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Place Eugéne Bataillon F-34095 Montpellier Cedex 05, France
3Instituut-Lorentz for Theoretical Physics, Leiden University,

Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

(Received 30 June 2023; accepted 7 March 2024; published 9 April 2024)

Primordial black hole (PBH) formation during cosmic phase transitions and annihilation periods, such as
the QCD transition or the eþe− annihilation, is thought to be particularly efficient due to a softening of the
equation of state. We present a detailed numerical study of PBH formation during the QCD epoch
in order to derive an accurate PBH mass function. We also briefly consider PBH formation during the
eþe−-annihilation epoch. Our investigation confirms that, for nearly scale-invariant spectra, PBH
abundances on the QCD scale are enhanced by a factor ∼103 compared to a purely radiation dominated
Universe. For a power spectrum producing an (almost) scale-invariant PBH mass function outside of the
transition, we find a peak mass ofMpbh ≈ 1.9M⊙ with a fraction f ≈ 1.5 × 10−2 of the PBHs having a mass
ofMpbh > 10M⊙, possibly contributing to the LIGO-Virgo black hole merger detections. We point out that
the physics of PBH formation during the eþe−-annihilation epoch is more complex as it is very close to the
epoch of neutrino decoupling. We argue that neutrinos free-streaming out of overdense regions may
actually hinder PBH formation.
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I. INTRODUCTION

The LIGO-Virgo collaboration joined later by KAGRA
(LVK) [1–3] has by now detected a large number (∼90) of
black-hole-black-hole and neutron-star-black-hole mergers
via the observation of gravitational wave emission during
the final stages of coalescence. A few of these observed
events fall into mass gaps, such as GW190814, where it
was previously predicted to not have any astrophysical
candidates. There has been no detection so far of mergers
with at least one member of the binary having a mass well
below the Chandrasekhar mass, the lower limit for very
compact astrophysical objects. Such a detection would
unambiguously point to a nonastrophysical object, most
likely a primordial black hole.
It is well known that mildly nonlinear, horizon size

cosmological perturbations could collapse and form an
apparent horizon, i.e., a primordial black hole (PBH,
hereafter) [4–6] (for a review see to [7]). When such
collapse occurs during radiation domination in the early
Universe, the dynamics is characterized by a competition
between self-gravity and pressure forces, and observes the
physics of critical phenomena [8–10]. When preexisting
energy density perturbations, such as believed to emerge
from inflationary scenarios, are featureless and almost scale
invariant, as observed in CMBR satellite missions, the
equation of state (EOS) during the PBH formation epoch

plays a crucial role. It has been argued [11–13] that PBH
formation during the QCD epoch would be particularly
efficient due to a softening of the equation of state. At the
time of that work, the QCD phase transition was believed to
be of first order. Fully general relativistic numerical
simulations of PBH formation confirmed that PBHs form
more easily during the QCD epoch [14], leading to a
pronounced peak of PBHs on the ∼1M⊙ scale. Although
the simulations were performed under the assumption of a
first order transition, it was argued in [12] that any
softening of the equation of state, even during other epochs,
would lead to a preferred scale in the PBH mass function.
With advances in lattice gauge simulations it was possible
to derive the zero chemical potential QCD and electroweak
equation of state with high precision [15,16]. This equation
of state was recently used in approximate analytic calcu-
lations to derive the putative PBH mass function [17–19].
This mass function indeed has a very well-developed peak
at M ≈ 1M⊙ and broader shoulder around M ∼ 30M⊙ due
to pion annihilation.
It has been shown by now that PBHs, in the mass range

probed by LVK, may only contribute a small fraction
fpbh ≪ 1 to the cosmological dark matter. For Gaussian
initial conditions it was initially claimed that for fpbh ¼ 1

the predicted merger rate largely surpasses that observed by
Ligo [20], then shown that the existence of PBH binaries in
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dense clusters may change this conclusion [21–23], to
finally establish that even the small fraction of PBH
binaries that never enter a PBH cluster still overproduces
the merger rate (see, e.g., [24]). It has been recently shown
[25] that even in the case of fpbh ≪ 1 a sizable contribution
to the LVK events is ruled out, though authors [26] that use
the results of the present paper come to a different result.
Similarly, initially it was claimed that microlensing con-
straints on compact dark matter in the Milky Way halo
would be evaded by PBHs being in dense clusters
[18,27,28], which had been subsequently shown to be
incorrect [29,30]. For non-Gaussian initial conditions,
where PBHs are immediately born into clusters of unknown
density and size, merger rates are not known, but a combi-
nation mostly of microlensing—and Lyman-alpha—
constraints [31] has been recently claimed to rule out
fpbh ¼ 1. Nevertheless, it seems still possible that PBH
mergers contribute in part to the LVK observed signal
(several authors have investigated this [20,21,32–48]).
The LVK collaboration is expected to significantly

increase the database on mergers during the observational
runs O4 and O5. Such an extended database on the binary
population may allow a more detailed comparison between
a putative PBH binary population and the data. A mean-
ingful comparison may only be obtained when detailed
results of the PBH mass function are known. Such detailed
mass functions, are dependent on the characteristics of the
initial perturbations, but also on the exact evolution and the
final PBH mass of individual fluctuations. Whereas ana-
lytical results had been taken before [17–19], an accurate
mass function can only be obtained via the numerical
simulation of radiation fluctuations leading to PBHs, which
we treat in the present paper.
The outline of the paper is as follows: In Sec. II we

summarize the computation of the equation of state,
making an important comment concerning PBH formation
during the eþe− annihilation. In Sec. III we describe the
mathematical aspects, with a detailed description of the
initial condition, of the numerical results obtained in
Sec. IV. Then in Sec. V we compute the mass distribution
and the abundance of PBHs during the QCD transition.
Finally in Sec. VI we summarize our results drawing
conclusions.
While finalizing our work, a paper [49] of a very similar

spirit to ours has appeared. In Appendix B we comment and
explain the substantial differences between our results.

II. EQUATION OF STATE IN THE
EARLY UNIVERSE

In the early Universe, between the end of the inflationary
era and matter-radiation equality, the temperature decreases
with cosmic expansion and the matter goes through several
transitions, characterized by a non-negligible softening of
the equation of state. These include the electroweak
transition at temperature T ≈ 100 GeV, periods of quark

annihilation, the QCD confinement transition at T ≈
100 MeV and eþe− annihilation at T ≈ 500 keV. The
chemical potential μ in the calculations of [15,16] is taken
to be zero. This is an excellent approximation in the context
of the early Universe due to the smallness of the cosmic
baryon-to-photon ration that applies μ ∼ 10−10.

A. The QCD and the electroweak transition

Through detailed lattice gauge calculations, taking
account of realistic finite quark masses, it has become
possible to calculate the equation of state at zero chemical
potential for the QCD transition in the early Universe. The
ratio w between pressure p and total energy density ρ of the
medium is given by

wðTÞ≡ p
ρ
¼ 4g�;sðTÞ

3g�ðTÞ
− 1; ð1Þ

where the functions g�ðTÞ and g�;sðTÞ are defined by

g�ðTÞ ¼
30ρ

π2T4
and g�;sðTÞ ¼

45s
2π2T3

; ð2Þ

with s being the entropy density. The square of the speed of
sound c2s ¼ ∂p=∂ρjs may be computed via

c2s ðTÞ ¼
4ð4g�;s þ Tg0�;sÞ
3ð4g� þ Tg0�Þ

− 1; ð3Þ

where a prime denotes a derivative with respect to
temperature.
These lattice calculations show clearly that the QCD

quark-to-hadron transition is not a phase transition but a
cross over [15,16]. Reference [15] has added to these
calculations results from the literature concerning the
electroweak transition to provide the cosmic equation of
state between T ≃ 280 GeV and T ≃ 1 MeV.

B. PBH formation during the e+ e− annihilation

We have extended the equation of state to include the
eþe− annihilation epoch: results are shown in Fig. 1,
showing the speed of sound squared c2s and p=ρ. It is
clearly seen that c2s and w drop each time the number of
relativistic degrees of freedom changes in the early
Universe, with the change during the QCD transition,
though still small, the most pronounced.
It has been noted [12,18], that the decrease of w and c2s

during the eþe− annihilation epoch should lead to an
enhancement of the abundance of PBHs on the Mpbh ∼
105M⊙ scale. We argue here that this may not necessarily
be the case, as the cosmic eþe− annihilation epoch is
quite different from the QCD epoch and the electroweak
epoch. At temperatures T ≈ 1–2 MeV, shortly before the
eþe− annihilation, with a maximum reduction of w at
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T ≈ 200 keV, neutrinos decouple from the Universe. In
particular, since there interactions with the rest of the
plasma freeze out, neutrinos can free-stream out of over-
dense regions, effectively reducing the overdensity. One
may schematically write for the overdensity

δρ

ρ
¼

P
iδρiP
ihρii

; ð4Þ

where brackets denote cosmic average and the index i runs
over particle species. For adiabatic perturbations one has
δρi ¼ Khρiiwith K a quantity independent of species, such
that δρ=ρ ¼ K. However, the free-streaming of the neu-
trinos destroy the adiabaticity of the perturbation since
δρν ≈ 0. Having hρνi=hρtoti ¼ gν=gtot ¼ 5.25=10.75 ≈ 0.5
one may estimate that the original perturbation has only
approximately half of the overdensity after neutrino free-
streaming. On the other hand, the critical threshold for PBH
formation will not reduce by as much as a factor of 2 due to
the eþe− equation of state, such that the argument would
imply that formation of PBHs during any epoch after
neutrino coupling is highly suppressed for scale invariant
perturbation spectra. Seen from the opposite point of view,
even if neutrinos are initially homogeneous, the density
perturbation in photons and eþe− would gravitationally
attract neutrinos. Since those neutrinos do not even exert
pressure, a further reduction of w to w ∼ 0.33=2 would
occur, favoring PBH formation. We tend to think the first
argument is dominant, suppression of PBH formation.
However, only a dedicated simulation of PBH formation

with a fluid and free-streaming component could definitely
answer this question. Such a study is beyond the scope of
the current paper.

III. MATHEMATICAL FORMULATION

In this section we briefly review the mathematical
formalism used to study PBH formation. For more details
the reader is referred to [50]. Particular attention is given to
the initial conditions used in Sec. IV for the numerical
simulations, discussing the differences with respect to the
standard case of a radiation dominated Universe.

A. Curvature perturbation in comoving gauge

PBHs are formed from the collapse of large-amplitude
nonlinear cosmological perturbations. In the standard
scenario of adiabatic perturbations these are sourced by
a geometrical term, i.e., the curvature perturbation ζ,
appearing as a perturbation in the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, written in the comoving
uniform-density gauge as

ds2 ¼ −dt2 þ a2ðtÞ exp ð2ζÞdx2; ð5Þ

where aðtÞ is the scale factor as a function of the cosmic
time t.
We are working in spherical symmetry, which is well

justified in this context, because of the large amplitude of
the energy density peaks collapsing into PBHs [51]. This
allows us to consider a simple diagonal form of the 3þ 1
decomposition of the metric, following the Misner-Sharp-
Hernandez (MSH) formulation [52], based on the cosmic
time metric

ds2 ¼ −A2ðr; tÞdt2 þ B2ðr; tÞdr2 þ R2ðr; tÞdΩ2; ð6Þ

where the radial coordinate r is taken to be comoving with
the fluid.1 The metric coefficient R is the so-called areal
radius while dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the element of a
two-sphere.
In the MSH formalism (see Appendix A 1 for more

details) it is useful to introduce two differential operators:

Dt ≡ 1

A
∂

∂t
and Dr ≡ 1

B
∂

∂r
; ð7Þ

corresponding to derivatives with respect to proper time
and radial proper distance. Applying these to the areal
radius R, two additional quantities are defined:

U ≡DtR ¼ 1

A
∂R
∂t

and Γ≡DrR ¼ 1

B
∂R
∂r

; ð8Þ

FIG. 1. The EOS of the early Universe. The speed of sound
squared, c2s (blue), and pressure over density, w ¼ p=ρ (red), are
plotted as function of cosmic temperature during the epochs of
the electroweak transition, the QCD transition, and the eþe−
annihilation.

1In the comoving gauge we are considering the four velocity of
the fluid as being equal to the unit normal vector orthogonal to the
hypersurface of constant cosmic time t, namely uμ ¼ nμ.
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with U being the radial component of four velocity in the
“Eulerian” (noncomoving) frame, measuring the velocity
of the fluid with respect to the center of the sphere, where R
is used as the radial coordinate. In the homogeneous and
isotropic FLRW Universe U is simply given by the Hubble
lawU ¼ HR where Rðr; tÞ ¼ aðtÞr. The quantity Γ instead
gives a measure of the spatial curvature, and in FLRW one
gets Γ2 ¼ 1 − Kr2 where K ¼ 0;�1.
In general U and Γ are related to the Misner-Sharp-

Hernandez mass M by an algebraic expression

Γ2 ¼ 1þU2 −
2M
R

; ð9Þ

corresponding to the Hamiltonian constraint. The quantity
M is measuring the total mass contained within a sphere of
radius R

M ¼
Z

R

0

4πρx2dx ¼ R
2
ð1 −∇μR∇μRÞ; ð10Þ

where the second equality is an alternative covariant
expression to define the Misner-Sharp mass M.

B. Gradient expansion

On superhorizon scales, when the length scale of the
perturbation is much larger than the cosmological horizon,
the curvature perturbation ζ for adiabatic perturbations is
time independent, being only a function of the comoving
coordinate r. In this regime the FLRW metric of Eq. (5) is
written as

ds2 ¼ −dt2 þ a2ðtÞe2ζðrÞ½dr2 þ r2dΩ2� ð11Þ

corresponding to the asymptotic limit, t → 0, of the cosmic
time metric (6). For our purpose, the comoving curvature
perturbation ζ is chosen as initial condition, assumed to
result from the dynamics of a prior inflationary epoch, or an
equivalent phase generating a power spectrum of cosmo-
logical adiabatic perturbations.
Using the definition of Γ given by (8) one can compute

the zeroth order of the Hamiltonian constraint

Γ ¼ 1þ rζ0ðrÞ; ð12Þ

showing that in the super horizon regime the deviation from
a spatially flat Universe is proportional to rζ0ðrÞ, consistent
with the freedom of rescaling the scale factor when adding
a constant to the value of ζ. In Sec. III C we define
consistently how to measure the perturbation amplitude.
Using the gradient expansion approach [53–57], it is

possible to expand the MSH variables (see Appendix A 1)
as power series of a small parameter ϵ ≪ 1, up to the first
nonzero order. In the expanding FLRW Universe ϵ is

conveniently identified with the ratio between the Hubble
radius RH and the length scale of the perturbation Rm

ϵ≡ RH

Rm
¼ 1

aHr̃m
; ð13Þ

where r̃m ¼ rmeζðrmÞ is identified by the peak of the
compaction function, defined later in Sec. III C. The
comoving coordinate r̃≡ reζðrÞ takes into account that
the curvature profile enters in the asymptotic metric (11) at
zeroth order, modifying the comoving coordinate with
respect to the FLRW solution.
The time evolution of the gradient expansion approach is

equivalent to linear perturbation theory, but allows having a
nonlinear amplitude of the curvature perturbations if the
spacetime is sufficiently smooth on the scale of the pertur-
bation (see [58]). This is equivalent to saying that pressure
gradients are small when ϵ ≪ 1 and are not playing an
important role in the evolution of the perturbation.
In this regime the energy density contrast δρ=ρb for

adiabatic perturbations can be written as [59]

δρ

ρb
ðr; tÞ ¼ −

4

3
Φ
�

1

aH

�
2

e−5ζðrÞ=2∇2eζðrÞ=2; ð14Þ

where the functionΦðtÞ depends on the equation of state of
the Universe and is obtained by solving the following
equation

RH
dΦ
dRH

þ 5þ 3w
3ð1þ wÞΦ − 1 ¼ 0 ð15Þ

integrated from past infinity (i.e., t; RH → 0) to the time
when the amplitude of the perturbation is computed. When
the equation of state is characterized by a constant value w̄,
one has dΦ=dt ¼ 0, and Eq. (15) is analytically solved by

Φ̄ ¼ 3ð1þ w̄Þ
ð5þ 3w̄Þ ; ð16Þ

yielding Φ̄ ¼ 2=3 for a radiation fluid with w̄ ¼ 1=3. The
value of Φ is measuring to which extent the curvature
profile ζ, appearing in the left-hand side of Einstein
equations, is affecting the stress energy tensor on the
right-hand side. Note that Φ ¼ 0 if w ¼ −1, consistent
with the cosmological constant that cannot be perturbed.
The function Φ is analogous to the coefficient appearing in
the Bardeen potential.2

The full calculation of the gradient expansion, applied to
the MSH equations of Appendix A 1, gives the quasiho-
mogeneous solution summarized in Appendix A 2. This is

2In cosmological linear perturbation theory, the Bardeen poten-
tial Ψ at super horizon scale is given by ΨðrÞ ¼ − 3ð1þwÞ

5þ3w ζðrÞ.
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used as initial conditions for the numerical simulations
discussed later in Sec. IV.

C. The perturbation amplitude

Determining whether a cosmological perturbation char-
acterized by an overdensity is able to form a PBH depends
on the perturbation amplitude δ: if it is larger than a
threshold δc, an apparent horizon will form, satisfying the
condition for the formation of a marginally trapped surface
Rðr; tÞ ¼ 2Mðr; tÞ. From Eq. (9) this corresponds to the
condition Γ2 ¼ U2, which has two possible solutions:
(1) Γ ¼ U: this is the condition for the cosmological

horizon RH ¼ 1=H, which is also an apparent
horizon, within an expanding region of the FLRW
Universe (U > 0).

(2) Γ ¼ −U: this is the condition for the formation of
the apparent horizon for a black hole, within a
collapsing region (U < 0).

The mathematical properties of a marginally trapped sur-
face have been discussed in detail in [60].
Focusing on the evolution of the collapse of a cosmo-

logical perturbation when the amplitude δ > δc, the gravi-
tation potential overcomes the pressure gradients and an
apparent horizon appears leading to the formation of a
PBH. When δ < δc instead, the perturbation is dispersed by
pressure forces into the expanding Universe. The pertur-
bation amplitude δ is measured at the peak of the com-
paction function [50,53] defined as

C≡ 2
Mðr; tÞ −Mbðr; tÞ

Rðr; tÞ ; ð17Þ

where the numerator is given by the difference between the
Misner-Sharp mass within a sphere of radius Rðr; tÞ, and
the background mass Mbðr; tÞ ¼ 4πρbðr; tÞR3ðr; tÞ=3
within the same areal radius but calculated with respect
to a spatially flat FLRW metric.
According to the gradient expansion approach, on super-

horizon scales (i.e., ϵ ≪ 1) the compaction function is time
independent, as is ζðrÞ, and is given by

CðrÞ ¼ −Φrζ0ðrÞ½2þ rζ0ðrÞ�: ð18Þ

As shown in [50], the comoving length scale of the
perturbation is consistently defined by r ¼ rm, where
the compaction function reaches its maximum [i.e.,
C0ðrmÞ ¼ 0], which gives

ζ0ðrmÞ þ rmζ00ðrmÞ ¼ 0: ð19Þ

As shown explicitly in [50], the compaction function is
related to the energy density profile by the integration of the
energy density profile:

CðrÞ ¼ r̃2

r̃2m
δðr; tHÞ; ð20Þ

where tH is defined as the cosmological horizon crossing time,
when aHr̃m ¼ 1 (ϵ ¼ 1). Although in this regime the
gradient expansion approximation is not very accurate, and
the horizon crossing defined in this way is only a linear
extrapolation, this provides a well-defined criterion for con-
sistently measuring the amplitude of different perturbations,
understanding how the threshold is varying because of the
different initial curvature profiles (see [50] for more details).
The overdensity δðr; tÞ is defined as the mass excess of

the energy density averaged over the spherical volume of
radius Rðr; tÞ, that is

δðr; tÞ≡ 4π

V

Z
R

0

δρ

ρb
R2dR ≃

3

r̃3

Z
r̃

0

δρ

ρb
r̃2dr̃: ð21Þ

The second equality is obtained by neglecting the higher
order terms in ϵ, approximating R ≃ aðtÞr̃, which allows us
to make a simple integration over the comoving volume of
radius r. The amplitude δ of the perturbation is therefore
defined as the excess of mass averaged over a spherical
volume of radius Rm using a top-hat window function,
computed at the time of the cosmological horizon crossing
tH. This quantity is equivalent to the peak amplitude of the
compaction function measured on superhorizon scales.
Looking at (18) the perturbation amplitude δ can be

written in terms of a variablewith Gaussian statistics linearly
related to the curvature perturbation δl ≡ −2Φrζ0ðrmÞ

δ ¼
�
δl −

1

4Φ
δ2l

�
: ð22Þ

This expression will be very useful later on when we are
going to compute the mass distribution of PBHs in Sec. V.
The derivation of this formula relies on the assumption of
spherical symmetry, which is generally taken to be the case
for PBH formation—where the peaks that form PBHs are
rare, and therefore expected to be close to spherically
symmetric [61]. However, it has recently been considered
that, whilst peaks in δ where PBHs form are high and rare,
this may not correspond to high peaks in ζ [62].

IV. NUMERICAL RESULTS

In this section we discuss the numerical results obtained
with a numerical code developed by one of us in the past
[10] and abundantly used to study the formation of PBH
formation when the Universe is radiation dominated
[50,63,64]. The code has been fully described previously
and therefore just a very brief outline of it will be given
here. The EOS to describe the QCD phase transition
described as in Sec. II has been implemented into the
code using the relation between the energy density and the
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temperature, with w and c2s being now functions of the
energy density ρ.

A. Numerical scheme

The numerical scheme which we are using is a
Lagrangian hydrodynamics code with the grid designed
for calculations in an expanding cosmological background.
The basic grid uses logarithmic spacing in a mass-type
comoving coordinate, allowing it to reach out to very large
radii while giving finer resolution at small radii.
The initial data follow from the quasihomogeneous sol-

ution, fully described in Appendix A 2, specified on a
spacelike slice at constant initial cosmic time ti withaðtiÞrm ¼
10RH (ϵ ¼ 10−1). The outer edge of the grid has been placed
at 90RH, to ensure that there is no causal contact between the
boundary and the perturbed region during the time of the
calculations. The initial data is then evolved using theMisner-
Sharp-Hernandez equations to generate a second set of initial
data on a null slicewhich is then evolvedusing theHernandez-
Misner equations [65] to follow the subsequent evolution
leading to possible black hole formation.
In this formulation, each outgoing null slice is labeled

with a time coordinate u, which takes a constant value
everywhere on the slice, and the formation of the apparent
horizon is moved to u → ∞ because of the increasing
redshift of the null rays emitted by the collapsing shells.
Moving along an outgoing null ray one has

Adt ¼ Bdr; ð23Þ
and the observer null time u is defined as

Fdu ¼ Adt − Bdr; ð24Þ
where F needs to be determined from the integration of
Eq. (24). In terms of this, the so-called observer time
metric, which is no longer diagonal, becomes

ds2 ¼ −F2du2 − 2FBdrduþ R2dΩ2: ð25Þ

The operators equivalent to Eq. (7) are replaced by

Dt ≡ 1

F
∂

∂u
and Dk ≡ 1

B
∂

∂r
¼ Dt þDr; ð26Þ

where Dk is the radial derivative in the null slice.
During the evolution in the observer time coordinate

(see [10] for more details about the equations) the grid is
modified with an adaptive mesh refinement scheme, built
on top of the initial logarithmic grid, to provide sufficient
resolution to follow black hole formation down to
extremely small values of δ − δc.
In this reference frame the formation of the apparent

horizon is obtained asymptotically for u → ∞ synchronized
with the conditionRðr;tÞ→2Mðr;tÞ, avoiding the formation
of the singularity inside the black hole. In practice the
simulations are stopped when ð1 − 2M=RÞ < 10−3, which

allows us to compute the mass of the black hole with very
good accuracy, because the further evolution is negligible.
For more details about the properties of apparent horizons
one can see [60].

B. The threshold for PBH formation

As seen in [50,66,67] the value of the threshold for PBHs
depends on the shape of the cosmological perturbation,
falling within the range 2=5 ≤ δc ≤ 2=3 for a radiation
dominateUniverse, with the corresponding threshold for the
Gaussian component δl, within the range 0.49≲ δlc ≤ 4=3.
The shape dependence can be parametrized by a dimen-
sionless parameter α

α≡ −
r̃2mC00ðr̃mÞ
4Cðr̃mÞ

¼ −
r2mC00ðrmÞ

4CðrmÞ½1 − 3
2
CðrmÞ�

; ð27Þ

where r̃ ¼ reζðrÞ has been defined earlier in (13). The
second derivatives are done with respect to r̃ and r,
respectively: this is showing that the peak amplitude of
the compaction function does not cancel out with the peak
amplitude of the second derivative, when the second
derivative is computed with respect to r instead of r̃ (see
[67] for a more detailed discussion).
The shape parameter is measuring the width of the

compaction function at the peak, where the apparent horizon
is going to form if δ > δc. For larger values of α the peak of
the compaction function becomes narrower, with a sharp
transition from the density of the central regionwithin rm and
the outer region,whereas for smaller values ofα the transition
is smoother. This affects the efficiency of the pressure

FIG. 2. The threshold for PBHs during the radiation dominated
Universe. These plots show the behavior of the threshold δc when
w ¼ 1=3, as functions of the shape parameter α. The blue line
represents the numerical results while the analytic fit given by
(28) is plotted with a dashed line.
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gradients trying to prevent the black hole forming, and it
explains why δc increases for larger values of α, as shown
in Fig. 2.
In general, the collapse is mainly affected by the matter

distribution inside the region forming the black hole,
characterized just by the shape parameter α, plus small
corrections induced by the particular configuration of the
tail outside this region [50]. The shape parameter of the
average profile shape can be computed from the shape of
the power spectrum of the cosmological perturbation if ζ is
a Gaussian variable [67], apart from some possible varia-
tion depending on the effects of the subhorizon modes that
could affect the collapse.
According to the numerical simulations, in a radiation

dominated Universe there is a simple analytic relation to
compute the threshold for PBH formation as a function of
the shape parameter α, corresponding to the numerical fit
given by [67]:

δc ¼
8<
:

α0.047 − 0.50 0.1≲ α ≲ 7

α0.035 − 0.475 7≲ α≲ 13

α0.026 − 0.45 13≲ α≲ 30

: ð28Þ

In Fig. 2 we show how the numerical behavior of δc, plotted
with a blue line, is very well fitted by (28), plotted with a
dashed line.3

The varying EOS during the QCD epoch introduces an
intrinsic scale which translates into a dependence of the
threshold on the cosmic epoch when collapse occurs. This
can be conveniently parametrized withMH, the mass of the
cosmological horizon at horizon crossing. In the left panel
of Fig. 3 we focus on the behavior of the equation of state,
plotting w and c2s as functions of MH=M⊙. The largest
deviation from a pure radiation EOS occurs during confine-
ment of quarks and gluons to hadrons at T ≈ 200 MeV,
associated with a horizon massMH=M⊙ ≃ 2.5–4. However,
the existence of strongly interacting matter influences
the EOS over a large range of horizon masses between
MH=M⊙ ∼ 10−3 and MH=M⊙ ∼ 104. This is partially due
to increasing interaction strengths as one approaches the
QCD crossover from higher temperatures and partially due
to various annihilation epochs, heavier quarks for smaller
horizon masses and pions for larger horizon masses.
The right panel of Fig. 3 shows the corresponding

behavior of the threshold δc for different values of the
shape parameter. The threshold is normalized with respect
to the corresponding value δc;r when the Universe is
radiation dominated, given by (28). Very large values of
α are not consistent with the shape of the power spectrum,
because a very peaked spectrum like a Dirac delta gives
α ≃ 6.33 corresponding to δc ≃ 0.59, and therefore we are
not calculating the threshold for very large value of α, with
the last blue line of Fig. 3 obtained for α ¼ 8. For α < 1,
shown with red lines in the range 0.15 ≤ α ≤ 1, the
minimum value of the threshold is slightly decreasing
for increasing values of α, with the smallest value reached
for α ≃ 1, shown in Fig. 3 with a dashed line.

FIG. 3. The threshold for PBHs during the QCD transition. The left plot shows the behavior of the equation of state during the QCD
transition, plotting the ratio between the pressure and the energy density w ¼ p=ρ and the sound speed squared c2s in terms of the
cosmological horizon mass normalized by one solar mass. The right plot shows the corresponding evolution of the threshold δc during
the QCD transition for different values of the shape parameter α, normalized with respect to the value of δc when w ¼ 1=3.

3The numerical results are well described also by an analytic
expression [66] written in terms of Gamma functions, equivalent
to (28).
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Looking at the qualitative behavior, as expected one can
observe it following that for the equation of state in the left
plot. The minimum value of the threshold is reached when
1≲MH=M⊙ ≲ 3, slowly increasing for larger values of α.
The shape parameter also affects the relative change of the
threshold, with a variation larger than 10% if α≲ 1 while
for larger values of the shape parameter the relative change
of the threshold is a bit lower, up to 8% for α ¼ 8. This is
consistent with the increasing effect of the pressure
gradients, becoming stronger for larger value of α, when
the threshold is also larger.
These results are basically consistent with what has been

found recently by Escriva et al. in [49]. However we obtain
a larger deviation of the threshold, up to 25% more. The
origin of this difference is not clear, but we note that the
parametrization of the curvature profile used in [49] in
terms of the shape parameter is different from this paper. In
Appendix B we compare the results and the methodologies
of these two papers, discussing the different physical
conclusions obtained.

C. The mass of PBHs: Scaling law relation

One of the present authors has shown [8,9] that the mass
spectrum of PBHs is characterized by the scaling law
relation of critical collapse given by

MPBH ¼ KMHðδ − δcÞγ: ð29Þ

The cosmological horizon massMH identifies the epoch of
the Universe when the cosmological perturbations collaps-
ing into PBHs are crossing the cosmological horizon, while

γ is a parameter depending only on the equation of state
[68], with γ ≃ 0.36 when w ¼ 1=3. The other two param-
eters K and δc also depend on the effects of pressure
gradients, i.e., the equation of state, described by the value
of w and c2s , and the shape of the initial configuration,
identified by the shape parameter α.
The nature of critical collapse in the context of PBHs

has been then intensively investigated by one of the
authors of this work [63,64] and in the left panel of
Fig. 4 one can observe the scaling law behavior for
different values of α: for MPBH < MH the exponent γ ≃
0.36 is constant, while for larger values deviation from
scaling are visible. This is because the critical collapse is
characterized by a self-similar behavior [64], which is
scale free.
In the right panel of Fig. 4 we show how K is varying

with α.4 It is interesting to notice that, for α≳ 6, the value of
K is almost constant, approximately 3.4. This is consistent
with the Dirac delta limit of the shape of the power
spectrum, corresponding to α ≃ 6.33.
In [26], it has been shown that a nearly scale invariant

power spectrum, with a spectral index ns ≃ 1, leads to
perturbations with a shape parameter α ≃ 3, having a value
of the threshold δc ≃ 0.55 when w ¼ 1=3. For this reason
we are computing the scaling law relation for the mass
of PBHs formed during the QCD transition only for
1≲ α≲ 5, enough to describe a wide range of spectral

FIG. 4. The mass of PBHs for a radiation dominated Universe. This figure shows the critical collapse behavior of equation (29) for
w ¼ 1=3: in the left panel we plot the scaling laws for different values of α obtained from the results of the numerical simulations, while
in the right panel we show the corresponding dependence of the scaling law parameter K as function of α.

4The behavior obtained in Fig. 4 is similar to that observed in
[69], but some significant differences may be noticed. These are
likely due to same reasons mentioned earlier regarding the
discrepancy in the threshold.
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indices, consistent with the cosmological power spec-
trum obtained for different models of the very early
Universe.
In Fig. 5we show themass of PBHs as function of ðδ − δcÞ

for α ¼ 1 and α ¼ 3. The scaling law is now also a function
of the horizon scale when the perturbation crosses the
cosmological horizon, parametrized by the dimensionless
parameter M0 ≡MH=M⊙. The critical behavior, keeping γ
constant andK depending only on the shape is still preserved
when the collapse is very critical, with ðδ − δcÞ ≲ 10−4 and
MBH ≲ 0.1MH.

For α ¼ 1, the largest deviation of the scaling law, with
respect to radiation, is reached when M0 ≃ 0.5, while for
larger values of α this is reached slightly later (M0 ≃ 0.6 for
α ¼ 3, M0 ¼ 0.8 for α ¼ 5). This slight delay observed
for larger values of α is consistent with the small shift of the
minimumof the threshold towards larger value of themasses
observed in Fig. 3. The value of M0 for which one has the
largest deviation of the scaling law is smaller than the one for
which we have found the minimum of the threshold. This is
due to the time taken for PBHs to form after cosmological
horizon crossing: forα ¼ 1 theminimumoccurs atM0 ≃ 2.5

FIG. 5. The mass of PBHs during the QCD transition. This figure shows how the critical collapse is modified during the QCD
transition, plotting the scaling law for α ¼ 1 (top panels) and α ¼ 3 (bottom panels). Left (right) panels show the scaling relation for
perturbations crossing into the horizon before (after) the confinement transition at T ≈ 200 GeV. They are labeled by M0 ≡MH=M⊙.
For reference, the black dots show the scaling law when w ¼ 1=3.
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while for α ¼ 3 the minimum is observed at M0 ≃ 3, as
shown in Fig. 3. Afterwards, the variation of γ and K
describes the scaling law slowly coming back to the scaling
of radiation, consistent with behavior of the threshold when
PBHs form after the transition, with some oscillations of γ
and K before reaching the end of the transition. This is
shown in the right panel of Fig. 5.
In Fig. 6 we show the profiles of the ratio w ¼ p=ρ and

the energy density ρ, respectively, in the left and right
panels, for PBHs forming at different values of M0, while
keeping the same value for δ − δc ¼ 10−7. Note that the
snapshot is shown in observer time (i.e., on outgoing null
geodesics). The areal radius R on the horizontal axis is
normalized with respect to the black hole radius RBH,
demonstrating that the apparent horizon forms approxi-
mately where the medium is in the middle of the QCD
transition. It is quite remarkable to notice that this is
happening for a broad range of masses. For initial con-
ditions very close to the critical one, i.e., for very small
ðδ − δcÞ, there is a fine balance between pressure forces
and gravity keeping fluctuations in near-quasi-equilibrium
for several dynamical times [63,64]. It is hence not too
surprising that this equilibrium includes the apparent
horizon being at the minimum value of w. This implies
that for fluctuations entering the horizon not too far from
the transition, the pressure minimum of the transition is an
attractor solution.
In the right panel of Fig. 6 we show the corresponding

profiles of the energy density normalized with respect to the
value at horizon crossing, using the same color coding for
M0 as in the left panel. It is interesting to point out that, for

ðδ − δcÞ ¼ 10−7, the value of the energy density outside the
apparent horizon is roughly of the same order as the energy
density of the Universe at cosmological horizon crossing of
the perturbation. In Fig. 7 we show the behavior of w while
keepingM0 constant for different values of δ − δc, showing
three sample cases: before, during, and after the QCD
transition. As the collapse becomes less and less critical,
i.e., for increasing ðδ − δcÞ, the apparent horizon forms
more quickly, and the condition that the medium is at the
depth of the phase transition outside the horizon is reached
with less accuracy.

V. MASS DISTRIBUTION AND COSMOLOGICAL
ABUNDANCE

In this section, we will apply the results of the simu-
lations describing the formation of PBHs to the calculation
of the PBH mass function and abundance. It is desirable to
compute the PBH abundance and mass function directly
from ζ, which appears in the FLRW metric, Eq. (11). To
perform the calculation, we will follow the method outlined
in [70], applying peaks theory and accounting for the
nonlinearity between the curvature perturbation ζ and the
density—and will only briefly summarize the method here.
We will also make the standard assumption that ζ follows a
Gaussian distribution, although it has been argued that
inflationary models that predict a large PBH abundance
typically also predict a non-Gaussian distribution [71,72],
which can have a large impact on the PBH abundance and
mass function (see, e.g., [62,73,74] for recent discussions
of the effect of non-Gaussianities on the PBH abundance).

FIG. 6. Profiles of w ¼ p=ρ (left panel) and ρ (right panel) when PBHs are formed. These are shown in the observer time coordinate,
with all of the lines having an initial amplitude ðδ − δcÞ ¼ 10−7, while varying the horizon crossing time, labeled byM0 ¼ MH=M⊙. In
the right panel we also give the values of the PBH masses showing that smaller values of the mass correspond to higher values of the
energy density in the inner region inside the horizon.
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A. PBH abundance in peaks theory

As discussed in Sec. III C, we will consider that PBHs
form at sufficiently large peaks in the (smoothed) density
[75,76]. From Eq. (22) the smoothed density can be
expressed as

δðx; tÞ ¼ δlðx; tÞ −
1

4Φ
δ2l ðx; tÞ; ð30Þ

where δl ≡ 2Φrζ0 is linearly related to the curvature
perturbation ζ.
We define the ith-order moments of the power spectrum

σ2i as

σ2i ðrÞ¼
4

9
Φ2

Z
∞

0

dk
k
ðkrÞ4k2iW̃2ðk;rÞT2ðk;rHÞPζðkÞ; ð31Þ

where PζðkÞ is the power spectrum of ζ and W̃ðk; rÞ and
Tðl; rÞ are, respectively, the window function and (linear)
transfer function in Fourier space, given by

W̃ðk; rÞ ¼ 3
sinðkrÞ − kr cosðkrÞ

ðkrÞ3 ; ð32Þ

Tðk; rÞ ¼ 3
sinðkr= ffiffiffi

3
p Þ − kr cosðkr= ffiffiffi

3
p Þ= ffiffiffi

3
p

ðkr= ffiffiffi
3

p Þ3 ; ð33Þ

where we note that, as we will evaluate the density at
horizon crossing,5 we have set the smoothing scale equal to
the horizon scale r ¼ ðaHÞ−1.
For a Gaussian distribution, the number density of

peaks in the range δl → δl þ dδl is given, using peak
theory [61], by

nðδl; rÞ ¼
1

33=2ð2πÞ2
�
σ1
σ0

�
3
�
δl
σ0

�
3

exp

�
−

δ2l
2σ20

�
: ð34Þ

The fraction of the Universe collapsing to form PBHs from
perturbations of a single scale r is then given by integrating
the number density of peaks over the range of values of δl
that form PBHs:

βðrÞ ¼ 4

3
πr3

Z
4=3

δlc

dδl
MPBHðδl;MHðrÞÞ

MHðrÞ
nðδl; rÞ; ð35Þ

where MPBH and MH are the PBH mass and horizon mass,
respectively. The lower limit corresponds to the critical value
for PBH formation of the linear component of the compac-
tion, δlc¼2Φð1− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−δc=Φ
p Þ, whilst the upper limit corre-

sponds to the highest value for type I perturbations.6

Typically, it is assumed either that PBHs form with a
fixed fraction of the horizon mass, or that the PBH
mass follows the critical scaling relationship described in
Sec. IV C, given by Eq. (29). In this paper, we go beyond
previous studies and make use of numerical results from the
simulations, as seen in Fig. 5, in order to accurately
determine the PBH mass from initial conditions, account-
ing for the scale and amplitude of the initial perturbation, as
well as the varying equation of state during the QCD phase
transition. Where necessary, we will take the values K ¼ 4
and γ ¼ 0.36 to make comparisons with calculations using
the scaling relationship.
The total abundance of PBHs is then calculated by

integrating over the range of scales at which PBHs form,

FIG. 7. Profiles of w ¼ p=ρ for M0 ¼ 0.5 (left panel), M0 ¼ 2 (central panel), and M0 ¼ 10 (right panel) when PBHs are formed.
These are computed in the observer time coordinate, varying the critical amplitude of the perturbation. The different colors refer to
different values of ðδ − δcÞ.

5We here use a linear extrapolation from superhorizon scales,
and the nonlinear effects close to horizon crossing have been
discussed recently in [67].

6for type I perturbations, the areal radius R increases monoton-
ically with coordinate radius r, whilst this is not true for type II
perturbations, corresponding to larger values of δl. The collapse of
type II perturbations has not been well studied, although it is
expected that they do formPBHs [77]. Since the abundance of such
perturbations is exponentially suppressed, and has negligible
impact on the PBH abundance, we neglect type II perturbations.
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and can be expressed as a fraction of the dark matter
composed of PBHs,

fPBH ¼ ΩPBHðteqÞ
ΩCDMðteqÞ

¼ 1

ΩCDM

Z
rmax

rmin

dr
r

�
req
r

�
βðrÞ; ð36Þ

where rmin and rmin correspond to the minimum and
maximum scales, respectively, at which PBHs are consid-
ered to form. The ðreq=rÞ term accounts for the evolution of
the PBH density parameter between formation and the time
of matter-radiation equality, where we have assumed
radiation domination for the duration. As is more typically
done, Eq. (36) can also be expressed as an integral over the
horizon mass,

fPBH ¼ 1

ΩCDMðteqÞ
Z

Mmax

Mmin

dMH

MH

�
Meq

MH

�
1=2

βðMHÞ; ð37Þ

whereMeq ¼ 2.8 × 1017M⊙ is the horizon mass at the time
of matter-radiation equality. The horizon mass MH can be
related to the horizon scale r as [78]

MH ¼ Meq

�
g�

10.75

�
−1=6

�
r
req

�
2

; ð38Þ

where g� is the number of relativistic degrees of freedom
(although we neglect this effect due to the extremely weak
dependence). Inverting this gives the horizon scale as a
function of the horizon mass, r ¼ rðMHÞ.
Finally, we define the PBH mass function as the

derivative of fPBH,

ϕðMPBHÞ ¼
dfPBH

d lnMPBH
: ð39Þ

The final PBH mass MPBH is a function of the initial
perturbation amplitude δl (and vice versa), allowing β,
Eq. (35), to be expressed as an integral over the PBH mass.
This allows us to write the final expression for the mass
function as

ϕðMPBHÞ ¼
MPBH

ΩCDMðteqÞ
Z

Mmax

Mmin

dMH

MH

�
Meq

MH

�
1=2

×
4πr3

3

dδl
dMPBH

MPBH

MH
nðδl;MHÞ; ð40Þ

where the perturbation amplitude δl at scale MH required
to form a PBH of mass MPBH is calculated numerically
from the simulation data, δl ¼ δlðMPBH;MHÞ, and the
scale r is a function of the horizon mass, as given by
Eq. (38). The derivative is also calculated numerically as a
function of PBH mass and horizon scale, dδl=dMPBH ¼
dδl=dMPBHðMPBH;MHÞ. In principle, the integration

limits Mmin and Mmax should span all scales.7 However,
in practice, since PBHs typically form with a mass close to
the horizon mass, a smaller integration range can be used,
and in our case we fix the integration limits to the range of
values for which data are available from the simulations
(see Fig. 5). The final results are not sensitive to the specific
values used.

B. PBH abundance from a power law
power spectrum

In this paper, we will limit ourselves to the discussion of
PBHs formed when the power spectrum follows a simple
power law8

PζðkÞ ¼ A
�
k
k�

�
ns−1

; ð41Þ

where A is the amplitude of the power spectrum, ns is the
spectral index and k� is the pivot scale. Note that, although it
takes the same form, this power spectrum is separate from
that measured on CMB scales and is here used only to
describe the power spectrum on the much smaller scales at
which we consider PBH formation. We will consider thatA
and ns are free parameters in our model. The particular value
chosen for the pivot scale k� is arbitrary (but does affect the
overall normalization of the power spectrum), and, for
convenience, we will take it to correspond with the QCD
phase transition, where the critical value δc takes its mini-
mumvalue at horizonmassM� (see Fig. 3).We therefore take
k� to be given by k� ¼ 2π=r� ¼ 4.442 × 106 Mpc−1.
In order to fully explore the effects of the transition, and

for concreteness, we will consider parameters such that the
following two conditions are met:
(1) If the effect of the phase transition is neglected, PBH

formation is close to scale invariant at the scale of the
phase transition, M�. We define this such that the
derivative of the total PBH formation rate is zero at
the time when the horizon mass is MH ¼ M�:

d
dMH

ðM−1=2
H βÞ

����
M�

¼ 0: ð42Þ

The factor M−1=2
H arises from the redshift term

[as seen in Eq. (37)]. This means that, as much as

7There is a maximum perturbation amplitude, arising from
the nonlinearity of δ, Eq. (30) (during radiation domination,
δmax ¼ 2=3, corresponding to δl ¼ 4=3). This means that there is
a maximum mass PBH mass that can form at a specified horizon
mass (which then gives a minimum horizon mass at which PBH
of given mass will form). However, the formation of PBHs from
type II perturbations, δl > 4=3, is not well understood and it may
be possible for more massive PBHs to form, although this is
typically neglected from the calculation.

8Making use of the results from this paper, Ref. [26] makes a
fuller comparison of different forms for the power spectrum, and
the reader is directed there for further discussion.
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possible, any features seen in the mass function are
due to the QCD transition, rather than to features in
the primordial power spectrum.

(2) The overall abundance of PBHs formed in the range
0.01M⊙ < MH < 100M⊙ make sup the DM abun-
dance, fPBH ¼ 1. The calculation is not sensitive
the values of these cutoffs, as the mass function is
strongly suppressed around these scales. However,
the PBH abundance does eventually diverge if no
cutoffs are included.

Applying these conditions, we initially choose the param-
eters A ¼ 9.76 × 10−3 and ns ¼ 0.964. For this paper, we
will only consider this power spectrum in order to compute
the effect of the phase transition. A separate paper uses the
results presented here to compare the mass function from
varying power spectra and to compare these to the LIGO-
Virgo black hole masses [26].
Figure 8 shows the mass function ϕ for PBHs formed

during the phase transition, for profile shapes correspond-
ing to α ¼ 3—which is close to the expected value for a
broad power spectrum. The red dashed line shows the
predicted mass function if there was no phase transition—
and we see that it is (approximately) scale invariant over the
scales considered. The blue dashed line shows the mass
function that would be calculated using the data for the
changing threshold value δc during the phase transition, but
using the critical scaling relationship given by (29)—as
used by, e.g., Ref. [49]. Finally the solid line shows the
mass spectrum given by the full calculation.

We can see that accounting for the phase transition
increases PBH abundance by a factor Oð103Þ, and that the
effect is dominated by the change in the critical value.
Accounting correctly for the mass of PBHs produced
during the transition results in a more peaked mass
function, which peaks at a marginally lower value
(1.9M⊙ instead of 2.2M⊙), and has an effect on the total
abundance of order 0.2. For most current purposes, there-
fore, we consider that it is sufficient to account only for the
changing threshold value. However, should more precision
be required (such as comparing the mass function to the
masses of the LIGO-Virgo black holes) then it is advisable
to utilize the full data set from the simulations describing
the PBH mass.
We consider the effect of changing the spectral index of

the power spectrum in the left panel of Fig. 9. In this paper,
we limit ourselves to the consideration of power spectra
which, in the absence of the phase transition, predicts a
mass function close to flat. For the values of the spectral
index considered, ns ¼ 0.93; 0.95; 0.9642; 0.98, we see
that the peak of the mass function is largely unaffected,
although there are significant changes to the tails of the
distribution. A more red-tilted (blue-tilted) spectrum, cor-
responding to smaller (larger) ns, predict a larger abun-
dance of high (low) mass PBHs, and a lower abundance of
low (high) mass PBHs. In order to be compatible with the
observations of black hole masses from LVK, a strongly
red-tilted spectrum is therefore necessary (see [26] for
further discussion).

FIG. 8. The PBH mass function during the QCD transition. The mass function ϕðMPBHÞ is shown for α ¼ 3, for three different cases:
ignoring the phase transition, using the scaling law relationship for radiation, and finally the full calculation using the masses given by
the simulations. The same data is shown on both plots, with linear axes on the left and logarithmic axes on the right. For the full
calculation, the total PBH abundance is fPBH ¼ 1 (by choice), whilst we have fPBH ≈ 0.93 when the scaling law is used (for the same
choices of parameters).
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The right panel of Fig. 9 shows the mass functions
predicted for different profile shapes, corresponding to
α ¼ 1.0; 1.4; 2.0; 3.0; 4.0; 5.0, and the amplitude of the
power spectrum in each case is fixed to give fPBH ¼ 1.
Considering different profile shapes can have a large effect
on the fiducial value for δc, which has a very large impact
on the abundance of PBHs. However, once the amplitude of
the power spectrum is adjusted to account for this differ-
ence, we conclude that our calculated mass function is
robust against changing values for α. The peak of the mass
function shifts only by a small amount, from 1.7M⊙ for
α ¼ 5, to 1.9M⊙ for α ¼ 1.

VI. CONCLUSIONS

PBHs form more easily during cosmic phase transitions
and annihilation epochs than during a pure radiation
dominated phase. This may lead to a dramatic enhancement
of the PBHmass function on the horizon mass scale of such
transitions. In particular, PBHs formed during the cosmic
QCD transition may partially contribute to the LIGO/Virgo
observed events of massive black hole mergers. In this
paper we have performed a detailed numerical study of
PBH formation during the QCD transition. The goal of the
study was to make an accurate derivation of the PBH mass
spectrum, as a first step towards comparing with merger
event catalogs of the LIGO/Virgo collaboration.
We confirm that even though the reduction of c2s and w

during the QCD transition is quite small ∼10%, for scale-
invariant, Gaussian primordial curvature fluctuations of
cosmologically interesting amplitude, PBH formation is a

factor ∼1000 more likely during the QCD epoch than
before or after. This imprints the QCD horizon mass scale
into the PBH mass function. We find for the peak scale
MPBH ≈ 1.9M⊙, with ∼90% of the PBHs having masses
between 0.7M⊙ and 4.5M⊙. These values are surprisingly
robust with respect to variations in the curvature fluctuation
shape parameter α and spectral index ns ≈ 1.
Our study reveals that even in the case of PBH formation

with a varying equation of state during the QCD epoch,
critical scaling approximately holds, albeit with a some-
what changed exponent γ and not extending to quite as
large ðδ − δcÞ. We also find that for the same ðδ − δcÞ PBHs
formed during the QCD epoch have higher mass than those
formed during radiation domination, when w ¼ 1=3.
Furthermore, we find that for a wide range of curvature
fluctuation scales (i.e., mass at horizon entry) the apparent
horizon always appears in conditions when the medium is
close to the depth of the transition (i.e., close to the
approximate minimum of c2s and w).
During the preparation of this workwe shared some of the

numerical results of this work with a group of collaborators
[26], i.e., the threshold and the scaling law behavior for
α ¼ 3, consistent with a nearly scale invariant power
spectrum with ns ¼ 1. Using a similar approach for the
computation of the mass distribution as done here, it was
found that the LIGO/Virgo observations do not allow the
majority of the dark matter to be in the form of stellar mass
PBHs.However a subpopulation of PBHs is compatiblewith
the gravitational wave signals we have, and would help to
explain some events likeGW190814where the secondary of
the binary system is falling in the mass gap.

FIG. 9. The effect of the spectral index and the shape profile on the mass function. The mass function ϕðMPBHÞ is shown for different
values of ns with α ¼ 3 (left panel), and different values of α with ns ¼ 0.9642, the same value as used in Fig. 8 (right panel). The
amplitude of the power spectrum is fixed in each case to give fPBH ¼ 1. In the left panel the logarithmic axes show the significant
changes to the tail of the distribution, while the peak is almost the same. In the right panel we can appreciate the minor effect of the shape
on the whole profile of the mass function.
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When comparing to a prior study [49], this work is much
more detailed and complete, which is essential for having a
consistent computation of the mass distribution and abun-
dance of PBHs froma given power spectrumof cosmological
perturbations. The present numerical analysis we have done
is giving a variation of the threshold of about 30% with
respect to what was obtained before (see Appendix B). In
particular we made a full computation of the scaling law
behavior during theQCD transition,which has not been done
previously.All of this significantly affects the computation of
the mass distribution, and abundance, as we show in
Appendix B making a detailed comparison between our
results and the ones obtained in [49].
Finally, we have contemplated PBH formation during

the eþe− annihilation epoch leading to massive MPBH ∼
105M⊙ black holes. Contrary to current belief, we argue
that PBH formation during this period may actually be
suppressed due to neutrino diffusion/free-streaming. Only a
detailed study taking neutrinos into account may provide a
definite answer. Such a study is beyond the scope of the
present paper.
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APPENDIX A: THE COSMIC TIME SLICING

1. Misner-Sharp-Hernandez equations

Here we present the Misner-Sharp-Hernandez equations
[52] that we have used to derive the initial conditions in
gradient expansion (see Sec. III B), used for the numerical
simulation in Sec. IV.
Consider the “cosmic time” metric given by Eq. (6) with

the definitions ofU,Γ, andM given inEqs. (8) and (10) and a
perfect fluid with a diagonal stress energy tensor given by

Tμν ¼ ðρþ pÞuμuν þ pgμν; ðA1Þ

where ρ is the total energy density and p is the
pressure. Then theMisner-Sharp-Hernandez hydrodynamic

equations obtained from the Einstein equations and the
conservation of the stress energy tensor are

DtU ¼ −
�

Γ
ρþ p

Drpþ M
R2

þ 4πR2p
�
; ðA2Þ

Dtρ0 ¼ −
ρ0
ΓR2

DrðR2UÞ; ðA3Þ

Dtρ ¼ ρþ p
ρ0

Dtρ0; ðA4Þ

DrA ¼ −
A

ρþ p
Drp; ðA5Þ

DrM ¼ 4πR2Γρ; ðA6Þ

where ρ0 in Eqs. (A3) and (A4) is the rest mass density
(or the compression factor for a fluid of particles without
rest mass). These form the basic set, together with the
Hamiltonian constraint given by Eq. (9),

Γ2 ¼ 1þU2 −
2M
R

: ðA7Þ

Two other useful expressions coming from the Einstein
equations are

DtΓ ¼ −
U

ρþ p
Drp; ðA8Þ

DtM ¼ −4πR2Up: ðA9Þ

In order to solve this set of equations we need to supply
an equation of state specifying the relation between the
pressure and the different components of the energy
density. For a simple ideal particle gas, we have that

p ¼ ðγ − 1Þρ0ε; ðA10Þ
where ε is the specific internal energy, related to the velocity
dispersion (temperature) of the fluid particles and γ is the
adiabatic index. The total energy density ρ0 is the sum of the
rest mass density and the internal energy density:

ρ ¼ ρ0ð1þ εÞ: ðA11Þ

When the contribution of the rest mass of the particles to
the total energy density is negligible (ρ ≫ ρ0, ε ≫ 1) we
get the standard (one-parameter) equation of state used for a
cosmological fluid

p ¼ ωρ: ðA12Þ

A pressureless fluid (ω ¼ 0) corresponds to the case where
the specific internal energy ε is effectively zero. In this
paper we are considering an equation of state as given
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by (3) with ω being a function of temperature, to describe
the QCD transition, as discussed in Sec. II.

2. The quasihomogeneous solution

In the gradient expansion approach [53–57] one makes a
perturbative expansion of the MSH equations in the regime
of small pressure gradients, which allows consideration of a
time independent comoving curvature profile ζðrÞ [58],
also for ζ ∼ 1.
To simplify the calculation, it is convenient to consider a

pure growing mode. In this case the first nonzero order of
the expansion is Oðϵ2Þ [79], where the small parameter ϵ
has already been defined in Eq. (13),

ϵ ¼ 1

aHrmeζðrmÞ
;

ϵ̇

ϵ
¼ 1þ 3wðρÞ

2
H: ðA13Þ

The second expression for its first time derivative is
obtained using the equations describing the behavior of
a FLRW Universe

H2 ¼ 8π

3
ρb;

ρ̇þ 3Hðρþ pÞ ¼ 0;

ä
a
¼ 4π

3
ðρþ 3pÞ; ðA14Þ

combined with the equation of state for the QCD transition,
which we have seen in Sec. II.
Following the same computation as in [56], after some

manipulation of the MSH equations, one gets the following
set of differential equations to solve for the radial compo-
nent of the perturbation, indicated with the corresponding
tilda variables:

ρ̃ ¼ rζ0ðrÞ
1þ rζ0ðrÞ M̃ þ 1

3r2
ðr3M̃Þ0;

Ũ ¼ 1

2

�
M̃ þ ζ0ðrÞ

�
2

r
þ ζ0ðrÞ

�
r2me2ζðrmÞ

e2ζðrÞ

�
;

M̃ þ dM̃
dξ

¼ −3½1þ 3wðρbÞ�Ũ;

Ã ¼ −
c2s

1þ wðρbÞ
ρ̃;

½1þ 3wðρbÞ�B̃þ dB̃
dξ

¼ −
r

1þ rζ0ðrÞ Ã
0;

½1þ 3wðρbÞ�R̃þ dR̃
dξ

¼ Ãþ Ũ; ðA15Þ

where d=dξ≡H−1d=dt and in the superhorizon regime the
sound speed can be expressed in terms of background
quantities as

c2s ¼ wðρbÞ þ ρb
dwðρbÞ
dρb

: ðA16Þ

The solution of this system of differential equations gives
the initial conditions for the numerical simulations, which
for the energy density and the velocity field are

δρ

ρb
¼ −

4

3
Φ
�

1

aH

�
2

e−5ζðrÞ=2∇2eζðrÞ=2; ðA17Þ

δU
U

¼ ðΦ − 1Þ
�

1

aH

�
2

ζ0ðrÞ
�
2

r
þ ζ0ðrÞ

�
e−2ζðrÞ: ðA18Þ

The other variables can be written as a linear combination
of these

δM
M

¼ −
1

2
ðΦ − 1Þ δU

U
;

δA ¼ −
c2s

1þ wðρbÞ
δρ

ρb
;

δB
B

¼ I1
Φ
r

�
δρ

ρb

�0
;

δR
Rb

¼ −
I1
Φ
δρ

ρb
þ I2
Φ − 1

δU
U

; ðA19Þ

where the coefficients Φ, I1, and I2 depend on the moment
of the horizon crossing with respect to the QCD transition.
These are obtained by solving the following differential
equations, written with respect to the cosmological horizon
used as a measure of time

RH
dΦ
dRH

þ 5þ 3w
3ð1þ wÞΦ ¼ 1;

RH
dI1
dRH

þ 2ð1þ 3wÞ
3ð1þ wÞ I1 ¼

2c2s
3ð1þ wÞ2 Φ;

RH
dI2
dRH

þ 2ð1þ 3wÞ
3ð1þ wÞ I2 ¼

2ðΦ − 1Þ
3ð1þ wÞ ; ðA20Þ

In the limit of w ¼ const., the solution of these equations is
given by the averaged values

Φ̄ ¼ 3ð1þ wÞ
5þ 3w

;

Ī1 ¼
3w

ð1þ 3wÞð5þ 3wÞ ;

Ī2 ¼ −
2

ð1þ 3wÞð5þ 3wÞ ; ðA21Þ

which is an attractor solution of Eqs. (A20), i.e., if wðtÞ
slowly varies in time, dΦðtÞ=dt ¼ dI1;2ðtÞ=dt ≃ 0 and the
evolution of Φ; I1;2 approaches the averaged values (for
w ¼ 1=3 this gives Φ ¼ 2=3, I1 ¼ 1=12, and I2 ¼ −1=6).
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The behavior ofΦ across the QCD transition, entering in
the computation for the threshold δc, is shown in Fig. 10:
this differs from the averaged values particularly in the
region where w and c2s are quickly varying with respect the
mass of the cosmological horizon MH ¼ 1=2H. Although
the relative change of Φ, with respect to the constant value
of Φ̄ is only of order a few percent, this gives a non-
negligible contribution to the modified value of the thresh-
old during the QCD transition that, as we have seen in
Sec. IV, has an overall change of about 10%.

APPENDIX B: COMPARISON
WITH PREVIOUS LITERATURE

Several months prior to the publication of this paper,
another paper exploring the formation of PBHs during the
QCD was released—Escriva, Bagui, and Clesse [49].
Whilst the results from their simulations are broadly in line
with the results presented here, our calculations provide a
significant advance in accuracy and methodology.

1. The threshold

Whilst significant, the changes to the calculated values of
δc are relatively minor—as shown in Fig. 11. To make the
comparison, we have used the values for δc from our paper
corresponding to a shape parameter α ¼ 3 (corresponding
to the expected profile shape for a broad power spectrum),
and used the closest fit, q ¼ α ¼ 2.5 from EBC. This
small difference means that we slightly underestimate the
differences in δc between the papers, which would have

been at least 25% if comparing the same value of α
(see Fig. 11).
In this paper the curvature profile used to set the initial

conditions is using an exponential basis in terms of α, with
the compaction function given by

Cðr̃Þ ¼ Ar̃2 exp

�
−
1

α

�
r̃
r̃m

�
2α
�
; ðB1Þ

where r̃ ¼ reζðrÞ, and A is a parameter varying the peak of
the compaction function, i.e., the perturbation amplitude.
Although this parametrization gives a profile of δρ=ρb
with a spiky behavior in the center for α ≤ 0.5 (the
first derivatives goes to infinity), the profile of δρ=ρb is
compensated for any values of α, i.e., the overdensity is
always compensated by an underdensity, keeping the total
energy density of the perturbed region equal to the total
energy density of the unperturbed Universe.
In EBC instead, the authors has preferred to relax this

aspect, using a polynomial form to set up their initial
conditions, to have always a smooth behavior in the center.
This has the drawback of not having compensated pertur-
bations for α ≤ 0.5. Because the smoothing of the central
behavior is in any case obtained by the numerical evolution
as an effect of the pressure gradients after a few time steps,
we argue that our choice of an exponential parametrization,
justified by the energy conservation, is preferable. Debating
more about this different approach in setting up the initial
conditions with respect to the one used by EBC is beyond
the scope of this work.
It is also worth mentioning that the authors could not see

the behavior of the scaling law that we have analyzed in
Sec. IV C, not being able to consider very small values of
δ − δc as done in this paper: to get down to a very small
value of δ − δc it is crucial to have a code using an adaptive
mesh refinement scheme, describing with enough accuracy
the formation of regions with large density gradients,
characterized by strong compression waves propagating
outwards [63].

2. The mass distribution

Our paper does, however, make significant improve-
ments on the calculation of the PBH abundance and mass
function. We employ a peaks theory calculation of the PBH
abundance, rather than a Press-Schechter approach, and we
also account for the nonlinearity of the density δ relative to
the curvature perturbation ζ. Overall, this means that the
power spectrum calculated by EBC for giving fPBH ¼ 1 is
around 50% smaller than that calculated here (or alter-
natively, that the calculated PBH abundance differs by a
few orders of magnitude for the same power spectrum).
Figure 11 shows the difference in the calculated mass

functions between our paper and EBC. Note that we have
taken the fiducial threshold value for collapse (during
radiation domination) to be the same, to avoid spurious

FIG. 10. The behavior of ΦðtÞ. The solution of Eq. (15) is
plotted against the mass of the cosmological horizon MH
measured at horizon crossing, normalized with respect the solar
mass M⊙. The dashed line shows the value of Φ̄ ¼ 2=3 when
w̄ ¼ 1=3.
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effects for the abundance—which is extremely sensitive to
small changes in δc. The dashed red line shows the
calculation from our paper—and is the same as that plotted
in Fig. 8. The solid black line on the plot is the mass
function that would be calculated by EBC using the same
power spectrum—and is different by several orders of
magnitude. This is expected and is due to our inclusion of
the nonlinear effects in the density contrast. The dotted blue
line shows the EBC mass function, with the amplitude of
the power spectrum modified such that fPBH ¼ 1 for PBHs
in the range 0.01 < MPBH=M⊙ < 100 (the same criterion
used throughout this paper). Here, we see that the peak of
the mass function calculated by EBC is significantly
broader and lower than we calculate. This is mostly due
to using peaks theory to perform the calculation, but it is
also a result of the differences in the value of δc during the
transition. Using peaks theory predicts a smaller power
spectrum to produce the same number of PBHs (or
equivalently, a higher abundance of PBHs for the same
power spectrum). The result is that the PBH abundance is
more sensitive to changes in δc, resulting in a sharper peak
to the mass function.

3. The scaling law parameters

In [26], for the purpose of simplifying the calculation for
the Bayesian inference analysis performed to compare the

LIGO/Virgo catalog with the mass distribution of PBH
obtained with these numerical results, the parameters γ and
K of the scaling law obtained in Sec. IV C have been
numerically fitted by computing an averaged value through
the whole region of δ − δc, for the case α ¼ 3. This assumes
that the scaling law remains valid, with γ and K being then
just a simple function ofMH. This is an approximation that
we did not need to make in this work when computing the
mass distribution of PBHs, where we have instead taken
into account the complete dataset concerning the final PBH
mass obtained from the numerical simulations.
Nevertheless it is interesting to generalize the approxi-

mation used in [26] also for the different shapes considered
in this work. This is summarized in Fig. 12, where the
behavior of the averaged values of γ and K, respectively, in
the left and right panel, has been plotted for 1 ≤ α ≤ 5.
The same qualitative behavior is shown for all of the

different shapes, where the effect of the transition is
delayed to larger horizon masses for larger α, consistent
with the minimum of δc being delayed towards larger
masses when α is increasing (see Fig. 3). Because of
the approximation of the numerical fit, in Fig. 12 the
averaged values of γ do not converge exactly to γ ≃ 0.36
when w ¼ 1=3 (the value of γ for a radiation dominated
medium) keeping instead always a slight dependence on
the shape.

FIG. 11. PBH threshold and mass functions with different approaches. In the left panel the fractional change in the critical value is
plotted for our work and the work of Escriva, Bagui, and Clesse (EBC). Our results correspond to the shape given by α ¼ 3, whilst the
results from EBC correspond to α ¼ q ¼ 2.5. We see approximately a 25% larger effect from the phase transition in our results. In the
right panel the mass function calculated here is compared with that calculated using the methodology from EBC. The solid black line
shows our calculation. The dashed red line shows the calculation from EBC, but with the amplitude of the power spectrum normalized to
give fPBH ¼ 1. The dashed blue line shows the calculation from EBC, using the same power spectrum as the solid black line.
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