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The existence of large-scale anisotropy cannot be ruled out by the cosmic microwave background
(CMB) radiation. Over the years, several models have been proposed in the context of anisotropic inflation
to account for the CMB’s cold spot and hemispheric asymmetry. However, any small-scale anisotropy, if it
exists during inflation, is not constrained, due to its nonlinear evolution in the subsequent phase. This
small-scale anisotropy during inflation can play a nontrivial role in giving rise to the cosmic magnetic field,
which is the subject of our present study. Assuming a particular phenomenological form of an anisotropic
inflationary universe, we have shown that it can generate a large-scale magnetic field at the 1 Mpc scale
with a magnitude ∼4 × 10−20 G, within the observed bound. Because of the anisotropy, the conformal
flatness property is lost, and the Maxwell field is generated even without explicit coupling. This
immediately resolves the strong coupling problem in the standard magnetogenesis scenario. In addition,
assuming very low conductivity during the reheating era, we can further observe the evolution of the
electromagnetic field with the equation of state ωeff and its effects on the present-day magnetic field.
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I. INTRODUCTION

It is well known that our Universe is magnetized on all
observational scales, from planets and stars to large-scale
galaxies and galaxy clusters. In particular, the magnetic
field strength has been observed in the range from μG for
galaxies and galaxy clusters to a few G for planets and
1012 G for neutron stars. From gamma-ray observations
and Faraday rotation measurements, the magnetic field in
the intergalactic medium (IGM) has also been shown to be
bounded, with the strength ranging from 10−10 to 10−22 G
[1–5]. It is possible that the primordial magnetic fields on a
large scale (∼1 Mpc) were generated during the big bang or
later and survived until today as a relic. The origin of the
magnetic field in galaxies and galaxy clusters can be
explained through classical magnetohydrodynamic proc-
esses magnifying the tiny seed magnetic field. It is
important to identify the origin of the primordial magnetic
fields. There have been some proposed mechanisms for
generating large-scale primordial magnetic fields, which
can be found in the interesting review papers listed in
Refs. [6–21]. Among them, the Ratra model [21] is the
most accepted one, where the electromagnetic fields are
generated during the inflationary era by breaking the
conformal invariance of the Maxwell term (i.e., FμνFμν)

through nonminimal coupling(s) with other fields such as
scalar fields.
Inspired by the mechanism in [16,18,21–24], we propose

another mechanism for generating the primordial magnetic
fields through anisotropic spacetime. In particular, the
Maxwell field experiences the existence of the anisotropy
of spacetime during the inflationary era, leading to the
genesis of the primordialmagnetic field. In cosmology, there
exists a nice classification of homogeneous but anisotropic
spacetimes called the Bianchi universe [25–29]. It turns out
that the Bianchi type-I metric is the simplest one and can be
regarded as a straightforward extension of the Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetime. Hence, we
chose the Bianchi type-I metric for our study.
Remarkably, it has long been argued that the very early

Universe, which is close to the initial singularity, should be
strongly anisotropic [30–32]. During an inflationary phase
of the early Universe, all spatial anisotropies, which could
happen in a preinflationary phase, should decrease very
quickly, such that the Universe speedily approaches a
locally isotropic state, as pointed out in Refs. [33,34]. It
should be noted that this scenario is consistent with the so-
called cosmic no-hair conjecture, which claims that all
initial anisotropies and inhomogeneities should disappear
in a late-time universe [35,36]. Very interestingly, some
recent unavoidable anomalies in the cosmic microwave
background (CMB) radiation confirmed by Planck [37,38],
such as the cold spot and hemispheric asymmetry, have
challenged the standard inflationary universe models,
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which are based on a cosmological principle stating that the
Universe should be homogeneous and isotropic on large
scales. In addition, other interesting observational eviden-
ces, which have called the validity of cosmological prin-
ciple into question, have been listed in a recent interesting
review [39]. These remarkable points lead us to a possible
scenario of an anisotropic inflationary Universe in early
times. Many papers have been working on anisotropic
inflation—e.g., see Refs. [25–27], as well as Refs. [40–45].
This paper does not discuss the origin and evolution of

anisotropy in spacetime. Instead, we treat it as a perturba-
tion over the FLRW background. As the spatial anisotropy
breaks the conformal flatness of the background in the
electromagnetic (EM) field, we do not need any explicit
coupling with the scalar field as proposed in the literature
[16–20] for gauge field production during inflation. In this
context, it is important to mention the challenges in
inflationary magnetogenesis—namely, the strong coupling
problem and the backreaction problem [10,16,46,47]. In
the literature, several mechanisms and different types of
coupling [46] have been introduced to overcome these
problems. However, in our formalism, the strong coupling
problem is readily solved in this paper, since no explicit
coupling is involved with the gauge field. However, there
might still be a possibility of backreaction, which we will
study in detail as we proceed.
The paper is organized as follows: An introduction of the

present paper has been written in Sec. I. In Sec. II, we
describe the basic formalism and the quantization of the
gauge field in an anisotropic background. In Sec. III, we
show the evolution of the gauge field during the inflationary
era and the strength of the present-day magnetic field under
an instant reheating scenario. However, a scenario might
occur when the Universe undergoes a prolonged reheating
era, affecting the magnetic field. We discuss the evolution in
such a scenario in Sec. IV. Finally, we discuss the findings
and implications of this proposal in Sec. V.

II. THE SETUP

We introduce the spatial anisotropy in the background
through the homogeneous but anisotropic Bianchi type-I
metric. In general, this type of metric can be written as

ds2 ¼ a2ðηÞ½−dη2 þ b2ðηÞdx2 þ dy2 þ dz2�; ð1Þ

where η is the conformal time, aðηÞ is the overall scale
factor, and bðηÞ is the anisotropic factor along the x
direction. In our phenomenological model, we impose
the condition that the anisotropy in the spacetime exists
only in the inflationary era, although the spacetime remains
continuous. This ansatz guarantees that the conformal
flatness is restored after inflation. These conditions can
be satisfied by various models of the anisotropic factor
bðηÞ. However, we take a particular model that satisfies all
the necessary conditions:

bðηÞ ¼ 1þ αe−ð
η
ηm
Þ2 : ð2Þ

In the above Eq. (2), α is a dimensionless parameter that
determines the strength of the anisotropy. Furthermore, ηm
is a parameter that dictates the overall behavior of the
anisotropic background. An example of the anisotropic
background is shown in Fig. 1. Here, α and ηm are free
parameters of the anisotropic model. In this paper, we do
not discuss the origin of such anisotropy. However, the
anisotropy, particularly near the end of inflation, may be a
combined effect of quantum field theory and the sudden
breakdown of slow-roll conditions. We will come back to
this issue in the future.
The action of Einstein scalar-vector theory can be

given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R −

1

2
∂μϕ∂

μϕ − VðϕÞ

−
1

4
FμνFμν

�
; ð3Þ

whereG is the gravitational constant, ϕ is a scalar field, and
Fμν ≡ ∂μAν − ∂νAμ is the field strength of the vector field
Aμðt;xÞ describing the electromagnetic field. In this paper,
the dynamics of the scalar field and the metric itself due to
the anisotropy present are beyond our scope. Therefore, we
will mainly discuss the dynamics of the EM field during the
inflationary era due to the spatially anisotropic background.
Therefore, the Lagrangian of interest here is the Lagrangian
corresponding to the electromagnetic field, which, accord-
ing to Eq. (3), is given by

Lem ¼ 1

2a2
gjnA0

jA
0
n −

1

4
gimgjnFijFmn; ð4Þ

where the prime denotes a derivative with respect to
conformal time. In this paper, all the physical quantities
are denoted with the lower index—e.g., the physical

FIG. 1. Behavior of the anisotropic factor bðk̃ηÞ with k̃η for
anisotropic free parameters α and k̃ηm.
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momentum is denoted by ki, and the vector potential is
given by Ai. We set A0 ¼ 0 as the choice of gauge, and
unlike the case of conformally flat spacetime, the ν ¼ 0
component satisfies the modified constraint equation,

g̃im∂iA0
m ¼ 0; ð5Þ

where we have defined g̃ij ¼ a2gij for simplicity of
calculation. It can be further shown that the above equation
boils down to the usual Coulomb condition for the
conformally flat case. However, the raising (and lowering)
of the indices is accomplished through the metric compo-
nent gijðgijÞ. Similarly, the dynamical equation of motion
for the magnetic vector potential Ai can be calculated from
the ν ¼ j component, which boils down to

A00
n þ

b0

b
A0
n þ g̃jng̃0jkA0

k − g̃im∂iFmn ¼ 0: ð6Þ

It is important to note that the metric components play a
crucial role in the dynamics of the field. In the case of a
standard conformally flat background, the term with the
metric component’s derivative vanishes, giving us the
regular plane wave solutions. Now, we will promote
the fields and their conjugates as operators. The conjugate
momentum operator corresponding to the field operator Ai
turns out as

Πi ¼ ∂Lem

∂A0
i
¼ 1

a2
gimA0

m: ð7Þ

To quantize the field, we decompose the magnetic vector
potential Ai as

Aiðη;xÞ ¼
X
p

Z
d3k
ð2πÞ3 ða

ðpÞ
k uðpÞi ðηÞeiknxn

þ a†ðpÞk u�ðpÞi ðηÞe−iknxnÞ: ð8Þ

In the above Eq. (8), (p) is the polarization index, and aðpÞk

and a†ðpÞk are the annihilation and creation operators
corresponding to the polarization mode (p). They follow
the general commutation relation

½aðpÞk ; aðqÞk0 � ¼ δpqð2πÞ3δ3ðk − k0Þ: ð9Þ

In this article, the boldface letters represent vector quantities.
In this context, it is important to discuss the commutation

relation of the magnetic vector potential Ai and its con-
jugate momentum Πi. We impose the commutation rela-
tion, such that the constraint of Eq. (5) on vector potential
Ai is satisfied:

½Aiðη;xÞ;Ajðη;yÞ� ¼ 0; ½Πiðη;xÞ;Πjðη;yÞ� ¼ 0; ð10Þ

½Aiðη;xÞ;Πjðη; yÞ� ¼ iffiffiffiffiffiffi−gp
Z

d3k
ð2πÞ3 e

iknðxn−ynÞ

×

�
δji −

kikj

knkn

�
: ð11Þ

With the quantization of the field, we now get the mode
function equations using Eq. (6). The mode functions
satisfy the relation

u00n þ
b0

b
u0n þ g̃0jlg̃jnu0l þ g̃imðkmkiun − knkiumÞ ¼ 0: ð12Þ

The polarization index is omitted here, as all the polari-
zation modes follow the same equation of motion.
Similarly, the constraint Eq. (5) in terms of the mode
function becomes

g̃inkiu0n ¼ 0: ð13Þ

Interestingly, Eq. (12) contains the derivative of the metric
coefficients, which works as the source of particle pro-
duction during the inflationary era. As the mode function
equation contains the derivative of the metric components,
by substituting the metric components, we get the modified
mode function equations as

u001 −
b0

b
u01 þ k22u1 þ k23u1 − k1k2u2 − k1k3u3 ¼ 0;

u002 þ
b0

b
u02 þ

k21
b2

u1 þ k23u2 −
k1k2
b2

u1 − k2k3u3 ¼ 0;

u003 þ
b0

b
u03 þ

k21
b2

u3 þ k22u3 −
k1k3
b2

u1 − k2k3u2 ¼ 0: ð14Þ

Moreover, all the mode functions u1, u2, and u3 satisfy the
constraint in Eq. (13), which explicitly boils down to

k1
b2

u01 þ k2u02 þ k3u03 ¼ 0: ð15Þ

The mode functions follow the normalization condition,

ðuðpÞi g̃jmu�
0ðpÞ
m − u�ðpÞi g̃jmu0ðpÞm Þ ¼ i

2b

�
δji −

kikj

knkn

�
: ð16Þ

Utilizing the above formalism of quantization along with
the constraint relation, we evolve the mode function in
different phases of the Universe until the present epoch.

III. EVOLUTION OF ELECTROMAGNETIC
FIELD DURING INFLATIONARY ERA

According to our model in Eq. (1), the anisotropy in the
spacetime exists only towards the end of inflation. After the
end of inflation, within a short period, the spacetime
essentially becomes FLRW again, as seen from Fig. 1.
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However, it is important to mention that the large-scale
production of the EM field is not affected due to this short
presence of anisotropy after inflation. It is also evident that
b → 1 toward past infinity ensures that the Bunch-Davis
vacuum condition is satisfied in the infinite past.
Furthermore, we assume the background spacetime is
de Sitter in nature—i.e., a ¼ −1=ðHηÞ—where H is the
Hubble parameter during inflation and remains constant
throughout the entire inflation. Following these initial
conditions, we numerically solve the mode function equa-
tions shown in Eq. (14). We consider k1¼k2¼k3¼ k̃∼
1Mpc−1 for simplification, and the Hubble parameter H ¼
10−5Mpl remains constant throughout the inflationary era.

Here, Mpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð8πGÞp

is the reduced Planck mass. We
redefine the conformal time η as a dimensionless parameter
x ¼ k̃η. In terms of this new variable, Eq. (2) can be
rewritten as

bðxÞ ¼ 1þ αe−ð
x
xm
Þ2 ; ð17Þ

where the parameters α and k̃ηm are chosen accordingly to
avoid the backreaction from anisotropy, which essentially
means that the anisotropy acts as a perturbation over the
FLRW universe. A detailed discussion of the anisotropic
backreaction is done in a later section. In terms of the

redefined variables x¼ k̃η;ũi¼
ffiffiffĩ
k

p
ui, and k̃¼k1¼k2¼k3,

the mode function equations can be written as

d2ũ1
dx2

−
1

b
db
dx

dũ1
dx

þ 2ũ1 − ũ2 − ũ3 ¼ 0;

d2ũ2
dx2

þ 1

b
db
dx

dũ2
dx

þ ũ2 − ũ1
b2

− ũ3 ¼ 0;

d2ũ3
dx2

þ 1

b
db
dx

dũ3
dx

þ ũ3 − ũ1
b2

− ũ2 ¼ 0; ð18Þ

along with the constraint equation

1

b2
dũ1
dx

þ dũ2
dx

þ dũ3
dx

¼ 0: ð19Þ

By solving Eq. (18), we can obtain the mode function
solution for different choices of the parameters α and xm, as
shown in Fig. 2. The above figure shows that the mode
function grows in time due to anisotropy, particularly near
the end of inflation. For values α < 0.03, field production
stops altogether. Hence, we get a lower bound on the
anisotropic parameter α ≥ 0.03. The upper bound on α is
discussed in later sections.

A. Power spectrum of the electromagnetic field
during the inflationary era

The stress energy-momentum tensor corresponding to
the produced EM field is given by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi−gp

L�
δgμν

: ð20Þ

As a result, the energy-momentum tensor corresponding to
the electromagnetic part of the Lagrangian boils down to

Tmn ¼ −
1

4
gmngμαgνβFμνFαβ þ gμνFmμFnν: ð21Þ

The total energy density of the system is given by the Ttt
component of the energy-momentum tensor. Therefore, the
total electromagnetic energy density of the system is

ρ ¼ −hT0
0i ¼

1

2a2
gijhA0

iA
0
ji þ

1

4
gijgabhFiaFjbi: ð22Þ

Thus, we have the electric field and magnetic field energy
densities as

ρEðx; ηÞ ¼
1

2a2
gijhA0

iA
0
ji;

ρBðx; ηÞ ¼
1

4
gijgmnhFijFmni; ð23Þ

respectively, where the expectation values are taken with
respect to the initial Bunch-Davies (BD) vacuum. In the
momentum space, these energy densities can be written as
(See Appendix A)

ρEðk; ηÞ ¼
1

2a4
X
p

Z
d3k
ð2πÞ3 u

ðpÞ
i g̃iju�

0ðpÞ
j ;

ρBðk; ηÞ ¼
1

4a4
X
p

Z
d3k
ð2πÞ3 g̃

ijg̃mn

× ½ðkiknuðpÞm u�ðpÞj − kikju
ðpÞ
m u�ðpÞn Þ

þ ðkmkjuðpÞi u�ðpÞn − kmknuiu
�ðpÞ
j Þ�: ð24Þ

FIG. 2. Evolution of the mode functions ũ1, ũ2, and ũ3 with
x ¼ k̃η for the value of the anisotropic parameter α ¼ 3 and
xm ¼ −2. As the anisotropy exists only along the x direction, the
mode function equation corresponding to the x direction ðũ1Þ
behaves differently than the other two ðũ2; ũ3Þ.
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In order to determine the strength of the magnetic field in
the present era, we first define the power spectrum of the
electromagnetic field as

PE=Bðk; ηÞ ¼
∂ρE=B
∂ ln k

; ð25Þ

as already stated earlier, each polarization mode follows the
same equation of motion. Therefore, all the polarization
modes have equal contributions. Summing over all the
polarization modes and using the assumption that the
amplitudes of all the momenta k1 ¼ k2 ¼ k3 ¼ k̃ are
the same, we calculate the power spectra of the electric
and magnetic fields as

PEðη; k̃Þ ¼
k̃3

2π2a4

�ju01ðηÞj2
b2

þ ju02ðηÞj2 þ ju03ðηÞj2
�
; ð26Þ

PBðη; k̃Þ ¼
k̃5

2π2a4

�
1

b2
ð2ju1j2 þ ju2j2 þ ju3j2

− 2ℜðu1u�2Þ − 2ℜðu1u�3ÞÞ

þ ðju2j2 þ ju3j2 − 2ℜðu2u�3ÞÞ
�
: ð27Þ

With these forms of the power spectrum, our goal would be
to calculate its strength at present. However, before that, we
will calculate the condition for which the produced electro-
magnetic field should not backreact to the background
during inflation.

B. Backreaction of anisotropic background
and generated EM field

In the previous section, we have briefly discussed the
backreaction and strong coupling problem of inflationary
magnetogenesis. In a general large-scale gauge field
production scenario, a scalar field is coupled to the EM
field to break the conformal invariance. Depending on the
choice of the coupling function, it is possible to have a
strong coupling problem, and different scenarios have been
discussed in the literature [10,16,46,47]. For the sake of
completeness, we discuss it here briefly. In order to have a
sustainable production of the electromagnetic field during
inflation, the coupling function is often chosen to be an
increasing function of time. However, it needs to revert to
unity to restore the regular Maxwellian electromagnetism at
the end of inflation. Hence, it needs to be very small at the
start of the inflationary era, so the effective charge of
electrons will be very large, and we cannot treat the gauge
field as a free field during the inflationary era. In this
proposal, there is no such direct coupling between the
inflaton field and the EM field. Therefore, we do not need
to worry about the strong coupling issue in this scenario.
However, we must ensure that the anisotropy energy
density or the generated EM field does not jeopardize

the inflation. To this extent, we calculate the energy density
produced by the anisotropic background and get a lower
bound on the anisotropic parameter k̃ηm and α introduced in
Eq. (17). The energy-momentum tensor of the background
Tμν is dictated by the Einstein equation in terms of the
Einstein tensor Gμν as

Gμν ¼ 8πGTμν: ð28Þ

In the case of a Bianchi type-I background as introduced
in Eq. (1), the 00 component of the Einstein tensor can be
calculated as

G00 ¼
a0ð3a0bþ 2ab0Þ

a2b
: ð29Þ

Thanks to this result, we can calculate the energy density
corresponding to the anisotropic background. It turns out as

ρtotal ¼ −T0
0 ¼ −

1

8πG
G0

0 ¼
1

8πG

�
3
a02

a4
þ 2

a0

a3
b0

b

�

¼ 3H2M2
pl þ 2HM2

pl
b0

ab
; ð30Þ

where H ≡ a0=a2 is the Hubble parameter in conformal
time during the inflation, and a is the scale factor in
de Sitter spacetime ða ¼ −1=ðHηÞÞ. From the dynamics of
the inflaton field during inflation, we already know that the
total energy of the inflaton field is given by ρinf ¼ 3H2M2

pl.
Therefore, the total background energy density in Eq. (30)
consists of two parts. The first part we call inflationary
energy density, and the second part is the energy density
due to anisotropy in the background,

ρinf ¼ 3H2M2
pl; ρanis ¼ 2HM2

pl
b0

ab
: ð31Þ

In our proposition, we have mentioned earlier that the
anisotropy should act as a perturbation. Therefore, we must
ensure that the anisotropic energy density is much lower
than the inflaton energy density. Furthermore, the electro-
magnetic energy density has to be lower than the aniso-
tropic and inflaton energy densities. From the Planck
data [38], we know that the temperature anisotropy in
CMB is ΔT

T ∼ 10−5. If the anisotropic energy is closer to the
perturbative limit toward the end of the inflationary era, it
will not affect the CMB map, as observed by Planck. We
define the e-folding number during the inflationary era as
N ¼ lnð a

aend
Þ, where aend is the scale factor at the end of

inflation. By this definition, the e-folding number at the end
of inflation Nend ¼ 0. Moreover, the total e-folding number
during the inflation is Ntot ≃ 60. The anisotropic factor b in
terms of the e-folding number can be written as
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bðNÞ ¼ 1þ α exp ½−e2ðNm−NÞ�; ð32Þ

where Nm is the e-folding number corresponding to the
conformal time ηm. We can calculate the ratio of the
anisotropic energy density and the inflationary energy
density in terms of the e-folding number N as follows:���� ρanisρinf

���� ¼
���� 2

3H
b0

ab

���� ¼
���� 23 db

dN
1

b

����: ð33Þ

In order to have sustainable inflation, such that the
anisotropic energy density does not affect the inflation
energy density, we need to have j ρanisρinf

j < 1 throughout the
entirety of the inflation. Thus, the ratio gives us an upper
bound on α, which dictates the strength of the anisotropy. In
Fig. 3, we can see that the ratio of the energy densities
reaches its maximum toward the end of inflation. Thus, we
can choose our parameters such that the ratio is up to the
perturbative level (∼0.5). It gives us the upper bound
α ≤ 1.48. Still, the CMB remains unaffected due to the
presence of spatial anisotropy. However, it is worth men-
tioning here that we do not consider the dynamics of the
anisotropy in the background. In order to make sure that the
anisotropic background comes in toward the end of infla-
tion, we take the upper limit on the parameter k̃ηm ≥ −2.
Furthermore, during inflation, the EM field also gets
produced. It is also necessary to ensure that the generated
gauge field energy density does not violate the inflationary
energy density. We can see that the maximum production
occurs toward the end of inflation from the nature of the
coupling function introduced in Eq. (17). Thus, to avoid the
backreaction problem, it is sufficient to satisfy

ρE þ ρB ≤ ρinf :

We can obtain the values of the energy densities of the
electric and magnetic fields from Eq. (23) and integrate over
all the modes inside the horizon during the inflationary era,

which finally boils down to (See Appendix B for full
calculation)

ρE ¼ H4

2π2

Z
xf

xi

dxx3
�
1

b2

���� dũ1dx

����2þ
���� dũ2dx

����2þ
���� dũ3dx

����2
�
; ð34Þ

ρB ¼ H4

π2

Z
xf

xi

dxx3
�
1

b2
ð2jũ1j2 þ jũ2j2 þ jũ3j2

− 2ℜðũ1ũ�2Þ − 2ℜðũ1ũ�3ÞÞ

þ ðjũ2j2 þ jũ3j2 − 2ℜðũ2ũ�3ÞÞ
�
; ð35Þ

wherewe recall thevariables x ¼ k̃η; ũi ¼
ffiffiffĩ
k

p
ui. Evaluating

the integrations numerically, the ratio of the energy densities
turns out to be ρEþρB

ρinf
∼ 10−9 for the anisotropic parameter

k̃ηm ¼ −1 and α ¼ 1.45. As the generated electromagnetic
energy density is very low compared to the background
inflaton energy density, the backreaction problem is also
avoided. Therefore, with this formalism, we can sustainably
produce the EM field during inflation without worrying
about the strong coupling or backreaction problem. On the
other hand, ensuring that the generated EM field does not
surpass the energy density of the inflationary background is
also necessary. Equation (17) shows that the maximum
energy density occurs at η ¼ 0. However,we have stated that
the inflation ends at ηf, so there is no production of the large-
scale magnetic field in the postinflationary era. If the
electromagnetic energy density is less than the anisotropic
energy density at the end of inflation, all the sufficient
conditions for no backreaction are satisfied. To this end, we
reiterate that the anisotropic parameterα is so chosen that the
anisotropic energy density remains subdominant compared
to the inflaton energy density. We further show that the
produced energy density of the electromagnetic field is less
than the anisotropic energy density. In conclusion, the
produced electromagnetic field affects neither the infla-
tionary nor the anisotropic background. Therefore, this
formalism effectively produces a magnetic field without
special coupling to avoid the backreaction effect.

IV. POSTINFLATIONARY EVOLUTION

The anisotropic factor b goes to unity after the end of
inflation, and the spacetime becomes conformally flat. The
EM field evolves as a usual Maxwellian field subsequently.
However, depending on the evolution of the Universe, we
can have two different scenarios of field evolution: (i) In the
first scenario, it is assumed that the Universe instantly goes
into radiation domination—i.e., the inflaton field instantly
decays and produces radiation. (ii) In the second scenario,
the inflaton decays within a finite time, and therefore it goes
through a brief reheating era, having a nonzero e-folding
number and very low conductivity. The dynamics of the
subsequent evolution of the Universe dictate the present

FIG. 3. Evolution of the ratio of anisotropic energy density to
inflationary energy density with the e-folding number N with
different anisotropic parameters α and Nm.
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strength of the observed magnetic field. We will discuss
both scenarios in the next subsections.

A. The case of instantaneous reheating

Here in this section, we will find the strength of the
magnetic field in the present time, considering an instanta-
neous reheating scenario. In this case, after the end of the
inflationary era, the Universe instantly thermalizes and
goes to the radiation-dominated era. As the conductivity of
the Universe becomes very large, the electric field dies out
instantly. However, the magnetic field produced during the
inflationary era decays as a radiation density PB ∝ a−4.
Therefore, incorporating the conservation of entropy, we
can compute the strength of the magnetic field, relating it to
the field strength at the end of inflation. We have already
calculated the power spectra of the magnetic field during
the inflationary era in Eq. (27). In terms of the mode
functions, the explicit expression for the present-day
magnetic field turns out as

B0 ¼
�
−k̃ηfafH
π2a0

�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jũ1ðxfÞj2 þ jũ2ðxfÞj2 þ jũ3ðxfÞj2

q
:

ð36Þ

The above expression is in units ofGeV2. Here, we recall that

the variable ũi ¼
ffiffiffĩ
k

p
ui (with i ¼ 1, 2, 3), H is the Hubble

parameter during inflation, and k̃ is the scale under consid-
eration inwhichwewill estimate the strength of themagnetic
field. Furthermore, in order to calculate the value of B0 from
Eq. (36), we first need to evaluate the value of the ratio af

a0
.We

evaluate the value to be a0
af
≈ 1030ðH=10−5MplÞ1=2. Here, in

particular,wehave taken thevalueof theHubble parameter to
be H ¼ 10−5Mpl. With the numerical solution of the mode

functions from Fig. 2 at the end of inflation k̃ηf ¼ −0.0001
and Eq. (36), we can evaluate the strength of the magnetic
field at present day using the conversion 1G ¼ 1.95 ×
10−20 GeV2 for different values of the anisotropic parame-
ters α and k̃ηm.
In Fig. 4, we can see the variation of the present-day

magnetic field B0 with α for a fixed value of k̃ηm, as well as
the variation of magnetic field strength with k̃ηm. The
maximum value of B0 obtained in the instant reheating
scenario for a fixed value of k̃ηm is B0 ¼ 2.86 × 10−21 G by
varying α. Similarly, for a fixed value of α, the maximum
value of B0 obtained is B0 ¼ 3.24 × 10−21 G. Experiments
like Faraday rotation and gamma-ray observation impose a
bound on the present strength of the primordial magnetic
field: 10−10 G≲ B0 ≲ 10−22 G [5]. Therefore, this pro-
posal can generate a large-scale magnetic field within the
experimental bound of the present-day intergalactic mag-
netic field. With the choice of the anisotropic parameter in
the range 0.03 ≤ α ≤ 1.48, the backreaction or the strong
coupling problem is also avoided.

B. The case of prolonged reheating
with constant equation of state

In the last section, we saw that we can generate the
required strength of the magnetic field in the instant
reheating scenario. However, if we consider a reheating
phase with a nonzero e-folding number, then the conduc-
tivity of the Universe does not reach infinity instantly.
Instead, during this period, the conductivity of the Universe
may remain very low. As a result, the electric field does not
go to zero immediately and induces a magnetic field during
this period. This conversion of the electric field into the
magnetic field during the reheating phase occurs through
Faraday induction [48]. This conversion of an electric field

FIG. 4. (a) Variation of the present strength of the magnetic field B0 with α for a fixed value of the anisotropic parameter k̃ηm ¼ −1.
(b) Variation of the present strength of the magnetic field B0 with k̃ηm for a fixed value of the anisotropic parameter α ¼ 1.45; the ratio of
the anisotropic energy density in this case remains constant at ρanis=ρinf ¼ 0.492.
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to a magnetic field makes it diluted slowly during the
reheating era compared to the previous case of PB ∝ a−4.
Thus, a finite reheating era further strengthens the magnetic
field on a large scale and gives us bounds on the EOS
during the reheating era. After the inflation ends, the
anisotropic factor b goes to unity after a very short period,
and the EM field evolves in the usual manner. Following
the regular Maxwellian evolution, the equation of motion of
the mode functions uiðk̃; ηÞ during the reheating becomes

u00ðreÞi ðk̃; ηÞ þ 3k̃2uðreÞi ðk̃; ηÞ ¼ 0; ð37Þ

where i ¼ 1, 2, 3 are the indices corresponding to the three

spatial components of the gauge field, and uðreÞi ðk̃; ηÞ are the
mode functions during reheating. Furthermore, we consider
the universe a poor conductor during this period. To be
precise, we take the conductivity to be zero. The solution of
the mode function from Eq. (37), along with the proper
normalization condition, gives us

uðreÞ1 ðk̃; ηÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
6
ffiffiffi
3

p
k̃

p ½α1ðk̃Þe−i
ffiffi
3

p
k̃ðη−ηfÞ

þ β1ðk̃Þei
ffiffi
3

p
k̃ðη−ηfÞ�;

uðreÞ2;3 ðk̃; ηÞ ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
6
ffiffiffi
3

p
k̃

p ½α2;3ðk̃Þe−i
ffiffi
3

p
k̃ðη−ηfÞ

þ β2;3ðk̃Þei
ffiffi
3

p
k̃ðη−ηfÞ�; ð38Þ

where αi and βi are the integration constants, and ηf
denotes the end of inflation. The integration constants
are evaluated at the end of inflation ηf by equating the
junction conditions of the inflationary and reheating eras:

uðreÞi ðk̃;ηfÞ¼ uiðk̃;ηfÞ and u0ðreÞi ðk̃;ηfÞ¼ u0iðk̃;ηfÞ: ð39Þ

In the above Eq. (39), uiðk̃; ηÞ are mode functions during

the inflationary era which follow Eq. (14), and uðreÞi are
mode functions during the reheating era following Eq. (37).
This immediately leads to the integration constants

α1ðk̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3

p
k̃

2

s
u1ðk̃; ηfÞ þ i

ffiffiffiffiffiffiffiffiffiffi
3

p

2k̃

s
u01ðk̃; ηfÞ;

β1ðk̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3

p
k̃

2

s
ũ1ðk̃; xfÞ − i

ffiffiffiffiffiffiffiffiffiffi
3

p

2k̃

s
u01ðk̃; ηfÞ;

α2;3ðk̃Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
6
ffiffiffi
3

p
k̃

q
u2;3ðk̃; ηfÞ − i

ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3

p

k̃

s
u02;3ðk̃; ηfÞ;

β2;3ðk̃Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
6
ffiffiffi
3

p
k̃

q
u2;3ðk̃; ηfÞ þ i

ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3

p

k̃

s
u02;3ðk̃; ηfÞ: ð40Þ

With all these, we can now compute the time-evolving
power spectrum during reheating as (refer to Appendix D
for elaborate discussions)

PBðη; k̃Þ ¼
k̃5

π2a4
ðjuðreÞ1 j2 þ juðreÞ2 j2 þ juðreÞ3 j2Þ

¼
X
i

k̃4

π2a4
jũðreÞi j2

¼ k̃4

π2a4

�
1

6
ffiffiffi
3

p ðjα1j2 þ jβ1j2 þ 2jα1jjβ1j cos½Argðα1β�1Þ − 2
ffiffiffi
3

p
k̃ðη − ηfÞ�Þ

þ 1

24
ffiffiffi
3

p ðjα2j2 þ jβ2j2 þ 2jα2jjβ2j cos½Argðα2β�2Þ − 2
ffiffiffi
3

p
k̃ðη − ηfÞ�Þ

þ 1

24
ffiffiffi
3

p ðjα3j2 þ jβ3j2 þ 2jα3jjβ3j cos½Argðα3β�3Þ − 2
ffiffiffi
3

p
k̃ðη − ηfÞ�Þ

�
: ð41Þ

In order to estimate the strength of the magnetic field
during the reheating era, we first need to evaluate the term
η − ηf. Following Ref. [48], the term is calculated as

η − ηf ¼
Z

a

af

da
a2H

: ð42Þ

As the Hubble constant H is present in the above equation,
it is evident that the quantity η − ηf depends on the
background’s evolution during the inflationary era—in

particular, how the inflaton energy density is converted
into radiation energy density. In general, there are two
scenarios:
(1) Evolution through a time-independent, effective

equation of state.
(2) Perturbative decay of inflaton into radiation (pertur-

bative reheating scenario).
Here in this paper, we will only discuss evolution through
an independent constant effective EOS. In this context, we
follow the methodology proposed by Kamionkowski et al.
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in Ref. [49]. Here, the evolution of the background is
parametrized by a constant effective EOS ωeff . Therefore,
the Hubble parameter during the reheating evolves as
H ∝ a−

3
2
ð1þωeffÞ. The physical parameters of reheating, like

the e-folding number of the reheating era Nre and the
reheating temperature Tre, can be expressed in terms of the
inflationary parameters and effective EOS ωeff as [50]

Nre ¼
1

3ωeff − 1

�
lnðρfÞ − ln

�
π2gre
30

�
−
1

3
ln

�
43

11gs;re

�

− 4 ln

�
a0T0

k

�
þ 4 lnðHkÞ þ 4Nk

�
; ð43Þ

Tre ¼
�

43

11gs;re

�
1=3
�
a0T0

k
Hke−Nke−Nre

�
; ð44Þ

where Hk denotes the Hubble parameter at the time of
horizon crossing, k=a0 ¼ 0.05 Mpc−1 is the pivot scale, gre
is the degrees of freedom during reheating, and Nk is the
total e-folding number from the end of inflation till horizon
crossing. As we have not considered any particular inflation
potential in this paper, we develop a model-independent
way to determine Nk following Ref. [51]. In the calculation
ofNk (see Appendix C), we have taken the central values of
the scalar spectral index ns ¼ 0.9649 and scalar perturba-
tion amplitude ln½1010As� ¼ 3.044, considering the con-
straints provided by the Planck data [38], and as an input
parameter we have chosen Nk ¼ 50. With this choice of ns,
Nk, we get an upper bound on the effective EOS ωeff <
0.164 from the BBN bound of reheating temperature
Tre ∼ 10−2 GeV. Now, in order to connect the reheating
parameters Nre; Tre to the strength of the primordial
magnetic field, we need to evaluate the quantity η − ηf
in Eq. (42). It is evaluated following the evolution of the
Hubble parameter during the reheating era. As the EOS is
constant ωeff , the variation of the Hubble parameter during
the reheating era ðHreÞ is related to the Hubble parameter at
the end of inflation ðHfÞ as

Hre ¼ Hf

�
are
af

�
−3
2
ð1þωeffÞ

; ð45Þ

where the subscript “re” represents the end of reheating.
Thus, are andHre are the scale factor and Hubble parameter
at the end of reheating, respectively. Following the above
relation, the term in Eq. (42) boils down to

η − ηf ¼
2

1þ 3ωeff

�
1

aH
−

1

afHf

�
: ð46Þ

Substituting the value of the extra reheating term η − ηf, we
can calculate the present strength of the magnetic field as a
function of the effective EOS ωeff . After the end of
reheating, the conductivity of the Universe goes to infinity.

Therefore, the electric field goes to zero, and the Faraday
conversion of the electric field into the magnetic field stops
at the end of reheating, and the magnetic field decays as
radiation ða−4Þ until now. From the conservation of
magnetic energy density, the present strength of the
magnetic field can be calculated from the relation as
follows:

∂ρB
∂ ln k

����
0

¼
�
are
a0

�
4 ∂ρB
∂ ln k

����
re
: ð47Þ

Evolving through the reheating era, the strength of the
magnetic field in the present era turns out to be

B0 ¼
ffiffiffi
2

p

6π
ffiffiffi
3

p
�
k̃
a0

�
2
�
I1 þ

1

4
ðI2 þ I3Þ

�
1=2

; ð48Þ

where

I i ¼ jαij2 þ jβij2 þ 2jαijjβij cosðArgðαiβ�i Þ −ΦÞ;

Φ ¼ 4k̃
ffiffiffi
3

p

ð1þ 3ωeffÞafHf

��
Hf

Hre

�
δ

− 1

�
: ð49Þ

In the above Eq. (48), δ ¼ ð3ωeff þ 1Þ=ð3ωeff þ 3Þ. Vary-
ing the EOS ωeff , we get the present-day strength of the
magnetic field of B0 ∼ 4 × 10−20 G, which is 1 order higher
than what was predicted for the instantaneous reheating
case, which is ∼3 × 10−21 G. Furthermore, from the
observed strength of the magnetic field, we also get a
lower bound of the EOS ωeff > 0.132. From Fig. 5, we see
that the present strength of the magnetic field increases due
to the Faraday conversion of the electric field into the
magnetic field; such an increment is quite insensitive to the
reheating EOS. This increment is small, since the strength
of the electric field compared to the magnetic field at the
end of inflation is not significantly higher.

FIG. 5. Variation of present magnetic strength with effective
equation of state ωeff for the choice of anisotropic parameters
α ¼ 1.45 and k̃ηm ¼ −1. The model-independent formalism
input parameter Nk ¼ 50, and the inflationary parameter
ns ¼ 0.9649.

MAGNETOGENESIS FROM AN ANISOTROPIC UNIVERSE PHYS. REV. D 109, 083507 (2024)

083507-9



V. SUMMARY AND CONCLUSIONS

This paper proposes a new formalism to generate large-
scale magnetic fields during the inflationary era. The
novelty of the work lies in the generation of fields during
inflation. Several works have been produced in the context
of inflationary magnetogenesis. However, all the previous
works rely on the conformal breaking coupling of the EM
field with some scalar field or gravity. In the present case,
we have taken the underlying background to be an
anisotropic one (Bianchi type I), keeping the conformal
property intact. Due to this, our model does not suffer from
the usual strong coupling problem. In the process, we have
introduced two parameters α and ηm to characterize the
behavior of the anisotropic scale factor bðηÞ. By appropri-
ately tuning those anisotropic parameters, we have further
addressed the backreaction problem. If we take the ratio of
the anisotropic energy density ρanis and the inflaton energy
density ρinf to be ρanis=ρinf ≤ 0.5, we get an upper bound of
α ≤ 1.48. Furthermore, to ensure that electromagnetic field
gets produced during the inflationary era, we get a lower
bound on the parameter of α ≥ 0.03. The parameter ηm is so
chosen that the anisotropy appears toward the end of
inflation. For this, we have taken k̃ηm ≥ −2, ensuring that
the anisotropy is localized and short-lived. With this choice
of parameters, we find that the ratio of the energy density of
the generated EM field to the total inflaton energy density is
∼10−9, which implies that the electromagnetic energy
density is also lower than the anisotropic energy density.
Therefore, the generated electromagnetic field backreacts
neither on the inflaton field nor on the anisotropic back-
ground. Finally, this set of parameters gives us a present
strength of the magnetic field B0 ∼ 3 × 10−21 G, for
α ¼ 1.45 and k̃ηm ¼ −2, which is well within the latest
bounds of present-day magnetic field strength. However, if
we consider an elongated reheating period followed by
inflation, the magnetic field strength further increases. This
increase in strength occurs due to Faraday’s conversion of
the electric field to the magnetic field. By this prolonged
reheating era, we get the present strength of the magnetic
field B0 ∼ 4 × 10−20 G. Through the introduction of the
reheating era, we also get a tight constraint on the range of
the equation of state 0.132 < ωeff < 0.164 for the particu-
lar choice of inflationary parameters ns and Nk. Due to the

presence of anisotropy, there might be interesting signa-
tures of the anisotropy on gravitational waves at small
scales. Further, it would be most interesting to investigate
the origin of such anisotropy, particularly near the end of
inflation. All those questions we leave for our future study.
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APPENDIX A: POWER SPECTRUM OF THE
ELECTROMAGNETIC FIELD DURING THE

INFLATIONARY ERA

We have the energy-momentum tensor corresponding to
the free Maxwellian Lagrangian,

Tmn ¼ −
1

4
gmngμαgνβFμνFαβ þ gμνFmμFnν: ðA1Þ

The energy density of the electromagnetic field is obtained
from the “00” component of the energy-momentum tensor,
which boils down to

T00 ¼
1

2
gijA0

iA
0
j þ

a2

4
gimgjnFijFmn: ðA2Þ

Upon trading the EM field into the quantum operator and
referring to Eq. (23), we have the expressions for the
electric and magnetic field energy densities as

ρEðx; ηÞ ¼
1

2a2
gijhA0

iA
0
ji;

ρBðx; ηÞ ¼
1

4
gijgmnhFijFmni; ðA3Þ

where the expectation value is obtained over the BD
vacuum. The expectation value of gimgjnFijFmn in the
BD vacuum in terms of mode functions boils down to

hgimgjnFijFmni¼
X
p

Z
d3k̃
ð2πÞ3

�
2k̃2

a4b2
ð2ju1j2þju2j2þju3j2−u1u�2−u2u�1−u1u�3−u3u�1Þþ

2k̃2

a4
ðju2j2þju3j2−u2u�3−u3u�2Þ

�

¼
X
p

Z
d3k̃
ð2πÞ3

�
2k̃2

a4b2
ð2ju1j2þju2j2þju3j2−2ℜðu1u�2Þ−2ℜðu1u�3ÞÞþ

2k̃2

a4
ðju2j2þju3j2−2ℜðu2u�3ÞÞ

�
:

ðA4Þ
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Substituting the expectation value of the term gimgjnFijFmn
into Eq. (A3), we get the energy density of the magnetic
field. With the polarization index, the expression for the
magnetic field energy density turns out as

ρBðk̃;ηÞ ¼
X
p

Z
d3k̃
ð2πÞ3

k̃2

2a4

�
1

b2
ð2juðpÞ1 j2 þ juðpÞ2 j2 þ juðpÞ3 j2

− 2ℜðuðpÞ1 u�ðpÞ2 Þ− 2ℜðuðpÞ1 u�ðpÞ3 ÞÞ

þ ðjuðpÞ2 j2 þ juðpÞ3 j2 − 2ℜðuðpÞ2 u�ðpÞ3 ÞÞ
�
: ðA5Þ

As all the polarization modes behave the same way,
summing over all the polarization, we finally get the energy
density of the magnetic field:

ρBðk̃; ηÞ ¼
Z

d3k̃
ð2πÞ3

k̃2

a4

�
1

b2
ð2ju1j2 þ ju2j2 þ ju3j2

− 2ℜðu1u�2Þ − 2ℜðu1u�3ÞÞ

þ ðju2j2 þ ju3j2 − 2ℜðu2u�3ÞÞ
�
: ðA6Þ

Similarly, evaluating the expectation value of the term
gijA0

iA
0
j and substituting it back into Eq. (A3), we get the

energy density of the electric field in terms of mode
functions as

ρEðk̃; ηÞ ¼
Z

d3k̃
ð2πÞ3

1

a4

�ju01j2
b2

þ ju02j2 þ ju03j2
�
: ðA7Þ

APPENDIX B: BACKREACTION OF THE
ANISOTROPIC BACKGROUND AND

GENERATED ELECTROMAGNETIC FIELD

The energy-momentum tensor of the background Tμν is
dictated by the Einstein equation

Gμν ¼ 8πGTμν; ðB1Þ
where Gμν is the Einstein tensor and G is the gravitational
constant. The Einstein tensor can be calculated in terms of
the Riemann tensor ðRμνÞ and Ricci scalar (R),

Gμν ¼ Rμν −
1

2
Rgμν:

In the case of a Bianchi type-I background as introduced in
Eq. (1), the “00” component of the Einstein tensor turns
out as

G00 ¼
a0ð3a0bþ 2ab0Þ

a2b
: ðB2Þ

This essentially gives us the background energy density,

ρtotal ¼ −T0
0 ¼

1

8πG

�
3
a02

a4
þ 2

a0

a3
b0

b

�

¼ 3H2M2
pl þ 2HM2

pl
b0

ab
: ðB3Þ

The ratio of anisotropic energy density to the inflaton
energy density is given in terms of the e-folding number N:

���� ρanisρinf

���� ¼ 2HM2
pl

b0
ab

3H2M2
pl

¼ 2

3

db
dN

1

b
;

with the e-folding number defined asdN ¼ d ln a, wherea is
the scale factor. From the above equation, we can get the ratio
of the anisotropic and the inflationary energy densities.
The backreaction problem can be evaded if the total

energy of the generated EM field is less than the energy
density of the inflaton field—that is,

ρE þ ρB ≤ ρinf : ðB4Þ

The total energy densities of the EM field are given by
Eq. (24). Integrating all the modes, we get the total energy
density. The modes involved are given by k̃i ¼ aiH, which
crosses the horizon at the beginning of inflation, and
kf ¼ afH are the modes that cross the horizon at the
end of inflation. We have the total energy density of the
electric field expressed as

ρE ¼
Z

k̃f

k̃i

dk̃

k̃

k̃3

2π2a4

�ju01ðηÞj2
bðηÞ2 þ ju02ðηÞj2 þ ju03ðηÞj2

�

¼ 1

2π2

Z
k̃f

k̃i

dk̃
k̃3

a4

�
1

b2

���� dũ1dx

����2þ
���� dũ2dx

����2þ
���� dũ3dx

����2
�

¼ H4

2π2

Z
k̃f

k̃i

dðk̃ηÞðk̃3η3Þ
�
1

b2

���� dũ1dx

����2þ
���� dũ2dx

����2þ
���� dũ3dx

����2
�

ðSubstituted a ¼ −1=HηÞ

¼ H4

2π2

Z
xf

xi

dxx3
�
1

b2

���� dũ1dx

����2þ
���� dũ2dx

����2þ
���� dũ3dx

����2
�
: ðB5Þ

Similarly, the total energy density of the magnetic field is
calculated to be

ρB ¼ H4

2π2

Z
xf

xi

dxx3
�
1

b2
ð2jũ1j2 þ jũ2j2 þ jũ3j2

− 2ℜðũ1ũ�2Þ − 2ℜðũ1ũ�3ÞÞ

þ ðjũ2j2 þ jũ3j2 − 2ℜðũ2ũ�3ÞÞ
�
; ðB6Þ

where x ¼ k̃η and ũi ¼
ffiffiffĩ
k

p
ui. Integrating over the limits

numerically with the solutions of the mode functions, we
get the total energy density of the generated EM field.
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Finally, comparing the energy density of the EM field to the
inflaton field ðρinf ¼ 3H2M2

plÞ, we get

ρE þ ρB
ρinf

∼ 10−9: ðB7Þ

After inflation, the production of the electromagnetic field
stops altogether. If we consider an instant reheating
scenario, it essentially behaves as a radiation field. Thus,
by conservation of entropy, we have

a40
∂ρB
∂ ln k

����
0

¼ a4f
∂ρB
∂ ln k

����
ηf

⇒
∂ρB
∂ ln k

����
0

¼
�
af
a0

�
4 ∂ρB
∂ ln k

����
ηf

; ðB8Þ

where “0” denotes the present epoch, a0 represents the
scale factor at present, ηf is the conformal time at the end of
inflation, and af is the scale factor corresponding to ηf.
Implementing Eq. (B8), we can evaluate the present-day
magnetic field strength.

APPENDIX C: CALCULATION OF TOTAL
e-FOLDING NUMBER OF INFLATION

We have the expression of the total e-folding number of
inflation Nk from [51] as

Nk ¼
Z

tf

tk

HðtÞdt: ðC1Þ

The Hubble parameter explicitly depends on the background
evolution. Therefore, to calculate the actual Hubble param-
eter, we will Taylor-expand around the conformal time of
horizon crossing tk to incorporate the background effects,

HðtÞ ¼ Hk þ Ḣkðt − tkÞ þ
1

2
Ḧkðt − tkÞ2: ðC2Þ

In the above Eq. (C2), we consider only terms up toOðḦkÞ.
The total duration of the inflation is represented as
Δt ¼ t − tk. Then, by Eq. (C2), the Hubble parameter at
the end of inflation can be written as

Hf ¼ Hk þ ḢkΔtþ ḦkðΔtÞ2: ðC3Þ

Consequently, the duration of inflation ðΔtÞ can be expressed
in terms of the Hubble parameter and the derivative of it as

Δt ¼ jḢkj
Ḧk

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ḧk

jḢkj2
ðHk −HfÞ

s !
: ðC4Þ

Finally, the total e-folding number during inflation turns out
to be

Nk ¼
Z

tf

tk

HðtÞdt

¼ HkjḢkj
Ḧk

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ḧk

jḢkj2
ðHk −HfÞ

s !

−
jḢkj3
2Ḧ2

k

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ḧk

jḢkj2
ðHk −HfÞ

s !2

þ jḢkj3
6Ḧ2

k

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ḧk

jḢkj2
ðHk −HfÞ

s !3

: ðC5Þ

The slow-roll parameters are also connected through the
Hubble parameter and its derivatives. In terms of the infla-
tionary Hubble parameter, the scalar perturbation amplitude
As and the scalar spectral index ns are related as

jḢkj ¼
H4

k

4AsM2
Pl

;

Ḧk ¼
H5

k

4AsM2
Pl

�
H2

k

AsM2
Pl

− ð1 − nsÞ
�
: ðC6Þ

Equation (C5) can also be inverted to take Nk as an input
parameter, and correspondingly, we can calculate the quan-
tity Hf. For this study, we have taken Nk ¼ 50 and
get Hf ∼ 1013 GeV.

APPENDIX D: MAGNETIC FIELD POWER
SPECTRA DURING THE REHEATING ERA

The power spectrum of the magnetic field in the post-
inflationary era becomes

PBðη; k̃Þ ¼
k̃5

π2a4
ðjuðreÞ1 j2 þ juðreÞ2 j2 þ juðreÞ3 j2Þ ¼ k̃4

π2a4
X
i

jũðreÞi j2

¼ k̃4

π2a4

�
1

6
ffiffiffi
3

p ð1þ 2jβ1j2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβ1j2

q
jβ1j cos½Argðα1β�1Þ − 2

ffiffiffi
3

p
k̃ðη − ηfÞ�Þ

þ 1

24
ffiffiffi
3

p ð1þ 2jβ2j2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβ2j2

q
jβ2j cos½Argðα2β�2Þ − 2

ffiffiffi
3

p
k̃ðη − ηfÞ�Þ

þ 1

24
ffiffiffi
3

p ð1þ 2jβ3j2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβ3j2

q
jβ3j cos½Argðα3β�3Þ − 2

ffiffiffi
3

p
k̃ðη − ηfÞ�Þ

�
; ðD1Þ
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where we have substituted the mode function solutions during the reheating era in terms of the Bogoliubov coefficients. The
term η − ηf is calculated as

η − ηf ¼
Z

da
a2H

: ðD2Þ

Using the proper relations and substituting the value, we get the power spectrum of the magnetic field at the end of
reheating as

PBðk̃; ηÞ
����
re
¼ k̃4

π2a4re

�
1

6
ffiffiffi
3

p
�
1þ 2jβ1j2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
jβ1j cos

�
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4
ffiffiffi
3

p
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ð1þ 3ωeffÞafHf

��
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− 1
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