3.13) will

be satisfied for an extended period of time so long as

nt̂ðtÞΩðtÞ ¼
�
−wκ̄Ω̄Λð1 − Ω̄ΛÞ

� 1
t

¼ �
2 − ð1þ wÞκ̄�Ω̄Λ

1

t
: ð3:18Þ

This result, which is the vacuum-energy/matter analog of
Eq. (2.10), thus becomes our condition for vacuum-energy/
matter stasis within the general-w model. Of course, as
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discussed in Sec. II B, this condition is ultimately equiv-
alent to the constraint that

P
l ΩlðtÞ ¼ Ω̄Λ where ΩlðtÞ is

given in Eq. (3.17), only expressed in differential form (and
in the continuum limit) in order to expose the details of how
the stasis is explicitly maintained. We shall demonstrate
this equivalence explicitly below.
In parallel with our analysis in Sec. II, our goal is now to

demonstrate that generic models of BSM physics that give
rise to such towers of scalar states ϕl experiencing such
overdamping/underdamping transitions will satisfy the
stasis constraint in Eq. (3.18) as exactly as possible over
an extended time interval. For this purpose, we can adopt
the same generic parametrization that was discussed in
Sec. II. Specifically, we shall imagine a tower of scalars ϕl
whose abundances and masses satisfy the scaling relations
in Eqs. (2.12) and (2.13) respectively. We shall also assume
that the initial production time tð0Þ for these scalar fields has
occurred during a period in which none of the ϕl has yet
become underdamped. As a result, in complete analogy
with the model in Sec. II, we are implicitly assuming that
ΩΛ ¼ 1 during this initial period.
Within the context of this general model, we can now

evaluate the quantities which appear on the left side of
our constraint equation in Eq. (3.18). By demanding that
Eq. (3.18) holds, we will then obtain the conditions on our
model parameters that are required for stasis. Of course, the
question of whether and how these conditions may come to
be satisfied for arbitrary initial conditions is a separate one
which requires a different (dynamical) analysis. We shall
defer such a dynamical analysis to Sec. VII.
We begin by calculating nt̂ðtÞ. Recall that nt̂ðtÞ is the

density of states per unit transition time t̂, evaluated for
precisely that part of the ϕl tower for which tl ¼ t. From
Eqs. (2.13) and (3.15) we have

l ¼
�
κ̄

2

1

ðΔmÞtl

	
1=δ

ð3:19Þ

where we have adopted the simplifying approximation
m0 ≪ ðΔmÞlδ. We thus find

nt̂ðtÞ≡




 dldtl






tl¼t

¼ 1

δ

�
κ̄

2Δm

�
1=δ

t−1−1=δ: ð3:20Þ

Likewise, ΩðtÞ is the abundance that is disappearing
from our tally of vacuum-energy abundances at time t [i.e.,
the abundance ΩlðtÞ evaluated at time t and for that value
of l for which tl ¼ t]. However, just as in Sec. II, we
recognize that our model provides specific scaling relations
in Eq. (2.12) for the energy densities ρl and corresponding
abundances Ωl which hold only at the production time tð0Þ.
In order to calculate ΩðtÞ within the context of our model,
we therefore can no longer use Eq. (3.17), which assumed
the existence of an eternal stasis. Instead, we must express
our abundances at time t in terms of the corresponding

abundances at tð0Þ. To do this we can follow our analysis
from Sec. II. In particular, from Eqs. (3.15) and (3.17) we
have

ΩðtÞ ¼ ΩlðtÞ





tl¼t

¼ Ωð0Þ
0

�
ml

m0

�
α

hðtð0Þ; t�Þ
�
t
t�

�
2−ð1þwÞκ̄

¼ Ωð0Þ
0

�
κ̄

2m0t

�
α

hðtð0Þ; t�Þ
�
t
t�

�
2−ð1þwÞκ̄

ð3:21Þ

where hðtð0Þ; t�Þ, as in Sec. II, denotes the net gravitational
redshift factor that accrues between the initial production
time tð0Þ and the fiducial time t� at which our system has
reached stasis. Once again, the presence of such an h-factor
will be discussed in more detail and justified in Sec. VI E.
Putting the pieces together, we thus find that requiring

nt̂ðtÞΩðtÞ ∼ t−1 yields the constraint

η ¼ 2 − ð1þ wÞκ̄; ð3:22Þ

whereupon we have nt̂ðtÞΩðtÞ ¼ C0t−1 with

C0 ≡Ωð0Þ
0

δ

�
m0

Δm

�
1=δ

�
κ̄

2m0t�

�
η

hðtð0Þ; t�Þ: ð3:23Þ

We thus see that within our model specified by
Eqs. (2.12) and (2.13), stasis will emerge only if
Eq. (3.22) is satisfied. However, just as with Eq. (2.21),
we may view this not as a constraint on our original model
parameters ðα; δ; wÞ so much as a prediction for the
resulting stasis value κ̄. We thus see that stasis is realized
for all η within the range

0 < η < −2w; ð3:24Þ

with the resulting stasis abundance Ω̄Λ given by

Ω̄Λ ¼ ηþ 2w
ð2 − ηÞw ð3:25Þ

and Ω̄M ¼ 1 − Ω̄Λ. Indeed, we see that Ω̄Λ is always within
the range 0 < Ω̄Λ < 1.
The limit as w → −1 is particularly interesting. If we

were to take w ¼ −1 directly, we would find from
Eq. (3.25) that Ω̄Λjw¼−1 ¼ 0=0 is indeterminate. This is
why we introduced w, treating 1þ w as a regulator.
However, evaluating our stasis abundance Ω̄Λ for general
w as in Eq. (3.25) and then taking the w → −1 limit, we
find that limw→−1 Ω̄Λ ¼ 1. Indeed, this limiting value for
Ω̄Λ is consistent with our expectation for w ¼ −1 that ΩΛ
will never depart from its initial value if that initial value is
1, since in that case the Hubble parameter HðtÞ remains
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constant and there is no dynamics within this model. We
thus obtain a sensible result even as w → −1.
It is illustrative to verify that Eq. (3.22) also emerges

from the “integral” form of the stasis condition in Eq. (3.18),
namely the defining requirement

P
l ΩlðtÞ ¼ Ω̄Λ, where

the abundances ΩlðtÞ are given in Eq. (3.17). As we shall
see, the same calculational ingredients are involved in both
calculations, only slightly reshuffled. In order to evaluateP

l ΩlðtÞ, we begin by noting that the Heaviside
Θ-functions within Eq. (3.17) imply that at any time t there
will be a maximum l-value lmaxðtÞ for which the corre-
sponding abundances ΩlðtÞ are still nonzero and thus
contributing to the total vacuum-energy abundance ΩΛ
of the system. Indeed, for any t, no values of ΩlðtÞ with
l > lmaxðtÞ can contribute to ΩΛ. We can therefore elimi-
nate all of the Heaviside Θ-functions from the ΩlðtÞ
expressions within the sum by introducing a time-dependent
maximumvaluelmaxðtÞ on the states that should be included
in the sum. We therefore have

X
l

ΩlðtÞ ¼
XlmaxðtÞ

l¼0

Ω�
l

�
t
t�

�
2−ð1þwÞκ̄

¼
XlmaxðtÞ

l¼0

Ω�
0

�
ml

m0

�
α
�
t
t�

�
2−ð1þwÞκ̄

≈
Z

∞

t
dt̂ nt̂ðt̂ÞΩ�

0

�
κ̄

2m0t̂

�
α
�
t
t�

�
2−ð1þwÞκ̄

¼ Ω�
0

δ

�
κ̄

2Δm

�
1=δ

�
κ̄

2m0

�
α
�
t
t�

�
2−ð1þwÞκ̄

×
Z

∞

t
dt̂ t̂−1−η

¼ Ω�
0

δ

�
κ̄

2Δm

�
1=δ

�
κ̄

2m0

�
α
�
t
t�

�
2−ð1þwÞκ̄ 1

η
t−η;

ð3:26Þ

where we have adopted the shorthand

Ω�
l ≡ Ωlðt�Þ ¼ Ωð0Þ

l hðtð0Þ; t�Þ ð3:27Þ

for all l (including l ¼ 0). In the first two lines of Eq. (3.26)
we have used Eqs. (2.12) and (3.15), while in passing to the
third line we have utilized the same integral approximation
discussed above in terms of the continuous t̂-variable.
Similarly, in passing to the fourth line of Eq. (3.26) we
have utilized Eq. (3.20) for the density of states per unit t̂,
and in passing to the final line we have recognized from
Eq. (3.24) that η > 0. However, demanding that the final
result in Eq. (3.26) be independent of t leads to the same
constraint as we obtained previously in Eq. (3.22). Thus the
integral form of our stasis condition leads to the same overall
scaling constraint as we obtained through the differen-
tial form.

Thus far in our analysis of vacuum-energy/matter
stasis we have concentrated on the overall scaling con-
straint. Indeed, as discussed in Sec. II B, we must also
consider the associated prefactor constraints (both relative
and absolute) as well as the associated logarithm-avoidance
constraint. However, it is straightforward to see that—just
as for matter/radiation stasis—the relative-prefactor and
logarithm-avoidance constraints are redundant with the
overall scaling constraint and therefore provide no new
restrictions. In particular, writing

P
l ΩlðtÞ ¼ C, we find

from Eq. (3.26) that C is given by the same expression as in
Eq. (3.23) except divided by η, thereby enabling us to
extract the relative-prefactor relation

C0 ¼ ηC ¼ ½2 − ð1þ wÞκ̄�C: ð3:28Þ

This is the vacuum-energy/matter analog of the relation in
Eq. (2.27). We thus find that our desired prefactor relation
in Eq. (3.18) will be satisfied as long as

C ¼ Ω̄Λ ð3:29Þ

or equivalently

C0 ¼ ηΩ̄Λ ¼ ½2 − ð1þ wÞκ̄�Ω̄Λ: ð3:30Þ

Likewise, from this result we have the stasis result

nt̂ðtÞΩðtÞ ¼ ηΩ̄M
1

t
; ð3:31Þ

as required by Eq. (3.18). However, these last absolute-
prefactor constraints will naturally come into balance
dynamically, since the attractor behavior of this solution
(which we will discuss in Sec. VII) automatically adjusts
hðtð0Þ; t�Þ so as to ensure that C ¼ Ω̄Λ. We thus see that our
model naturally gives rise to the correct prefactor con-
straints in Eq. (3.18) as well.
As discussed in Sec. II B, we must also satisfy the

logarithm-avoidance constraint. Indeed, in the present case
this is nothing but the constraint η > 0 that enabled us to
avoid obtaining a logarithmic time dependence when
passing to the final line of Eq. (3.26). However, this
constraint is already subsumed into our overall scaling
constraint, as we see from the allowed ranges in Eq. (3.24).
Moreover, we see that Eq. (3.22) is not really a constraint
on the input parameters of our model so much as a
prediction for the resulting stasis value κ̄ and therefore
Ω̄Λ. Thus, so long as the input parameters of our model
satisfy Eq. (3.24), a stasis state will necessarily emerge.
It is also instructive to understand in a qualitative way the

behavior of the energy densities ρl during the stasis epoch
as the decays of our individual ϕl states proceed down the
tower. As we have seen in Eq. (2.12), the energy densities
ϕl have initial values ∼ðml=m0Þα at t ¼ tð0Þ. In the
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w → −1 limit, these quantities then remain time indepen-
dent until the time t ¼ tl, defined by the constraint
3HðtlÞ ¼ 2ml, after which they scale as ρlðtÞ ∼ t−κ̄.
Moreover, we have seen in Eq. (3.15) that tl ∼m−1

l ,
implying that ρl ∼ t−αl . Given these observations, rough
sketches of two possible time evolutions for each ρlðtÞ
during stasis appear in Fig. 2. These energy densities are
sketched in blue when they correspond to vacuum energy,
and yellow when they correspond to matter. The dividing
line between these two phases is indicated in red, and given
our result ρl ∼ t−αl we see that this line has slope −α on this
log-log plot. For simplicity these sketches are drawn with
equally spaced initial values of logϕl, but this property is
chosen for graphical simplicity and will play no role in our
analysis.
The primary difference between the two panels of Fig. 2

concerns the value of κ̄ that governs the logarithmic slope
of each ρlðtÞ after t ¼ tl. Indeed, the left panel of Fig. 2
corresponds to the case with κ̄ < α, while the right panel of
Fig. 2 corresponds the case with κ̄ > α. However, it is
immediately apparent that the change in the sign of this
inequality has a profound effect on the behavior of the
corresponding energy densities. For κ̄ < α, the energy
densities ρl necessarily remain in the same relative order
in which they began, with ρl0 ðtÞ > ρlðtÞ for all t as long as
l0 > l. For κ̄ > α, by contrast, the energy densities ρlðtÞ
undergo successive pairwise crossings as time evolves.
Thus while the energy density associated with the top
component lmax ¼ N − 1 begins as the largest, eventually
the energy density associated with lmax − 1 becomes the
largest, then that with lmax − 2, and so forth.
It is this latter behavior involving successive pairwise

energy-density crossings which underlies the stasis

phenomenon. This is particularly evident from the left panel
of Fig. 1, which shows the analogous situation with matter/
radiation stasis. Thus, just from consideration of these sorts
of figures, we can immediately see that stasis requires
κ̄ > α. Of course, this result is entirely consistent with the
full stasis condition in Eq. (3.22). Indeed, we see from
Eq. (3.2) that κ̄ > 2, whereupon we see from Eq. (3.22) that
α < 2. Thus stasis necessarily requires α < κ̄, consistent
with the right panel of Fig. 2 but not the left panel.
In general, these results will apply to all of the stasis

situations we shall consider in this paper. In each case, we
will require successive energy inversions proceeding down
the ϕl tower as time evolves. As we have seen, this requires
a very particular behavior as our energy densities ρlðtÞ
approach the red lines that indicate our transitions, as in
Fig. 2. Speaking qualitatively, we may regard our energy
densities ϕlðtÞ as either passing through these red lines, as
in the left panel of Fig. 2, or being reflected by these red
lines, as in the right panel of Fig. 2. It is the case of
reflection that induces the behavior that underlies the stasis
phenomenon.
In Fig. 3 we show the emergence of vacuum-energy/

matter stasis for a system in which we take α ¼ 0.7, δ ¼ 2,
andw ¼ −0.8 as reference values. Aswe see, this eventually
results in a stasis with κ̄ ¼ 4, consistent with Eq. (3.22),
which in turn implies that Ω̄Λ ¼ 5=8 and Ω̄M ¼ 3=8.

IV. VACUUM-ENERGY/RADIATION STASIS

In Sec. III, we demonstrated that vacuum energy and
matter can be in stasis with each other. Our analysis took
place within a cosmology containing a tower of scalar fields
ϕl with masses ml which sequentially transition from
an overdamped phase (during which their energies are

FIG. 2. Two different scenarios illustrating possible behaviors for the individual energy densities ρlðtÞ (blue/orange), sketched as
functions of time, as our corresponding tower of states ϕl undergoes sequential transitions from an overdamped phase to an
underdamped phase at times tl for which 3HðtlÞ ¼ 2ml. These energy densities ρlðtÞ are interpreted as corresponding to vacuum
energy (blue) or matter (orange) when the corresponding states ϕl are overdamped or underdamped, respectively, with the dashed line
(red) indicating the moments of transition between these two regimes. For the purpose of these sketches we have assumed that states
with greater energy densities have greater masses (i.e., α > 0). We have also chosen to sketch the case in which w → −1 for the vacuum
energy, causing the blue lines to be almost exactly horizontal. The left and right panels show the behaviors that emerge for κ̄ < α and
κ̄ > α, respectively. In the latter case, the energy densities “reflect” off the red transition line, thereby giving rise to the sequential
“interleaved” energy-density crossings that are the hallmark of the stasis phenomenon.
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identified as vacuum energy) to an underdamped phase
(during which their energies are identified as those of
matter). Indeed, these transitions occur at the times tl for
which 3HðtlÞ ¼ 2ml.
However, such ϕl fields can also experience decays into

radiation, with nonzero decay widths Γl. Indeed, within
certain regions of parameter space, it may even happen that
the lifetimes τl ≡ 1=Γl of the components ϕl are all
smaller than the critical underdamping times tl at which
these fields would have transitioned to an underdamped
state. In such cases, we can then have decays directly from
vacuum energy to radiation.
In general, a universe composed entirely of vacuum

energy and radiation will evolve under cosmological
expansion from a radiation-dominated epoch to a vacuum
energy-dominated epoch. The above decays from vacuum
energy back to radiation can thus provide a counterbal-
ancing effect that could potentially lead to a stasis between
vacuum energy and radiation.

A. Theoretical subtleties

In order to study this phenomenon, we must first discuss
several additional theoretical subtleties that arise in

modeling the transfer of energy density from vacuum
energy to radiation. The rate at which this transfer of
energy density occurs depends on the properties of the
vacuum-energy component.
For example, as discussed in Sec. III, one natural

realization of ρΛ in a particle-physics context is the
energy density associated with one or more overdamped
scalar fields ϕl which are displaced from their potential
minima. The equation of motion for each such field is
ϕ̈l þ ð3H þ ΓlÞϕ̇l þ ∂V=∂ϕl ¼ 0, where V is the scalar
potential and where a dot denotes a time derivative. At late
times, when 3HðtÞ ≪ 2ml and the field is well within the
underdamped regime, Γl is often approximated as constant
and identified with the proper decay width of ϕl in
Minkowski space [9,10]. However, this heuristic treatment
of the dissipation rate is not appropriate while the field is in
the overdamped regime [11]. Rather, Γl must be calculated
using methodologies appropriate for analyzing the non-
equilibrium dynamics of a quantum field interacting with
its environment, such as the closed-time path (i.e.,
Schwinger-Keldysh) formalism (for reviews, see, e.g.,
Ref. [12]) or the inference time formalism (for reviews,
see, e.g., Refs. [13,14]). A number of subtleties arise in
these calculations as a result of the background cosmology.
For example, since there is no global timelike Killing
vector in an FRWuniverse, particle energy is not manifestly
conserved. A variety of processes which are forbidden in
Minkowski space—including the decay of a field into its
own quanta [15–18]—can therefore contribute to the
dissipation rate. The form which Γl takes is highly model
dependent and in general depends nontrivially both on the
temperature of the radiation bath—or, equivalently, on the
value of ργ—and on the time-varying expectation value of
ϕ (for reviews and discussion, see, e.g., Refs. [19–22]).
We note that there is another naturalmechanismviawhich

the energy density associated with an overdamped scalar
field can be transferred directly to a radiationlike energy
component with w ¼ 1=3. This mechanism is similar to the
mechanism discussed in Sec. III for transferring energy
density from vacuum energy to matter, which involved an
overdamped/underdamped transition, but operates in sce-
narios inwhich the quadratic term forϕl inV is negligible or
vanishing, and ϕl is instead dominated by a higher-order
polynomial Vl ∼ ϕ2n

l with n > 1. At early times, while
3H ≫ 2ð∂2V=∂ϕ2

lÞ1=2 and ϕl is effectively stationary, the
energy density ρl associatedwith that field scaleswith a like
vacuum energy. However, once 3H ≈ 2ð∂2V=∂ϕ2

lÞ1=2, the
field ϕl begins oscillating around its potential minimum.
The effective equation-of-state parameter for ϕl during this
oscillatory phase, time averaged over many cycles of
oscillation, is wl ≈ ðn − 1Þ=ðnþ 1Þ [23]. Thus, for
n ¼ 2—i.e., for a quartic potential—the equation-of-state
parameter for such an oscillating scalar field is identical to
that for radiation. As with the overdamped/underdamped
transition discussed in Sec. III, we can obtain some insight

FIG. 3. Vacuum-energy/matter stasis. Here the total vacuum-
energy and matter abundances, ΩΛðtÞ and ΩMðtÞ respectively, are
plotted as functions of the number N of e-folds since the initial
production time tð0Þ, taking α ¼ 0.7, δ ¼ 2, and w ¼ −0.8 as
reference values. We have also taken Hð0Þ=mN−1 ¼ 0.75. As we
see, the system eventually evolves into a stasis state with κ̄ ¼ 4,
Ω̄Λ ¼ 5=8, and Ω̄M ¼ 3=8. This stasis state ends only when the
last component of the tower transitions to matter. As with matter/
radiation stasis, the total number of e-folds of stasis N s is
determined by the total number N of states in the tower. In
analogy with Eq. (2.24) for matter/radiation stasis, we expect
N s ∼ logN. Similar stasis behavior emerges for all values of
ðα; δ; wÞ within the ranges in Eq. (3.24), with corresponding
stasis abundances Ω̄Λ determined by Eq. (3.25) and Ω̄M ¼
1 − Ω̄Λ.
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into the cosmological dynamics of scenarios involving such
scalars by idealizing this transition as an instantaneous one
in which ϕl is approximated as having w ¼ −1 whenever
3H > 2ð∂2V=∂ϕ2

lÞ1=2 and w ¼ 1=3 otherwise.
For simplicity, we shall focus in what follows on the case

in which Γl is effectively constant and independent of ργ .
While an analysis based on this form of Γl does not have a
straightforward motivation in terms of a top-down model, it
can nevertheless serve as a convenient starting point
for the analysis of specific models with more complicated,
time-and temperature-dependent dissipation rates. We
also note that the results obtained for this form of Γl in
the instantaneous-decay approximation turn out to be
applicable, through a straightforward mapping, to the case
of a scalar field ϕl with a quartic potential whose energy
density scales like that of radiation once it begins oscillat-
ing [4]. Moreover, as we shall see, the results we obtain for
a constant Γl will provide some mathematical insight into
certain limiting cases of the three-component cosmological
system on which we shall focus in Sec. VI.

B. Algebraic analysis

Given these understandings and assumptions, we shall
now repeat the algebraic steps in the previous sections in
order to investigate the possibility of achieving a two-
component stasis between vacuum energy and radiation.
Towards this end, our analysis will essentially be a hybrid
of the analyses in Secs. II and III: we shall treat the vacuum
energy according to the general-w approach of Sec. III B,
assuming that each of our ϕl fields evolves with a fixed
equation-of-state parameter w > −1, but we shall also
assume that this vacuum energy simultaneously experien-
ces an exponential decay with lifetime τl ≡ Γ−1

l ≪ tl.
Within a cosmology consisting of only vacuum energy

and radiation, the Hubble parameter evolves as

dH
dt

¼ −
1

2
H2

�
4þ ð3w − 1ÞΩΛ

�
; ð4:1Þ

or equivalently

κ ¼ 6

4þ ð3w − 1ÞΩΛ
ð4:2Þ

where κ continues to be defined through the parametriza-
tion in Eq. (3.3). Likewise, the vacuum-energy density ρl
associated with each ϕl field evolves as

dρl
dt

¼ −3ð1þ wÞHρl − Γlρl; ð4:3Þ

whereupon we find

dΩΛ

dt
¼ −

X
l

ΓlΩl þ ð1 − 3wÞHΩΛð1 −ΩΛÞ: ð4:4Þ

Setting dΩΛ=dt ¼ 0 and inserting the stasis Hubble param-
eter HðtÞ ¼ κ̄=ð3tÞ then yields the corresponding stasis
condition

X
l

ΓlΩlðtÞ ¼
��

1

3
− w

�
κ̄Ω̄Λð1 − Ω̄ΛÞ

	
1

t

¼ �
2 − ð1þ wÞκ̄�Ω̄Λ

1

t
: ð4:5Þ

This condition for vacuum-energy/radiation stasis can
also be satisfied within the model of Eqs. (2.12) and (2.13).
In order to determine the resulting constraints on our model
parameters ðα; γ; δ; wÞ, we can follow the steps in Sec. II.
Indeed, for this purpose we adopt Sec. II rather than Sec. III
as our guide because the former also involved an expo-
nential decay from one energy component to another.
Repeating the steps in Sec. II, we can convert the sum
in Eq. (4.5) to an integral. Moreover, rather than introduce a
continuous variable t̂ of underdamping times as in Sec. III,
we follow Sec. II and work in terms of a continuous
variable τ of decay times τ. Assuming an eternal stasis, we
then find that our parameters must satisfy the relation

η

γ
¼ 2 − ð1þ wÞκ̄: ð4:6Þ

This is thus the analog of Eqs. (2.21) and (3.22). Once
again, this is not a constraint on ðα; γ; δ; wÞ so much as a
prediction for κ̄. Indeed, so long as

0 <
η

γ
<

1 − 3w
2

; ð4:7Þ

we find that the resulting value of Ω̄Λ during stasis is
given by

Ω̄Λ ¼ 2ð2ηþ 3wγ − γÞ
ð1 − 3wÞðη − 2γÞ : ð4:8Þ

Note that 0 < Ω̄Λ < 1 so long as Eq. (4.7) is satisfied.
Interestingly, for w ¼ −1 we find that Ω̄Λ ¼ 1 for any η

and γ. This indicates that the only “stasis” that develops in
the w ¼ −1 case is that with which we started, namely a
universe containing nothing but vacuum energy. However,
for w > −1, we find that a nontrivial stasis develops
with Ω̄Λ < 1.
Following the results in Sec. II, we may also compare the

overall coefficients that enter into our stasis constraints. For
this purpose, let us define C and C0 via

X
l

ΩlðtÞ ¼ C;

X
l

ΓlΩlðtÞ ¼ C0t−1; ð4:9Þ
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where we have imposed the relation in Eq. (4.6). We can
explicitly evaluate the sums on the left sides of Eq. (4.9) by
converting to integrals over a continuous τ-variable, as
discussed above. We then find that C and C0 are related via

C0 ¼ η

γ
C ¼ ½2 − ð1þ wÞκ̄�C ð4:10Þ

where

C≡ 1

γδ

�
m0

Δm

�
1=δ

hðtð0Þ; t�Þ
Ωð0Þ

0

ðΓ0t�Þη=γ
Γ
�
η

γ

�
: ð4:11Þ

These solutions for C and C0 exactly match those in Sec. II.
As in previous cases, the attractor behavior of the stasis
solution (to be discussed in Sec. VII) then inevitably
ensures that C ¼ Ω̄Λ. Indeed, this happens in the same
manner as described in Sec. II B. The result in Eq. (4.10)
then ensures that the prefactors within Eq. (4.5) match
precisely. This also ensures that Eq. (2.30) holds for
vacuum-energy/radiation stasis as well.
Although we have treated our decay process as a bona

fide exponential decay, it will prove both instructive and
useful to repeat this calculation within the framework of an
instantaneous-decay approximation in which our ϕl states
decay suddenly and completely at t ¼ τl ¼ 1=Γl. This is
tantamount to approximating the exponential decays as
sharp cutoffs by replacing

e−t=τl → Θðτl − tÞ: ð4:12Þ

Implementing this substitution, we find that our calcula-
tions now more closely resemble the calculations in Sec. III
(wherein the underdamping times tl played the role of τl)
rather than those in Sec. II. In this case, the constraint
equations for stasis in Eq. (4.5) are replaced by

nτðtÞΩðtÞ ¼
��

1

3
− w

�
κ̄Ω̄Λð1 − Ω̄ΛÞ

	
1

t

¼ �
2 − ð1þ wÞκ̄�Ω̄Λ

1

t
: ð4:13Þ

This condition for vacuum-energy/radiation stasis can
also be satisfied within the model of Eqs. (2.12) and (2.13).
A calculation similar to that in Eq. (3.26) tells us that
nτðtÞΩðtÞ will scale as t−1, as required, only if Eq. (4.6) is
satisfied. We thus see that the instantaneous-decay approxi-
mation leads to precisely the same scaling relation for the
ðα; γ; δ; wÞ parameters as full exponential decay. Likewise,
defining our C-coefficients via the relations

X
l

ΩlðtÞ ¼ C;

nτðtÞΩðtÞ ¼ C0t−1; ð4:14Þ

we again obtain the relation between C and C0 given in
Eq. (4.10), where now C is given by

C≡ 1

γδ

�
m0

Δm

�
1=δ

hðtð0Þ; t�Þ
Ωð0Þ

0

ðΓ0t�Þη=γ
: ð4:15Þ

The attractor behavior of the stasis solution then guarantees
that C ¼ Ω̄Λ, as before, and likewise yields Eq. (3.31).
Thus, even within the instantaneous-decay approxima-

tion, we find that stasis is achieved. This is a rather
remarkable result, demonstrating that full exponential
decay and the instantaneous-decay approximation are
equally valid as far as stasis calculations are concerned.
Indeed, both full exponential decay and the instantaneous-
decay approximation lead to the identical scaling relation in
Eq. (4.6) and the identical relative and absolute prefactor
constraints in Eqs. (4.10). (The same is also true for
the logarithmic-avoidance constraint, which now takes the
form η=γ > 0.) Indeed, the only difference between the two
formalisms for treating the decay process is in the precise
absolute value of C, but this information is ultimately
washed away due to the attractor nature of the stasis
solution. These observations thus suggest a certain robust-
ness to the existence of the stasis phenomenon, indicating
that our conclusions regarding the emergence of stasis are
largely independent of the precise details concerning how
the decays of the ϕl states are ultimately modeled.
Interestingly, we observe that the effective equation-of-

state parameter for this vacuum-energy/radiation system
during stasis is given by

hwi ¼ wΩ̄Λ þ Ω̄γ

3
: ð4:16Þ

Thus, when Ω̄γ ¼ −3wΩ̄Λ, our system has hwi ¼ 0. In
other words, for the purposes of cosmological expansion,
our universe behaves as if it were effectively matter-
dominated despite the lack of an actual matter component.
Following the arguments in Ref. [1], this means that this
system can even co-exist with a “spectator” (noninteract-
ing) additional matter energy component with abundance
ΩM because the introduction of such an additional spectator
matter component will not disturb the stasis value hwi that
has already been realized for the vacuum energy and
radiation components. This then becomes an example of
a system in which vacuum energy, radiation, and matter can
all co-exist in a stasis configuration. Unfortunately, in such
a system the matter must not have any energy-transferring
interactions with either the vacuum energy or the radiation.
It is for this reason that we refer to the matter as a
“spectator” component of the total energy. Indeed, in such
a system the matter abundance ΩM remains fixed only
because the vacuum energy and radiation in their stasis
configuration with Ω̄γ ¼ −3wΩ̄Λ conspire to produce a
universe whose expansion rate is effectively that of a
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matter-dominated universe. As a result, ΩM neither grows
nor shrinks as a result of cosmological expansion, and thus
remains constant without receiving energy from (or losing
energy into) the other components.
In Fig. 4, we show the emergence of vacuum-energy/

radiation stasis for a system in which we take α ¼ 0.5,
δ ¼ 2, γ ¼ 1, and w ¼ −0.7 as reference values. As we see,
these lead to a stasis with κ̄ ¼ 10=3, implying Ω̄Λ ¼ 22=31
and Ω̄γ ¼ 9=31. Indeed, as with the stases in Sec. II and III,
this is a pairwise stasis involving only two components in
which energy flows from one directly into the other,
bypassing the third completely. A similar stasis would
emerge for any parameters within the range in Eq. (4.7).

V. ALGEBRAIC STRUCTURE
OF PAIRWISE STASES

In general, the analyses of Secs. II, III, and IV share an
underlying algebraic structure which applies to any “pair-
wise” stasis (i.e., any stasis between two energy compo-
nents). To demonstrate this, we shall maintain full
generality by assuming that our two components have
constant equation-of-state parameters ðw1; w2Þ with corre-
sponding abundances ðΩ1;Ω2Þ such that Ω1 þΩ2 ¼ 1. For
concreteness we shall also assume that w1 < w2. This
means that cosmological expansion will tend to convert
an Ω2-dominated universe into an Ω1-dominated universe.

Thus stasis can be achieved only in the presence of some
method of converting Ω1 back into Ω2. Because this
conversion operates in a manner opposite to the natural
effects of cosmological expansion, we shall refer to such a
method of converting Ω1 back into Ω2 as a “pump.”
Given this setup, and following our previous steps, it is

straightforward to verify that our abundances Ω1;2 evolve
according to the differential equations

dΩ1

dt
¼ 3Hðw2 − w1ÞΩ1Ω2 − P12;

dΩ2

dt
¼ 3Hðw1 − w2ÞΩ1Ω2 þ P12; ð5:1Þ

where P12 schematically denotes the pump term
which transfers abundance from Ω1 to Ω2. Because we
are interested in studying only the algebraic structure
of the pairwise stasis, we shall leave this pump term
unspecified. We verify from Eq. (5.1) that the gravitational
redshifting effects indeed tend to increase Ω1 and
deplete Ω2 if w2 > w1. We also verify, as required, that
dΩ2=dt ¼ −dΩ1=dt. Our condition for stasis is therefore

P12 ¼ 3Hðw2 − w1ÞΩ̄1Ω̄2: ð5:2Þ

In this system we generally have

κ ¼ 2

1þ w1Ω1 þ w2Ω2

: ð5:3Þ

Indeed this result holds regardless of whether we are in a
stasis epoch. Thus our stasis condition takes the general
form

P12 ¼ κ̄ðw2 − w1ÞΩ̄1Ω̄2

1

t

¼ �
2 − ð1þ w1Þκ̄

�
Ω̄1

1

t
: ð5:4Þ

This result is the ðw1; w2Þ generalization of Eqs. (2.10),
(3.18), and (4.5). However, we now see that this constraint
is independent of the particular realization of the pump term
P12 in terms of an underlying BSM physics model. Indeed,
as we have stressed, this result reflects the general algebraic
structure underlying all pairwise stases.
To proceed further we may assume that during stasis, our

pumps have a general time dependence of the form

P12ðtÞ ∼ t−1−pþ2−ð1þw1Þκ̄ ð5:5Þ

where p is a general constant. Indeed, all of the pumps we
have considered in this paper have this time dependence,
with p ¼ η ¼ αþ 1=δ for the pump in Sec. III and p ¼ η=γ
for the pump in Sec. II. Our pump will then have the
required 1=t time dependence only if

FIG. 4. Vacuum-energy/radiation stasis. Here we plot the total
vacuum-energy and radiation abundances, ΩΛ and Ωγ respec-
tively, as functions of time, taking α ¼ 0.5, δ ¼ 2, γ ¼ 1,
w ¼ −0.7, and Hð0Þ=ΓN−1 ¼ 20 as reference values and working
with the exponential-decay formalism. As we see, these bench-
mark values lead to a stasis with κ̄ ¼ 10=3, implying Ω̄Λ ¼
22=31 ≈ 0.71 and Ω̄γ ¼ 9=31 ≈ 0.29. This stasis state ends only
when the last component of the tower decays to radiation. Similar
stasis behavior emerges for all values of ðα; δ; γ; wÞ within the
range in Eq. (4.7), with corresponding stasis abundances Ω̄Λ
determined by Eq. (4.8).
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p ¼ 2 − ð1þ w1Þκ̄: ð5:6Þ

This serves as our general overall scaling constraint. This in
turn implies that during stasis our pumpmust generally take
the form

P12 ¼ pΩ̄1

1

t
: ð5:7Þ

This is consistent with our prior results in Eqs. (2.30)
and (3.31).
Given these results, the structure of the pairwise stasis

solution is clear. In general we learn from Eq. (5.6) that

κ̄ ¼ 2 − p
1þ w1

: ð5:8Þ

We also observe from Eq. (5.3) that the abundance-
weighted average hwi of w-values during stasis, i.e.,

hwi≡ w1Ω̄1 þ w2Ω̄2; ð5:9Þ

is given by hwi ¼ 2=κ̄ − 1, or equivalently

hwi ¼ 2

�
1þ w1

2 − p

�
− 1: ð5:10Þ

In conjunction with the constraint Ω̄1 þ Ω̄2 ¼ 1, Eqs. (5.9)
and (5.10) then allow us to solve directly for Ω̄1;2, yielding

Ω̄1 ¼
2ðw2 − w1Þ − pð1þ w2Þ

ð2 − pÞðw2 − w1Þ
: ð5:11Þ

This of course agrees with our previous results in
Eqs. (2.22), (3.25), and (4.8). We likewise have

Ω̄2 ¼
pð1þ w1Þ

ð2 − pÞðw2 − w1Þ
: ð5:12Þ

In this connection, we note that we always must have
p < 2. More specifically, for this system we have
w1 < hwi < w2, or equivalently

2

1þ w2

< κ̄ <
2

1þ w1

: ð5:13Þ

This implies via Eq. (5.6) that all values of p lead to a
consistent stasis solution so long as

0 < p <
2ðw2 − w1Þ
1þ w2

: ð5:14Þ

We conclude with three important comments. First, we
see from the above analysis that the details of the pump are
relevant only for determining the abundance-weighted
“center” of our system in w-space, as in Eq. (5.10).

By contrast, once this w-average hwi is determined, the
two stasis abundances Ω̄1;2 are situated relative to this
average in a pump-independent way, as in Eq. (5.9).
Indeed, we shall more fully exploit this way of thinking
in Sec. VI F when discussing triple stasis.
Second, we note that the solution for hwi in Eq. (5.10)

can also be written in a form that more manifestly respects
the 1 ↔ 2 symmetry between our two components. This
can be done by extracting κ̄ from the first line of Eq. (5.4)
[in conjunction with Eq. (5.7)] rather than from Eq. (5.6).
We thereby obtain the stasis solution

hwi ¼ 4ðw2 − w1ÞΩ̄1Ω̄2

ð1þ Ω̄1 − Ω̄2Þp
− 1: ð5:15Þ

This, in conjunction with the constraint in Eq. (5.9), also
permits an evaluation of the stasis abundances Ω̄1;2.
Finally, we note that in this section we have limited our

discussion to the algebraic structure of pairwise stases—
namely the required relations between pumps and cos-
mological expansion. However, the critical remaining
issue is to realize such pumps in terms of actual under-
lying BSM particle-physics models. For example, in
Secs. II, III, and IV we worked within the context of
models involving large towers of states and demonstrated
that we could realize the pumps needed for stasis in terms
of natural particle-physics processes such as particle
decays and/or underdamping transitions. It is this success
that we consider to be the primary achievement of our
previous analyses.

VI. TRIPLE STASIS

In our previous paper [1] (and as reviewed in Sec. II), we
demonstrated that matter can exist in stasis with radiation.
Likewise, in Secs. III and IV, we further demonstrated that
vacuum energy can exist in stasis with matter or with
radiation, respectively. Each of these configurations rep-
resents a pairwise stasis between two different types of
energy components. Given this, the obvious next question
is to determine whether it is possible to have a triple stasis
in which vacuum energy, matter, and radiation all co-exist
in stasis with each other.
At the end of Sec. IV, we noted that this can occur in a

universe in which the matter energy component is merely a
noninteracting “spectator.” However, the question we now
wish to investigate concerns whether we can have a true
triple stasis in which all three energy components are
interacting nontrivially with each other.
Of course, in a universe that contains all three energy

components, cosmological expansion inevitably shifts the
identity of the dominant component along the chain

γ → M → Λ; ð6:1Þ
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i.e., in the direction of decreasing w. In other words, a
mixed-component universe that starts in a radiation-
dominated configuration will eventually tend to become
matter dominated and then vacuum dominated, simply as a
result of cosmological expansion. However, we are now
seeking to determine if this entire process can be simulta-
neously counterbalanced by

underdamping transition∶ Λ → M;

decay∶ M → γ: ð6:2Þ

Indeed, as we have discussed in Sec. V, each of these effects
essentially serves as a “pump” which counterbalances the
natural tendencies induced by cosmological expansion by
transferring energy back up towards components with
larger values of w. While we already know that this
counterbalancing can occur successfully for each step
individually, the question is to determine whether (and
to what extent) both counterbalancings can co-exist within
the same overall cosmology.
We emphasize that this is, a priori, a highly nontrivial

question. Even though a given energy component A might
come into stasis with another energy component B in an
A=B universe, and even though A might also come into
stasis with C in an A=C universe, and even though B might
come into stasis with C in a B=C universe, it does not
necessarily follow that A, B, and C can all simultaneously
come into stasis in an A=B=C universe. This is because
each of our previous energy-transfer processes (under-
damping and decay) would now need to operate in a
universe which also contains a third energy component.
This third component affects the Hubble parameter and
thus the overall expansion rates whose effects would need
to cancel for a triple stasis.
Phrased slightly differently, a true triple stasis can arise

only if both processes (underdamping and decay) can occur
simultaneously while embedded within a common cosmol-
ogy. Indeed, triple stasis requires that these processes be
capable of co-existing with each other within the same
cosmological setting, and this co-existence requirement
may (and ultimately will) place new mathematical con-
straints on each.
To study this, we shall proceed in several steps. We shall

begin, as in Sec. V, by studying the general algebraic
structure of triple stasis in a model-independent way,
deriving constraints that any simultaneous pumping tran-
sitions must satisfy in order to achieve triple stasis. We shall
then explore the different possible configurations that a
triple stasis may exhibit in terms of our underlying particle-
physics model involving large towers of states with particle
decays and underdamping transitions. After this, we shall
perform a general analysis of triple stasis and derive the
overall scaling equations that must be satisfied in order for
triple stasis to exist. In so doing, we shall discover an
additional constraint which must be satisfied in order for

the overdamping and decay transitions to co-exist within
the same cosmology.
With these results in hand, we shall then proceed to

consider the corresponding prefactor constraints. Unlike
the situations that arose in previous sections for pairwise
stases, we shall now find that our prefactor constraints are
no longer redundant with our scaling constraints. Instead,
we shall see that they actually supply additional informa-
tion. Finally, we shall pull all the pieces together in a
graphical, intuitive way which demonstrates how triple
stasis ultimately operates.
As might be imagined, this section is in some sense the

central core of this paper. We shall therefore attempt to
provide as many different perspectives on our results as
possible—general and specific, algebraic and intuitive. All
of these perspectives will be useful in subsequent sections
when we extend the results of this section in order to
consider the attractor nature of all of our stases, when we
develop a phase-space understanding of the stasis phe-
nomenon as a whole, and when we extend our analysis to
consider various close variants of stasis.

A. Algebraic structure of triple stasis

To analyze the algebraic structure of stasis, we shall
repeat our previous steps, only now within a completely
general cosmology simultaneously comprising all three
components (vacuum energy, matter, and radiation), all
treated dynamically. Following the previous analyses, we
find in all generality that

κ ≡ 6

2þ ð1þ 3wÞΩΛ þ ΩM þ 2Ωγ
ð6:3Þ

where κ, as always, is related to the rate of change of the
Hubble parameter via Eq. (3.3). We then have

dΩi

dt
¼ 8πG

3H2

dρi
dt

þ 6

κ
HΩi: ð6:4Þ

We now must insert the equations of motion dρi=dt for our
system. In general, our system will have equations of
motion with the algebraic structure

dρΛ
dt

¼ −PðρÞ
ΛM − PðρÞ

Λγ − 3ð1þ wÞHρΛ;

dρM
dt

¼ þPðρÞ
ΛM − PðρÞ

Mγ − 3HρM;

dργ
dt

¼ þPðρÞ
Λγ þ PðρÞ

Mγ − 4Hργ; ð6:5Þ

where PðρÞ
ij denotes the “pump” term that describes the

conversion of energy density ρ from type i to type j, and
where the signs preceding these terms indicate whether this
pump is acting as a sink (−) or source (þ). Inserting this
into Eq. (6.4) we obtain
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dΩΛ

dt
¼ −PΛM − PΛγ þ

6

κ
HΩΛ − 3ð1þ wÞHΩΛ;

dΩM

dt
¼ PΛM − PMγ þ

6

κ
HΩM − 3HΩM;

dΩγ

dt
¼ PΛγ þ PMγ þ

6

κ
HΩγ − 4HΩγ; ð6:6Þ

where

PijðtÞ≡ 8πG
3HðtÞ2 P

ðρÞ
ij ðtÞ: ð6:7Þ

Thus PijðtÞ denotes a pump for abundances, while PðρÞ
ij ðtÞ

denotes the corresponding pump for energy densities. As a
self-consistency check, we observe that dΩΛ=dtþ
dΩM=dtþ dΩγ=dt indeed vanishes.
Let us now investigate the conditions under which our

system can be in an (eternal) stasis epoch. During such a
period, we must certainly have dΩΛ=dt ¼ dΩM=dt ¼
dΩγ=dt ¼ 0. This gives rise to the conditions

PΛM þ PΛγ ¼
6

κ̄
HΩ̄Λ − 3ð1þ wÞHΩ̄Λ;

−PΛM þ PMγ ¼
6

κ̄
HΩ̄M − 3HΩ̄M;

−PΛγ − PMγ ¼
6

κ̄
HΩ̄γ − 4HΩ̄γ; ð6:8Þ

where the pump terms Pij are to be evaluated during a
period of stasis. Likewise, from Eqs. (3.3) and (6.3) we can
solve for the Hubble parameter H during stasis, obtaining

HðtÞ ¼ κ̄

3t
: ð6:9Þ

Inserting this into Eq. (6.8) we obtain

PΛM þ PΛγ ¼
�
2 − ð1þ wÞκ̄�Ω̄Λ

1

t

−PΛM þ PMγ ¼
�
2 − κ̄

�
Ω̄M

1

t

−PΛγ − PMγ ¼
�
2 −

4κ̄

3

	
Ω̄γ

1

t
: ð6:10Þ

These, then, are the most general conditions for a triple
stasis involving vacuum energy, matter, and radiation.
(Similar conditions can likewise be derived for any three
energy components, or even for more than three compo-
nents.) Indeed, any pump terms Pij satisfying these
equations as functions of time will lead to an extended
(eternal) stasis epoch. With κ̄ given in Eq. (6.3) and with
Ω̄Λ þ Ω̄M þ Ω̄γ ¼ 1 we immediately verify that the sum of
these equations vanishes, implying that only two of these
equations are truly independent of each other, as expected.

We also note that 2 − 4κ̄=3 < 0 for all ðΩ̄Λ; Ω̄M; Ω̄γÞ within
the ranges 0 ≤ Ωi ≤ 1 with

P
iΩi ¼ 1. Thus while both

sides of the first equation in Eq. (6.10) are necessarily
positive, both sides of the third equation are necessarily
negative. By contrast, the sign of both sides of the second
equation ultimately depends on whether the pumping
action produces a net flow of energy into or out of matter.
Of course, during stasis, the sign of this net flow will be
exactly as needed in order to compensate for the effects of
cosmological expansion, the latter also having either a
positive or negative sign depending on the particular values
of ðΩ̄Λ; Ω̄M; Ω̄γÞ.
We have already remarked that Eq. (5.4) describes the

algebraic structure of pairwise stases. From this perspec-
tive, Eq. (6.10) is the triple-stasis analog of Eq. (5.4) and
likewise describes the algebraic structure of triple stasis,
once again in terms of general pumps but focused on
vacuum energy, matter, and radiation.

B. Surveying the possible configurations

Our job is now to construct a particle-physics model of
stasis in which the Pij pump terms are consistent with these
equations. To do this, let us return to our model consisting
of a tower of zero-mode scalar fields ϕl, with l ¼ 0;
1;…; N − 1. However we shall now take into account not
only the underdamping transition of Sec. III but also the
possibility of particle decay, as discussed in Secs. II and IV.
In general, a given field ϕl of mass ml and decay width Γl
will experience an underdamping transition at the time tl for
which 3HðtlÞ ¼ 2ml, while this same field will also decay
with lifetime τl ¼ 1=Γl. For simplicitywe shall assume that
tl < τl for all l—an assumption which will be discussed in
more detail below—and we shall adopt the “instantaneous
decay” approximation in Eq. (4.12) inwhich a given stateϕl
is presumed to decay instantaneously and fully at t ¼ τl. As
discussed below Eq. (4.12), this instantaneous-decay
assumption will not be critical for any of our important
results. However, this assumption allows the decay tran-
sition tomore closely resemble the underdamping transition,
with each treated as occurring instantaneously and com-
pletely at a specified time. Later in this section we shall also
consider the case with full exponential decay and verify that
our basic results remain intact.
In general, these fields ϕl will have time-dependent

energy densities ρlðtÞ. As in previous sections, we shall
interpret this energy density as vacuum energy for times
t < tl, but as matter if tl < t < τl and as radiation if

t > τl. We shall let ρðΛÞtot ðtÞ, ρðMÞ
tot ðtÞ, and ρðγÞtot ðtÞ represent

the corresponding total energy densities of each type at any
given time t, and let ΩΛðtÞ, ΩMðtÞ, and ΩγðtÞ represent the
corresponding total abundances.
Within a period of stasis, the underdamping time tl

associated with underdamping transitions is given by the
condition 3HðtlÞ ¼ 2ml, or equivalently tl ¼ κ̄=ð2mlÞ
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where we have used Eq. (6.9). This provides a relation
between tl and the corresponding massml. Likewise, from
Eq. (2.12) we see that the lifetimes τl are given by

τl ¼ 1

Γl
¼ 1

Γ0

�
ml

m0

�
−γ
: ð6:11Þ

This provides a relation between τl and the mass ml. It
therefore follows that when γ ≠ 1 there is a critical mass for
which tl ¼ τl. Indeed, letting the subscript “X” denote this
critical point, we find

tγ−1X ¼ ξ−γΓ1−γ
0 ; mγ−1

X ¼ ξmγ−1
0 ; ð6:12Þ

where ξ is defined in Eq. (2.14). Of course, for γ ¼ 1, there
is no single point X at which tX ¼ τX.
It also follows from Eqs. (3.15) and (6.11) that

τl
tl

¼ ξðΓ0τlÞ1−1=γ: ð6:13Þ

This result holds for all values of γ. However, for γ ≠ 1

we find that ξ ¼ ðΓ0tXÞ1=γ−1, whereupon we have τl=tl ¼
ðτl=tXÞ1−1=γ.
In complete analogy with the sketch in the right panel of

Fig. 2, we may now sketch the anticipated behavior of the
energy densities ρl in this system as a function of time
during a potential period of triple stasis. As we shall
demonstrate, there are a number of distinct possibilities for
how these energy densities might behave. We shall there-
fore begin by discussing these different possibilities.
For convenience, following the discussion in Sec. III, we

shall continue to assume for the purpose of such energy-
density sketches that w ≈ −1, so that ρlðtÞ is approximately
constant for all t < tl. Of course, the critical new feature for
triple stasis is the existence of two independent transitions,
the first between vacuum energy and matter occurring at the
critical underdamping time tl for which 3HðtlÞ ¼ 2ml, and
the second between matter into radiation occurring at the
decay time τl ¼ 1=Γl. At any time tl, the original energy

density ρð0Þl which experiences the underdamping transition
from vacuum energy to matter scales as

ρð0Þl ∼mα
l ∼ t−αl : ð6:14Þ

On a log-log plot of energy density versus time, this
underdamping “3H ¼ 2m” transition line would thus
appear with slope −α, precisely as in the right panel of
Fig. 2. Likewise, at any time τl, the original energy density

ρð0Þl which decays from matter to radiation scales as

ρð0Þl ∼mα
l ∼ τ−α=γl : ð6:15Þ

On a log-log plot of energy density versus time, this decay
transition “t ¼ 1=Γ” linewould thus appear with slope−α=γ.

In principle, these two transition lines govern the
behavior of the system. However, for the purposes of
our energy-density sketches it will prove useful to intro-
duce a third transition line. This line is motivated by the
observation that each energy density ρl no longer has its

initial value ρð0Þl at the time when the corresponding ϕl

field decays because of the existence of the earlier under-
damping transition at t ¼ tl which converted the corre-
sponding ρl energy density from vacuum energy to matter.
As a result, by the time t ¼ τl is reached, this energy

density has now fallen to ρl ∼ ρð0Þl ðτl=tlÞ−κ̄ because it has
spent the time interval between tl and τl behaving as
matter rather than vacuum energy. We thus have

ρlðτlÞ ∼mα
l

�
τl
tl

�
−κ̄

∼ τ−α=γ−κ̄ðγ−1Þ=γl : ð6:16Þ

On a log-log plot of energy density versus time, this
“effective decay” transition line would thus appear with
slope −α=γ − κ̄ðγ − 1Þ=γ. Because this line corresponds to
the actual values of the energy densities ρl at the times
when the corresponding states ϕl are decaying, it is this
third line which in some sense represents the true decay
transition, relating the energy density at the decay time to
the time at which the decay transition occurs. By contrast,
the “τ ¼ 1=Γ” line discussed above corresponds to the
decay line that would have been relevant if no prior
transition to matter had occurred.
Putting these observations together, we see that on a log-

log plot of energy density versus time, we now expect to
have three transition lines with different slopes:

3H ¼ 2m line∶ slope ¼ −α;

τ ¼ 1=Γ line∶ slope ¼ −α=γ;

effective decay line∶ slope ¼ −α=γ − κ̄ðγ − 1Þ=γ: ð6:17Þ

Of course, for γ ≠ 1, all three of these lines intersect at the
critical point X described in Eq. (6.12). By contrast, for
γ ¼ 1, these lines are all parallel.
There is one final point that we must also consider before

sketching the possible behaviors of the energy densities
during triple stasis. This is the fact that the magnitudes of
our energy densities ρl should continue to experience
successive pairwise crossings as time evolves, just as we
observed in the right panel of Fig. 2, so that the identity of
the ϕl component with the largest energy density is
continually changing as our transitions proceed down the
tower, just as each energy density changes from vacuum
energy to matter to radiation. As we discussed in relation to
the right panel of Fig. 2, it is this behavior involving
successive energy-density crossings which underlies the
pairwise stasis phenomenon, and we expect the same to be
true for triple stasis as well. In Sec. III, this crossing
interleaved behavior was the result of the energy densities
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ρlðtÞ “reflecting” off the transition line; indeed, this
property is ultimately what distinguished the behavior
sketched in the right panel of Fig. 2 from that sketched
in the left panel, the latter of which does not lead to stasis.
Towards this end, we shall similarly expect a reflecting
inter-leaved behavior for triple stasis. However, we now
have two transition lines relative to which such reflections
could potentially occur. As a result, we can consider
situations in which our energy densities reflect off the first
transition line, but we can alternatively consider situations
in which our energy densities pass through the first
transition line and reflect off the second line instead.
Putting all of these ingredients together, we see that

there are in principle six different classes of possible
behaviors for the energy densities during triple stasis.
These six resulting possible behaviors correspond to taking
γ > 1, γ < 1, or γ ¼ 1, and then in each case considering
either reflection off the 3H ¼ 2m transition line or reflec-
tion off the effective decay line. These six resulting
possible behaviors are sketched in Figs. 5–7. Given that
the slopes of the yellow (matter) and green (radiation)
ρlðtÞ lines are respectively given by −κ̄ and −4κ̄=3, we
see that the condition for reflecting off the 3H ¼ 2m
transition line is simply κ̄ > α. By contrast, the condition
for not reflecting off this line but instead reflecting off the
effective decay line is given by ϕα < κ̄ < α where
ϕ≡ ð1þ γ=3Þ−1.
As evident from Figs. 5–7, the behavior of our system is

highly sensitive to whether γ > 1 (as in Fig. 5), γ < 1 (as in
Fig. 6), or γ ¼ 1 (as in Fig. 7). For γ > 1, we find that
τl > tl for allml < mX. Thus the portion of the tower with
m < mX corresponds to a region in which we can
expect the underdamping transition to precede the eventual
decay, consistent with our original assumptions. Indeed, as
time evolves, the states in this region each experience
a transition from vacuum energy to matter and then
ultimately from matter to radiation. Thus, within this
region, we might imagine a triple stasis emerging if
m0 ≪ mN−1 < mX. By contrast, for γ < 1, we find that
τl > tl only for ml > mX. It is therefore within the portion
of the tower with m > mX that we might imagine a triple
stasis emerging. This is especially true if mN−1 ≫ mX, so
that a triple stasis has time to develop within this region. As
the transitions proceed down from mN−1 and approach mX,
the “matter” phase experienced by the corresponding states
prior to decay has shorter and shorter duration until it
disappears entirely at m ¼ mX, thereby extinguishing this
part of the triple stasis. Finally, for γ ¼ 1, no critical point X
exists. We then find that τl=tl ¼ 2m0=ðκ̄Γ0Þ ¼ ξ for all
masses ml. Thus in this case our entire tower could
potentially support a triple stasis if τl=tl > 1 (i.e., if
ξ > 1), but could never support a triple stasis otherwise.
Thus, to summarize, in our model of triple stasis we shall

restrict our attention to those portions of our tower—and
those times t—that satisfy the conditions

8>><
>>:

m < mX; t > tX for γ > 1;

m > mX; t < tX for γ < 1;

ξ > 1; any ðm; tÞ for γ ¼ 1:

ð6:18Þ

Of course, we stress that the sharp inequalities within each
of the different cases in Eq. (6.18) exist only because we
have assumed the instantaneous-decay approximation.
The regions of our ϕl towers given in Eq. (6.18) are

precisely those for which tl < τl, thereby allowing a matter
phase to emerge for eachl. Thus,within the regions outlined
in Eq. (6.18), we are assured that our tower simultaneously
gives rise to vacuum energy, matter, and radiation. Likewise,
within the times indicated in Eq. (6.18), there are two
independent transitions occurring simultaneously: the
damping transition from vacuum energy to matter, and
the decay transition frommatter to radiation. Taking vertical
time slices through the relevant portions of Figs. 5 through 7,
we then obtain the situation illustrated in Fig. 8. At any
moment, the states within the lowest portion of the tower
have not yet experienced any transitions and can thus be
interpreted as contributing to vacuum energy, while the
states within an intermediate middle portion can be inter-
preted as matter and the states within the upper portion have
already decayed to radiation. Although the underdamping
and decay transitions at any fixed time are occurring at
different locations within the tower—the former occurring
for lighter states and the latter occurring for heavier states—
they are each independently making their way down the
tower. For γ > 1, the decay transition makes its way down
the tower more slowly than the underdamping transition,
implying that as time evolves an increasingly large portion
of the tower behaves as matter. By contrast, for γ < 1 the
reverse is true: the decay transition makes its way down the
tower more rapidly than the underdamping transition, and
ultimately catches up to it whenml ¼ mX (which signals the
boundary of our region of interest as far as triple stasis is
concerned). Finally, for γ ¼ 1, these transitions make their
way down the tower at exactly the same rate.
In the rest of this section we shall be interested in

situations in which both transitions are still occurring within
the relevant portions of our tower, far from any “edge”
effects either at the top or bottom of the regions of interest
indicated within Eq. (6.18). This in turn implies that we
shall focus our attention on situations in which our states
ϕl, l ¼ 0; 1;…; N − 1, have a maximum mass mN−1
satisfying 8>><

>>:
mX > mN−1 ≫ 0 for γ > 1;

mN−1 ≫ mX for γ < 1;

mN−1 ≫ 0 for γ ¼ 1:

ð6:19Þ

Finally, before concluding this discussion, let us briefly
add further context to our assumption that tl < τl for all l.
In making this assumption, we are explicitly disregarding
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FIG. 6. Left panel: same as Fig. 5, but now sketched for γ < 1. Here it is the heavier portion of the tower with m > mX for which the
states experience transitions from overdamped to underdamped behavior before decaying to radiation. Right panel: same as left panel,
but for κ̄ within the range ϕα < κ̄ < α where ϕ≡ ð1þ γ=3Þ−1.

FIG. 7. Left panel: same as Figs. 5 and 6, but now sketched for γ ¼ 1. As long as ξ > 1, each component across the entire tower
experiences a transition from overdamped to underdamped behavior before decaying to radiation. Right panel: same as left panel, but
now sketched for κ̄ within the range 3α=4 < κ̄ < α.

FIG. 5. Left panel: the individual energy densities ρlðtÞ for the states ϕl with ml < mX, sketched as functions of time during a stasis
epoch with γ > 1 and κ̄ > α. Each state undergoes a transition from an overdamped phase (blue) to an underdamped phase (yellow) at a
time tl for which 3HðtlÞ ¼ 2ml before subsequently decaying to radiation (green) at the time τl ≡ 1=Γl. The dashed lines (red)
indicate the moments of transition between these different behaviors and have slopes given in Eq. (6.17). For the purposes of this sketch
we have assumed that states with greater energy densities have greater masses (i.e., that α > 0). We have also assumed that HðtÞ ∼ 1=t
with a fixed constant of proportionality, as appropriate during stasis, and we have taken w ≈ −1 so that our vacuum-energy lines are
essentially horizontal. We see by considering vertical time slices through this figure that the identity of the state with the greatest energy
density is time dependent, with lighter and lighter states carrying increasing shares of the total energy density as time evolves. Right
panel: same as left panel, but now sketched for κ̄ within the range ϕα < κ̄ < α where ϕ≡ ð1þ γ=3Þ−1.
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the possibility that tl > τl—i.e., that the vacuum energy
can decay directly to radiation even within the instanta-
neous-decay approximation. Of course, as discussed at the
beginning of Sec. IV, it is indeed possible for vacuum
energy to decay or dissipate directly to radiation (or to a
component that functions cosmologically as radiation, with
w ¼ 1=3). However, for our current purposes, such tran-
sitions are of less interest because they would completely
bypass the matter phase which is needed in order to have a
true triple stasis. Moreover, the point X described in
Eq. (6.12) signifies the critical location within the ϕl
tower which separates tl < τl behavior from tl > τl
behavior. Thus, by choosing to focus our attention on only
one side of X but not the other, we are implicitly enforcing
the restriction that tl < τl so that an intermediate matter
phase appears.
These observations hold only within the instantaneous-

decay approximation. By contrast, a treatment involving a
full exponential decay (replete with exponential tails in
both directions) would continue to allow vacuum energy to
be converted directly to our w ¼ 1=3 component even
when tl < τl. Indeed, this possibility can occasionally be
quite significant, and becomes extremely remote only when
τl ≫ tl. From Eq. (6.13), we see that the latter situation

arises only if ξ ≫ 1. Thus, while it is certainly a mathema-
tically self-consistent choice to adopt the instantaneous-
decay approximation and restrict our attention to ϕl towers
for which tl < τl for all l, we expect such a treatment to
match the results of a fully physical exponential decay only
when ξ ≫ 1. This issue will be discussed in more detail
later in this section and in Sec. VIII.
Given this understanding, we shall proceed by adopting

the instantaneous-decay approximation and assuming that
tl < τl for all l. We shall do this with the understanding
that such a model represents what we may consider to be a
faithful representation of the full exponential decay within
the ξ ≫ 1 regime. With this model in hand, our goal is then
to determine whether the resulting system can host a true
triple stasis in which the total abundances ΩΛ, ΩM, and Ωγ

each remain fixed despite cosmological expansion.

C. Overall scaling constraints

Within this system, our first step is to evaluate the pump
terms in Eq. (6.10) during a period of stasis. This in turn
requires that we determine dρðiÞtot=dt for i ¼ Λ;M; γ within
this model, since the pump terms Pij are defined through
their appearance in Eq. (6.5). In order to derive these

FIG. 8. Triple stasis in action: the structure of the towerϕl during a potential triple-stasis epoch. The individual states are shown in order
of increasing l, just as they are at the initial time in Figs. 5 through 7,with colors determined by considering appropriate vertical time slices
through these figures as time evolves. At any moment two separate transitions are occurring at different locations within the tower: an
underdamping transition from vacuum energy (blue) to matter (yellow) occurring at a lower location within the tower, and a decay
transition from matter (yellow) to radiation (green) simultaneously occurring at a higher location. As time evolves, both transitions work
their way down the tower, with the color of a given state changing from blue to yellow and then from yellow to green as each of the two
transitions sweeps past it. For γ > 1 the decay transition proceeds down the tower more slowly than the underdamping transition, thereby
allowing the matter region of the tower to continually increase in size. By contrast, for γ < 1 the decay transition proceeds more quickly
down the tower than the underdamping transition, ultimately catching up with it at m ¼ mX. For γ ¼ 1 both transitions move down the
tower at the same rate. All of this occurs within an expanding universe, thereby potentially supporting a triple-stasis epoch.
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equations, we shall proceed in stages. First, within each of
the ranges specified above in Eqs. (6.18) and (6.19) we can
approximate the corresponding energy-density contribu-
tions from each ϕl component during (eternal) stasis as

ρðΛÞl ðtÞ ¼ ρ�l

�
t
t�

�
−ð1þwÞκ̄

Θðtl − tÞ;

ρðMÞ
l ðtÞ ¼ ρ�l

�
tl
t�

�
−ð1þwÞκ̄� t

tl

�
−κ̄
Θðt − tlÞΘðτl − tÞ;

ρðγÞl ðtÞ ¼ ρ�l

�
tl
t�

�
−ð1þwÞκ̄�τl

tl

�
−κ̄
�

t
τl

�
−4κ̄=3

Θðt − τlÞ;

ð6:20Þ
where t� is a fiducial early time within our eternal stasis
prior to tl. Indeed, these are the relations whose w → −1
limits are sketched in Figs. 5 through 7, but we shall keep w
arbitrary for our algebraic analysis. The Heaviside func-
tions within these equations capture the manner in which
the original energy density ρl of each ϕl field is transferred
between the vacuum-energy, matter, and radiation compo-
nents at times tl and τl as the universe expands.
Of course, strictly speaking, our assumption that t� < tl

for all l is inconsistent with our assumption that our stasis
is eternal. Indeed, Eq. (6.20) may be viewed as the triple-
stasis analog of Eq. (2.11), for which similar issues arose.
However, just as in Sec. II, we shall temporarily proceed
with this assumption since it will not affect our eventual
stasis constraints, deferring a formal justification of our
adoption of this assumption to Sec. VI E.
Given the energy densities in Eq. (6.20), we immediately

find

dρðΛÞl

dt
¼−ρ�l

�
tl
t�

�
−ð1þwÞκ̄

δðt− tlÞ−3ð1þwÞHρðΛÞl ;

dρðMÞ
l

dt
¼ρ�l

�
tl
t�

�
−ð1þwÞκ̄

δðt− tlÞ

−ρ�l

�
tl
t�

�
−ð1þwÞκ̄�τl

tl

�
−κ̄
δðt−τlÞ−3HρðMÞ

l ;

dρðγÞl

dt
¼ρ�l

�
tl
t�

�
−ð1þwÞκ̄�τl

tl

�
−κ̄
δðt−τlÞ−4HρðγÞl : ð6:21Þ

In order to calculate the total energy densities

ρi ¼
P

l ρ
ðiÞ
l , we now wish to sum these equations over

all of the ϕl states in our theory. To do this, we shall pass to
the continuum limit in which we express our l-parameter in
terms of the corresponding underdamping time tl (as in
Sec. III) or lifetime τl (as in Sec. II) and then treat tl or τl
as a continuous parameter t̂ or τ respectively. In other
words, we shall replace

X
l

→
Z

dt̂ nt̂ðt̂Þ or
X
l

→
Z

dτ nτðτÞ; ð6:22Þ

where nt̂ðt̂Þ and nτðτÞ are respectively the densities of states
per unit t̂ and τ, evaluated at the locations within our tower
for which the underdamping time or lifetime is given by t̂
or τ, respectively. Indeed, for each term within Eq. (6.21),
we shall choose the first option within Eq. (6.22) if the
relevant term in Eq. (6.21) contains a δ-function involving
tl, and the second option if the relevant term contains a
δ-function involving τl.
We shall likewise consider the energy densities ρlðtÞ

to be labeled not by the discrete variable l but by the
continuous variables t̂ or τ. However, each of these energy
densities itself evolves as a function of time. Thus for each
energy density we actually have two kinds of time variables
in play, one telling us which energy density we are talking
about (i.e., corresponding to which ϕl within the tower)
and the other telling us when during the evolution of the
universe that energy density should be evaluated. Towards
this end, for absolute clarity, we shall let ρt̂ðt1; t2Þ denote
the energy density—evaluated at time t2—of that particular
ϕ-field which becomes underdamped precisely at t1, and
likewise let ρτðt1; t2Þ denote the energy density—evaluated
at time t2—of that particular ϕ-field which decays at t1. We
can then replace

ρlðtÞ → ρt̂ðtl; tÞ or ρlðtÞ → ρτðτl; tÞ: ð6:23Þ

Of course, the fiducial energy density ρ�l now becomes
either ρt̂ðtl; t�Þ or ρτðτl; t�Þ, depending on the chosen
integration variable.
Given these substitutions, it becomes relatively straight-

forward to evaluate the l-summations of the terms appear-
ing in Eq. (6.21). For example, we find

X
l

ρ�l

�
tl
t�

�
−ð1þwÞκ̄

δðt − tlÞ

→
Z

dt̂nt̂ðt̂Þρt̂ðt̂; t�Þ
�
t̂
t�

�−ð1þwÞκ̄
δðt − t̂Þ

¼ nt̂ðtÞρt̂ðt; t�Þ
�
t
t�

�
−ð1þwÞκ̄

: ð6:24Þ

In a similar vein, we also have

X
l

ρ�l

�
tl
t�

�
−ð1þwÞκ̄�τl

tl

�
−κ̄
δðt − τlÞ

¼
X
l

ρ�lðξΓ0t�Þwκ̄
�
τl
t�

�
−κ̄
ðΓ0τlÞ−wκ̄=γδðt − τlÞ

→
Z

dτnτðτÞρτðτ; t�ÞðξΓ0t�Þwκ̄
�
τ

t�

�
−κ̄

× ðΓ0τÞ−wκ̄=γδðt − τÞ

¼ ðξΓ0t�Þwκ̄
�
t
t�

�
−κ̄
ðΓ0tÞ−wκ̄=γnτðtÞρτðt; t�Þ ð6:25Þ
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where in passing to the second line we have used
Eq. (6.13).
We thus find that Eq. (6.21) takes the anticipated form in

Eq. (6.5), where can now identify the pump terms for this
model:

PðρÞ
ΛM ¼

�
t
t�

�
−ð1þwÞκ̄

nt̂ðtÞρt̂ðt; t�Þ;

PðρÞ
Λγ ¼ 0;

PðρÞ
Mγ ¼ ðξΓ0t�Þwκ̄

�
t
t�

�
−κ̄
ðΓ0tÞ−wκ̄=γnτðtÞρτðt; t�Þ: ð6:26Þ

As discussed at the end of Sec. VI B, the vanishing of

the PðρÞ
Λγ pump is a consequence of our adoption of the

instantaneous-decay approximation and our assumption
that tl < τl for all l (or equivalently that we are working
within the ξ ≫ 1 limit of a treatment based on taking a
adopting a full exponential decay). These results in turn
yield

PΛM ¼
�
t
t�

�
−ð1þwÞκ̄

nt̂ðtÞΩt̂ðt; t�Þ;

PΛγ ¼ 0;

PMγ ¼ ðξΓ0t�Þwκ̄
�
t
t�

�
−κ̄
ðΓ0tÞ−wκ̄=γnτðtÞΩτðt; t�Þ; ð6:27Þ

where Ωt̂;τðt1; t2Þ≡ 8πG
3Hðt2Þ2 ρt̂;τðt1; t2Þ.

Of course, these results make intuitive sense. Indeed,
within a period of stasis we see that�

t
t�

�
−ð1þwÞκ̄

Ωt̂ðt; t�Þ ¼ Ωt̂ðt; tÞ; ð6:28Þ

and this is nothing but the abundance of the field which is
becoming underdamped precisely at the time t, evaluated at
the moment of the underdamping transition. Indeed, the
disappearance of t� within Eq. (6.28) is consistent with our
original adoption of t� as a mere fiducial time within our
eternal stasis. Likewise, we find

ðξΓ0t�Þwκ̄
�
t
t�

�
−κ̄
ðΓ0tÞ−wκ̄=γΩτðt; t�Þ ¼ Ωτðt; tÞ; ð6:29Þ

and this is nothing but the abundance of the field which is
decaying precisely at the time t, evaluated at the moment of
decay. We can thus write our pumping terms in the final
forms

PΛM ¼ nt̂ðtÞΩðΛÞ
t̂ ðt; tÞ;

PΛγ ¼ 0;

PMγ ¼ nτðtÞΩðMÞ
τ ðt; tÞ; ð6:30Þ

where we have added the superscripts (Λ) and (M) as a
reminder that the associated abundances can be interpreted
as corresponding to vacuum energy and matter, respec-
tively, at times t ¼ t̂ and t ¼ τ. Indeed, these pumping
terms describe the rates at which abundances are being
transferred between our different energy components at the
moments they pass across the underdamping and decay
thresholds, respectively.
We now proceed to evaluate these pumping terms within

the framework of themodel introduced in Sec. II. In this way
we shall be able to determine the conditions under which
these pumps might simultaneously satisfy the triple-stasis
constraints in Eq. (6.10). Recall that nt̂ðtÞ is the density of
states per unit underdamping time t̂, evaluated for that
portion of the towerwhich is becoming underdamped at time
t, while nτðtÞ is the density of states per unit decay time τ
evaluated for that portion of the tower that is decaying at time
t. A straightforward calculation then yields

nt̂ðtÞ≡




 dldt̂






t̂¼t

¼ 1

δ

�
κ̄

2Δmt

�
1=δ 1

t
;

nτðtÞ≡




 dldτ






τ¼t

¼ 1

γδ

�
m0

Δm

�
1=δ

ðΓ0tÞ−1=ðγδÞ
1

t
; ð6:31Þ

where we have again taken m0 ≪ ðΔmÞlδ. Similarly, we
can evaluate the abundances in Eq. (6.30), obtaining

ΩðΛÞ
t̂ ðt; tÞ ¼ Ω�

0

�
κ̄

2m0t

�
α
�
t
t�

�
2−ð1þwÞκ̄

;

ΩðMÞ
τ ðt; tÞ ¼ Ω�

0

�
ml

m0

�
α
�
tl
t�

�
2−ð1þwÞκ̄� t

tl

�
2−κ̄

¼ Ω�
0ðξΓ0t�Þwκ̄

�
t
t�

�
2−κ̄

ðΓ0tÞ−α=γ−wκ̄=γ: ð6:32Þ

Given these results, we see that

PΛM ¼ Ω�
0

δt

�
m0

Δm

�
1=δ

ðξΓ0t�Þ−η
�
t
t�

�
2−κ̄−ðηþwκ̄Þ

;

PMγ ¼
Ω�

0

γδt

�
m0

Δm

�
1=δ

ðΓ0t�Þ−η=γ

×
�
ξðΓ0t�Þ1−1=γ

�
wκ̄

�
t
t�

�
2−κ̄−ðηþwκ̄Þ=γ

: ð6:33Þ

Thus, the scaling for our first pump PΛM will be consistent
with the scaling t−1 required for triple stasis only if

η ¼ 2 − ð1þ wÞκ̄: ð6:34Þ

This is precisely the constraint that we already obtained for
the single pairwise ðΛ;MÞ stasis in Sec. III. Likewise,
demanding that our second pumpPMγ scale as t−1 yields the
constraint
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η ¼ 2γ − ðγ þ wÞκ̄: ð6:35Þ

Subtracting Eqs. (6.34) and (6.35) then yields the
constraint

ð2 − κ̄Þ
�
1 −

1

γ

�
¼ 0: ð6:36Þ

Indeed, this last constraint ensures that our two pumps PΛM
and PMγ are compatible with each other within the same
background cosmology.
The result in Eq. (6.36) indicates that there are two

mutually disjoint “branches” of our theory that are poten-
tially capable of yielding triple stasis: one has γ ¼ 1 and
any value of κ̄, while the other has κ̄ ¼ 2 and any value of γ.
Such branches have a common intersection point with
γ ¼ 1 and κ̄ ¼ 2. However, for reasons to become clear, it
will prove useful to define these two branches to be
mutually exclusive by assigning the ðγ; κ̄Þ ¼ ð1; 2Þ point
to be a member of the first of these branches but not the
second. We thus define Branches A and B to consist of
potential stasis solutions satisfying not only Eq. (6.34) but
also the additional constraints

BranchA∶ γ ¼ 1; any κ̄;

BranchB∶ κ̄ ¼ 2; any γ ≠ 1: ð6:37Þ

The ðγ; κ̄Þ parameter-space domains corresponding to
these additional constraints are sketched in Fig. 9. We
shall soon find that these two branches have very different
behaviors.
At this stage, we have learned that any possible triple-

stasis solutions are limited to Branch A or Branch B.
Moreover, given that we have already satisfied the con-
straint in Eq. (6.36) by limiting our attention to Branch A or
Branch B, Eq. (6.34) becomes the only additional relation
that we have thus far governing such potential triple stases.

However, this relation is no different from that in Sec. III,
with any choice of input parameters ðα; δ; wÞ leading to a
unique value of κ̄. Of course, if we also choose γ ¼ 1 we
find ourselves on the Branch A line. By contrast, leaving γ
arbitrary, we find that only those choices of ðα; δ; wÞ that
lead to κ̄ ¼ 2 correspond to Branch B.
In either case, however, we see that κ̄ is uniquely

determined from our choice of the initial parameters
ðα; δ; wÞ. In the previous pairwise cases which involved
only two stasis abundances, such predictions for κ̄ (along
with the usual normalization constraint

P
i Ω̄i ¼ 1) were

sufficient to permit us to uniquely determine the corre-
sponding stasis abundances. However, for triple stasis, the
specification of κ̄ only restricts us to a line of solutions for
the stasis abundances Ω̄i. Thus, at first glance, it would no
longer appear possible to obtain firm predictions for the
stasis abundances.

D. Prefactor constraints, log-avoidance constraints,
and the emergence of triple stasis

Fortunately, we have two further classes of constraints at
our disposal: these are the log-avoidance constraints as well
as the prefactor constraints. These general types of
constraints were discussed in some detail in Sec. II B. In
the case of the pairwise stases in Secs. II, III, and IV, we
found that these prefactor constraints were redundant with
our scaling constraints. Indeed, this redundancy is what
allowed stasis to be a self-consistent phenomenon in such
pairwise situations. However, for triple stasis, we shall find
that these prefactor constraints are no longer redundant
with our scaling constraints and therefore contain further
information. Indeed, we shall find that this further infor-
mation will play two roles. First, it will provide an
additional condition for stasis, one which further restricts
the potential solutions that we have thus far obtained. In
particular, this additional information will allow us to
distinguish between Branches A and B and thereby
demonstrate that only one of these branches gives rise to
a full triple stasis. However, this additional information will
also allow us to determine the stasis abundances Ω̄Λ;M;γ
uniquely.
In order to derive these results, we follow previous

sections and shift from the differential to the integral form
of our calculations and directly evaluate the abundances
Ω̄Λ;M;γ during stasis. In order to expose the common
algebraic structure of these calculations, we shall evaluate
these abundances in parallel. Our calculation begins, as
before, with Eq. (6.20). Even though this equation gives
expressions for the energy densities ρlðtÞ, the correspond-
ing abundances ΩlðtÞ take precisely the same forms except
multiplied by ðt=tð0ÞÞ2. The Heaviside Θ-function structure
within Eq. (6.20) tells us that at any time t we can interpret
our abundance as corresponding to vacuum energy, matter,
or radiation according to

FIG. 9. Two branches of solutions to Eqs. (6.36). These
branches are defined as in Eq. (6.37) with the convention that
the point with ðγ; κ̄Þ ¼ ð1; 2Þ is considered to be part of Branch A
but not Branch B. With this convention the two branches are
mutually exclusive.
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Λ∶ t < tl;

M∶ tl < t < τl;

γ∶ t > τl: ð6:38Þ

At any time t, this in turn implies that the lower parts of
our ϕl tower are generally still vacuum energy while
the middle parts of our tower have already transitioned
to matter and the upper parts have already decayed to
radiation. Indeed, this configuration is consistent with
Fig. 8.
Our goal, of course, is to sum over the contributions from

each relevant part of the tower in order to obtain our total
abundances Ω̄Λ;M;γ . In order to perform these sums in a
parallel fashion, we shall express each state at level l in
terms of its decay lifetime τl and then treat these decay
lifetimes as forming a continuous parameter τ. We can thus
rewrite

ml=m0 → ðΓ0τÞ−1=γ;
tl → ðΓ0τÞ1=γ=ðξΓ0Þ; ð6:39Þ

where in the last line we have made use of Eq. (6.13).
Finally, at any moment t, we can calculate the critical
τ-values that demarcate the boundaries between the regions
of the ϕl tower corresponding to vacuum energy, matter,
and radiation. Indeed, the boundary between vacuum
energy and matter occurs where t ¼ tl, while that between
matter and radiation occurs where t ¼ τl. We thus have

Λ∶ ðξΓ0tÞγτ0 < τ < τ0;

M∶ t < τ < ðξΓ0tÞγτ0;
γ∶ τN−1 < τ < t; ð6:40Þ

where τ0 ≡ 1=Γ0. Note that strictly speaking, our range of
τ-values stretches from τN−1 (the smallest value, corre-
sponding to the top state ϕN−1 within the tower) all the way
to τ0 (the largest value, corresponding to the bottom state
ϕ0 within the tower). In previous sections, we have noted
that we are ultimately interested in times t for which
τN−1 ≪ t ≪ τ0, so that we are far from any “edge” effects.
We therefore made the approximations τN−1 ≈ 0 and
τ0 ≈∞. However, in order to be absolutely rigorous, we
have retained these precise values within our integration
limits for Ω̄Λ and Ω̄γ in Eq. (6.40).
Given these ingredients, our calculation of the total

abundances Ω̄Λ;M;γ is relatively straightforward. Just as
in previous sections, we shall no longer assume an eternal
stasis, but instead recognize that stasis will only begin at
times t ≫ tð0Þ where tð0Þ is the production time for our ϕl
states. We shall also now seek to evaluate these abundances

in terms of their valuesΩð0Þ
Λ;M;γ at t

ð0Þ rather than at a fiducial
time t� during an eternal stasis. Towards this end, we shall

again introduce an h-function hðtð0Þ; t�Þ which describes
the evolution of the abundances due to gravitational red-
shifting between tð0Þ and t�. We shall further assume that
our abundances all share this common factor even though
there are now three abundances in play, rather than only
two. At first glance, the presence of three abundances
would seem to allow room for a second h-factor, even while
demanding that the sum of the abundances remain at 1.
However, as we shall demonstrate in Sec. VI E, our
assumption of a common h-function across all three
abundances is indeed appropriate for our stasis calcula-
tions. We shall therefore proceed with only one h-function,
deferring further discussion of this issue to Sec. VI E.
In the continuum limit with τ chosen as our continuous

variable, each of these abundances can be ultimately
expressed in the form

Ω̄i ¼
Z

dτ nτðτÞΩðiÞ
τ ðτ; tÞ ð6:41Þ

for i ¼ Λ;M; γ. Here nτðτÞ is the density of states per unit τ,
while Ω̄iðτ; tÞ represents the contribution to the abundance
Ω̄i, evaluated at time t, from the field which decays at
time τ. Of course, in each case the integral will be delimited
according to Eq. (6.40).
The density of states nτðτÞ is given in Eq. (6.31).

Likewise, the abundances ΩðiÞ
τ ðτ; tÞ follow readily from

the energy densities in Eq. (6.20) upon making the
substitutions listed in Eqs. (6.13) and (6.39):

ΩðΛÞ
τ ðτ; tÞ ¼ Ωτðτ; tð0ÞÞhðtð0Þ; t�Þ

�
t
t�

�
2−ð1þwÞκ̄

× Θ
�ðΓ0τÞ1=γ

ξΓ0

− t
�
;

ΩðMÞ
τ ðτ; tÞ ¼ Ωτðτ; tð0ÞÞhðtð0Þ; t�Þ

�
t
t�

�
2−κ̄

×

�ðΓ0τÞ1=γ
ξΓ0t�

	−wκ̄
Θ
�
t −

ðΓ0τÞ1=γ
ξΓ0

�
Θðτ − tÞ;

ΩðγÞ
τ ðτ; tÞ ¼ Ωτðτ; tð0ÞÞhðtð0Þ; t�Þ

�
t
t�

�
2−κ̄

×

�ðΓ0τÞ1=γ
ξΓ0t�

	−wκ̄�t
τ

�
−κ̄=3

Θðt − τÞ: ð6:42Þ

However, we know thatΩτðτ; tð0ÞÞ ¼ Ωð0Þ
0 ðΓ0τÞ−α=γ. [This is

the continuum limit of the relation Ωð0Þ
l ¼ Ωð0Þ

0 ðml=m0Þα.]
It therefore follows that we can write all three stasis
abundances in the compact form
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Ω̄Λ ¼ AðtÞ
Z

τ0

τ0ðξΓ0tÞγ
dτðΓ0τÞ−1−η=γ;

Ω̄M ¼ AðtÞðξΓ0tÞwκ̄

×
Z

τ0ðξΓ0tÞγ

t
dτðΓ0τÞ−1−ðηþwκ̄Þ=γ;

Ω̄γ ¼ AðtÞðξΓ0tÞwκ̄ðΓ0tÞ−κ̄=3

×
Z

t

τN−1

dτðΓ0τÞ−1−ðηþwκ̄Þ=γþκ̄=3; ð6:43Þ

where each integral is delimited according to Eq. (6.40)
and where the common t-dependent prefactor in each
expression is

AðtÞ≡Ωð0Þ
0 Γ0

γδ

�
m0

Δm

�
1=δ

hðtð0Þ; t�Þ
�
t
t�

�
2−ð1þwÞκ̄

: ð6:44Þ

Our first interest is in the t-dependence of each expres-
sion within Eq. (6.43). This in turn depends in part on the
exponent of τ in the corresponding integrand. Since we are
evaluating these total abundances during an epoch of
triple stasis—i.e., at a time both well after the heaviest
ϕ-field decays and well before the lightest ϕ-field begins to
oscillate—it follows that τN−1 ≪ t ≪ t̂0 ¼ τ0=ξ. Thus, to a
very good approximation, we find that Ω̄Λ has the t-scaling
behavior

Ω̄Λ ∼

8>><
>>:

t2−ð1þwÞκ̄ η < 0;

t2−ð1þwÞκ̄ log ðξΓ0tÞ η ¼ 0;

t2−ð1þwÞκ̄−η η > 0:

ð6:45Þ

Likewise, we find that Ω̄M has the t-scaling behavior

Ω̄M ∼

8<
: t2−κ̄

h
t−ðηþwκ̄Þ=γ − τ−ðηþwκ̄Þ=γ

0

ðξΓ0tÞηþwκ̄

i
ηþwκ̄ ≠ 0;

t2−κ̄ log
�
ξðΓ0tÞ1−1=γ

�
ηþwκ̄ ¼ 0:

ð6:46Þ

Finally, we find that Ω̄γ scales with time according to

Ω̄γ ∼

8>><
>>:

t2−κ̄−ðηþwκ̄Þ=γ ηþ wκ̄ < κ̄γ=3;

t2−4κ̄=3 log
�

t
τN−1

�
ηþ wκ̄ ¼ κ̄γ=3;

t2−4κ̄=3 ηþ wκ̄ > κ̄γ=3:

ð6:47Þ

Given these scaling behaviors, we now seek to determine
the conditions under which all three of these abundances
will be independent of time. It will prove simplest to begin
by considering Ω̄M. Close inspection of our results for Ω̄M

in Eq. (6.46) indicates that Ω̄M will be a constant only if

η ¼ 2 − ð1þ wÞκ̄ and γ ¼ 1: ð6:48Þ

Indeed, the upper line of Eq. (6.46) will be a constant only
if we additionally impose the requirement that κ̄ ≠ 2 (so
that the relevant condition for that case applies), but the
lower line applies if κ̄ ¼ 2 and also yields a constant so
long as γ ¼ 1. We thus find that any value of κ̄ is allowed
in Eq. (6.48).
With Eq. (6.48) in hand, let us now consider our results

for Ω̄γ in Eq. (6.47). From Eq. (6.47), we learn that the
logarithmic case can never yield a constant, while the lower
case within Eq. (6.47) is fundamentally inconsistent with
Eq. (6.48). By contrast, the upper case within Eq. (6.47)
yields a constant so long as

κ̄ > 3=2: ð6:49Þ

However, this relation is not a surprise: any system
consisting of a nontrivial mixture of vacuum energy, matter,
and radiation must have κ̄ > 3=2 simply because radiation
alone has κ ¼ 3=2 while matter and vacuum energy
necessarily have κ-values that are larger than 3=2.
Indeed, this constraint is always satisfied (essentially by
construction). It therefore does not represent an additional
constraint that needs to be imposed on our system, and we
need not consider it further.
Finally, we must demand that Ω̄Λ also be a constant.

From our results for Ω̄Λ in Eq. (6.45) we immediately
observe that the middle line can never yield a constant
(thanks to the logarithm), while the top line is fundamen-
tally inconsistent with the first relation in Eq. (6.48) since
the power of t is consistent with Eq. (6.48) only if η ¼ 0,
while the relevant condition for that case requires η < 0.
Indeed, the only case within Eq. (6.45) for which Ω̄Λ can be
a constant is that on the final line, whereupon we obtain
another condition for constant abundances, namely

η > 0: ð6:50Þ

However, this relation is entirely subsumed within the first
relation in Eq. (6.48). To see this, we recognize that a
universe consisting only of vacuum energy within the
general-w model would have κ ¼ 2=ð1þ wÞ, while mat-
ter-or radiation-dominated universeswould necessarily have
smaller κ-values, namely κ ¼ 2 or κ ¼ 3=2 respectively.
Thus, by construction, triple stasis can only give rise to
universes satisfying κ̄ < 2=ð1þ wÞ, whereupon the first
relation in Eq. (6.48) immediately yields Eq. (6.50). Thus
Eq. (6.50)—like Eq. (6.49)—does not provide an additional
constraint on our system and can henceforth be disregarded.
We thus conclude that the conditions for triple stasis are

simply those listed in Eqs. (6.48). Indeed, because our
analysis has followed the integral form of our constraints
and has therefore involved evaluating the abundances
Ω̄Λ;M;γ directly, these are the complete set of constraints
needed for triple stasis. From this observation we learn
several important things:
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(i) The scaling relation in Eq. (6.34) that emerged from
the differential form of our constraints now appears
within the integral form as well, as the first con-
straint within Eq. (6.48).

(ii) The additional constraint that we now have within
Eq. (6.48), namely γ ¼ 1, can be identified as a log-
avoidance constraint. We shall discuss this addi-
tional constraint below.

(iii) Finally, we have not yet examined our prefactor
constraints. However, we already see that any such
prefactor constraints cannot possibly be needed as
preconditions for stasis, since stasis has already been
assured through the above constraints alone. Indeed,
as we shall see, our prefactor constraints will serve
another purpose entirely, ultimately allowing us to
solve for the abundances Ω̄Λ;M;γ during stasis.

In Sec. VI C, we found that the requirements of triple
stasis—as obtained through the differential form of our
constraints—led uniquely to two “branches” of potential
solutions. These branches were indicated in Eq. (6.37) and
sketched in Fig. 9. However, comparing with our current
constraints obtained via the integral form of our stasis
relations, we now see that Branch B violates the γ ¼ 1
constraint and thus does not lead to triple stasis. It is easy to
seewhat is goingwrongwithinBranchB.Recall that Branch
B is defined by the overall scaling constraint in Eq. (6.34)
alongwith the extra conditions κ̄ ¼ 2 and γ ≠ 1. Under these
circumstances, we find from Eqs. (6.45) and (6.47) that both
Ω̄Λ and Ω̄γ nominally continue to remain constant. However
we find from Eq. (6.46) that Ω̄M now accrues a nominally
logarithmic time dependence. It is for this reason that we
may regard γ ¼ 1 as a logarithm-avoidance constraint.
Indeed, this nominal logarithmic time dependence for Ω̄M
emerges for all points along Branch B (with the under-
standing that the case with κ̄ ¼ 2 and γ ¼ 1 belongs to
Branch A). Thus, we conclude that Branch B fails to yield a
true triple stasis.
In this context, one important comment is in order—one

which explains the word “nominally” which we have used
above. Even though we occasionally obtain what look like
logarithmic time dependenceswithin Eqs. (6.45), (6.46), and
(6.47), this does not imply that our corresponding abundan-
ces actually exhibit time dependences which are precisely
logarithmic. This is because the derivation leading to these
equations assumed the existence of an eternal stasis. Indeed,
thiswas the underpinning ofEq. (6.20)withwhichwe started
our calculations. For example, within Eq. (6.20) we
implicitly assumed that our FRW scale factor a evolves as
a fixed power of time, yet such behavior emerges only if the
corresponding κ is a constant. Thus the results in Eqs. (6.45),
(6.46), and (6.47) are absolutely trustworthy only in situa-
tions in which all three abundances are constants.
By contrast, in order to determine the true time dependence

of our abundances in situations in which these abundances
vary with time, we would ultimately need a more general

derivation in which such initial stasis assumptions are not
made. This has the potential to deform our results away from
those obtained from Eqs. (6.45), (6.46), and (6.47) above.
Indeed, the fastest way to see that deformations are needed in
such cases is to recognize from the above analysis that Branch
B appears to lead to only one abundance (specifically Ω̄M)
which has a nonzero time dependence, yet this cannot
be consistent with our overall normalization constraintP

i Ω̄i ¼ 1. Thus even Ω̄Λ and Ω̄γ must accrue a suppressed
time dependence as well. However, even if the actual time
dependences that emerge within such an analysis are not
precisely logarithmic, they will continue to be nonvanishing.
Thus our conclusion that Branch B does not lead to stasis
remains unchanged. The resulting time dependences are
nevertheless likely to be highly suppressed compared with
our usual ΛCDM expectations.
These observations are relevant for understanding the

properties of Branch B. Because Branch B involves abun-
dances which are not truly static, it may therefore seem that
Branch B is uninteresting. However, although Branch B
does not lead to stasis, it does lead to a new phenomenon:
abundances which evolve unexpectedly slowly as functions
of time. Indeed, although Branch B fails to satisfy the γ ¼ 1
constraint in Eq. (6.48), it does satisfy our overall scaling
constraint and thus gives rise to abundances exhibiting
extremely suppressed time evolutions. This in and of itself
is also an interesting new feature which does not emerge in
the standard ΛCDM cosmologies but which may never-
theless have important phenomenological implications. We
shall refer to this phenomenon involving abundances with
extremely suppressed time dependences as a quasi-stasis.
We shall return to this issue in Sec. IX.
By contrast, Branch A satisfies all of our stasis con-

straints, even when κ̄ ¼ 2, by virtue of the fact that γ ¼ 1
along the full length of Branch A. Thus Branch A exhibits
a full triple stasis, thereby verifying that triple stasis is
possible! Even though the case with κ̄ ¼ 2 corresponds to
the logarithmic case within Eq. (6.46), the fact that γ ¼ 1
assures us that the argument of the logarithm is itself time
independent. Thus the stasis behavior is preserved even in
this case.
Now that we have determined the conditions for (eternal)

stasis in Eq. (6.48), we can proceed to evaluate the
corresponding stasis abundances Ω̄Λ, Ω̄M, and Ω̄γ .
Indeed, from the bottom line of Eq. (6.45), both lines of
Eq. (6.46), and the top line of Eq. (6.47) we find

Ω̄Λ¼
Ωð0Þ

0

δη

�
m0

Δm

�
1=δ

hðtð0Þ;t�ÞðξΓ0t�Þ−η;

Ω̄M¼Ωð0Þ
0

δ

�
m0

Δm

�
1=δ

hðtð0Þ;t�Þξwκ̄ðΓ0t�Þ−ηX−1;

Ω̄γ ¼
Ωð0Þ

0

ð4κ̄=3−2Þδ
�
m0

Δm

�
1=δ

hðtð0Þ;t�Þξwκ̄ðΓ0t�Þ−η; ð6:51Þ
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where the quantity X within Ω̄M is given by

X ≡
(

2−κ̄
1−ξκ̄−2 ; κ̄ ≠ 2;

ðlog ξÞ−1; κ̄ ¼ 2:
ð6:52Þ

Note that L’Hôpital’s Rule guarantees that X is continuous
across ηþ wκ̄ ¼ 0.
Likewise, from Eq. (6.33), we find that our pumps during

stasis take the form

PΛM ¼ Ωð0Þ
0

δ

�
m0

Δm

�
1=δ

hðtð0Þ; t�ÞðξΓ0t�Þ−η
1

t
;

PMγ ¼
Ωð0Þ

0

δ

�
m0

Δm

�
1=δ

hðtð0Þ; t�Þξwκ̄ðΓ0t�Þ−η
1

t
: ð6:53Þ

For ηþ wκ̄ ¼ 0 (i.e., for κ̄ ¼ 2), we thus immediately
observe that

PΛM ¼ PMγ: ð6:54Þ

This case will be discussed extensively below. However in
all other cases we find that our pumps are unequal.
It is now straightforward to derive the relative prefactor

constraints for triple stasis. Following the same path as in
previous sections (but bypassing the C-and C0-coefficients
since our only interest is in the relative prefactor con-
straints), we can simply write our pumps in Eq. (6.53)
directly in terms of our abundances in Eq. (6.51):

PΛM ¼ ηΩ̄Λ
1

t
;

PMγ ¼ XΩ̄M
1

t
¼

�
4κ̄

3
− 2

�
Ω̄γ

1

t
; ð6:55Þ

where the second expression for PMΛ follows from the
relation

XΩ̄M ¼
�
4κ̄

3
− 2

�
Ω̄γ ð6:56Þ

which emerges from a direct comparison between the final
two lines in Eq. (6.51). Happily, the results in Eq. (6.55)
immediately satisfy the first and third pump constraints in
Eq. (6.10), providing further evidence that our model
successfully yields stasis. Indeed, these are the constraints
governing the independent flows of energy density out of
ΩΛ and into Ωγ , respectively. However, just as in previous
sections, we learn nothing new from these two relative
prefactor constraints.
There is, however, another prefactor constraint—one

which is nontrivial. This is the middle constraint in
Eq. (6.10) which links the two pumps PΛM and PMγ to
each other and thereby ensures that they are compatible

with each other within a single cosmology in which the sum
of all three abundances is restricted to remain at 1.
[Alternatively, as discussed below Eq. (6.10), this con-
straint is not new if we impose the relation in Eq. (6.3),
which likewise ensures that our cosmology simultaneously
includes all three energy components.] Comparing our
results in Eq. (6.55) with the middle equation in Eq. (6.10)
we obtain the additional constraint

ηΩ̄Λ ¼ ðX þ κ̄ − 2ÞΩ̄M: ð6:57Þ

Taking this constraint together with Eq. (6.56) and the
constraint that

P
i Ω̄i ¼ 1, we then find that our relative

prefactor constraints can be satisfied only if our stasis
abundances are given by

Ω̄i ¼ ri
.X

j

rj ð6:58Þ

where

rΛ ¼ ð4κ̄ − 6ÞðX þ κ̄ − 2Þ;
rM ¼ ð4κ̄ − 6Þη;
rγ ¼ 3ηX: ð6:59Þ

Of course, we know from Eq. (6.34) that

κ̄ ¼ 2 − η

1þ w
: ð6:60Þ

With Eq. (6.60) inserted into Eq. (6.59), we therefore find
that our final stasis abundances in Eq. (6.58) can be written
directly in terms of the input variables ðα; γ; δ; wÞ. Indeed,
only for these values of our three abundances is the middle
pump equation in Eq. (6.33) consistent with the other two [or
equivalently is the value of κ̄ in these constraint equations
consistent with its original definition in Eq. (6.3)].
The above analysis, which employed the instantaneous-

decay approximation, may be refined in a straightforward
manner in order to account for the full exponential nature of
the ϕl decays. After making the replacements Θðτ − tÞ →
e−t=τ and Θðt − τÞ → 1 − e−t=τ in Eqs. (6.20) and (6.42),
we find that Eq. (6.55) still holds, but with the expression
for X in Eq. (6.52) replaced by

X ≡ Γð3 − κ̄; ξ−1Þ
Γð2 − κ̄; ξ−1Þ : ð6:61Þ

Here Γða; zÞ denotes the upper incomplete gamma func-
tion, with the usual domain of the argument a extended to
include all nonpositive real values:

Γða; zÞ≡
Z

∞

z
dy ya−1e−y: ð6:62Þ
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It therefore follows that the stasis abundances Ω̄i have the
same forms as in Eqs. (6.58) and (6.59), but with X defined
in Eq. (6.61).
We emphasize once again that the model of triple stasis

that we have presented in this section represents a complete
and self-consistent picture of the underlying dynamics only
when certain conditions are satisfied. In particular, since we
are neglecting the direct transfer of energy density from
vacuum energy to radiation, this model is valid only within
the regime wherein this transfer of energy density has a
negligible effect on the cosmological dynamics. Thus, in
what follows, we shall restrict our attention to regions of
our parameter space wherein the ratio τl=tl is sufficiently
large for all ϕl that only a negligible fraction of the
comoving number density of each particle species would
have decayed at times t < tl. In other words, we shall
require that

1 − e−Γltl < ϵdec; ð6:63Þ

for all ϕl, where ϵdec is an arbitrary small number.
However, since triple stasis requires that γ ¼ 1, Eq. (6.13)
implies that Γltl ¼ ξ−1 for all ϕl. Thus, the condition in
Eq. (6.63) is tantamount to imposing an lower bound on ξ
of the form

ξ > ξmin ≡ −1
logð1 − ϵdecÞ

: ð6:64Þ

In what follows, we shall take ϵdec ¼ 0.05, which yields
ξmin ≈ 19.5. That said, we note that since no energy density
is transferred to radiation by the decay of each ϕl at times
t < τl in the instantaneous-decay approximation, our

analysis is formally valid in this approximation for
all ξ > 1.
In Fig. 10, we illustrate the emergence of triple stasis

along Branch A. In each panel of Fig. 10, we plot the three
abundances ΩΛ, ΩM, and Ωγ as functions of the number of
e-folds since the original production time within the
framework of a full exponential decay. These three cases
correspond to sections of Branch Awith κ̄ > 2, κ̄ ¼ 2, and
κ̄ < 2 respectively. In all cases we find that a triple stasis is
reached, with the stasis abundances precisely matching the
predictions in Eqs. (6.58) and (6.59) with X given in
Eq. (6.61). This then provides numerical confirmation of
the existence of triple stasis. We also note that it takes
longer to reach triple stasis as κ̄ is decreased.
In Fig. 11, we illustrate how the expressions for the stasis

abundances Ω̄Λ, Ω̄M, and Ω̄γ in Eqs. (6.58) and (6.59)
depend on our model parameters η, w, and ξ. In the panels
appearing along the top row of the figure, we plot these
abundances as functions of η for three different values of w,
with ξ fixed. We note that since ξ depends on κ̄, and hence
on η, the ratio m0=Γ0 also varies with η in each panel such
that ξ remains constant within each panel. The results
shown in the left, middle, and right panels of this row
correspond to the choices w ¼ −0.9, w ¼ −0.7, and
w ¼ −0.35, respectively, and in all three panels we have
taken ξ ¼ 20—a value which exceeds ξmin for our chosen
value of ϵdec. The solid curves in each panel indicate the
values of Ω̄Λ (blue), Ω̄M (cyan), and Ω̄γ (magenta) obtained
using the form for X in Eq. (6.61) corresponding to full
exponential decay, while the dashed curves indicate the
corresponding abundances obtained using the form for
X in Eq. (6.52) corresponding to the instantaneous-
decay approximation. The gray region on the right side
of each of these panels is excluded by the constraint

FIG. 10. An illustration of triple stasis. The abundances ΩΛ (solid dark blue curves), ΩM (solid cyan curves), and Ωγ (solid magenta
curves) are plotted as functions of the number N of e-folds of cosmic expansion since the production time tð0Þ. In each case these
abundances approach and then remain fixed at the corresponding stasis values (dotted lines) predicted in Eqs. (6.58) and (6.59), with X
given in Eq. (6.61). These curves are calculated for reference values α ¼ 2=3 (left panel), 1 (middle panel), and 1.1 (right panel), holding
δ ¼ 3, γ ¼ 1, and w ¼ −2=3 fixed across all panels. The full exponential nature of the decay process was taken into account in modeling
the transition of energy density from matter to radiation. These choices lead to stasis values κ̄ ¼ 3, 2, and 1.7, respectively, and we have
adjusted Γ0=m0 in each case in order to hold ξ ¼ 20 fixed for all panels. These figures confirm that we can achieve triple stasis for κ̄ > 2,
κ̄ ¼ 2, and κ̄ < 2, respectively, and that it takes less time to achieve triple stasis as κ̄ increases.
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0 < η ≤ ð1 − 3wÞ=2, which follows from the constraint
κ̄ > 3=2 in Eq. (6.49).
From these panels we observe that the universe during

stasis is effectively vacuum-energy dominated in the η → 0

limit, with Ω̄Λ → 1 and Ω̄M; Ω̄γ → 0. Indeed, this holds
true regardless of the value of w. However, as η increases,
we see that Ω̄γ rises monotonically and reaches unity at the
point at which η reaches its maximum value, while Ω̄Λ falls
monotonically to zero over the same interval. By contrast,
Ω̄M initially increases with η, reaching a maximum (the
value of which depends nontrivially on η, w, and ξ), and
then falling to zero as η increases toward its maximum
value. Thus, in each case, we see that our triple stasis as a
function of η interpolates between a fully vacuum-energy
dominated universe and a radiation-dominated one.
In the panels along the bottom row of Fig. 11, we instead

plot Ω̄Λ, Ω̄M, and Ω̄γ as functions of ξ for different values of
η, with w held fixed. The results in the left, middle, and

right panels of this row correspond to the choices η ¼ 1.0,
η ¼ 1.3, and η ¼ 1.5, respectively, and for all three panels
we have taken w ¼ −0.7. The gray region on the left side of
each of these three panels indicates the region wherein
ξ < ξmin, which lies outside our regime of validity.
We observe from these panels that the behavior of the

abundances in the ξ → ∞ limit depends on the relationship
between η and w. For η < 2w, as illustrated in the left and
middle panels, Ω̄γ → 0 and the triple stasis reduces to a
pairwise stasis involving vacuum energy and matter alone
in both the exponential-decay treatment and the instanta-
neous-decay approximation. By contrast, for η > 2w, as
illustrated in the right panel, Ω̄Λ → 0 and the triple stasis
reduces to a pairwise stasis involving matter and radiation
alone in both the exponential-decay model and the
instantaneous-decay approximation. In the opposite limit,
as ξ becomes small, the exponential-decay treatment
becomes increasingly unreliable, since the direct transfer

FIG. 11. Top panels: the stasis abundances Ω̄Λ (blue), Ω̄M (cyan), and Ω̄γ (magenta), plotted as functions of η for different values of w
with ξ held fixed. The solid curves are calculated assuming full exponential decay, while the dashed curves are calculated within the
instantaneous-decay approximation. The gray region on the right side of each panel is excluded by the constraint 0 < η ≤ ð1 − 3wÞ=2,
which follows from the constraint κ̄ > 3=2 in Eq. (6.49). Bottom panels: the stasis abundances Ω̄Λ (blue), Ω̄M (cyan), and Ω̄γ (magenta),
plotted as functions of ξ for different values of η with w held fixed. The gray regions on the left sides of these panels correspond to
ξ < ξmin and are thus outside our regime of validity. In the instantaneous-decay approximation, we see that Ω̄M → 0 as ξ → 0
irrespective of the value of η, whereupon our triple stasis reduces to a pairwise stasis involving vacuum energy and radiation. By
contrast, the behavior of the abundances as ξ → ∞ limit depends on the relationship between η and w. For η < 2w, as illustrated in the
left and middle panels, Ω̄γ → 0 and the triple stasis reduces to a pairwise stasis involving vacuum energy and matter. By contrast, for
η > 2w, as illustrated in the right panel, Ω̄Λ → 0 and the triple stasis reduces to a pairwise stasis involving matter and radiation.
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of vacuum-energy to radiation, which we are neglecting,
becomes important when ξ < ξmin. However, the instanta-
neous-decay approximation is formally valid for all ξ < 1.
In this approximation, Ω̄M → 0 in the ξ → 1 limit irre-
spective of the relationship between η and w. Thus, in this
limit, the triple stasis reduces to a pairwise stasis involving
vacuum energy and radiation.
It is also instructive to “look under the hood” and

examine how these triple stasis configurations are realized
in terms of the behaviors of the abundances ΩlðtÞ of the
individual constituents within the towers. In Fig. 12, we
have chosen a triple stasis corresponding to the input
parameters ðα; γ; δ; wÞ ¼ ð1; 1; 5;−0.7Þ and plotted the
total abundances ΩΛ (thick dark-blue solid line), ΩM (thick
cyan solid line), and Ωγ (thick magenta solid line) as
functions of the number N of e-folds since the initial

production time. We have also plotted the individual
abundances ΩlðtÞ corresponding to the uppermost states
within the tower that give rise to this stasis over the time
interval shown. These latter abundances are shown as thin
lines as they transition between vacuum energy (blue), then
matter (cyan), and ultimately radiation (magenta). The
underdamping transition between the vacuum-energy and
matter phases occurs along the upper dashed black line,
while the instantaneous-decay transition between the mat-
ter and radiation phases occurs along the lower dashed
black line.
This figure can be viewed as an explicit numerical

realization of the left panel of Fig. 7 except that it is
plotted for individual abundances ΩlðtÞ rather than indi-
vidual energy densities ρlðtÞ. Indeed, for each line this
change from energy density to abundance introduces an

FIG. 12. Triple stasis “under the hood,” illustrating how the individual abundances ΩlðtÞ conspire to bring our system into—and then
sustain—triple stasis. Working within the framework of the instantaneous-decay approximation and choosing ðα; γ; δ; wÞ ¼
ð1; 1; 5;−0.7Þ in order to highlight critical features, we plot the three total abundances ΩΛ (thick dark-blue solid line), ΩM (thick
cyan solid line), and Ωγ (thick magenta solid line) as functions of the numberN of e-folds since the initial production time. We also plot
the individual abundances ΩlðtÞ (thin lines) as they evolve in time, starting as vacuum energy (dark blue) before transitioning to matter
(cyan) and eventually to radiation (magenta). For the sake of graphical clarity we have only shown every 20th individual abundance
ΩlðtÞ, starting from the top of the tower, and adjusted Γ0=m0 such that ξ ¼ 300. The underdamping transition between the vacuum-
energy and matter phases occurs along the upper dashed black line, while the instantaneous-decay transition between the matter and
radiation phases occurs along the lower dashed black line. This figure can be viewed as an explicit numerical realization of Fig. 7 except
that it is plotted for individual abundances ΩlðtÞ rather than individual energy densities ρlðtÞ and also includes the initial transient
behavior of our system as it evolves from the production time tð0Þ into stasis. The red transition lines in Fig. 7 correspond to the dashed
black lines here, asymptotically becoming parallel once stasis is reached. This figure can also be viewed as a triple-stasis analog of the
left panel of Fig. 1.

STASIS, STASIS, TRIPLE STASIS: A THEORETICAL … PHYS. REV. D 109, 083508 (2024)

083508-37



extra overall factor of H2 (which scales as t2 during stasis),
thereby tilting all slopes upward relative to those shown in
Fig. 7. However, this figure also includes the initial
transient behavior of our system as it evolves from the
production time tð0Þ into stasis. The red transition lines in
Fig. 7 correspond to the dashed black lines here, asymp-
totically becoming parallel once stasis is reached. This
figure can also be viewed as a triple-stasis analog of the left
panel of Fig. 1.
As we see from Fig. 12, each abundance begins

immediately after production with a horizontal slope, as
appropriate for a highly vacuum-energy-dominated uni-
verse. However, these curves all begin to curve upwards as
increasing amounts of matter are produced near the top of
the tower, thereby affecting the Hubble parameter for the
overall cosmology. However, this behavior is part of the
overall transition to stasis. Indeed, we see that within
several e-folds our abundances begin to exhibit the “cross-
hatched” behavior that is the hallmark of stasis, with the
identity of the most abundant state continually shifting
down the tower as time evolves. The fact that these
abundances “reflect” off the underdamping transition line
rather than the effective decay line (not shown) allows us to
identify this figure as the analog of the left panel, rather
than the right panel, within Fig. 7. This is consistent with
the fact that Fig. 7 was evaluated numerically for para-
meters corresponding to κ̄ ¼ 8=3, whereupon we see that
indeed κ̄ > α.

E. More about h-factors

At long last, we are now in a position to circle back and
address one of the assumptions with which we started in
Sec. VI C, namely our assumption discussed below
Eq. (6.20) that t� < tl for all l, where t� is a fiducial
time during stasis. Strictly speaking, such an assumption
cannot hold throughout our tower: since tl gets smaller and
smaller as we proceed up the tower, we must inevitably
reach a point at which tl becomes less than t�. The states
above this point therefore violate our assumption. Yet this
assumption has been made at many points throughout this
paper—not only below Eq. (6.20), but also in Sec. III [see
below Eq. (3.17)] and implicitly in Secs. II and IV.
Although this issue has been relevant in each of these
earlier cases, it is within the case of triple stasis that this
issue becomes the most critical. It is for this reason that we
have deferred this discussion until now.
There is another related concern that might also seem to

cast doubt on our previous analyses. If we were to go back
to Eq. (6.20) and describe the time evolution of the
individual constituent energy densities ρðΛ;M;γÞ

l since the
initial production time tð0Þ—as needed in order to make
contact with the scaling relations in Eq. (2.12) that define
our BSM model—we might attempt to follow our results
from previous sections such as those in Eq. (2.15) and write
these energy densities in terms of an appropriate hðtð0Þ; t�Þ

function which describes the net (a priori unknown)
gravitational redshifting that occurs between tð0Þ and t�.
However, as we proceed toward the heavier states in the
tower, both tl and τl become increasingly small. As a
result, it is possible to reach a point at which the relative
ordering between t� and tl, and potentially even between t�
and τl, will change. However, if either tl or τl becomes
smaller than t�, then the corresponding field will already
begin to behave as matter or radiation before reaching
stasis. This means that the time evolution of such a field
will be different than it would have been for fields with tl
larger than t�, since the latter fields will behave as vacuum
energy all the way until reaching stasis. It is therefore
possible that a single undetermined h-function may not be
sufficient to describe all the states in our tower prior to
reaching stasis.
This argument can also be phrased in terms of the total

abundances ΩΛ;M;γ . Within our pairwise stasis analyses
only one h-function was needed because there was only one
independent total abundance whose behavior we needed to
describe between tð0Þ and t�. Indeed, the second abundance
was not an independent degree of freedom because the sum
of our two abundances was fixed at 1. However, for a triple
stasis, we now have three total abundances which must
sum to 1, implying that there could be two independent
h-functions describing our total abundances.
The presence of multiple h-functions is exceedingly

dangerous for the analysis we have been performing. In this
paper we have been deriving not only overall scaling
constraints and log-avoidance constraints, but also relative
prefactor constraints. For example, in the case of triple
stasis, such relative prefactor constraints are none other
than the relations in Eq. (6.55) which express our pumps
directly in terms of our abundances, thereby bypassing all
of the leading coefficients that are common to the pumps
and the abundances. When there is only a single h-function,
it cancels from both sides of these relative prefactor
constraints. This unknown h-function will therefore not
affect the nature of such constraints. However, with
multiple h-functions, it is possible that different h-functions
will appear on each side of our relative prefactor con-
straints. Such h-functions would no longer cancel, thereby
bringing our previous results into doubt.
These are all serious concerns. However, we will now

demonstrate that none of these worries are ultimately
realized. In particular, we will explain why we can indeed
assume that t� < tl in our analysis, and why only a single
h-function is relevant for calculations of stasis quantities
such as the stasis abundances Ω̄i. It therefore follows that
all of our previous results remain valid.
To understand why only a single h-function is relevant—

and likewise to understand why we may assume t� < tl in
our analysis—let us go back to Eq. (6.20) and attempt to
write our different energy densities ρlðtÞ in terms of the

initial energy densities ρðΛ;M;γÞ
l ðtÞ at the production time
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t ¼ tð0Þ. We know, of course, that tl < τl, and likewise we
know that vacuum energy, matter, and radiation respec-
tively correspond to t < tl, tl < t < τl, and t > τl. We
also seek to be describing these energy densities during
stasis, and therefore we know t > t�. However, since
different parts of the tower will have different relative
orderings of t�, tl, and τl, we will make no assumption
regarding this ordering. We then find that there are only six
different potential orderings of the relevant timescales in
our model:

Λ∶ tð0Þ < t� < t < tl < τl;

M1∶ tð0Þ < t� < tl < t < τl;

M2∶ tð0Þ < tl < t� < t < τl;

γ1∶ tð0Þ < t� < tl < τl < t;

γ2∶ tð0Þ < tl < t� < τl < t;

γ3∶ tð0Þ < tl < τl < t� < t: ð6:65Þ

Given these orderings, we can then write down the
corresponding energy densities ρl at time t in terms of

their values ρð0Þl at tð0Þ. Each takes the general form

ρlðtÞ ¼ ρð0Þl ·GlðtÞ · Heaviside ð6:66Þ

where “Heaviside” denotes the specific Θ-function combi-
nations in Eq. (6.20) for vacuum energy, matter, and
radiation, and where GlðtÞ are the net gravitational redshift
factors given by

GðΛÞ
l ðtÞ ¼ hΛðtð0Þ; t�Þ

�
t
t�

�
−ð1þwÞκ̄

;

GðM1Þ
l ðtÞ ¼ hΛðtð0Þ; t�Þ

�
tl
t�

�
−ð1þwÞκ̄� t

tl

�
−κ̄
;

GðM2Þ
l ðtÞ ¼ hΛðtð0Þ; tlÞhMðtl; t�Þ

�
t
t�

�
−κ̄
;

Gðγ1Þ
l ðtÞ ¼ hΛðtð0Þ; t�Þ

�
tl
t�

�
−ð1þwÞκ̄�τl

tl

�
−κ̄
�

t
τl

�
−4κ̄=3

;

Gðγ2Þ
l ðtÞ ¼ hΛðtð0Þ; tlÞhMðtl; t�Þ

�
τl
t�

�
−κ̄
�

t
τl

�
−4κ̄=3

;

Gðγ3Þ
l ðtÞ ¼ hΛðtð0Þ; tlÞhMðtl; τlÞhγðτl; t�Þ

�
t
t�

�
−4κ̄=3

:

ð6:67Þ

Here hΛ, hM, and hγ represent the unknown but distinct
gravitational redshift factors that are accrued by vacuum
energy, matter, and radiation prior to stasis (i.e., prior to t�).
It is the appearance of all three redshift factors in these
expressions which is our primary concern. In general, all
three redshift factors will propagate throughout our

subsequent calculations, potentially leading to the difficul-
ties discussed above.
It is important to note that all of these difficulties arise

only for cases in which tl > t�. If it were possible to
impose the constraint that t� < tl, then cases M2, γ2,
and γ3 in Eq. (6.65) would be eliminated, and multiple
h-factors would no longer arise—even in situations in
which vacuum energy, matter, and radiation are all present.
Moreover, the only remaining redshift factor would be
hΛðtð0Þ; t�Þ, and this is entirely l-independent. It would
therefore be possible to form a coherent l-sum, thereby
yielding a single h-factor for total abundances such as ΩΛ,
ΩM, and Ωγ.
The issue, then, boils down to a simple question: what

justifies the assumption that t� < tl? We have already seen
that there can exist states at the top of the tower for which
this assumption is not true. What, then, would justify
disregarding these states in our analysis?
To analyze this issue, let us return to Fig. 12 and consider

the behavior of the individual abundances at some time t
deep within stasis. For example, such a time t is indicated
as the right-most vertical orange/red dashed line in Fig. 13.
At the time t, it is clear that only the states with significant
abundances can possibly be important players in continuing
to produce the stasis phenomenon. By contrast, states
whose abundances at time t have fallen below some chosen
cutoff value can no longer play a significant role in
supporting the stasis at time t. We have indicated such a
cutoff as corresponding to the horizontal orange/red line in
Fig. 13, and states whose abundances at time t have fallen

FIG. 13. A version of Fig. 12 illustrating that at any sufficiently
late time t during triple stasis it is possible to choose an earlier
fiducial time t�—also during triple stasis—such that all states ϕl
with significant abundances Ωl at time t are still overdamped at
t�. Thus, when studying the properties of stasis at any sufficiently
late time t during triple stasis, it is a legitimate approximation to
assume that all relevant states ϕl have tl > t�, with all other
states from Fig. 12 disregarded and hence shown in gray.
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below this cutoff have been colored in gray. Such states
simply do not matter for the purposes of analyzing the
stasis phenomenon at time t. However, tracing the remain-
ing (colored) states backwards in Fig. 13, we see that there
is a lower limit to the times tl at which such states all
became underdamped. Thus, so long as this lower limit is
still within the stasis epoch, we can identify this lower limit
as t�. We thus have a situation in which t� < tl for all of the
states which will ultimately play a role in supporting stasis
at time t—i.e., the states whose abundances exceed a
critical cutoff value at time t. Indeed, the deeper into the
stasis epoch we go (i.e., the larger t becomes), the larger the
corresponding fiducial time t� can be for which we may
safely assume t� < tl for all relevant states.
This argument can also be understood in the forward

direction, starting with our entire tower at the production
time. As we have discussed above, it is generally the
heavier states within the tower which are most in danger of
becoming underdamped (or potentially even decaying)
prior to our system entering stasis, thereby violating our
assumption that t� < tl. However, for sufficiently late
times t during stasis, we need no longer consider the
contributions from such heavier states, since their abun-
dances at time t will have dropped below a critical
relevance cutoff. In other words, such states can be viewed
as “turning gray” within the conventions of Fig. 13, with
increasingly many states becoming gray as the time t
evolves. We can then safely ignore the contributions from
such states when discussing analyzing stasis at time t. Since
stasis persists over many e-folds, we are free to choose t
sufficiently large so that t�—which is smaller than all of the
relevant tl—is itself within stasis. We can then freely
assume that t� < tl for all relevant l.
We have already noted at numerous points in this paper

that one critical property of stasis is that the identity of the
most-abundant state at any given time t itself progresses
down the tower as t increases. Each state “gets its day”
supporting the stasis before yielding its dominant role to the
next state in the tower and subsequently diminishing into
irrelevance as time proceeds. In this sense, old age does
indeed each generation waste. But this is how the stasis
state continues to be supported, extended across a cold
pastoral landscape of many e-folds, with the abundances
Ω̄Λ;M;γ remaining fixed as if carved in marble.
Of course, as evident in Figs. 12 and 13, the heaviest states

in the tower play a critical role in shaping the initial transient
behavior that occurs between tð0Þ and t�. These states thus
play an important in role in guiding the system towards
stasis. However, as we have seen, these states cease to play a
role within the stasis itself. The same interpretation may be
given to the different h-functions in Eq. (6.67). Clearly they
are relevant for describing the initial transient behavior of
our system. However, the further into stasis our system gets,
the smaller the influence of the initial behavior encapsulated
within hγ and then hM. Ultimately we reach a time t beyond

which only the single h-function hΛ remains to play a role.
Thus only hΛ is ultimately needed for describing the stasis
state, as discussed above. Indeed, taking t� < tl and the
ability to eliminate hM and hγ from our stasis calculations go
hand in hand.
We thus conclude that it is legitimate to assume t� < tl

for all relevant l, whereupon we may disregard all but the
single h-function hΛðtð0Þ; t�Þ. Moreover, this single h-
function will cancel from all relative prefactor constraints.
We thus conclude that all of the triple-stasis results we have
derived thus far remain valid.
Having discussed the h-factors that are relevant for

individual abundances Ωl, let us turn to the h-factors that
are relevant for the total abundances ΩΛ, ΩM, and Ωγ

during stasis. However, as we have seen, the fact that we
can now restrict our contributing states to those satisfying
t� < tl during stasis means that our individual abundances
during stasis depend only on hΛðtð0Þ; t�Þ, and this quantity
is l-independent. This factor can therefore be pulled out of
any l-sum, whereupon we see that the corresponding total
abundances during stasis will also share this same h-factor.
We thus see that the hðtð0Þ; t�Þ function that has appeared
throughout this section for our abundances and pumps
during stasis is nothing but hΛðtð0Þ; t�Þ.
That said, it is also interesting to consider the manner in

which our total abundances transition from their initial
values at tð0Þ towards their ultimate stasis values. Of course,
throughout this paper we have described the net effects of
this prestasis process on our total abundances through a
single h-factor which we have denoted hðtð0Þ; t�Þ. By
extending from tð0Þ all the way to t�, this factor in principle
encapsulates the all of this initial transient behavior.
However, we have not examined the actual time depend-
ence associated with this transient behavior—i.e., the time
dependence of our abundances ΩΛ;M;γðtÞ as they evolve
towards their stasis values. Indeed, this evolution is of
interest since it corresponds to the initial curvatures in the
plots of the total abundances in Figs. 1, 3, 4, 10, and 12.
Ultimately, this behavior can also be written in terms of

the hΛ, hM, and hγ functions we have discussed above. For
this analysis we shall content ourselves with understanding
the basic algebraic structural elements associated with this
behavior. Once again evaluating ΩΛ;M;γðtÞ as functions of
t—but now without the assumption of stasis—we obtain

ΩΛðtÞ¼
Z

dτnτðτÞΩð0Þ
0 ðΓ0τÞ−1=γhΛðtð0Þ;tÞ;

ΩMðtÞ¼
Z

dτnτðτÞΩð0Þ
0 ðΓ0τÞ−1=γhΛ

�
tð0Þ;fðτÞ�hMðfðτÞ;tÞ;

ΩγðtÞ¼
Z

dτnτðτÞΩð0Þ
0 ðΓ0τÞ−1=γhΛ

�
tð0Þ;fðτÞ�

×hMðfðτÞ;τÞhγðτ;tÞ: ð6:68Þ
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where these τ-integrals have limits that follow the general
structure

Λ∶
Z

τ0

f−1ðtÞ
; M∶

Z
f−1ðtÞ

t
; γ∶

Z
t

τN−1

: ð6:69Þ

In these equations, fðτÞ denotes the underdamping time
[i.e., the time t̂ at which 3Hðt̂Þ ¼ 2m] for that part of the
tower which decays at time τ, while f−1ðtÞ denotes the
inverse of this function. If we were in a stasis configuration,
we would have HðtÞ ¼ κ̄=ð3tÞ, whereupon we would
identify

fðτÞ ¼ ðΓ0τÞ1=γ
ξΓ0

⟺ f−1ðtÞ ¼ ðξΓ0tÞγ
Γ0

: ð6:70Þ

The limits in Eq. (6.69) would then be nothing other than
those in Eq. (6.40). However, since we are not assuming
stasis for this calculation, we can no longer assert that
HðtÞ ¼ κ̄=ð3tÞ. Thus the identifications in Eq. (6.70) will
no longer hold. The function fðτÞ will nevertheless depend
on the values of the abundances ΩΛðtÞ themselves, thereby
creating a highly nonlinear system of equations.
The overall algebraic structure indicated in Eqs. (6.68)

and (6.69) is valid for all times t. Indeed, given this general
structure, we thus see that it is the integrals of products of
our hΛ;M;γ functions which are responsible for producing
the initial curvatures for the total abundances plotted in our
figures.
One feature which is worthy of note from this structure is

that the hΛ, hM, and hγ functions are not independent of
each other. Instead, they must be related in such a way that
ΩΛðtÞ þΩMðtÞ þ ΩγðtÞ ¼ 1 for all t. Of course, the overall
value of this sum of abundances is determined by the choice

of Ωð0Þ
0 at the initial time. However, what is remarkable is

that once this value is set, this sum of abundances remains
fixed as a function of t.
In order to see how this feat is ultimately accomplished,

we note that the variable t appears within Eq. (6.68) in only
two sets of locations. The first set of locations consists of
those within the limits of integration that determine the
boundaries between the integration domains for ΩΛ and
ΩM, and betweenΩM andΩγ , as indicated in Eq. (6.69). By
contrast, the second set of locations consists of those within
the final h-factors that appear within the integrands for each
of the three total abundances in Eq. (6.68). The appearance
of t within the first set of locations tells us that t determines
the partition of the total τ-range τN−1 ≤ τ ≤ τ0 into the
individual ranges corresponding toΛ,M, and γ. Indeed, as t
increases, the range of τ corresponding to Λ decreases,
while that corresponding to γ increases. This is consistent
with Fig. 8. Thus, different portions of the τ-range pass
directly from one type of energy component to another.
However, this passing of abundance between the individual
components ΩiðtÞ does not affect the total abundance

P
i ΩiðtÞ. By contrast, it is the appearance of t within

the second set of locations—i.e., within the different
integrands within Eq. (6.68), each with its own unique
time dependence—that can potentially affect the value ofP

i Ωi. Indeed, since the time t appears within hΛ function
for ΩΛðtÞ, within the hM function for ΩMðtÞ, and within the
hγ function for ΩγðtÞ, the cancellation of these time
dependences for the sum

P
iΩiðtÞ implies a relation

between these three h-functions.
These assertions can be made mathematically explicit by

considering the time derivatives of the total abundances in
Eq. (6.68). Considering dΩγðtÞ=dt first, we find

dΩγðtÞ
dt

¼ nτðtÞΩð0Þ
0 ðΓ0tÞ−1=γhΛ

�
tð0Þ; fðtÞ�

× hMðfðtÞ; tÞhγðt; tÞ

þ
Z

t

τN−1

dτnτðτÞΩð0Þ
0 ðΓ0τÞ−1=γhΛ

�
tð0Þ; fðτÞ�

× hMðfðτÞ; τÞ
d
dt

hγðτ; tÞ; ð6:71Þ

where the first term [top two lines of Eq. (6.71)] comes
from differentiating the factor of t within the integration
limit, while the second term [remaining three lines of
Eq. (6.71)] comes from differentiating the factor of t in the
integrand. Note that hγðt; tÞ ¼ 1 in the second line of
Eq. (6.71). As a result, hγ completely disappears from the
first term of Eq. (6.71)—a feature which allows us to
identify the remaining h-factor structure as appropriate for
a matter abundance rather than a radiation abundance.
Indeed, taken together, this first term is nothing but

nτðtÞΩðMÞ
τ ðt; tÞ, and this product in turn is nothing but

our pump PMγ in Eq. (6.30). Equation (6.71) thus takes the
relatively simple form

dΩγðtÞ
dt

¼ PMγðtÞ þ
Z

t

τN−1

dτnτðτÞ
d
dt

ΩðγÞ
τ ðτ; tÞ: ð6:72Þ

This result of course makes perfect intuitive sense, assert-
ing that the total rate of change for the total radiation
abundance Ωγ has two contributions: one from the abun-
dance being pumped into radiation through ϕl decays, and
the second from the natural Hubble scaling associated with
this abundance itself. We stress that this result holds in
complete generality, and does not assume a stasis of any
sort. We also remark that it is not surprising that one of our
pumps has made an appearance in this calculation.
Eq. (6.68) essentially represents the integral form for our
analysis, while taking the time derivative has thrown us into
the differential form in which our pumps make an appear-
ance. As we see, this remains true even if we are not in a
stasis epoch.
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Proceeding similarly for dΩΛðtÞ=dt, we find

dΩΛðtÞ
dt

¼ −
df−1ðtÞ

dt
nτðf−1ðtÞÞΩð0Þ

0

× ½Γ0f−1ðtÞ�−1=γhΛ
�
tð0Þ; t

�
þ
Z

τ0

f−1ðtÞ
dτnτðτÞΩð0Þ

0 ðΓ0τÞ−1=γ

×
d
dt

hΛðtð0Þ; tÞ: ð6:73Þ

However, as discussed below Eq. (6.69), fðτÞ is essentially
t̂ (the continuous variable associated with underdamping
times rather than decay times). We can then identify

df−1ðtÞ
dt

nτ ¼ nt̂ ð6:74Þ

whereupon we see that the first term in Eq. (6.73) is nothing
but the product of two factors:

(i) the density of states per unit t̂ evaluated for the part
of the tower with τ-value f−1ðtÞ; and

(ii) the vacuum-energy abundance evaluated at the time
t for the part of the tower with τ-value f−1ðtÞ.

However, the first of these factors is nothing but the density
of states per unit t̂ for that part of the tower with t̂-value t,
previously denoted nt̂ðtÞ. Likewise, the second factor is
nothing but the vacuum-energy abundance evaluated at the
time t for that part of the tower with t̂-value t, previously

denoted ΩðΛÞ
t̂ ðt; tÞ. Upon comparison with Eq. (6.30), we

then see that the product of these two factors is nothing but
the pump PΛMðtÞ. We thus have

dΩΛðtÞ
dt

¼−PΛMðtÞþ
Z

τ0

f−1ðtÞ
dτnτðτÞ

d
dt
ΩðΛÞ

τ ðτ;tÞ: ð6:75Þ

Likewise, for dΩMðtÞ=dt, we have

dΩMðtÞ
dt

¼ PΛMðtÞ−PMγðtÞ þ
Z

f−1ðtÞ

t
dτnτðτÞ

d
dt
ΩðMÞ

τ ðτ; tÞ:

ð6:76Þ

Collecting our results in Eqs. (6.72), (6.75), and (6.76),
we thus find

X
i

dΩiðtÞ
dt

¼
Z

τ0

f−1ðtÞ
dτnτðτÞ

d
dt

ΩðΛÞ
τ ðτ; tÞ

þ
Z

f−1ðtÞ

t
dτnτðτÞ

d
dt

ΩðMÞ
τ ðτ; tÞ

þ
Z

t

τN−1

dτnτðτÞ
d
dt

ΩðγÞ
τ ðτ; tÞ: ð6:77Þ

Interestingly, all of the pump terms have cancelled within
this sum. As anticipated above, this reflects the fact that the
pump terms describe the redistributions of energy density
between the different energy components within our
system, but do not affect the total energy density of the
system itself. Only the Hubble redshifting effects can
do that.
The statement that

P
i ΩiðtÞ is a constant then boils

down to the constraint that
P

i dΩiðtÞ=dt ¼ 0. We thus find
that the three terms on the right side of Eq. (6.77) must
cancel directly amongst themselves, i.e.,

0 ¼
Z

τ0

f−1ðtÞ
dτnτðτÞ

d
dt

ΩðΛÞ
τ ðτ; tÞ

þ
Z

f−1ðtÞ

t
dτnτðτÞ

d
dt

ΩðMÞ
τ ðτ; tÞ

þ
Z

t

τN−1

dτnτðτÞ
d
dt

ΩðγÞ
τ ðτ; tÞ: ð6:78Þ

This is then a constraint on the three h-functions which
appear within these three integrands and which help to
determine the time derivatives therein. As noted above,
these h-functions also help to determine the value of f−1ðτÞ
which appears within the limits associated with two of
these integrals. This is therefore a complicated system of
equations which does not have an obvious analytical
solution. These results are nevertheless the underpinnings
of the initial curvatures in the plots of the total abundances
in Figs. 1, 3, 4, 10, and 12.
The terms in Eq. (6.78) all reflect the time dependences

that come from cosmological redshifting effects. Their
cancellation when summed across all three abundances
implies that while one abundance has a positive time
derivative under gravitational redshifting, another must
have a negative time derivative. Indeed, this feature is
readily apparent within the figures previously cited. That
said, we stress that the cancellation of gravitational red-
shifting factors across all abundances has nothing what-
soever to do with stasis. Indeed, while Eq. (6.78) implies a
cancellation between redshift factors across different abun-
dances, stasis is a cancellation between the redshift factor
and the corresponding pump within each abundance
individually. Indeed, this is what is required in order to
have each derivative dΩΛ=dt, dΩM=dt, and dΩγ=dt vanish
independently.
As we have stressed, the results in Eqs. (6.72), (6.75),

and (6.76) are completely general and make no assumption
of stasis. However, it is easy to see what becomes of these
results if we make the further assumption that we are within
a stasis epoch. Within a stasis epoch, we know that the
vacuum-energy, matter, and radiation abundances have
gravitational redshift factors that scale as

DIENES, HEURTIER, HUANG, TAIT, and THOMAS PHYS. REV. D 109, 083508 (2024)

083508-42



hΛðt�; tÞ ∼
�
t
t�

�
2−ð1þwÞκ̄

;

hMðt�; tÞ ∼
�
t
t�

�
2−κ̄

;

hΛðt�; tÞ ∼
�
t
t�

�
2−4κ̄=3

; ð6:79Þ

where t�, as always, is any time within stasis prior to t.
Since these h-functions are the only places that carry an

explicit t-dependence within the abundances ΩðΛ;M;γÞ
τ ðτ; tÞ

that appear within the integrands of the τ-integrals on the
right sides of Eqs. (6.72), (6.75), and (6.76), we immedi-
ately find upon taking the t-derivatives of these expressions
that

d
dt

ΩðΛÞ
τ ðτ; tÞ ¼ �

2 − ð1þ wÞκ̄�ΩðΛÞ
τ ðτ; tÞ 1

t
;

d
dt

ΩðMÞ
τ ðτ; tÞ ¼ �

2 − κ̄
�
ΩðMÞ

τ ðτ; tÞ 1
t
;

d
dt

ΩðγÞ
τ ðτ; tÞ ¼ �

2 − 4κ̄=3
�
ΩðγÞ

τ ðτ; tÞ 1
t
: ð6:80Þ

Performing the τ-integrals in Eqs. (6.72), (6.75), and (6.76)
and then setting dΩiðtÞ=dt ¼ 0 for each i ¼ Λ;M; γ then
yields precisely the pump equations in Eq. (6.10) with
which we started, thereby providing a critical cross-check
on our results. Indeed, Eqs. (6.72), (6.75), and (6.76) may
be taken as the more general underpinning behind
Eq. (6.10), one which does not assume stasis but which
yields Eq. (6.10) as a special case. On the other hand, our
results within Eqs. (6.72), (6.75), and (6.76) assume an
instantaneous decay from matter to radiation (and likewise
assume that PΛγ ¼ 0), while the result in Eq. (6.10) is more
general and in principle also allows for the possibility of a
direct energy transfer from vacuum energy to radiation.

F. Pumps, seesaws, and energy flows

Finally, in order to understand these triple-stasis solu-
tions along Branch A more intuitively, let us consider the
flows of energy density that they imply.
We shall begin by analyzing the case with κ̄ ¼ 2, since

this case turns out to have the greatest symmetry and
simplicity. With κ̄ ¼ 2, Eq. (6.34) reduces to the constraint
η ¼ −2w, which implies that η < 2. Since δ > 0, this
means we must have α < 2, and thus α < κ̄. This then
corresponds to the left panel of Fig. 7, but not the
right panel.
Given the result in Eq. (6.3), we learn that the constraint

κ̄ ¼ 2 restricts our corresponding stasis abundances to lie
along a line of solutions for which

Ω̄Λ ¼ −
1

3w
Ω̄γ ð6:81Þ

with Ω̄M ¼ 1 − Ω̄Λ − Ω̄γ. Indeed, it is only the specific
choices of ðα; δ; w; ξÞ that distinguish between the different
abundance solutions along this line. For example,
as w → −1, a particularly symmetric distribution of abun-
dances satisfying these constraints is ðΩ̄Λ; Ω̄M; Ω̄γÞ ¼
ð1=6; 1=3; 1=2Þ. Indeed, this is the three-component analog
of matter/radiation equality in the sense that ΩM now
carries 1=3 of the total abundance while the other two
abundances collectively carry 2=3.
Finally, given the constraints in Eqs. (6.10), we see that

our pump terms PΛM and PMγ for κ̄ ¼ 2 become equal
during triple stasis and are given by

PΛM ¼ PMγ ¼ −2wΩ̄Λ
1

t
¼ 2

3
Ω̄γ

1

t
: ð6:82Þ

It turns out that this κ̄ ¼ 2 stasis solution can be
visualized in a particularly useful and compelling way.
The κ̄ ¼ 2 constraint means that the corresponding triple-
stasis universe must be effectively matter dominated, i.e.,
with an effective abundance-weighted equation-of-state
parameter

hwi≡ X
i¼Λ;M;γ

wiΩi ¼ 0 ð6:83Þ

where wΛ ¼ w, wM ¼ 0, and wγ ¼ 1=3. Indeed, this con-
straint is nothing but the result in Eq. (6.81). However, we
may also view Eq. (6.83) as the condition for a “balancing”
along a w-seesaw, as illustrated in Fig. 14, with the fulcrum
position hwi ¼ w△ identified as w△ ¼ 0. We emphasize in
this context that having κ̄ ¼ 2 does not mean that all of the
abundance is in the matter component—it just means that
the radiation abundance must be three times (or more
precisely −3w times) the vacuum-energy abundance, so
that the seesaw balances. Whatever abundance is left over is
thus the matter abundance. Of course, this matter abun-
dance sits immediately above the fulcrum, so any common
rescaling of the vacuum-energy and radiation abundances
continues to maintain the seesaw balance. This then
provides a seesaw-based explanation for the existence of
a line of triple-stasis solutions, all of which are balanced
around the fulcrum at w△ ¼ 0 with the individual values of
ðα; δ; w; ξÞ selecting between them.
In this connection, we recall from the end of Sec. IV that

we previously had a case of vacuum-energy/radiation
abundance which allowed for a spectator matter abundance.
That universe was also required to be effectively matter-
dominated. The special case in Sec. IV can thus be
interpreted as a variant of the current triple-stasis phe-
nomenon—a variant in which the two equal pumps PΛM
and PMγ are merged into a single pump PΛγ which bypasses
ΩM completely, thereby rendering ΩM a mere spectator
abundance.
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The manner in which this triple-stasis solution works is
thus clear, and is illustrated in Fig. 14. Because the universe
is matter dominated, the total matter abundance ΩM does
not feel any tendency to evolve in either direction (rise or
fall) under cosmological expansion. Given this, the triple-
stasis solution then operates through the following balanc-
ing act:

(i) Vacuum-energy abundance ΩΛ: In a matter-
dominated universe ΩΛ wants to rise due to cosmo-
logical expansion (as indicated through the pink
arrows in Fig. 14). However, the pump PΛM continu-
ally drains away this excess so that ΩΛ stays fixed.

(ii) Radiation abundance Ωγ: Conversely, in a matter-
dominated universe the radiation abundance Ωγ

wants to fall due to cosmological expansion. How-
ever, here the pump PMγ keeps sourcing a fresh
supply so that Ωγ also stays fixed.

(iii) Matter abundance ΩM: Finally, it is through the
central matter abundance ΩM that the “collision”
between these two pairwise pumps occurs. However,
with κ̄ ¼ 2 this collision is nonproblematic: the
universe is effectively matter-dominated, and thus
the matter abundance sits directly atop the fulcrum at
w△ ¼ 0. In this case there is no tendency for the
matter abundance to rise or fall, which is consistent
with the fact that the pumps into and out of Ω̄M
exactly cancel.

Note that this is a true triple stasis, with each energy
component experiencing interactions with others and
experiencing sources and/or sinks. Moreover, it is remark-
able that this solution balances correctly and that our simple
scalar model actually realizes it—especially given that one
of the pumps results from the transition from an over-
damped to underdamped phase while the other pump
involves decay, which is a completely different underlying
process! Moreover, even though this solution may seem
trivially balanced, with equal pumps into and out of the
“central” matter component ΩM, we must remember that
our physical realization of this triple stasis is actually
highly nontrivial, with both pumps operating as the
associated transitions make their way down the ϕl tower
(as illustrated in Fig. 8). Finally, we did not need to create a
contorted model with arbitrary interactions in order to
realize this stasis—literally any coherent state of boson
zero modes (such as naturally arise in axion physics) will
necessarily experience not only a transition from an over-
damped to an underdamped regime but also an eventual
decay. Moreover, we will naturally obtain a tower of such
states if this boson is higher-dimensional, with the different
ϕl fields identified as different KK modes.
This seesaw picture also enables us to understand

intuitively why this triple-stasis solution works for all
−1 < w < 0. Towards this end, let us imagine sliding
ΩΛ along the seesaw from w ¼ −1 to w > −1, as illustrated

FIG. 14. The “seesaw” structure of triple stasis with κ̄ ¼ 2 along Branch A in which the abundances of the different energy
components along the w-axis are balanced around a “fulcrum” located at hwi ¼ w△ ¼ 0. The location of the fulcrum corresponds to a
κ̄ ¼ 2 universe which is effectively matter dominated. The pumps PΛM and PMγ (shown schematically in blue) transfer energy from
vacuum energy to matter and from matter to radiation, respectively. These pumps exactly compensate for the effects of cosmological
expansion wherein the effects due to gravitational redshifting (shown schematically in pink) either increase or decrease the relative
abundances of these different components according to their distances from the fulcrum at w△ ¼ 0. Changing the value of w for the
vacuum energy component (shown schematically in green) corresponds to “sliding” the position of the corresponding abundance along
the w-seesaw. This abundance is then rescaled according to Eq. (6.81) in order to maintain the balancing of the w-seesaw. However, this
increased abundance experiences a weakened gravitational redshifting and thus the delicate balancing inherent in triple stasis is
maintained.
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in Fig. 14, while keeping Ω̄M and Ω̄γ fixed. Under these
assumptions, we see from Eq. (6.81) that Ω̄Λ grows by a
factor of w−1:

Ω̄Λ ¼ 3Ω̄γ → Ω̄0
Λ ¼ −

3

w
Ω̄γ: ð6:84Þ

This too is illustrated in Fig. 14. However, following
Eq. (6.82) and given that κ̄ remains fixed at κ̄ ¼ 2 even
as w shifts, we see that the total pump rate PΛM is
unchanged:

PΛM ¼ 2Ω̄Λ
1

t
→ P0

ΛM ¼ −2wΩ̄0
Λ
1

t
¼ PΛM: ð6:85Þ

Thus PΛM remains equal to PMγ . Moreover, although the
shift in w causes the abundance Ω̄Λ to increase, it also
causes the rate of increase per unit abundance due to
cosmological expansion (as indicated by the wide pink
arrows in Fig. 14) to decrease. Thus the net rate at which
Ω̄Λ would tend to increase under cosmological expansion
alone is unchanged. This too is consistent with our
observation that the pump PΛM is unchanged.
We now turn our attention to Branch A cases with κ̄ ≠ 2.

These situations correspond to Fig. 7. Indeed, one impor-
tant feature of Branch Awhen κ̄ ≠ 2 is that we can now in
principle have stasis configurations with 3α=4 < κ̄ < α, as
illustrated in the right panel of Fig. 7. As an existence
proof of such a possibility, let us consider the case with
w ¼ −0.99 and ðΩ̄Λ; Ω̄M; Ω̄γÞ ¼ ð0.05; 0.1; 0.85Þ. This
configuration corresponds to κ̄ ≈ 1.621, whereupon we
see that 2 − ð1þ wÞκ̄ ≈ 1.984. This in turn implies that
α could potentially be as large as 1.984, thereby exceeding
κ̄ while nevertheless ensuring that 3α=4 < κ̄. This con-
figuration therefore meets the conditions needed in order to
realize the stasis behavior in the right panel of Fig. 7.
Because we are no longer restricting our attention to

κ̄ ¼ 2, our resulting stasis need not be effectively matter
dominated. This means that during stasis all three of our
energy components (vacuum energy, natter, and radiation)
can experience gravitational redshifts, implying that our
two pumps PΛM and PMγ will no longer generally be equal.
We must nevertheless continue to have a balancing as
illustrated in Fig. 14. However, the fulcrum need no longer
be located at w△ ¼ 0.
In general, for any system with Hubble expansion

coefficient κ̄, it is straightforward to determine the equa-
tion-of-state parameter that a fluid must have in order that
its abundance neither rise nor fall as a result of cosmo-
logical expansion. This defines the corresponding fulcrum
location w△, and indeed one finds

w△ ≡ 2

κ̄
− 1: ð6:86Þ

For a universe consisting of only matter, radiation, and
vacuum energy (the latter with equation-of-state parameter
w), we then find that Eq. (6.3) can be rewritten in the form

hwi ¼ wΩ̄Λ þ Ω̄γ=3 ¼ w△: ð6:87Þ

This is the generalization of Eq. (6.83) with arbitrary w△,
and tells us that our seesawmust indeed be balanced around
w△. In particular we see that w△ ≥ w, with the inequality
saturated only when Ω̄Λ ¼ 1 and Ω̄M ¼ Ω̄γ ¼ 0.
Given these results, the stasis constraint in Eq. (6.34)

then tells us that

w△ ¼ 2wþ η

2 − η
ð6:88Þ

or, equivalently, that

w△ þ 1 ¼
�

2

2 − η

�
ðwþ 1Þ: ð6:89Þ

We thus see that η and w determine the fulcrum location w△

and thereby determine the line along which the correspond-
ing abundances lie, while these same variables—with the
addition of ξ—determine the precise locations along this
line for the final stasis abundances. Thus while ξ is not
required in order to determine the fulcrum location w△, it is
needed for determining the absolute magnitudes of the
specific abundances around this point.
The corresponding energy flows for κ̄ ≠ 2 can be

illustrated as in Fig. 15. In general, the results depend
on whether κ̄ < 2 or κ̄ > 2. In the first case (corresponding
to the upper panel in Fig. 15), we illustrate the situation for
κ̄ < 2. In this case w△ > 0, which implies that ΩM will
generally tend to increase under the effects of cosmological
expansion. Stasis is then achieved only for PΛM < PMγ,
which is consistent with the fact that ΩΛ=Ωγ must be
smaller than it was in Fig. 14 in order to achieve a balanced
seesaw. The lower panel of Fig. 15 illustrates the opposite
situation with κ̄ > 2.

VII. STASIS AS A GLOBAL ATTRACTOR

In this section we study the extent to which the different
forms of cosmic stasis that we have examined in the
previous sections are local or global attractors. As we shall
see, the stasis solutions for the pairwise (two-component)
systems which we considered in Secs. II through V are all
global attractors. Moreover, we shall demonstrate that the
triple stasis considered in Sec. VI is a global attractor
as well.

A. Pairwise stases

We first analyze the attractor behavior of the pairwise
stases discussed in Secs. II, III, and IV. In each case we
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shall begin by demonstrating that the corresponding stasis
is a local attractor. With these results in hand, we shall then
proceed to demonstrate that these attractors are all in fact
global.
Broadly speaking, in particle-physics realizations of

stasis which involve towers of states, the physical condition
which determines the time t at which each individual such
state effectively transitions from one equation of state to

another can generally be classified into one of two overall
categories:

(i) Class I: transitions for which this transition time is
intrinsic to the particle in the sense that it depends on
the time t in the cosmological background frame
alone and is essentially independent of the expan-
sion history. Examples of transitions within this
class include the decay transitions which underpin

FIG. 15. Same as Fig. 14, except for stasis solutions with κ̄ ≠ 2. Upper panel: in this case κ̄ < 2, implying that w△ > 0. This causes
ΩM to tend to increase under the effects of cosmological expansion, which implies that stasis is achieved only for PΛM < PMγ. This
inequality of the pumps is consistent with the fact that ΩΛ=Ωγ must be smaller than it was in Fig. 14 in order to achieve a balanced
“seesaw.” Lower panel: the same situation, but for κ̄ > 2. In this case the signs of all inequalities are reversed, with PΛM > PMγ and
ΩΛ=Ωγ now larger than it was in Fig. 14.
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the matter/radiation and vacuum-energy/radiation
stases discussed in Secs. II and IV, respectively.
In these realizations of stasis, the intrinsic timescale
for these transitions—e.g., the proper lifetime τl of
the particle ϕl at each level—was assumed to scale
across the tower as a function of mass according to a
power law of the form τl ¼ τ0ðml=m0Þ−γ . Passing
to the continuum limit, we thus have

τ ¼ τ0

�
m
m0

�
−γ
: ð7:1Þ

(ii) Class II: transitions for which the transition time is
extrinsic to the particle in the sense that the transition
is triggered when the temperature, critical density, or
expansion rate of the universe drops below some
threshold value. For transitions within this second
class, the time t at which the transition takes place
does depend on the expansion history of the universe
through the Hubble parameter HðtÞ. Examples of
transitions within this class include the transition
from overdamped to underdamped oscillation which
underpins the vacuum-energy/matter stasis dis-
cussed in Sec. III. In this realization of stasis, the
transition of the particle species of mass ml is
triggered at a time tl when 3HðtlÞ ¼ 2ml. Phrased
slightly differently, this transition for each ϕl is
triggered when the Hubble parameter HðtÞ drops
below the critical threshold scale Ĥl ¼ 2ml=3, with
the corresponding time tl determined implicitly
through the condition HðtlÞ ¼ Ĥl. For complete
generality, we shall focus in what follows on the case
in which Ĥl scales across the tower according to a
power law of the form Ĥl ¼ Ĥ0ðml=m0Þγ̂ where γ̂
is a general scaling exponent. In the continuum limit
this becomes

Ĥ ¼ Ĥ0

�
m
m0

�
γ̂

: ð7:2Þ

Thus Ĥ, like τ, is a continuous variable that specifies
a particular part of our ϕ-tower, namely that part
which has a Class II transition occurring when
HðtÞ ¼ Ĥ. SinceHðtÞ decreases monotonically with
t in a flat universe, and since we are primarily
interested in situations in which Ĥ increases with m,
we shall henceforth restrict our attention to the
regime in which γ̂ > 0. Indeed, as we have seen,
an overdamped/underdamped transition of the sort
discussed in Sec. III obeys a scaling relation of this
form with γ̂ ¼ 1 and Ĥ0 ¼ 2m0=3.

When the universe is already deeply in stasis, the
distinction between these two classes of transitions is
not terribly important. Indeed, since H ≈ κ̄=ð3tÞ within

stasis, we can obtain a direct expression for the under-
damping transition time tl, namely tl ¼ κ̄=ð2mlÞ, as we
have used throughout this paper. However, if we now wish
to extend our analysis to situations in which the universe is
not already in stasis, whether a transition is intrinsic or
extrinsic matters. Thus, by rephrasing our transition times
in terms of critical values Ĥ of the Hubble parameter, we
can extend our analysis beyond stasis and allow the
transition times t̂ to be determined implicitly.
In what follows, we shall examine these two classes

of transitions in turn. For each class, we shall concentrate
on two-component systems with abundances Ω1;2
and corresponding equation-of-state parameters w1;2 with
−1 < w1 < w2 < 1, as in Sec. V. Within this general
framework, we shall derive the coupled equations of
motion for the Hubble parameter and for the abundance
Ω1 of the component with the smaller equation-of-state
parameter w1. We shall then demonstrate analytically that
the stasis solution to these equations of motion in each case
is a local attractor for all possible such combinations of w1

and w2. Finally, we shall demonstrate that these stasis
solutions are also global attractors for the cases of physical
interest discussed in Secs. II, III, and IV.

1. Local attractor behavior: Class I transitions

In general, for any pairwise stasis involving two com-
ponents with equation-of-state parameters w1 and w2,
where w1 < w2, the equation of motion for Ω1 is given
by Eq. (5.1). For a stasis of this sort involving Class I
transitions, the pump term in this expression, evaluated in

the continuum limit, takes the form P12 ¼ nτðtÞΩð1Þ
τ ðt; tÞ,

with nτðtÞ given by Eq. (6.31). However, since we are not
assuming stasis, the expression for Ωð1Þðt; tÞ is given by

Ωð1Þ
τ ðτ; tÞ ¼ Ωð0Þ

0 ðΓ0τÞ−α=γh1ðtð0Þ; tÞΘðτ − tÞ ð7:3Þ

with τ ¼ t. We caution that while the “(1)” superscript on

Ωð1Þ
τ ðτ; tÞ—just like the “1” subscript on h1ðtð0Þ; tÞ—

indicates the energy component with equation-of-state

parameter w1, the “(0)” superscript on Ωð0Þ
0 continues to

indicate the value at the initial production time tð0Þ. It
therefore follows that

P12 ¼
Ωð0Þ

0 Γ0

γδ

�
m0

Δm

�
1=δ

ðΓ0tÞ−1−η=γh1ðtð0Þ; tÞ: ð7:4Þ

Moreover, the total abundance Ω1 of the component with
equation-of-state parameter w1, evaluated in the continuum
limit, is given for t ≪ τ0 by
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Ω1 ¼
Z

τ0

τN−1

dτnτðτÞΩð1Þ
τ ðτ; tÞ

≈
Ωð0Þ

0

ηδ

�
m0

Δm

�
1=δ

ðΓ0tÞ−η=γh1ðtð0Þ; tÞ: ð7:5Þ

Comparing this expression to the expression for P12 in
Eq. (7.4), we obtain

P12 ¼
η

γ
Ω1

1

t
: ð7:6Þ

Interestingly, this result reduces to our result in Eq. (2.30)
during stasis. However, we now see that this result applies
even without the assumption of stasis. We thus find that the
time evolution of Ω1 and H is described by the system of
equations

dΩ1

dt
¼ −pΩ1

1

t
þ 3Hðw2 − w1ÞΩ1ð1 −Ω1Þ;

dH
dt

¼ −
3

2
H2

�
1þ w2 þ ðw1 − w2ÞΩ1

�
: ð7:7Þ

We may recast these equations in a more revealing form
by parametrizing the expansion rate of the universe in terms
of the quantity

HðtÞ≡HðtÞ
�
3t
κ̄

�
ð7:8Þ

which represents the ratio of the Hubble parameter HðtÞ at
any given time t to the value which it would have at that
time if the universe were in stasis. In particular, we find that

dΩ1

d log t
¼ −pΩ1 þ κ̄ðw2 − w1ÞHΩ1ð1 − Ω1Þ;

dH
d log t

¼ H −
κ̄

2
H2

�
1þ w2 þ ðw1 − w2ÞΩ1

�
: ð7:9Þ

Taking dΩ1=d log t ¼ dH=d log t ¼ 0, we find that indeed
the only equilibrium solution for this system with non-
vanishing Ω1 is the stasis solution in which H ¼ 1 and in
which Ω1 ¼ Ω̄1, with Ω̄1 given by Eq. (5.11).
In order to determine whether or not this stasis solution is

a local attractor, we evaluate the eigenvalues of the
Jacobian matrix for the system of equations in Eq. (7.9).
Using the fact that κ̄ is given by Eq. (5.3) during a general
pairwise stasis, we can eliminate κ̄ in favor of Ω̄1. These
eigenvalues can then be written in the form

λ� ¼ −
1

2

2
41þ w2 − ðw1 − w2ÞΩ̄1

1þ w2 þ ðw1 − w2ÞΩ̄1

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðw2 − w1Þð1þ 2w1 − w2ÞΩ̄1

½1þ w2 þ ðw1 − w2ÞΩ̄1�2

s 3
5: ð7:10Þ

For all possible combinations of Ω̄1, w1, and w2 within the
ranges 0 < Ω̄1 ≤ 1 and −1 < w1 < w2 < 1, both of these
eigenvalues are real and negative. Thus, we conclude that
for any combination of w1 and w2 which satisfies these
conditions, the stasis solution is a local attractor.
This general result is applicable to any pairwise stasis

involving a Class I pump. For example, this result implies
that the stasis solution that we obtained for the matter/
radiation system in Sec. II is a local attractor. Indeed, for
this realization of stasis we have w1 ¼ 0 and w2 ¼ 1=3,
whereupon we see that Eq. (7.10) reduces to

λ� ¼ −
1

2

2
44þ Ω̄M

4 − Ω̄M
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8Ω̄M

ð4 − Ω̄MÞ2

s 3
5: ð7:11Þ

Likewise, our results also imply that the stasis solution that
we obtained for the vacuum-energy/radiation system in
Sec. IV is a local attractor. For this realization of stasis, we
have w1 ¼ w and w2 ¼ 1=3, whereupon we see that
Eq. (7.10) reduces to

λ� ¼ −
1

2

2
44 − ð3w − 1ÞΩ̄Λ

4þ ð3w − 1ÞΩ̄Λ
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8ð1 − 9w2ÞΩ̄Λ

½4þ ð3w − 1ÞΩ̄Λ�2

s 3
5:

ð7:12Þ

2. Local attractor behavior: Class II transitions

For a pairwise stasis involving Class II transitions, as
discussed above, the contribution Ωð1Þ

l from each ϕl to the
overall abundance Ω1 associated with the component with
equation-of-state parameter w1 is transferred to the com-
ponent with equation-of-state parameter w2 when H drops
below a particular threshold Ĥ. In the approximation that
this transition occurs sharply at the time t at which
HðtÞ ¼ Ĥ, this contribution takes the form

Ωð1Þ
l ðtÞ ¼ Ωð0Þ

l h1ðtð0Þ; tÞΘðHðtÞ − ĤlÞ: ð7:13Þ

For a universe involving only two components, with
Ω1 þ Ω2 ¼ 1, the time derivative of this expression may
be written in the form

dΩð1Þ
l

dt
¼ Ωð0Þ

l h1ðtð0Þ; tÞδðH − ĤÞ dH
dt

þ 3HΩð1Þ
l ðw2 − w1Þð1 −Ω1Þ: ð7:14Þ

The rate of change of the total abundance Ω1 is simply
the direct sum of the individual contributions in Eq. (7.14).
In order to evaluate this sum, we shall pass to the
continuum limit in which we express l in terms of the
corresponding transition scale Ĥl and then treat Ĥ as a
continuous parameter. In other words, we shall replace
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X
l

→
Z

dĤnĤðĤÞ; ð7:15Þ

where nĤðĤÞ denotes the density of states within the tower
per unit Ĥ, evaluated at the location within the tower for
which the transition scale is Ĥ. For a scaling relation
between Ĥ and m of the form given in Eq. (7.2), this
density of states takes the form

nĤðĤÞ ≡




 dldĤ





 ¼ 1

γ̂δĤ0

�
m0

Δm

�
1=δ

�
Ĥ

Ĥ0

�
1=ðγ̂δÞ−1

: ð7:16Þ

In analogy with the quantities Ωτðτ; tÞ and Ωt̂ðt̂; tÞ that
we defined in Sec. VI, we shall find it convenient to define
ΩĤðĤ; tÞ to represent the abundance—evaluated at time
t—of that particular ϕ-field whose transition threshold is
Ĥ. For a scaling relation between Ĥ and m of the form
given in Eq. (7.2), this abundance is given by

Ωð1Þ
Ĥ
ðĤ; tÞ ¼ Ωð0Þ

0

�
Ĥ
H0

�α=γ̂

h1ðtð0Þ; tÞΘðHðtÞ − ĤÞ: ð7:17Þ

The rate of change of the total abundance Ω1, evaluated
in the continuum limit, is

dΩ1

dt
¼

Z
ĤN−1

Ĥ0

dĤ
dΩð1Þ

Ĥ
ðĤ; tÞ
dt

; ð7:18Þ

which yields an expression of the general form given in
Eq. (5.1). However, we see from Eq. (7.14) that the pump
term P12 for a Class II transition is in general given by

P12 ¼ nĤðHÞΩð1Þ
Ĥ
ðH; tÞ dH

dt
. ð7:19Þ

For the particular set of transitions we are considering here,

with nĤðĤÞ and Ωð1Þ
Ĥ
ðĤ; tÞ given by Eqs. (7.16) and (7.17),

respectively, we have

P12 ¼
3H0Ω

ð0Þ
0

κγ̂δ

�
m0

Δm

�
1=δ

�
H
H0

�
1þη=γ̂

h1ðtð0Þ; tÞ; ð7:20Þ

with κ given by Eq. (5.3).
The total abundance of the component with equation-of-

state parameter w1 in this case, evaluated in the continuum
limit, is

Ω1 ¼
Z

Ĥ0

ĤN−1

dĤnĤðĤÞΩð1Þ
Ĥ
ðĤ; tÞ: ð7:21Þ

Explicit integration yields

Ω1 ¼
Ωð0Þ

0

γ̂δ

�
m0

Δm

�
1=δ

H−η=γ̂
0 h1ðtð0Þ; tÞ

Z
HðtÞ

Ĥ0

dĤĤη=γ̂−1

≈
Ωð0Þ

0

δη

�
m0

Δm

�
1=δ

�
H
H0

�
η=γ̂

h1ðtð0Þ; tÞ; ð7:22Þ

where in going from the first to the second line we have
used the fact that H ≫ Ĥ0 at times well before the energy
density associated with the lightest tower state is transferred
to the energy component with equation-of-state parameter
w2. Comparing this expression to the expression for P12 in
Eq. (7.20), we observe that

P12 ¼
η

γ̂
Ω1

�
3

κ
H

�
: ð7:23Þ

For γ̂ ¼ 1, we find that this result reduces to Eq. (3.31)
during stasis. However, we now see that Eq. (7.23) holds
even without the assumption of stasis. Moreover, compar-
ing this result to the stasis expectation in Eq. (5.7), we
observe that p ¼ η=γ̂ for a Class II transition of this sort
with arbitrary γ̂ > 0.
It follows from the result in Eq. (7.23) that the time

evolution of Ω1 and H in this case is described by the
equations

dΩ1

d log t
¼ −

κ̄

2
pHΩ1

�
1þ w2 þ ðw1 − w2ÞΩ1

�
þ κ̄ðw2 − w1ÞHΩ1ð1 −Ω1Þ;

dH
d log t

¼ H −
κ̄

2
H2

�
1þ w2 þ ðw1 − w2ÞΩ1

�
: ð7:24Þ

The only equilibrium solution for this system with non-
vanishing Ω1 is the stasis solution in which H ¼ 1 and in
which Ω1 ¼ Ω̄1, where Ω̄1 given by Eq. (5.11) with
p ¼ η=γ̂.
Using Eq. (3.14) in order to eliminate κ̄ in favor of Ω̄1,

we find that the eigenvalues of the Jacobian matrix in this
case are

λþ ¼ 2ð1þ w1Þðw1 − w2ÞΩ̄1

½1þ w2 þ ðw1 − w2ÞΩ̄1�2
;

λ− ¼ −1: ð7:25Þ

For all possible combinations of Ω̄1, w1, and w2 within the
ranges 0 < Ω̄1 ≤ 1 and −1 < w1 < w2 < 1, both of these
eigenvalues are real and negative. Thus, we conclude that
for any combination of w1 and w2 which satisfies these
conditions, the stasis solution is a local attractor.
This general result is applicable to any pairwise stasis

involving a Class II pump. For example, it implies that the
stasis solution that we obtained for the vacuum-energy/
matter system that we examined in Sec. IV is a local
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attractor. Indeed, for this realization of stasis, wherein
an energy component with equation-of-state parameter
w1 ¼ w transfers its energy density to an energy component
with w2 ¼ 0 via a transition from overdamped to under-
damped oscillation, Eq. (7.25) reduces to

λþ ¼ 2wð1þ wÞΩ̄Λ

ð1þ wΩ̄ΛÞ2
;

λ− ¼ −1: ð7:26Þ

3. Global attractor behavior

We have thus far demonstrated that each of our pairwise
stasis solutions is a local attractor. In order to assess
whether these solutions are also global attractors, we
map the trajectories along which the system evolves in
the (Ω̄1,H)-plane for different initial combinations of Ω̄1

and H, where in each case Ω̄1 once again represents the
abundance of the cosmological energy component with the
smaller equation-of-state parameter. In Fig. 16, the left
panel shows a number of such trajectories for the matter/
radiation system obtained by taking w1 ¼ 0 and w2 ¼ 1=3
in Eq. (7.9). The middle panel shows trajectories for
the vacuum-energy/matter system obtained by taking
w1 ¼ w ¼ −0.8 and w2 ¼ 0 in Eq. (7.24). The right panel
shows trajectories for the vacuum-energy/radiation system
obtained by taking w1 ¼ w ¼ −0.8 and w2 ¼ 1=3 in
Eqs. (7.9). The point within the (Ω̄1,H)-plane which
corresponds to the stasis solution in each panel is indicated
with a red dot. The value of p in each case is chosen such
that Ω̄1 ¼ 0.5.

In all three panels of Fig. 16, we see that our trajectories
ultimately flow toward the stasis solution. Indeed, this
remains true even if we consider other values of Ω̄i, other
values of w (when relevant), and even regions of the
ðΩ̄1;HÞ plane with values of H beyond those shown.
We therefore conclude that the stasis solution is not only a
local attractor for all three kinds of pairwise stasis we have
considered here, but a global attractor as well.

B. Triple stasis

We now turn to consider whether the triple-stasis
solution which emerged from the three-component system
in Sec. VI is likewise an attractor. The analysis in this case
is significantly more complicated than it is for the two-
component systems that we considered in the previous
subsection—not merely because this system involves a
larger number of dependent variables, but also because the
coupled equations which describe the time evolution of
these variables are not differential equations, but rather
integrodifferential equations. As a result, we cannot deter-
mine whether the triple-stasis solution is a local attractor
analytically using the methods we employed when analyz-
ing our two-component systems.
For this reason, we instead investigate the attractor

behavior of our triple-stasis system numerically by varying
the initial conditions for the system at tð0Þ. In Fig. 17, we
illustrate the effect on the abundances of varying the ratio
HðtN−1Þ=Hð0Þ where tN−1 is the time at which the heaviest
field in the ensemble becomes underdamped and begins
oscillating and where Hð0Þ is the Hubble parameter at the
initial production time tð0Þ. The abundances ΩΛ, ΩM, and
Ωγ are plotted in the left, middle, and right panels of the

FIG. 16. Attractor behavior forMγ stasis (left panel), ΛM stasis (middle panel), and Λγ stasis (right panel). Shown in each case are the
trajectories (blue curves) within the (Ω1,H)-plane, where Ω1 in each case represents the abundance of the cosmological energy
component with the smaller equation-of-state parameter. These trajectories correspond respectively to the dynamical system described
in Eq. (7.9) with w1 ¼ 0 and w2 ¼ 1=3, the dynamical system described in Eq. (7.24) with w1 ¼ w ¼ −0.8 and w2 ¼ 0, and the
dynamical system described in Eq. (7.9) with w1 ¼ w ¼ −0.8 and w2 ¼ 1=3. The red dot in each case indicates the corresponding
attractor stasis solution. We have chosen p in each case such that Ω̄1 ¼ 0.5, and we have used the instantaneous-decay approximation in
obtaining the results shown in the left and right panels. We emphasize that while we have taken w ¼ −0.8 for each pairwise stasis
involving vacuum energy, similar results are obtained for other values of w.
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figure, respectively, as functions of the number N of
e-folds of expansion since tð0Þ. The different curves
appearing in each panel correspond to different values of
HðtN−1Þ=Hð0Þ within the range 0.01 ≤ Hð0Þ=HðtN−1Þ ≤ 1.
The dotted horizontal line in each panel indicates the stasis
value given in Eq. (6.58) for the corresponding abundance.

In each case we have taken Ωð0Þ
Λ ¼ 1 and Ωð0Þ

M ¼ Ωð0Þ
γ ¼ 0.

For all values ofHðtN−1Þ=Hð0Þ, we observe thatΩΛ,ΩM,
and Ωγ all evolve toward their stasis values. Thus, we may
conclude that the emergence of a triple stasis is not
predicated on a particular choice of HðtN−1Þ=Hð0Þ. We
also note that it takes the universe longer to settle into its
asymptotic stasis state for some values of HðtN−1Þ=Hð0Þ
than it does for others.
One might also ask whether the emergence of a stasis

epoch depends sensitively on the initial values Ωð0Þ
Λ , Ωð0Þ

M ,

and Ωð0Þ
γ of our three abundances. However, given the

assumptions inherent in our model, we do not have the
freedom to vary these three abundances arbitrarily. Indeed,
our model comprises only the ϕl fields and one or more
effectively massless fields which behave as radiation
throughout the entirety of the stasis epoch. Likewise, the
individual masses and abundances of the ϕl fields are
assumed to scale across the tower according to the relations
in Eqs. (2.12) and (2.13), respectively. Given these
assumptions, it is not possible to adjust the relationship

between Ωð0Þ
Λ and Ωð0Þ

M arbitrarily without introducing
additional spectator fields which behave as either matter
or vacuum energy. That said, we do have the freedom to

adjust Ωð0Þ
γ arbitrarily, provided that we compensate for

this adjustment by shifting the values of both Ωð0Þ
Λ and Ωð0Þ

M

such that Ωð0Þ
Λ þΩð0Þ

M þ Ωð0Þ
γ ¼ 1 and the appropriate

relationship between Ωð0Þ
Λ and Ωð0Þ

M is maintained. Thus,

in what follows, we shall continue to take Ωð0Þ
M ¼ 0 and

focus on the effect of varying Ωð0Þ
Λ and Ωð0Þ

γ .
In Fig. 18 we illustrate the effect on the abundances that

emerges upon varying Ωð0Þ
Λ and Ωð0Þ

γ subject to the con-

straints that Ωð0Þ
γ ¼ 1 −Ωð0Þ

Λ and Ωð0Þ
M ¼ 0. As in Fig. 17,

the three abundances ΩΛðtÞ, ΩMðtÞ, and ΩγðtÞ are plotted
as functions of N in the left, middle, and right panels,
respectively. In each panel, the dotted horizontal line once
again indicates the stasis value given in Eqs. (6.58) and
(6.59) for the corresponding abundance.
In each case, we observe thatΩΛðtÞ,ΩMðtÞ, andΩγðtÞ all

evolve toward their stasis values. Thus, we may further
conclude that the emergence of triple stasis is not predi-
cated on the universe being fully vacuum-energy domi-
nated at the initial time tð0Þ, much less devoid of radiation.
Indeed, we see that stasis emerges regardless of the
admixture of vacuum energy and radiation at the initial
time. However, we also observe that it takes the universe
longer to settle into its asymptotic stasis state for some
admixtures than others.
Taken together, the empirical results shown in Figs. 17

and 18 strongly suggest that our triple-stasis solution
in Sec. VI is not only a local attractor but also a global
attractor, pulling our system towards the stasis state
for a wide range of dynamical parameters and initial
configurations.

VIII. A PHASE DIAGRAM FOR STASIS

It is interesting to synthesize the results of this paper thus
far by investigating how our different forms of stasis relate
to each other. Collecting our results from Secs. II, III, IV,

FIG. 17. The abundances of vacuum energy (left panel), matter (center panel), and radiation (right panel) in a three-component system
exhibiting a triple-stasis solution, plotted as functions of the numberN of e-folds of cosmological expansion since the initial production
time tð0Þ. The different curves in each panel correspond to different values of the ratio HðtN−1Þ=Hð0Þ, where tN−1 denotes the time at
which the heaviest of the ϕl fields becomes underdamped and begins oscillating. These results were calculated within the full
exponential-decay framework and correspond to the parameter choices α ¼ 0.95, δ ¼ 4, w ¼ −0.7, ξ ¼ 20, and Δm=m0 ¼ 1. For all
values of HðtN−1Þ=Hð0Þ, we observe that ΩΛðtÞ, ΩMðtÞ, and ΩγðtÞ all evolve toward their stasis values. We also note that it takes longer
for the universe to settle into its asymptotic stasis state for some values of HðtN−1Þ=Hð0Þ than for others.
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and VI, we see that our different stases have the constraint
equations

Mγ Stasis∶
η

γ
¼ 2 − κ̄;

ΛM Stasis∶ η ¼ 2 − ð1þ wÞκ̄;
Λγ Stasis∶

η

γ
¼ 2 − ð1þ wÞκ̄;

Triple Stasis∶ � η ¼ 2 − ð1þ wÞκ̄; γ ¼ 1: ð8:1Þ

Note that in the case of triple stasis, we are restricting our
attention to Branch A because Branch B does not yield a
full stasis.
The constraint equations in Eq. (8.1) are all very similar

to each other. Indeed, if we temporarily disregard the
absence of the w-term within the constraint for Mγ stasis,
we see that these equations all become identical if γ ¼ 1.
There are also other commonalities between these differ-

ent forms of stasis. In general, a matter-dominated universe
has κ̄ ¼ 2 while a radiation-dominated universe has
κ̄ ¼ 3=2. By contrast, within the context of our general-
w model for vacuum energy, a universe dominated by
vacuum energy has κ̄ ¼ 2=ð1þ wÞ. It therefore follows that
our different mixed-component stases have restricted
ranges for κ̄ given by

Mγ Stasis∶ 3=2 < κ̄ < 2;

ΛM Stasis∶ 2 < κ̄ < 2=ð1þ wÞ;
Λγ Stasis∶ 3=2 < κ̄ < 2=ð1þ wÞ;

Triple Stasis∶ 3=2 < κ̄ < 2=ð1þ wÞ: ð8:2Þ

However, substituting these results into the corresponding
equations in Eq. (8.1) we find in each case that

η > 0: ð8:3Þ

Of course, this condition has already been stated through-
out this paper on the basis of other consistency constraints
[see, e.g., Eqs. (2.23), (3.24), (4.7), and (6.50)]. However,
the condition in Eq. (8.3) is yet another commonality
between our different forms of stasis.
The fact that all of our stases have the same basic

constraints on their fundamental parameters suggests that
they all populate different limiting regions of a common
“phase space.” We shall now demonstrate that this expect-
ation is correct.
To do this, let us begin by considering the largest and

most comprehensive of our stases, namely the triple stasis
of Sec. VI. In Fig. 19, we display the phase diagram for
triple stasis within the ðw△; ξÞ-plane for several different
values of w. The results in the top panel correspond
to the choice w ¼ −0.7, while the results shown in
the three panels at the bottom of the figure correspond
to the choices w ¼ −0.9 (left panel), w ¼ −0.5 (middle
panel), and w ¼ −0.25 (right panel). The color of each
point within each panel has been assigned according to the
abundance-map palette shown on the far right, with the
relative levels of blue, green, and red indicating the
values of the stasis abundances Ω̄Λ, Ω̄M, and Ω̄γ , respec-
tively. The gray region on the left side of each panel is
physically inaccessible, since self-consistency requires
w△ > w. Likewise the shaded region with ξ < ξmin lies
outside our regime of validity for ϵdec ¼ 0.05. The dashed
black vertical line with w△ ¼ 0 corresponds to universes
with κ̄ ¼ 2, as shown in Fig. 14. Points to the right of this
line correspond to universes with κ̄ < 2, whereas points to
the left correspond to universes with κ̄ > 2. Such uni-
verses respectively correspond to the situations illustrated
in the upper and lower panels of Fig. 15.

FIG. 18. Same as Fig. 17, except that the different curves now correspond to different values for the initial vacuum-energy and

radiation abundances Ωð0Þ
Λ and Ωð0Þ

γ ¼ 1 − Ωð0Þ
Λ , with Ωð0Þ

M ¼ 0 held fixed. These results were calculated within the full exponential-
decay framework and correspond to the parameter choices α ¼ 0.95, δ ¼ 4, w ¼ −0.7, ξ ¼ 20, Δm=m0 ¼ 1, and 3Hð0Þ=ð2mN−1Þ ¼ 1.

For all values of Ωð0Þ
Λ and Ωð0Þ

γ , we see that ΩΛðtÞ, ΩMðtÞ, and ΩγðtÞ all ultimately evolve toward their stasis values, with the universe

taking longer to settle into its asymptotic stasis state for some values of Ωð0Þ
Λ and Ωð0Þ

γ than for others.

DIENES, HEURTIER, HUANG, TAIT, and THOMAS PHYS. REV. D 109, 083508 (2024)

083508-52



FIG. 19. “Phase diagrams” for triple stasis within the ðw△; ξÞ-plane for w ¼ −0.7 (top panel) and for w ¼ −0.9, w ¼ −0.5, and
w ¼ −0.25 (corresponding to the three panels along the lower row). Working within the full exponential-decay framework, we have
assigned the color of each point within the ðw△; ξÞ-plane according to the abundance-map palette shown on the top right, with the
relative levels of blue, green, and red indicating the values of the stasis abundances Ω̄Λ, Ω̄M, and Ω̄γ , respectively. The gray region on the
left side of each panel is physically inaccessible, since self-consistency requires w△ > w. Likewise the shaded region with ξ < ξmin lies
outside our regime of validity for ϵdec ¼ 0.05. The dashed black vertical line with w△ ¼ 0 corresponds to universes with κ̄ ¼ 2, as shown
in Fig. 14, while points to the left (respectively right) of this line correspond to universes with κ̄ > 2 (respectively κ̄ < 2), as shown in the
upper (respectively lower) panel of Fig. 15. The points within Regions I through IV exhibit triple stases with Ω̄Λ > Ω̄M > Ω̄γ ,
Ω̄M > Ω̄Λ > Ω̄γ , Ω̄M > Ω̄γ > Ω̄Λ, and Ω̄γ > Ω̄M > Ω̄Λ, respectively. By contrast, along the edges of this plane, our triple-stasis
solutions reduce to simpler stasis solutions: either to a pairwise ΛM stasis (as discussed in Sec. III and shown along the upper edge with
w△ < 0), or to a pairwise Mγ stasis (as discussed in Sec. II and shown along the upper edge with w△ > 0), or to universes with only
vacuum energy (as shown along the left edge), radiation (as shown along the right edge), or matter (as indicated at the top point with
w△ ¼ 0). All universes along the vertical w△ ¼ 0 line are effectively matter-dominated (as illustrated in Fig. 14), with counterbalancing
abundances of vacuum energy and radiation; however, as we move up this line towards greater values of ξ, these other abundances
maintain their ratio but shrink to zero, leaving behind a universe consisting only of matter as ξ → ∞. The star represents the location of
the “triple point” at which Ω̄Λ ¼ Ω̄M ¼ Ω̄γ . This figure therefore encapsulates and illustrates the relationships between the different
versions of stasis discussed in this paper.
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The points within the Regions I through IV in each
panel of Fig. 19 exhibit triple stases with Ω̄Λ > Ω̄M > Ω̄γ ,
with Ω̄M > Ω̄Λ > Ω̄γ, with Ω̄M > Ω̄γ > Ω̄Λ, or with
Ω̄γ > Ω̄M > Ω̄Λ, respectively. By contrast, along the edges
of this plane, our triple-stasis solutions reduce to simpler
stasis solutions: either to a pairwiseΛM stasis (as discussed
in Sec. III and shown along the upper edge with w△ < 0),
or to a pairwiseMγ stasis (as discussed in Sec. II and shown
along the upper edge with w△ > 0), or to universes with
only vacuum energy (as shown along the left edge),
radiation (as shown along the right edge), or matter (as
indicated at the top point with w△ ¼ 0). All universes along
the vertical w△ ¼ 0 line are effectively matter-dominated
(as illustrated in Fig. 14), with counterbalancing abundan-
ces of vacuum energy and radiation; however, as we move
up this line towards greater values of ξ, these other
abundances maintain their ratio but shrink to zero, leaving
behind a universe consisting only of matter as ξ → ∞.
Thus, as anticipated, we see that this figure encapsulates
and illustrates the relationships between the different
versions of stasis discussed in this paper.
As we remarked at the beginning of this section, the

constraint equation for Mγ stasis in Eq. (8.1) is slightly
different from the others in that it does not depend on w.
This, of course, makes sense since w is the equation-of-
state parameter for the vacuum energy, and Mγ stasis does
not involve vacuum energy. However, at a purely algebraic
level, we observe that the form of the Mγ constraint
equation does match the others but has an “effective”
w ¼ 0. Requiring w ¼ 0 in turn implies that w△ ≥ 0, and
we see from Fig. 19 that this is indeed precisely the region
to which the Mγ stasis is restricted.
Finally, we note that each of the phase diagrams shown

in Fig. 19 exhibits a “triple point”—i.e., a point at which the
abundances of vacuum energy, matter, and radiation are
equal during stasis. The location of this triple point in each
panel is indicated by a star. Indeed, we observe that
regardless of the form of X, the conditions under which
the expressions for Ω̄Λ, Ω̄M, and Ω̄γ in Eqs. (6.58) and
(6.59) coincide are

w△ ¼ 1þ 3w
9

; X ¼ 4 − 6w
10þ 3w

: ð8:4Þ

The latter condition can be solved for any given form of X
in order to obtain the value of ξ at the triple point. This
value of ξ increases monotonically with w, as can be seen
by comparing the results shown in the different panels of
Fig. 19, and can become as large as ξ ∼Oð50Þ as w
approaches zero for both the form of X in Eq. (6.52) and the
form of X in Eq. (6.61).

IX. BEYOND STASIS

In addition to the stasis phenomenon discussed in
previous sections, there are also variants of this

phenomenon in which only some—but not all—of the
features associated with stasis are retained. Depending on
which features are retained, we can obtain a variety of
scenarios which may be exceedingly interesting in their
own rights on both theoretical and phenomenological
grounds. In general, it is critical to study such variants
because there exist many real-world effects which may
push our system beyond some of the assumptions we have
made when constructing our above models of stasis.
Understanding how robust the stasis phenomenon is when
faced with such perturbations is therefore of profound
importance for understanding the emergence of stasis
within realistic models of physics.

A. Quasi-stasis

Stasis, of course, refers to an epoch in which our
abundances remain absolutely fixed as functions of
time. However, it is possible to obtain a quasi-stasis
situation in which our abundances do experience a nonzero
time dependence, but in which this time dependence is
extremely suppressed. Within such scenarios, all of the
leading power-law growth that would appear in the usual
cosmology is still absent—just as in ordinary stasis—
but a weak, quasilogarithmic time dependence remains.
Depending on the rate of change associated with this
residual time evolution, such quasi-stasis solutions may
effectively serve as (and in fact be phenomenologically
indistinguishable from) true stasis solutions over relevant
cosmological timescales.
It is easy to see how such a quasi-stasis might arise. As

we have seen, each of our pairwise stases is essentially
unavoidable: for any choices of fundamental scaling
exponents ðα; γ; δ; wÞ within the specified ranges, our
system necessarily evolves into a stasis configuration, with
the relevant stasis abundances remaining absolutely con-
stant as functions of time. Indeed, only the values of these
stasis abundances depend on our underlying parameter
choices.
For triple stasis, by contrast, a new possibility opens up.

Because an additional constraint equation arises—in par-
ticular, that in Eq. (6.36) which is needed in order to ensure
that our two pumps are compatible with each other—not
every choice of ðα; γ; δ; wÞ leads to a successful triple stasis.
Indeed, as we have seen in Sec. VI, only those choices
which place our system along Branch A in Fig. 9 lead to a
full, triple stasis.
This observation implies that it is possible to choose

values for ðα; γ; δ; wÞ [or equivalently for ðγ; κ̄Þ] for which
we do not obtain a triple stasis along Branch A. Amongst
these, however, there are two classes of special cases that
are worthy of note. Such special cases yield situations in
which our abundances do not remain constant, but evolve
exceedingly slowly. (Indeed, this slow evolution replaces
the stasis phenomenon itself, and exists independently of
any features related to the approach to stasis.) The first
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class of such solutions consists of those lying along
Branch B in Fig. 9. Indeed, we recall from Sec. VI that
these solutions satisfy both of our scaling constraints in
Eqs. (6.34) and (6.35), but simply fail to satisfy the second
constraint in Eq. (6.48) that ensures that these solutions
avoid a logarithmic instability. By contrast, the second class
consists of solutions which do not lie along either Branch A
or Branch B, but whose underlying parameters place it
relatively close to Branch A. In such cases, our system does
not satisfy our overall scaling relations. However, our
system does satisfy these relations approximately, and
therefore we once again expect a highly suppressed time
evolution for the abundances. This situation might
easily arise, for example, if our system originally lay along
Branch A at tree level—and thus had γ ¼ 1 at tree level—
but then radiative corrections altered the scaling relations
for our decay widths in such a way as to introduce a small
correction for γ, pushing the effective value of this exponent
slightly away from γ ¼ 1.
This quasi-stasis phenomenon is illustrated in Fig. 20.

In this figure, we plot the abundances ΩΛ (blue), ΩM
(cyan), and Ωγ (magenta) as functions ofN for a true stasis
(solid lines), a quasi-stasis with γ ¼ 0.95 (dashed lines)

and a quasi-stasis with γ ¼ 1.05 (dotted lines). Working
within the framework of an exponential decay for the
matter-radiation transition, we have taken ðα; γ; δ; wÞ ¼
ð1; 1; 2;−0.8Þ for the true stasis. Corresponding curves for
all quasi-stases with 0.95 < γ < 1.05 for the same choices
of these other parameters lie entirely within the shaded
bands delimited by the dashed and dotted curves. Indeed,
the closer γ is to unity, the more closely the Ωi curves track
those obtained for a true stasis. These results illustrate that
stasis is robust against departures from the γ ¼ 1 criterion,
and that the universe indeed experiences a period of
approximate stasis even when γ is not exactly unity.

B. Oscillatory stasis and braiding

In our discussions of stasis, we have implicitly assumed
thatΔm—the characteristic mass spacing between the states
in our ϕl towers—is sufficiently small that the continuum
limit we have employed, e.g., in Eqs. (2.17) and (3.8)
remains a valid approximation across the entire tower.
However, it is also interesting to consider what happens
when Δm is larger and discretization effects become
important. For concreteness, in what follows we shall focus
on the case of amatter/radiation stasis, thoughwe emphasize
that similar phenomena arise in the other realizations of
stasis that we have discussed in this paper as well.
As a general rule of thumb, discretization effects become

important in a matter/radiation stasis of the sort discussed in
Sec. II when the timescale associate with the depletion of
the abundance of a particular state ϕn within the tower—
i.e., its lifetime τn—is short in comparison with the
characteristic time interval τn−1 − τn between the lifetimes
of successively decaying states within the tower at time
t ¼ τn. This characteristic time interval between the life-
times of successively decaying states in the tower is
essentially the reciprocal of the density of states nτðτnÞ
per unit lifetime, evaluated at τ ¼ τn. In general, this
density of states is given by

nτðτÞ¼
1

γδ

�
m0

Δm

�
1=δ

ðΓ0τÞ−1=γ
�ðΓ0τÞ−1=γ−1

�
1=δ−1 1

τ
; ð9:1Þ

which reduces to the approximate result in Eq. (6.31) in the
regime in which τ ≪ τ0. Thus, we expect discretization
effects to become important when n−1τ ðτÞ≳ τ, or in other
words, when

γδ

�
Δm
m0

�
1=δ

ðΓ0τÞ1=γ
�ðΓ0τÞ−1=γ − 1

�
1−1=δ ≳ 1: ð9:2Þ

In general, the quantity on the left side of Eq. (9.2)
depends nontrivially on τ. Thus, depending on the values of
δ, γ, Γ0, and the ratio Δm=m0, it is possible that discretiza-
tion effects will be evident only within certain ranges of τ.
Indeed, for sufficently small τ ≪ Γ−1

0 , the condition in
Eq. (9.2) reduces to

FIG. 20. Stasis versus quasi-stasis: the abundances ΩΛ (blue),
ΩM (cyan), and Ωγ (magenta), plotted as functions ofN for a true
stasis (solid lines) and two nearby quasi-stases, one with γ ¼ 0.95
(dashed lines) and the other with γ ¼ 1.05 (dotted lines). All
curves are evaluated within the framework of an exponential
decay for the matter-radiation transition, with ðα; δ; wÞ ¼
ð1; 2;−0.8Þ taken as benchmark values. Corresponding curves
for all other quasi-stases with 0.95 < γ < 1.05 and the same
ðα; δ; wÞ benchmark values lie within the shaded bands. In each
case we see that variations in γ induce deviations from true stasis,
but in each case the abundances Ωi nevertheless remain relatively
constrained to lie near these stasis values, with time evolutions
that continue to be significantly suppressed. The closer γ is to
unity, the more closely the Ωi curves trace the true stasis values.
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γδ

�
Δm
m0

�
1=δ

ðΓ0τÞ1=γδ ≳ 1: ð9:3Þ

This implies that discretization effects typically become
increasingly important at late times. More specifically, they
become important at timescales τ ≳ τdisc, where we have
defined

τdisc ≡ Γ−1
0 ðγδÞ−γδ

�
Δm
m0

�
−γ
: ð9:4Þ

Since we are assuming that γ > 0, we observe that τdisc
decreases as Δm increases. Thus, as the characteristic scale
of the mass splittings between the tower states increases,
discretization effects become important at earlier and earlier
times. Indeed, in situations in which τN−1 ≳ τdisc, these
effects are important throughout the entire time interval
during which which the tower states are decaying.
Conversely, in situations in which τ0 ≪ τdisc, the effects
are nominally negligible throughout this entire time interval
and the universe effectively remains in a true stasis. We
may therefore determine a rough threshold for Δm above
which above which discretization effects become important
prior to the end of stasis by setting τdisc → τ0 in Eq. (9.4).
This threshold is

ðΔmÞ� ≡ ðγδÞ−δm0: ð9:5Þ

In reality, however, we emphasize that discretization effects
always come into play at times t ∼ τ0, when the longest-
lived states in the tower are decaying and the second term in
the square brackets in Eq. (9.2) can no longer be neglected.
Indeed, such discretization effects are evident during the

last few e-folds of the matter/radiation stasis illustrated in
the left panel of Fig. 1.
In Fig. 21, we illustrate the impact that these discretiza-

tion effects have on the evolution of the abundances ΩM
and Ωγ , as well as on the expansion rate. In the left panel,
we plot these abundances (solid curves) as functions of
time for the parameter choices α ≈ 1.13, δ ¼ 4, γ ¼ 9, and
Ω̄M ¼ 3=4. The corresponding constant abundances Ω̄M

and Ω̄γ which would be obtained for a true stasis with the
same values of α, δ, and γ are indicated by the dotted
horizontal lines. In the middle panel, we show the corre-
sponding abundance curves for the parameter choices
α ≈ 2.32, δ ¼ 4, γ ¼ 9, and Ω̄M ¼ 1=2.
We see from the left and middle panels of Fig. 21 that the

net impact of discretization effects on the abundances of
our cosmological components is to give rise to an quasi-
oscillatory behavior wherein ΩM and Ωγ both vary around
fixed central values—values which correspond to the
respective stasis values Ω̄M and Ω̄γ. We shall refer to the
variant of stasis wherein this phenomenon is manifest as
“oscillatory” stasis in what follows. The results shown in
the left panel Fig. 21 are representative of the more general
case in which these central values are different. By contrast,
the results shown in the middle panel exemplify the special
case in which Ω̄M ¼ Ω̄γ ¼ 1=2, with the abundance curves
exhibiting a “braiding” phenomenon in which they mutu-
ally oscillate around the same central value. The results
shown in both panels also illustrate that the effective period
ToscðtÞ of the “oscillations” in an oscillatory stasis is in
general not constant. Indeed, at any given time t, this
effective period is simply the time interval ToscðtÞ ∼ n−1τ ðtÞ
between the decays of successive tower states, and nτðtÞ is
in general time dependent.

FIG. 21. Pairwise oscillatory stasis involving matter and radiation. In the left panel, we plot ΩM (solid cyan curve) and Ωγ (solid
magenta curve) as functions of time for the parameter choices α ≈ 1.13, δ ¼ 4, γ ¼ 9, which imply Ω̄M ¼ 3=4 and Ω̄γ ¼ 1=4. The dotted
horizontal cyan and magenta lines respectively indicate the corresponding constant abundances Ω̄M and Ω̄γ which would be obtained for
a true stasis with the same values of α, δ, and γ. In the middle panel we show the abundance curves obtained for the parameter choices
α ≈ 2.32, δ ¼ 4, γ ¼ 9, which imply Ω̄M ¼ Ω̄γ ¼ 1=2. These parameter choices exemplify the special case in which Ω̄M ¼ Ω̄γ and in
which the abundances ΩM and Ωγ exhibit a “braiding” phenomenon, mutually oscillating around the same central value. In the right
panel, we plot as a function of time the ratio of the scale factor aðtÞ to the corresponding value āðtÞ ∼ tκ̄=3 that the scale factor would have
in a true stasis for the same parameter choices as in the middle panel. We emphasize that similar oscillatory phenomena can also arise for
the other realizations of stasis that we have considered in this paper.
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The variation of the abundances during a period of
oscillatory stasis implies that κ is also not constant during
such a period; rather, κ experiences a quasi-periodic
oscillation as the universe expands. This behavior is
illustrated in the right panel of Fig. 21, where we plot
the ratio of the scale factor aðtÞ during a period of
oscillatory stasis to the corresponding value āðtÞ ∼ tκ̄=3

which would be obtained during a period of true stasis for
the same parameter choices as in the middle panel. This
behavior implies that as the universe expands, its average
rate of growth remains consistent with a fixed time-and
stasis-averaged value of hwi. However, the universe “rever-
berates” as it expands, with pulsing periods of faster and
slower expansion.
The results shown in Fig. 21 also indicate that oscillatory

stasis, when it arises, can potentially persist for a significant
number of e-folds of cosmic expansion. In situations in
which Δm≳ ðΔmÞ�, the expression for N s in Eq. (2.24)
represents the total number of e-folds of expansion asso-
ciated with both true stasis and oscillatory stasis. For
τN−1 ≳ τdisc, as discussed above, true stasis is never
achieved and the number of e-folds N osc of oscillatory
stasis is given by Eq. (2.24) as well. By contrast, for
τN−1 ≲ τdisc ≲ τ0, oscillatory stasis begins roughly when
t ∼ τdisc and ends when the last state in the tower decays.
Thus, we have

N osc ≈ log

�
aðτ0Þ
aðτdiscÞ

�
: ð9:6Þ

Approximating aðτ0Þ and aðτdiscÞ with their corresponding
time-averaged values ā ∼ τκ̄=30 and ā ∼ τκ̄=3disc, and using
Eq. (2.9) in order to express κ̄ in terms of the constant
matter abundance Ω̄M that would be obtained for a true
stasis with the same values of α, γ, and δ, we find that

N osc ≈
2γ

4 − Ω̄M
log

�
Δm

ðΔmÞ�

�
: ð9:7Þ

Once again, we emphasize that while this approximate
expression for N osc decreases to zero continuously as
Δm → ðΔmÞ�, discretization effects in fact always come
into play at times t ∼ τ0.
The quasi-oscillatory behavior we have described here

may have observable consequences. For example, this
behavior could potentially affect the growth of both scalar
and tensor perturbations in the early universe in distinctive
ways. One particularly interesting possibility is that reso-
nance effects could arise as a consequence of these
oscillations. While ToscðtÞ is in general time dependent
during oscillatory stasis, an alignment of this timescale with
other relevant timescales even during a single cycle of
“oscillation” could potentially have consequential effects.
Indeed, such single-cycle resonances are know to have a
significant impact on cosmological dynamics in other

contexts (see, e.g., Ref. [24]), and it is certainly conceivable
that they could have observable consequences in the
context of oscillatory stasis as well. We leave the inves-
tigation of such possibilities for future work.

C. Stasis unrealized

Finally, there is another unique behavior which is
potentially associated with stasis but which does not result
in a stasis configuration. Depending on the underlying
model parameters, it may happen that our system begins
heading toward a stasis configuration as the result of the
attractor behavior associated with stasis, but never fully
reaches this destination because our level-by-level transi-
tions reach the bottom of the tower before the stasis is fully
realized. This can then result in abundances whose time
evolution begins to slow over many e-folds (as appropriate
for the approach to stasis), but then grow again as another
poststasis dynamics comes into play. This phenomenon
may also have important phenomenological implications,
and represents one of the few ways in which a pairwise
stasis may ultimately be avoided.

X. DISCUSSION AND CONCLUSIONS

Cosmic stasis—a phenomenon in which the abundances
of multiple cosmological energy components remain effec-
tively constant across extended cosmological eras despite
cosmological expansion—arises naturally in many exten-
sions of the StandardModel. In Ref. [1], for example, it was
shown that a pairwise stasis involving matter and radiation
can arise from the decays of a tower of unstable particles
with a broad spectrum of lifetimes and cosmological
abundances. In this paper, we have extended this prior
analysis and demonstrated that cosmic stasis is a more
general phenomenon which can also arise in the presence of
other cosmological energy components with other equa-
tions of state. These include, as we have seen, cosmological
systems involving vacuum energy. In such cases, the
transition from overdamped to underdamped oscillation
of a homogeneous scalar field provides a natural mecha-
nism for the transfer of energy from vacuum energy to
matter, thereby allowing a tower of such scalar fields with a
broad spectrum of masses to give rise to a pairwise stasis
involving vacuum energy and matter. We have also shown
that a direct transfer of energy density from vacuum energy
to radiation can, under certain conditions, give rise to a
pairwise stasis involving vacuum energy and radiation.
Moreover, we have shown that it is even possible for a
triple stasis to arise in which the abundances of vacuum
energy, matter, and radiation all simultaneously remain
constant despite cosmic expansion. Indeed, this last result is
highly nontrivial and does not emerge simply as the result
of the existence of the previous pairwise stases. We further
demonstrated that all of these types of stasis are dynamical
attractors within their corresponding cosmological systems.
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Thus, as long as these systems satisfy the basic conditions
under which stasis can develop, all of these systems will
ultimately flow toward the stasis state, irrespective of their
initial conditions.
As indicated above, one of the keys to our analysis in this

paper has been the use of the overdamping/underdamping
transition as a means of transferring energy density from
vacuum energy—or more generally from a cosmological
energy component with an effectively constant equation-of-
state parameter −1 < w < 0—to matter. This in and of
itself represents a significant broadening of the scope of
cosmological scenarios which give rise to stasis to include
those involving higher-dimensional axion or axionlike
fields [25,26] as well as scenarios involving realizations
of the string axiverse [27].
Of course, there are a number of additional subtleties

involved in modeling the overdamping/underdamping
transitions within the context of a concrete model. As
discussed in Sec. III, the equation-of-state parameter wi for
a given field ϕi exhibits a transition from the value wi ≈ −1
within the overdamped regime to the asyptotic time-
averaged value wi ≈ 0 within the underdamped regime.
However, this transition is not an abrupt one. Moreover,
the manner in which each wi evolves as it undergoes this
transition—and even the timescale over which these
transitions occur—depend sensitively on the properties
of the scalar potential. Nevertheless, it can be shown [28]
that stasis indeed arises in such contexts, even when all of
these complications are taken into account and even for
quite simple, well-motivated potentials.
It is conceivable that a stasis epoch could naturally arise

in other BSM scenarios as well. These might include, for
example, cosmologies involving a kination component
with w ¼ 1, other cosmological energy components with
w > 1=3, or even a cosmological energy component with a
time-varying equation-of-state parameter wðtÞ. Moreover, it
is also conceivable that stasis could arise in cosmologies
involving spatial curvature (w ¼ −1=3), cosmic strings
(w ¼ −1=3), or domain walls (w ¼ −2=3). Such cosmo-
logies can also involve other energy components with
effectively constant equation-of-state parameters within the
range −1 < w < 0, such as we have considered in this
paper, but which transfer their energy density to other
cosmological components via different mechanisms. In
order for this to occur, our analysis indicates that the pump
terms associated with these mechanisms would need to
exhibit an appropriate P ∼ 1=t scaling behavior during
stasis. In some cases this may be nontrivial, especially if we
further demand that such pump terms emerge naturally
within the context of BSM physics.
Given the possibility that cosmological energy compo-

nents beyond vacuum energy, matter, and radiation could
conceivably have constituted a significant fraction of the
total energy density of the universe at early times, another
obvious extension of our analysis would be to investigate

whether and under what conditions a stasis epoch involving
more than three components might arise. What additional
conditions would then have to be satisfied? In order to
answer this question, history can be our guide. For each of
the pairwise-stasis scenarios that we examined in Secs. II,
III, and IV, the system of equations that we obtained for our
stasis abundances was overconstrained. However, since
some of these equations happened to be redundant, we were
nevertheless able to obtain self-consistent solutions for
these abundances. By contrast, for the triple-stasis scenario
that we examined in Sec. VI, no such redundancies arose
within the corresponding system of equations. We were
therefore able to obtain a series of constraints that led to
unique solutions for our stasis abundances.
Given this pattern, it is natural to expect that a quadruple

stasis would lead to an underconstrained system of con-
straints. We would then expect to find not a unique set of
stasis abundances but rather a line of possible solutions. In
such cases, the particular stasis abundances towards which
the system evolves would presumably depend on initial
conditions. We would likewise expect this pattern of
increasingly underconstrained solutions for the stasis
abundances to continue as we introduce additional energy
components into the mix. Of course, these observations are
predicated on the manner in which additional pumps for
energy transfer are introduced as the number of additional
energy components is increased.
In this connection, we note [in complete analogy with the

discussion below Eq. (4.16)] that another way of introduc-
ing a fourth energy component would be to establish a
triple stasis between three of the components and then
ensure that the fourth component functions as a mere
spectator—i.e., that it have an equation-of-state parameter
which exactly matches the stasis average hwi determined
by other three, and that it experience no energy transfers
with the other components and thereby remain inert. As a
result, the dynamics of the underlying triple stasis would
not be disturbed, and we would once again expect to obtain
a line of potential solutions for the four stasis abundances in
which the abundance of the fourth component is arbitrary
and the abundances of the other three decrease to com-
pensate but remain in the same ratios as they had prior to
the introduction of the fourth component.
From a model-building perspective, the realizations of

stasis that we have discussed in this paper all involve towers
comprising large numbers of individual states. However, as
we have repeatedly emphasized, such towers arise naturally
in many extensions of the SM. For example, scenarios
involving additional, compactified spacetime dimensions
naturally give rise to towers of Kaluza-Klein (KK) reso-
nances. Other examples of towers of states which emerge
naturally in BSM scenarios include the towers of closed-
string resonances which appear in Type I string theories and
the towers of hadronlike resonances which appear in
theories involving confining hidden-sector gauge groups.
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Moreover, black holes effectively transfer their energy
densities from matter to radiation as they evaporate. As
a result, a population of primordial black holes (PBHs) with
an extended mass spectrum can also thereby give rise to an
extended period during which the abundances of matter and
radiation remain effectively constant [2,3]. Such PBHs can
thereby furnish an additional concrete model of matter/
radiation stasis [3]. Indeed, this realization of stasis is rather
exotic when compared with those we have studied in this
paper; since heavier black holes evaporate more slowly
than lighter ones, the transitions from matter to radiation
proceed upward through the tower rather than downward.
Within the context of such BSM scenarios, there is often

a straightforward relationship between the properties of the
stasis epoch and the parameters of the underlying particle-
physics model which gives rise to it. For example, in
realizations of stasis in which the ϕl fields are the KK
resonances associated with an extra spacetime dimension of
radius R, the masses ml of the KK states span the range
from R−1 to some fundamental cutoff scale μ such as the
string or GUT scale. In such realizations of stasis, the range
of lifetimes for the ϕl fields—and therefore the duration of
the stasis epoch—depends crucially on the hierarchy
between R−1 and μ. As a result, in situations in which
the stasis state has hwi < −1=3 (causing the universe to
undergo accelerated expansion during stasis), the size of the
comoving horizon today would in a very real sense be the
manifestation of this hierarchy of energy scales. Indeed,
within such scenarios, the large number of e-folds of
expansion experienced by our universe across its history
might actually be the manifestation of a hierarchy in the
size of an otherwise unseen compactified dimension!
In all of our stasis realizations involving the decays of the

ϕl states, the resulting cosmological dynamics is essen-
tially determined by the corresponding masses ml and
decay widths Γl. Moreover, we have assumed that for all
ϕl these widths are dominated by decays to effectively
massless particles outside the tower which behave like
radiation throughout the stasis epoch. However, within
certain realizations of such stases there may be multiple

states ϕðjÞ
l at each level l—states which share the same

mass ml and decay width Γl. At tree level, the resulting
cosmological dynamics will be largely independent of the
manner in which each energy density ρl for each l might
be partitioned among such degenerate states. Indeed, at tree
level such a collection of degenerate states essentially
functions as a single state whose total energy density ρl
is the sum of the contributions from its constituents. At loop
level, however, the cosmological dynamics is in general
sensitive to such degeneracies. For example, the renorm-
alization of the massesml and couplings which give rise to
each Γl would depend on these degeneracies since all of
these states can run independently within the loops. Thus
the scaling of the decay widths would ultimately depend on
such degeneracies.

Moreover, in situations in which the ϕðjÞ
l states decay to

the same species of radiation particle at tree level, loop-
level diagrams will generically give rise to decay processes
in which heavier ϕl states decay into lighter ϕl0 states with
ml0 < ml. For decay processes in which the resulting
daughter particles are significantly lighter than the parents,
these daughters will be produced with significant boosts as
seen within the cosmological background frame. These
boosts will therefore result in nontrivial phase-space dis-
tributions for the lighter ϕl0 particles. The presence of
potentially significant velocities for these states can also
increase their corresponding equation-of-state parameters
from wl ¼ 0 (consistent with our original assumption of
cold matter) to anywhere within the range 0 < wl < 1=3.
These phase-space distributions will also thereafter evolve
nontrivially during the stasis epoch due to cosmological
redshifting effects [29]. Thus, if loop-level effects are
significant, they could in principle have a non-negligible
effect on the cosmological dynamics involved in establish-
ing and sustaining stasis.
Issues regarding the degeneracies of states at each mass

level may be particularly relevant for string-theoretic
realizations of stasis. In general, perturbative string-theory
spectra contain many kinds of states, including not only KK
states (and winding states if the string is closed) but also
string oscillator states. All of these states come in infinite
towers. For example, the infinite towers of oscillator states
have masses which scale as α0m2

l ∼ l where α0 is the Regge
slope, or equivalently

ffiffiffiffi
α0

p
ml ∼ lδ with δ ¼ 1=2. However,

at each level l the number nl of oscillator states grows

exponentially: nl ∼ e
ffiffi
l

p
∼ e

ffiffiffi
α0

p
ml . This can have a number

of interesting consequences. For example, in string theory
these states will generally have different spins (even though
they share the same mass); they will therefore couple
differently to lighter states and potentially have different
decay widths. Second, this growth in the number of states at
each mass level ultimately leads to the famous Hagedorn
phenomenon [30] wherein various thermodynamic quan-
tities experience divergences at a critical temperature Tc—a
temperature beyond which the theory is believed to
transition to a different phase with different underlying
degrees of freedom. It may therefore be these new degrees
of freedom that are relevant for understanding the dynami-
cal properties of the early universe, at least for T > Tc. But
even when T < Tc, there remains the issue of how the total
abundances Ωl might scale as functions of l across the
tower, given that the densities of oscillator states are
growing exponentially. This issue was studied in some
detail for one cosmological production mechanism in
Ref. [7], but many other production mechanisms are
possible. Indeed, like all predictions of abundances Ωl
across our tower, this is ultimately a model-dependent
question which depends on the particular production
mechanism envisaged. We also emphasize that in general,
string oscillator states have mass splittings Δm on the order

STASIS, STASIS, TRIPLE STASIS: A THEORETICAL … PHYS. REV. D 109, 083508 (2024)

083508-59



of the string scale. Such states can therefore potentially
support a stasis at intermediate energy scales below the
Planck scale only within the context of low-scale string
theories, with Mstring ≡ 1=

ffiffiffiffi
α0

p
≪ MPlanck.

Of course, even if the string scale is situated near the
Planck scale (implying that the excited oscillator states are
therefore near the Planck scale as well), large-volume
compactifications can lead to KK towers populating inter-
mediate scales. Such KK states can therefore support a
stasis at intermediate scales, even though they emerge in a
string context. Indeed, within such string theories, these
KK states will likely be the only part of the perturbative
string spectrum whose towers are lighter than the string
scale. Moreover, their degeneracies will not experience
exponential growth.
It is not only the abundances and decay widths of our

states that might be affected bymodel-specific concerns; the
same may also be true of their masses. For example,
throughout this paper we have assumed that the fields ϕl
have masses which scale according to Eq. (2.13). However,
interactions of these fieldswith other fields in the theorymay
lead to radiative corrections for thesemasses. ForKK towers
stemming from a single large flat extra dimension, such
radiative corrections were studied in Refs. [31,32]. In some
cases, it was found [32] that the overall scaling structure of
these KK masses is actually preserved under such one-loop
radiative corrections—indeed, in these cases the radiative
corrections can simply be bundled into “renormalizations”
of the overall parameters m0 and Δm without changing the
form of Eq. (2.13). By contrast, in other cases, the one-loop
radiative corrections were found to distort these scaling
relations altogether. In either case, however, one generally
finds that these radiative corrections are exceedingly small.
Moreover, in particle-physics realizationsof stasis inwhich

the ϕl are coherently oscillating scalar fields, effects of this
sort can affect not only themasses of these fields but alsoother
aspects of the scalar potential [33]. Indeed, at points in field
space where the ϕl fields are significantly displaced from
their vacua, loop corrections can have significant impacts on
the shape of the potential. For example, these impacts have
been studiedwithin thecontext of large-field inflationmodels,
where the resulting modification of the potential can in turn
lead to modified predictions for inflationary observables
[34–40].One intriguingpossibility that can arise in certain sit-
uations as a result of such corrections is that coherent
oscillations of the ϕl fields can in fact behave at early times
like matter or radiation—or potentially even like a perfect
fluid with w > 1=3. Thus, in realizations of stasis involving
fields of this sort, there might exist mechanisms which
transfer energy density from matter or radiation to vacuum
energy, rather than the other way around. We leave the
investigation of such possibilities for future work.
The existence of an early period of stasis throughout the

cosmological timeline can have a number of phenomeno-
logical consequences. Indeed, the modification of the

expansion history alone relative to that of the standard
cosmology can affect the evolution of density perturba-
tions, the spectrum of gravitational waves, and predictions
for cosmic-microwave-background (CMB) observables.
Moreover, such a modification can also have an impact
on a variety of out-of-equilibrium processes, including
those which play a crucial role in the production of dark
matter or the generation of a baryon asymmetry in many
BSM scenarios. Indeed, many of these possibilities were
discussed in detail in Ref. [1] within the context of
cosmologies involving an epoch of pairwise matter/radia-
tion stasis. However, since these effects arise generically in
any cosmological scenario involving a nonstandard expan-
sion history, they also pertain to cosmologies involving the
alternative types of stasis that we have examined in
this paper.
One of the main motivations for this work has been to

demonstrate that an epoch of cosmic stasis can in principle
arise in universes containing nontrivial abundances of
vacuum energy. This prompts the question as to whether
such a stasis epoch could potentially give rise to a period of
cosmic inflation, similar to those discussed in Refs. [41–45],
with a duration sufficient to address the horizon and flatness
problems. In typical inflationary scenarios, the extraordi-
nary degree of large-scale homogeneity and isotropy that we
observe in our universe is attributed to an epoch of rapid
cosmological expansion wherein the energy density is
dominated by a perfect fluid with equation-of-state param-
eter w < −1=3. However, such a period of rapid expansion
could also be the result of an epoch of cosmic stasis in which
a tower of states which behave like vacuum energy coexists
with matter and/or radiation, provided that hwi < −1=3.
Moreover, since such a stasis epoch concludes when the last
of these vacuum-energy states transfers its energy to matter
or radiation, a graceful exit from inflation occurs naturally in
this context.
In these respects, inflationary stasis scenarios of this sort

have a great deal in common with so-called warm-inflation
scenarios [46–48] in which radiation is produced through-
out the inflationary epoch due to dissipative effects and in
which thermal fluctuations, rather than quantum fluctua-
tions, represent the dominant contribution to primordial
density perturbations [49,50]. Indeed, during the slow-roll
phase of warm inflation—as in a vacuum-energy/radiation
stasis—Ωγ remains approximately constant due to a trans-
fer of energy density from vacuum energy to radiation
which counteracts the effect of cosmic expansion [21,22].
However, there are also fundamental differences between
these scenarios. In warm inflation, the vacuum-energy
component vastly dominates the energy density of the
universe during the slow-roll phase, and H therefore
remains approximately constant. While vacuum energy is
continually being transferred to radiation during this phase,
it is not transferred at a rate that is sufficiently large in order
to have a significant impact on ΩΛ. Thus, the backreaction
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of ργ on H plays no essential role and can be neglected. By
contrast, during an epoch of vacuum-energy/radiation
stasis, ΩΛ and Ωγ during inflation can both be non-
negligible—and indeed even Oð1Þ—and the backreaction
of ργ on H is incorporated fully, with H inversely propor-
tional to t.
Of course, whether a given stasis scenario of this sort

constitutes a viable model of inflation ultimately depends
on whether the spectrum of scalar and tensor perturbations
that it yields are consistent with observation (for a recent
review, see, e.g., Refs. [51,52])—and in particular with the
properties of the CMB. The evolution of these perturbation
spectra during an epoch of inflationary stasis would be
highly nontrivial, with significant roles potentially played
not only by the quantum fluctuations of each individual ϕl
field which contributes to ΩΛ, but also by thermal fluctua-
tions within the radiation bath. Moreover, the collective
behavior of the ϕl fields and the value of hwi to which they
dynamically give rise during stasis would affect the manner
in which both scalar and tensor perturbations evolve.
Investigating the perturbation spectra which can arise in
inflationary stasis scenarios—spectra which may exhibit
not only distinctive features at high frequencies but also
characteristic patterns of non-Gaussianities—is the subject
of ongoing work.
Regardless of the initial spectrum of perturbations that

is generated during inflation, the presence of a stasis
epoch within the cosmological timeline can alter the
subsequent evolution of these perturbations. The time
at which perturbations associated with a particular wave
number k enter the horizon depends on the expansion
history. Moreover, once the perturbations associated with
a given k enter the horizon, the manner in which HðtÞ
scales with t can have a significant impact on their
subsequent evolution. For example, perturbations in
the density of matter are known to grow much more
rapidly during a period of early matter domination than
they do during a radiation-dominated epoch [53–55]. This
enhanced growth can have important consequences for
structure on small scales and can lead to the formation of
black holes [55,56] or ultracompact mini halos [53,57].
The growth of such perturbations can also be either
enhanced or suppressed during an epoch wherein the
universe is dominated by a cosmological component
with a constant equation-of-state parameter, depending
on the value that that equation-of-state parameter takes
[58]. The spectrum of density perturbations can there-
fore be substantially modified in cosmologies which
include a stasis epoch. The effects of cosmic stasis on
the growth of such perturbations and the resulting impli-
cations for small-scale structure are currently under
study [59].
The modification of the cosmological history in scenar-

ios involving a stasis epoch in general affects not only the
evolution of density perturbations, but also the evolution of

the primordial contribution to the stochastic gravitational-
wave background. These effects were investigated in detail
in Ref. [3] for a particular realization of matter/radiation
stasis involving the evaporation of a population of primor-
dial black holes with an extended mass spectrum, as
described above. However, since the effects on the sto-
chastic gravitational-wave background during such a stasis
epoch stem ultimately from the modification of the expan-
sion history, these effects are generic and arise in any
modified cosmology which involves such an epoch. The
net effect on the gravitational-wave background in any
particular realization of stasis depends on both the value of
hwi during the stasis epoch itself and the value of the
equation-of-state parameter during any other epochs which
are included in the cosmological scenario in question—
such as, for example, an epoch of early matter domination
which might immediately precede an epoch of matter/
radiation stasis.
We see, then, that cosmological stasis appears to be a

robust and rather ubiquitous phenomenon within a variety
of BSM-motivated cosmological scenarios. In this paper,
we have concentrated on the internal theoretical mechanics
of the stasis phenomenon itself. However, given these
results, it becomes even more urgent to further flesh out the
detailed particle-physics models which give rise to stasis
and to perform quantitative analyses of the phenomeno-
logical signatures to which these models lead. In this
Conclusions section we have sketched various ideas along
both of these directions. Indeed, as we have indicated,
many of these ideas are actively being pursued and will be
discussed in future publications. However, we anticipate
that many additional directions beyond those discussed
here will also provide fertile terrain for future research.
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