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The lensing of gravitational waves (GWs) occurs when GWs experience local gravitational potential. In
the weak-lensing regime, it has been reported that a simple consistency relation holds between the variances
of the magnification and phase modulation. In this paper, we present two additional consistency relations
between the averages and variances of the weakly lensed GW signals in wave optics. We demonstrate that
these consistency relations are derived as the weak-lensing limit of the full-order relations for the averages
of the amplification factor and its absolute square. These full-order relations appear to originate from
energy conservation and the Shapiro time delay, and they are demonstrated to hold irrespective of the
matter distribution.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) from
binary black holes [1] and the detection of background
GWs [2] has marked the onset of the GW astronomy era.
With ongoing plus the expectation of future discoveries in
the coming decade, our understanding of the Universe is set
to reach new depths [3].
Gravitational lensing, which has been extensively stud-

ied in the context of light [4,5], also occurs in GWs [6,7].
Although the detection of lensed GW signals has not been
reported to date, experimental efforts are underway to
search for its evidence [8]. On the theoretical front, the
lensing of GWs has been an active research subject. For
example, gravitational lensing of GWs can enhance the
amplitude of GWs, thereby causing the high tail for the
redshifted mass distribution of black hole binaries [9,10].
Note that there are distinct differences between the lensing
of light and that of GWs, which is primarily due to the
much longer wavelength of GWs. These differences give
rise to the wave-optics effect, primarily interference and
diffraction, which can be used to extract complementary
information about the lensing objects [11–14]. Specifically,
lensing in wave optics is frequency dependent and involves
a complex-valued quantity, i.e., the amplification factor,
while in geometric optics, lensing effects arise simply due
to light following the null geodesics in the curved space-
time. Thus, measuring the amplification factor across a
wide range of frequencies enables us to study the additional
properties of lensing objects that cannot be captured in
geometric optics.

In the weak-lensing regime, the lensing of GWs is
insensitive to structures smaller than the Fresnel scale
[15,16]. In other words, diffraction suppresses the lensing
effect even if the lensing object is close to the line of sight
as long as the object has a scale smaller than the Fresnel
scale.1 Since the Fresnel scale corresponding to typical
GWs observed by ground-based detectors (f ∼ 1 Hz) is of
the order of 1 pc given that the distance between the GW
source and observer is the cosmological distance scale, this
feature can be exploited to probe the small-scale matter
density fluctuations corresponding to the Fresnel scale of
detectable GWs [16–18]. If the observed GWs are enhanced
due to strong lensing, theweak-lensing signals superimposed
on them would also be enhanced and more easily discerned
[19]. Weak lensing is based on the Born approximation and
its precision is investigated by including the post-Born
corrections [20]. There, it is shown that the averages of
themagnification and phasemodulation become biased once
the post-Born corrections are included.
In these weak-lensing studies of GWs, it has been

demonstrated that the variances of the magnification and
phase modulation satisfy a universal and very simple
relation [21]. While its physical meaning was not identified
at the time, this relation provides a nontrivial connection
between the real and imaginary parts of the amplification

1When a point mass lens is considered, the length scale that
must be compared with the Fresnel scale is the Einstein radius.
This is equivalent to a comparison between the wavelength of
GWs and the Schwarzschild radius of the lens.
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factor (thus, the consistency relation) and holds irrespective
of the shape of the matter power spectrum. In addition,
another consistency relation for the real and imaginary
parts of the amplification factor, i.e., the GW version of the
Kramers-Kronig relation, has been reported [22].
In this paper, we demonstrate the existence of two

additional consistency relations for the averages and
variances of the magnification and phase modulation. In
doing so, we review the weak lensing of GWs in wave
optics and show that the averages of the magnification and
phase modulation are nonzero at the level of the post-Born
approximation. Then, we explain how the additional
consistency relations hold and argue that these relations
as well as the relation derived by [21] can be understood as
the weak-lensing limit of more comprehensive relations
that hold to infinite order in the gravitational potential.
Importantly, one relation emerges as a consequence of the
energy conservation law of GWs, and the second additional
relation and a previously reported relation [Eq. (3.5)] are
attributed to the Shapiro time delay. Interpreting lensing as
a consequence of the Shapiro time delay appears to provide
a physical explanation for the question raised by [21].
The rest of the paper is organized as follows. In Sec. II,

the weak lensing of GWs is reviewed and the key quantities
(i.e., the averages and variances of the magnification and
phase modulation) are derived. In Sec. III, the existence of
two additional consistency relations is demonstrated and
their physical meaning (energy conservation and the
Shapiro time delay) as well as their significance in
observations is discussed. Section IV concludes the paper.
Throughout this paper, we take c ¼ 1 and ℏ ¼ 1.

II. WEAK LENSINGOFGRAVITATIONALWAVES

In most astronomical situations, perturbations to the
relevant metric due to the presence of matter clumps are
small, and the spacetime metric is given as follows:

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdx2; ð2:1Þ

where Φ is the Newtonian gravitational potential. In this
case, the wave equation for the amplitude of GWs ϕ can be
expressed as follows:

∇2ϕ − ð1 − 4ΦÞ ∂
2ϕ

∂t2
¼ 0; ð2:2Þ

where we assume that Φ varies very slowly with time and
ignore its time derivative. The derivation of this equation is
predicated on certain assumptions, including the consid-
eration of a small gravitational potential jΦj ≪ 1 and
omission of polarization effects, as well as the assumption
that the typical curvature radius induced by Φ is much
larger than the wavelength of GWs. While the detail is
beyond the scope of this paper, a rigorous derivation of the
wave equation can be found in the literature [13,23,24].

Note that the expansion of the Universe is ignored in both
Eqs. (2.1) and (2.2). However, the inclusion of the
expansion does not change these equations once t and x
are replaced with the conformal time and comoving
distance with an associated redefinition of GWs due to
attenuation of their amplitude as ϕ → ϕ=a [25].
The lensing effect is commonly described in terms of the

amplification factor, which is defined as the ratio of the
lensed waveform to the unlensed waveform in the fre-
quency domain, i.e., FðωÞ≡ ϕ̃ðωÞ=ϕ̃0ðωÞ, where the
unlensed waveform is given by ϕ̃0ðωÞ ¼ Aeiωχ=χ, where
χ is the distance from the GW source located at the origin.
Under the assumption that the typical wavelength of GWs
is much smaller than the spatial variation of FðωÞ, Eq. (2.2)
is rewritten as follows:

i
∂F
∂χ

þ 1

2ωχ2
∇2

θF ¼ 2ωΦF; ð2:3Þ

where we used the polar coordinates ðχ; θ;ϕÞ with the
source of GWs at the origin. In this expression,∇2

θ is a two-
dimensional Laplace operator on two-sphere defined as
∇2

θ ¼ ∂
2=∂θ2 þ tan−1 θ∂=∂θ þ sin−2 θ∂2=∂ϕ2. Up to this

point, we are using the coordinate system in which the
source is at the origin; however, it is more common to
switch the location of the observer and GW source as
mentioned in [23]. In addition to switching the observer
and source, [23] uses the flat approximation in which the
waves reaching the observer are assumed to be confined to
the region where θ ≪ 1. Under this approximation, it is
appropriate to set sin θ ∼ θ and regard θ ¼ θðcosϕ; sinϕÞ
as a two-dimensional vector on a flat plane. In the present
paper, we follow the same coordinate system in [23] by
placing the GW source at ðχs; θsÞ as shown in Fig. 1.
Note that the solution to Eq. (2.3) is generally nonlinear

in Φ even though jΦj ≪ 1 is assumed. This is because the
gravitational potential induces the Shapiro time delay and
its effect manifests itself as a phase in the exponent.
Technically, the effect of the higher-order terms in Φ in
Eq. (2.3) appears as higher-order terms inOðΦωχsÞ, where
χs is the distance from the source to the observer, and this is
not necessarily small even if Φ ≪ 1 (see Appendix A).
Physically, this implies that the phase change of GWs
during propagation from the source to the observer
becomes significant and leads to complex nonlinear inter-
ference effects. For this reason, it is necessary to compute
this equation to full order in Φ to obtain the comprehensive
lensing effects.
On the other hand, in the context of weak lensing, it is

assumed thatΦ is sufficiently small that the expansion of F
in Φ up to first order provides a reasonable estimate of the
true value of the amplification factor. This approximation
(i.e., the Born approximation) is primarily used to probe the
small-scale power spectrum [16,17]. In the Born approxi-
mation, the real and imaginary parts of the amplification
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factor are defined as the magnification K and phase
modulation S, which are functions of the GW frequency
ω, the line of sight distance χs to the source, and the angular
coordinate θs perpendicular to the line of sight. In this
definition, K is related to the absolute value of F, and S is
interpreted as the argument of F.
Following the Born approximation, a systematic scheme

to handle post-Born corrections was formulated by [20],
which introduced a new definition of S and K as
FðωÞ≡ eKðωÞeiSðωÞþiωΔts . Here, ωΔts is a shift of the phase
due to the Shapiro time delay and is separated from SðωÞ as
the Shapiro time delay is not directly observable. In the
post-Born approximation, K and S are computed to second
order in Φ as follows (see Appendix A for derivation):

Sð1Þ ¼ −2ω
Z

χs

0

dχ

�
cos

�
Wðχ; χsÞ∇2

θ

2ω

�
− 1

�
Φ; ð2:4Þ

Sð2Þ ¼ −2ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2

×

�
cos

�ðW∇Þð2Þ
2ω

�
− 1

�
ð∇θ1Φ1 · ∇θ2Φ2Þ; ð2:5Þ

Kð1Þ ¼ 2ω

Z
χs

0

dχ sin

�
Wðχ; χsÞ∇2

θ

2ω

�
Φ; ð2:6Þ

Kð2Þ ¼ 2ω

Z
χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2

× sin

�ðW∇Þð2Þ
2ω

�
ð∇θ1Φ1 ·∇θ2Φ2Þ; ð2:7Þ

where Φ1ð2Þ ¼ Φðχ1ð2Þ; θÞ, Wðχ; χsÞ ¼ 1=χ − 1=χs, and

ðW∇Þð2Þ ¼ Wðχ; χsÞ∇2
θ12 þWðχ1; χÞ∇2

θ1 þWðχ2; χÞ∇2
θ2:

ð2:8Þ

In addition, the Shapiro time delay is given in the same
manner up to second order as follows:

Δtð1Þs ¼ −2
Z

χs

0

Φdχ; ð2:9Þ

Δtð2Þs ¼−2
Z

χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2∇θ1Φ1 ·∇θ2Φ2: ð2:10Þ

Note that the derivatives are taken with respect to θ with the
operator ∇2

θ12 acting on both Φ1 and Φ2, while ∇2
θ1ð2Þ only

acts on Φ1ð2Þ. Also, the derivative operators involving the
trigonometric functions (e.g., cos ½ðWðχ; χsÞ∇2

θÞ=ð2ωÞ�) are
defined through the Fourier transform. In other words, for
arbitrary functions FðxÞ of a differential operator x and
fðχ; θÞ,Fð∇θÞfðχ;θÞ¼

R
dk⊥=ð2πÞ2Fðiχk⊥Þf̃ðχ;k⊥Þeik⊥·χθ,

where f̃ðχ; k⊥Þ is the Fourier transform of fðχ; θÞ with
respect to χθ defined as f̃ðχ; k⊥Þ ¼

R
χ2dθfðχ; θÞe−iχθ·k⊥

and k⊥ is a wave vector on the two-sphere. In addition, the
integral is taken along the straight line connecting the source
and observer. In these expressions, the first-order terms Sð1Þ

and Kð1Þ are the Born approximation, where Kð1Þ reduces to
the linear order convergence κ in geometric optics in thehigh-
frequency limit.
As is common in the context of weak lensing in geometric

optics, the lensing signals are treated as random variables
and the averages h� � �i of these quantities are considered.
Using the power spectrum of the gravitational potential Φ
combined with the Limber approximation, it is shown that
the following is satisfied for arbitrary functions FðyÞ and
GðyÞ of the two-dimensional differential operator y:

hFð∇θ1ÞΦ1Gð∇θ2ÞΦ2i

¼ δDðχ1−χ2Þ
Z

d2k⊥
ð2πÞ2Fðiχ1k⊥ÞGð−iχ1k⊥ÞPΦðk⊥;χ1Þ:

ð2:11Þ

Here, we introduce the power spectrum of the gravitational
potential Pϕðk; χÞ defined as

hΦ̃ðk1; χÞΦ̃ðk2; χÞi ¼ ð2πÞ3δDðk1 þ k2ÞPΦðk1; χÞ; ð2:12Þ

FIG. 1. Gravitational lensing geometry. Following [23], we use
the coordinate system in which the distance from the observer is
χ, and θ is the two-dimensional vector perpendicular to the line of
sight. The GW source is located at ðχs; θsÞ, where jθsj ≪ 1. In the
flat-sky approximation, GWs reaching the observer are confined
to the region jθj ≪ 1.

NEW CONSISTENCY RELATIONS BETWEEN AVERAGES AND … PHYS. REV. D 109, 083505 (2024)

083505-3



where Φ̃ðk; χÞ is the Fourier transform of the gravitational potential and δDðkÞ is the delta function. With this relation and
Eqs. (2.4)–(2.7), we obtain

hSi ¼ 2ω

Z
χs

0

dχ
χ2

Z
χ

0

dχ1χ21

Z
d2k⊥
ð2πÞ2 k

2⊥
�
1 − cos

�ðχ − χ1Þχ1
χω

k2⊥
��

PΦðk⊥; χ1Þ; ð2:13Þ

hKi ¼ −2ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ1χ21

Z
d2k⊥
ð2πÞ2 k

2⊥ sin

�ðχ − χ1Þχ1
χω

k2⊥
�
PΦðk⊥; χ1Þ; ð2:14Þ

for the averages, and, we obtain the following:

hS2i ¼ 4ω2

Z
χs

0

dχ
Z

d2k⊥
ð2πÞ2

�
1 − cos

�ðχs − χÞχ
2χsω

k2⊥
��

2

PΦðk⊥; χÞ; ð2:15Þ

hK2i ¼ 4ω2

Z
χs

0

dχ
Z

d2k⊥
ð2πÞ2 sin

2

�ðχs − χÞχ
2χsω

k2⊥
�
PΦðk⊥; χÞ; ð2:16Þ

hSKi ¼ −4ω2

Z
χs

0

dχ
Z

d2k⊥
ð2πÞ2 sin

�ðχs − χÞχ
2χsω

k2⊥
��

1 − cos

�ðχs − χÞχ
2χsω

k2⊥
��

PΦðk⊥; χÞ; ð2:17Þ

for the variances and the correlation between S and K.

In these expressions, the scale at which the argument of
the trigonometric functions becomes order unity provides a
rough scale at which GWs are particularly sensitive. This
particular scale is referred to as the Fresnel scale
rF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χðχs − χÞ=χsω
p

. In the context of lensing of
GWs, the Fresnel scale is expressed as follows [15,16]:

rF ∼ 120 pc

�
f

mHz

�
−1=2

�
χðχs − χÞ=χs

10 Gpc

�
1=2

; ð2:18Þ

where f ¼ ω=2π. The Fresnel scale varies with the GW
frequency ω; thus, measuring the frequency dependence
of hS2i,hK2i, hSKi,hSi, and hKi is expected to be a unique

probe for density fluctuations at scales as small as k ≃
106–108 Mpc−1 for f ¼ 10–1000 Hz [16,17,20]. Since
the frequency dependence becomes relevant in the follow-
ing discussion, the notations Sω and Kω are used to
indicate the frequency dependence of each lensing signal
[e.g., hSωi ¼ hSðωÞi].

III. CONSISTENCY RELATIONS

The expressions for the averages [Eqs. (2.13) and (2.14)]
can be simplified by exchanging the order of the integral asR χs
0 dχ

R χ
0 dχ1 →

R χs
0 dχ1

R
χs
χ1
dχ. Then, it is straightforward

to obtain the following:

hSωi ¼ 2ω2

Z
χs

0

dχ1

Z
d2k⊥
ð2πÞ2

��ðχs − χ1Þχ1
χsω

k2⊥
�
− sin

�ðχs − χ1Þχ1
χsω

k2⊥
��

PΦðk⊥; χ1Þ; ð3:1Þ

hKωi ¼ −4ω2

Z
χs

0

dχ1

Z
d2k⊥
ð2πÞ2 sin

2

�ðχs − χ1Þχ1
2χsω

k2⊥
�
PΦðk⊥; χ1Þ: ð3:2Þ

By comparing these expressions with Eqs. (2.15)–(2.17),
we can readily find the following consistency relations,
which are accurate up to second order in Φ:

hK2
ωi þ hKωi ¼ 0; ð3:3Þ

hSωi −
1

2
hS2ωi ¼ −hSωKωi: ð3:4Þ

Note that to the best of our knowledge, these consistency
relations have not been previously reported. These relations
involve the averages of S and K, which vanish in the Born
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approximation and only appear at the level of the post-Born
approximation. The discovery of these relations was
possible by considering the post-Born approximation
within the wave-optics framework. In addition, the con-
sistency relations derived here can provide new insight into
an existing consistency relation derived by [21], which is
explicitly expressed as follows:

hS2ωi þ hK2
ωi ¼ hK2

2ωi: ð3:5Þ

We observe that this consistency relation can be merged
with Eq. (3.4) as a single consistency relation for a
complex-valued quantity using Eq. (3.3). By combining
Eqs. (3.4) and (3.5), we obtain the following equivalent
consistency relation:

hKωþ iSωi−
1

2
hK2ωþ iS2ωi¼−

1

2
hðKωþ iSωÞ2i: ð3:6Þ

In the following, we demonstrate that these relations can be
derived as the weak-lensing limit of more general relations
that are accurate to full order in Φ. In particular, we
demonstrate that the consistency relation (3.3) arises from
the energy conservation of GWs. A similar relation for the
convergence κ (hκ2i ¼ −2hκi) [26,27] is derived under the
photon number conservation in geometric optics [28];
however, the discussion based on energy conservation is
more general because it includes both geometric and wave
optics. On the other hand, the consistency relations (3.4)
and (3.5) appear to be attributed to the Shapiro time delay,
which is discussed in the Sec. III C.

A. Ensemble average

The main results presented above, i.e., Eqs. (3.3) and
(3.4), are based on the computation of the average h� � �i
without paying particular attention to its meaning.
However, it is important to revisit the meaning of the
average to ensure a precise understanding of its implica-
tions, particularly in relation to the energy conservation
law. In addition, it is also essential for determining how the
average should be practically taken in future experimental
settings.
The average considered up to this point in this paper is

referred to as the ensemble average [29,30], which hypo-
thetically assumes the existence of multiple universes, each
with different matter-density configurations. In this sce-
nario, we can compute the lensing signal Xðχs; θsÞ (e.g., S,
K in wave optics and κ, γ in geometric optics) by
considering the GW (or light) signals from the same source
at a fixed distance χs in each realization. Note that since X
describes the lensing effect, it does not depend on the
physical property of the source. The ensemble average is
then obtained by taking the average value of X over the
ensemble of universes. This is the original meaning of
the ensemble average that we implicitly assumed in the

previous discussion. In cosmology, it is presumed that the
universe is statistically homogeneous and isotropic, mean-
ing that the average of all realizations of universes is
homogeneous and isotropic, even if each individual reali-
zation is not necessarily so. This implies that the spatial
derivative of hXi with respect to the true location of the
source always vanishes; thus, we obtain the following:

∇θhXðχs; θsÞi ¼ 0: ð3:7Þ

However, in reality, we only have access to a single
realization of the universe, thereby making the true
ensemble average unattainable. Therefore, it becomes
necessary to replace the ensemble average with a sta-
tistically computable averaging process. In a statistically
homogeneous and isotropic universe, one can find that the
ensemble average is approximated by the average over the
observers which represents the mean value of X measured
by a number of observers uniformly populated on the
surface of a sphere with radius χs surrounding a single
source. This allows us to rewrite hXi as follows:

hXi ¼ 1

4π

Z
XðθÞdΩ: ð3:8Þ

Note that θ is the location of the observers on the surface of
a sphere with radius χs surrounding the source.
However, we can only observe the source from the Earth;

thus, it remains unfeasible to directly compute the average
over the observers. In practice, hXi is taken as the average
over the sources, which represents the mean value of X
computed from various sources located at the same fixed
distance χs. It is obtained by simply summing all lensing
signals X from the sources at χs and dividing the sum by the
number of the sources. As long as each individual source is
fully resolved, the average over the sources can be
identified as the ensemble average. In our context, we
focus on a GW signal from binary systems where each
individual source can be identified; thus, the ensemble
averages of the lensing signals derived in the previous
section (hS2i; hK2i, etc.) should be taken as the average
over the sources.
It is important to emphasize that hXi, which, as discussed

above, should not be confused with the average over the
apparent directions of the sources within the framework of
geometric optics. The average over the directions is another
approach commonly used in cosmology to compute the
average of X [31,32] and is computed in a practical manner
by dividing the celestial sphere into small patches with
equal area and averaging X over these patches.
The difference between the average over the sources and

the average over the directions may seem subtle and indeed
can be disregarded within the Born approximation (i.e., the
first-order approximation of X). However, when the higher-
order terms are taken into account, making the distinction
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between these two becomes crucial, and failure to do so
results in erroneous outcomes [27,33].

B. Energy conservation

Before delving into the main discussion, it is important
to consider the meaning of the energy of GWs. Although
defining the energy of GWs is not as simple as the case of
electromagnetic waves, it is still possible to assign energy
to GWs as a conserved quantity when there is a clear
separation of scales [34]. In the context of gravitational
lensing, there are two types of metric perturbations: the
gravitational potential Φ due to the presence of matter
inhomogeneity and the metric perturbation caused by the
GWs themselves. Here, we assume that the wavelength of
GWs is much shorter than the typical curvature radius of
the gravitational potential; thus, the metric perturbation
associated with GWs can be separated from the background
metric. As a result, we can treat GWs as a classical field just
like any other fields living in an inhomogeneous universe
described in Eq. (2.1). This approach enables us to identify
a conserved quantity corresponding to the energy of
GWs [25].
With this in mind, we can observe that Eq. (2.2) is

essentially a wave equation with the lensing effect included
as an interaction between GWs and the gravitational
potential Φ. Thus, it can be rewritten as follows:

∂

∂t

�
1

2
ð∇ϕÞ2 þ 1

2
ϕ̇2 − 2Φϕ̇2

�
¼ −∇ · ð−ϕ̇∇ϕÞ: ð3:9Þ

Now, let us consider the volume integral over the region V
whose surface is denoted as S. Here, since the energy of
GWs in a certain region is given by Eq. (B7) in
Appendix B, we can connect Eq. (3.9) with the energy
conservation law by taking the time average of Eq. (3.9)2 in
addition to the spatial integral. Then, Eq. (3.9) can be
rewritten as follows:

dE
dt

¼ −
1

16πG

Z
tþT

t

dt0

T

Z
S
dSn · ð−ϕ̇∇ϕÞ; ð3:10Þ

where n is a unit normal vector at each point on S and T is a
range of time average, which is taken sufficiently longer
than the period of GWs. From this expression, it is clear
that the left-hand side represents the average rate at which
the total energy in the region V varies, and the right-hand
side represents the average energy flow going into V. Thus,
when the sign of the right-hand side is flipped, it is
interpreted as the energy going out from V.
Suppose the GW source is at the origin of the coordinate

and ϕ is the superposition of the different frequency modes:

ϕðx; tÞ ¼
Z

dω
2π

eiωχ−iωt

χ
hðωÞFðω; xÞ; ð3:11Þ

where hðωÞ is the Fourier transform of the original wave-
form. Next, we consider a sphere with the radius χ. By
taking the volume integral over this region and the time
average, we obtain the following:

Z
Tþt

t

dt0

T

Z
S
dSn · ð−ϕ̇∇ϕÞ

¼ 1

T

Z
dω
2π

ω2jhðωÞj2
Z

dΩFðωÞF�ðωÞ; ð3:12Þ

where Ω is a solid angle. Therefore, we obtain the
following:

dE
dt

¼−
1

16πGT

Z
dω
2π

ω2jhðωÞj2
Z

dΩFðωÞF�ðωÞ: ð3:13Þ

When the GW source is completely confined in the region
V and there are no objects in V that absorb or produce
GWs, then the right-hand side, especially

R
dΩFðωÞF�ðωÞ,

becomes independent of the radius of a sphere χ surround-
ing the source. In addition, the left-hand side is independent
of the matter distribution in the region V assuming that the
gravitational potential does not significantly change over
time; thus, the right-hand side is also not subject to this
dependence. Given that F ¼ 1 when there are no lensing
effects,

R
dΩFF� needs to be normalized as follows:

1 ¼ 1

4π

Z
dΩFF�: ð3:14Þ

The right-hand side is the average ofFF� over the observers,
and it is identical to both the ensemble average and the
average over the sources; thus, we obtain the following
relation for the average of the absolute square of F:

hFF�i ¼ 1: ð3:15Þ

In our notation, the magnification K and the phase modu-
lation S are defined as F ¼ eKþiSþiωΔts , which allows us to
rewrite the energy conservation condition as he2Ki ¼ 1. In a
weak-lensing regime,K is sufficiently smaller than unity and
the Taylor expansion of e2K up to second order inK provides
e2K ¼ 1þ 2K þ 2K2 þOðK3Þ. From this expression, it is
clear that up to second order inΦ, hK2i þ hKi ¼ 0 needs to
hold. One noteworthy aspect of the relation hFF�i ¼ 1 is its
generality. It is the full-order result and does not assume any
specific distribution of matter.

C. Average of amplification factor

In the following, we explain a more general way
to derive the consistency relations (3.4) and (3.5).

2The time average is defined as hAit ¼ ð1=TÞ R tþT
t dt0Aðt0Þ for

an arbitrary time-dependent quantity AðtÞ. Note that hAit is still a
function of time.
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The physical interpretation of these relations may not be as
clear as the consistency relation associated with energy
conservation; however, they can still be derived from a
more general, full-order condition, similar to how hKi ¼
−hK2i is directly derived from hFF�i ¼ 1.

By observing Eq. (2.3), it is clear that the expression
takes the same form as the Schrödinger equation with time-
varying mass. Therefore, it is possible to obtain the formal
solution to this equation using the path integral method, as
presented by [23]

Fðω; χs; θsÞ ¼
Z

D½θðχÞ� exp
�
i
Z

χs

0

�
1

2
ωχ2

				 dθðχÞdχ

				
2

− 2ωΦðχ; θðχÞÞ
�
dχ

�
; ð3:16Þ

where the normalization factor is absorbed in D½θðχÞ� and is determined to satisfy F ¼ 1 when Φ ¼ 0. Now, we consider
taking the ensemble average of this expression. When the ensemble average is taken, the only random variable that appears
in this expression is Φ. Thus, hFi is given as follows:

hFi ¼
Z

D½θðχÞ� exp
�
i
1

2
ω

Z
χs

0

χ2
				 dθðχÞdχ

				
2

dχ

�
he−2iω

R
χs
0

Φðχ;θðχÞÞdχi: ð3:17Þ

Here, the computation of the n point correlation function
hΦðχ1; θðχ1ÞÞ � � �Φðχn; θðχnÞÞi is required to obtain
hexp ½−2iω R χs

0 Φðχ; θðχÞÞdχ�i. By considering the spatial
homogeneity and the assumption that the potential Φ
evaluated at different χ is uncorrelated (the Limber ap-
proximation), we obtain hexp ½−2iω R χs

0 Φðχ; θðχÞÞdχ�i ¼
hexp ½−2iω R χs

0 Φðχ; θsÞdχ�i.3 Then, hFi is further simplified
as follows:

hFðχs;θsÞi¼


exp

�
−2iω

Z
χs

0

Φðχ;θsÞdχ
��

¼heiωΔtð1Þs i:

ð3:18Þ

This is a surprisingly simple relation that is accurate to full
order. Here, F is written as F ¼ eKðωÞeiSðωÞþiωΔts ; thus, this
expression can be formally expanded in Φ as follows:

1þ hK þ Sþ ωΔtsi þ
1

2
hðK þ iSþ iωΔtsÞ2i þOðΦ3Þ

¼ 1 −
ω2

2
hðΔtð1Þs Þ2i þOðΦ3Þ: ð3:19Þ

From this relation and Eqs. (2.4)–(2.10), we obtain the
following expression up to second order in Φ:

hKωþ iSωi−
1

2
hK2ωþ iS2ωi¼−

1

2
hðKωþ iSωÞ2i: ð3:20Þ

This is nothing more than Eqs. (3.4) and Eq. (3.5). In
addition, the expressions of the consistency relations (3.4)

and (3.5) are based partly on the Limber approximation,
which was not assumed in the derivation of the consistency
relation associated with energy conservation.
A notable difference between the consistency relations

(3.4) and (3.5) and the one related to energy conservation
(3.3) is that Eqs. (3.4) and (3.5) establish a nontrivial
connection between the real and imaginary parts of the
amplification factor (i.e., magnification K and the phase
modulation S in weak lensing). Here, we propose that this
nontrivial relation arises from the Shapiro time delay. As
observed in Eq. (3.16), the amplification factor F is
obtained by the superposition of all waves traveling along
various possible paths. Since the presence of the gravita-
tional potential in a particular region only induces a phase
shift to the GWs passing through that area, the resulting F
undergoes changes in both the magnification and the phase
modulation. However, these changes are only due to
constructive and destructive interference. Thus, it is
expected that there is a nontrivial connection between
the magnification and the phase modulation, and it appears
that this connection becomes apparent in the form of the
consistency relations when the average is taken.4

To obtain a more intuitive understanding of this non-
trivial connection between the real and imaginary parts of
F, we provide a simple toy model that demonstrates this
effect. Suppose two GWs with the same amplitude travel
along different paths of equal length and arrive at the
location of an observer. Without any lensing objects, the
amplification factor is F ¼ 1. However, if one of the GWs
passes through a region with nonzero gravitational potential
Φ that extends over a length Δχ, the resulting amplification
factor can be written as follows:

3Because hΦðχ1; θðχ1ÞÞ � � �Φðχn; θðχnÞÞi ¼ δDðχ1 − χ2Þ � � �
δDðχn−1 − χnÞhΦðχ1; θðχ1ÞÞ � � �Φðχ1; θðχ1ÞÞi⊥ ¼ hΦðχ1; θsÞ � � �
Φðχ1; θsÞi, where h� � �i⊥ indicates the ensemble average on the
plane perpendicular to the line of sight.

4The nontrivial relation between the real and the imaginary
parts of the amplification factor has been reported by [22], where
the relation arises from the causality of GWs.
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FðωÞ ¼ eKωþiSω ¼ 1

2
ð1þ e−2iωΔχΦÞ: ð3:21Þ

From this amplification factor, we obtain the expressions
for the magnification Kω and phase modulation Sω:

Kω ¼ 1

2
ln

�
1þ cos ð2ωΔχΦÞ

2

�
; ð3:22Þ

Sω ¼ − tan−1
�

sin ð2ωΔχΦÞ
1þ cos ð2ωΔχΦÞ

�
: ð3:23Þ

By expanding these expressions up to second order in Φ,
we can verify the following:

Kω þ iSω −
1

2
ðK2ω þ iS2ωÞ ¼ −

1

2
ðKω þ iSωÞ2 þOðΦ3Þ:

ð3:24Þ

This relation is identical to Eq. (3.20) with the only
difference being the absence of the averaging process.
Therefore, it is reasonable to conclude that the Shapiro time
delay is responsible for the origin of the consistency
relation, Eq. (3.20).

D. Violation of consistency relations
due to massive gravitons

The consistency relations we derived above are satisfied
irrespective of the shape of the matter power spectrum;
thus, it is constructive to investigate the circumstances
under which the consistency relations might be compro-
mised, especially due to the violation of the fundamental
physics principle we assumed rather than as a result of
observational errors and biases. Given that Eq. (3.3) arises
as a result of the energy conservation and Eqs. (3.4) and
(3.5) [equivalently Eq. (3.20)] are attributed to the Shapiro
time delay under the assumption of GWs propagating at the
speed of light, it is expected that Eq. (3.3) remains to be
satisfied, whereas Eq. (3.20) may be violated if the speed of
GW propagation is changed. In order to see if this
expectation is indeed correct, let us consider the case of
massive gravitons, since this is the simplest modification to
GR to account for the change in the propagation speed of
GWs. When the mass of a graviton m is considered, the
wave equation for the amplification factor F is rewritten as
follows:

i
∂F
∂χ

þ 1

2ωχ2
∇2

θF ¼ 2ωΦF þm2

2ω
F: ð3:25Þ

This expression indicates that a newly defined function

F0 ¼ Fe
im2χs
2ω ¼ eKþiðSþm2χs

2ω ÞþiωΔts satisfies the equation for a
massless graviton (2.3). As we have shown above, the
magnification and phase modulation for a massless

graviton satisfy Eq. (3.20), and in this case, the corre-
sponding magnification and phase modulation are Kω and

Sω þ m2χs
2ω ; thus, the modified version of the consistency

relation when the mass of a graviton is included is obtained

by simply replacing Sω with Sω þ m2χs
2ω as follows:



Kω þ i

�
Sω þm2χs

2ω

��
−
1

2



K2ω þ i

�
S2ω þm2χs

4ω

��

¼ −
1

2


�
Kω þ i

�
Sω þm2χs

2ω

��
2
�
: ð3:26Þ

This modified version of the consistency relation implies

that the deviation from Eq. (3.4) is of the order m2χs
ω , while

the deviation from Eq. (3.5) is of the order ðm2χs
ω Þ2 when the

mass of a graviton is considered. Note that the consistency
relation originating from the energy conservation (i.e.,
hKi ¼ −hK2i or hFF�i ¼ he2Ki ¼ 1) is unchanged even
when the mass of a graviton is considered, since FF� ¼
he2Ki ¼ 1 is unaffected by replacing F with Fe

im2χs
2ω .

Physically, this is a consequence of the fact that energy
conservation is still satisfied despite the presence of
massive gravitons; thus, the associated consistency relation
(3.3) also remains unchanged.

E. Application

The weak-lensing signals S and K can be used to probe
the small-scale matter power spectrum [16,17]. In order to
achieve this, it is of critical importance to accurately extract
correct S and K from the observational data. As suggested
in [21,22], consistency relations have the potential to serve
as a means to verify the reliability of the lensing signal
obtained from observational data. By confirming the
satisfaction of the consistency relations, we can independ-
ently confirm the correctness of the observed lensing
signals without assuming the shape of matter power
spectrum, enabling us to use the lensing signals as probes
for small-scale matter-density fluctuations. In addition,
satisfaction of the consistency relations will confirm the
validity of the general relativistic formulation of the lensing
signals. Conversely, any deviation from the consistency
relations serves as a warning sign that the estimation of S
and K may not have been performed correctly, which
prevents incorrect results from being inferred from unre-
liable data. While the primary objective of this paper is to
present the new consistency relations and discuss their
physical implications, it is worth providing a rough
estimate of how well the presented consistency relations
are satisfied under more realistic scenarios.
Therefore, we consider the feasibility of confirming the

consistency relations following a similar method presented
in [20,21]. In practical situations, the average h� � �i is taken
as the average over the sources, which requires a number of
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GWs fromvarious sources, e.g., binary black holes located at
a fixed redshift. However, in principle, it is impossible to
collect a sufficient number of lensing signals from the
sources with exactly the same redshift zs; thus, it is necessary
to redefine the average by allowing the inclusion of signals
whose redshift falls within a range zs − Δz < z < zs þ Δz.
The redshift dependence of the lensing signal Xð¼ S;KÞ
suggests that the observed variance at zs þ Δz is roughly
given by hXðzsþΔzÞ2i¼ hXðzsÞ2ið1þOðΔzÞÞ [16,17,20].
With this in mind, we define the estimators EA and EB as

EAðωÞ ¼
1

N

X
i

ðK2
i ðω; ziÞ þ Kiðω; ziÞÞ; ð3:27Þ

EBðωÞ ¼
1

N

X
i

�
Siðω; ziÞ −

1

2
Sð2ω; ziÞ

þ Siðω; ziÞKiðω; ziÞ
�
; ð3:28Þ

where Ki and Si are assumed to contain independent
Gaussian noise ni with zero mean and variance 1=SNR2,
where SNR is the signal-to-noise ratio of the detectors for a
particular frequency of GWs. In addition, the products of the
signals, e.g., K2

i ðω; ziÞ and Siðω; ziÞKiðω; ziÞ, are assumed
to be computed using the two values obtained from different
detectors with independent noise. Under this assumption, we
can immediately obtain hEAi ¼ hEBi ¼ 0. Furthermore,
under the assumptions of weak lensing, small Δz
(hXðzs þ ΔzÞ2i ∼ hXðzsÞ2i), and jKj; jSj < 1=SNR, we
obtain hE2

Ai1=2 ∼ hE2
Bi1=2 ∼ 1

SNR
1ffiffiffi
N

p , which provides the esti-

mated fluctuations in EA and EB.
The number of GW events expected to be observed per

year within a redshift range 2.9 < zs < 3 can be estimated
as N ∼ 103 under the assumption that the merger rate at
zs ¼ 3 is R ¼ 20 Gpc−3 yr−1 [35]. In the SNR ¼ 50 case,

1
SNR

ffiffiffi
N

p ∼ 6 × 10−4. Since
ffiffiffiffiffiffiffiffiffiffi
hK2i

p
∼Oð10−2Þ and

ffiffiffiffiffiffiffiffiffi
hS2i

p
∼

Oð10−3Þ at zs ∼ 3 and f ∼ 1 Hz, in this scenario, the
consistency relation (3.3) can be confirmed with an
accuracy of approximately Oð1Þ% of hKi; hK2i, and the
consistency relation (3.4) can be confirmed with an
accuracy of up to Oð10Þ% of hSi; hSKi. Note that the
value of the merger rate R used here is an estimated value at
a fiducial redshift z ¼ 0.2 (rather than z ¼ 3). Since R is
expected to take a larger value at higher redshift, the
number of GW events we estimated might be moderately
underestimated. Thus, in reality, the consistency relation
can be even more tightly confirmed.

IV. CONCLUSION

In this paper, we investigated the lensing of GWs with a
particular focus on consistency relations. In addition to the
previously reported consistency relation [21], we have
identified two additional consistency relations (3.3) and

(3.4) that are accurate in the weak-lensing regime by
directly computing the magnification K and phase modula-
tion S. We have demonstrated that Eq. (3.3) arises from the
conservation of energy in GWs by demonstrating that
Eq. (3.3) is derived as the weak-lensing limit of
hFF�i ¼ 1. In fact, hFF�i ¼ 1 holds to full order in Φ
regardless of the shape or the correlation of the matter
clumps. In addition, we have shown that the other consis-
tency relations (3.4) and (3.5) can be also derived as the
weak-lensing limit of the average of the amplification factor

hFi ¼ he−2iω
R

χs
0

Φdχi, which is also accurate to full order in
Φ. The analysis presented in this paper indicates that the
consistency relations (3.4) and (3.5) appear to arise from the
Shapiro time delay, which locally alters the phase of GWs.
This leads to interference effects and poses the nontrivial
connection between K and S, which becomes evident when
the average is taken. Finally,we have demonstrated that these
consistency relations can be confirmed observationally given
that sufficient SNR ∼ 50 is achieved. Thus, we expect that
they will provide independent verification of the correct
observed lensing signals and enable us to properly probe
matter-density fluctuations at very small scales.
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APPENDIX A: DERIVATION OF Sð1Þ; Sð2Þ;Kð1Þ; Kð2Þ

In this appendix, we review the derivation of
Sð1Þ; Sð2Þ; Kð1Þ, and Kð2Þ following the method developed
in [20]. In [20], a new variable J defined as F ¼ eiωJ is
used to include the effect beyond the Born approximation.
In order to clarify the reason for the necessity to introduce
J, let us start by considering the expansion of F in Φ and
see why it is not the best way to investigate beyond the
Born approximation. First, we rewrite Eq. (2.3) as follows:

�
∂

∂χ
−

i
2ωχ2

∇2
θ

�
F ¼ −2iωΦF: ðA1Þ

Note that θ is a two-dimensional Cartesian coordinate vector,
i.e., we are adopting the flat-sky approximation (θ ≪ 1) [23].
Under this assumption, ∇2

θ is a Laplace operator on a
two-dimensional flat space defined as ∇2

θ ¼ ∂
2=∂θ2 þ

θ−1∂=∂θ þ θ−2∂2=∂ϕ2. This equation can be formally solved
by finding Green’s function of the linear operator on the left-
hand side of this expression. By definition, Green’s function
satisfies the following equation:

�
∂

∂χ
−

i
2ωχ2

∇2
θ

�
Gðχ − χ0; θ − θ0Þ ¼ δDðχ − χ0ÞδDðθ − θ0Þ;

ðA2Þ
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which can be solved to be

Gðχ − χ0; θ − θ0Þ

¼ iω
2π

χχ0

ðχ − χ0Þ exp
�
iω

χχ0

2ðχ − χ0Þ jθ − θ0j2
�
Θðχ − χ0Þ;

ðA3Þ

where ΘðχÞ is a step function. Now, we assume that the
observer is at ðχs; θsÞ and the GW source is at the origin.
Then, using this Green’s function, Fðχs; θsÞ is written as
follows:

Fðχs; θsÞ ¼
Z

dχ
Z

dθGðχs − χ; θs − θÞf−2iωΦðχ; θÞFg

¼ −2iω
Z

χs

0

dχ
Z

dθ
iω
2π

χsχ

ðχs − χÞ

× exp

�
iω

χsχ

2ðχs − χÞ jθs − θj2
�
Φðχ; θÞFðχ; θÞ

¼ −2iω
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�

×Φðχ; θsÞFðχ; θsÞ; ðA4Þ

where Wðχ0; χÞ ¼ 1=χ0 − 1=χ. From the second line to the
third, the following formula was used:

Z
dy exp ðiωjy − x0j2ÞfðyÞ ¼

iω
π
exp

�
i∇2

x0

4ω

�
fðx0Þ: ðA5Þ

This formula can be verified by Fourier transforming fðyÞ
and performing the Gaussian integral. Then, consider the
expansion of F in Φ, namely, F ¼ 1þ Fð1Þ þ Fð2Þ þ � � �,
where the zeroth-order term is determined to be 1 sinceF →
1 when there is no lensing, i.e., Φ ¼ 0. By plugging F ¼
1þ Fð1Þ þ Fð2Þ þ � � � in Eq. (A1), we obtain the following
expressions up to second order in Φ:

Fð1Þ ¼ −2ω
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�
Φðχ; θsÞ; ðA6Þ

Fð2Þ ¼ 4ω2

Z
χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�

×

�
Φðχ; θsÞ

Z
χ

0

dχ0 exp
�
i
Wðχ0; χÞ∇2

θ

2ω

�
Φðχ0; θsÞ

�
:

ðA7Þ

From this expression, it is verified that Fð1Þ ∼OðΦωχsÞ and
Fð2Þ ∼OððΦωχsÞ2Þ. In fact, it can be shown through
iteration that FðnÞ ∼OððΦωχsÞnÞ. Thus, the higher-order
terms in Φ always appear as higher-order terms in Φωχs in
the expansion of F. Due to this property, there are two

problems associatedwith expandingF, even thoughFðnÞ can
be formally computed. Firstly, it is not clear how to obtain the
geometric optics limit from this expression. Conceptually,
geometric optics should be derived by taking ω → ∞,
however; since FðnÞ ∼OðΦωχsÞ, it is required to compute
F to full order inΦωχs in order to accurately estimateF. The
second problem is that the higher-order terms need to be
converted into physical quantities such as the phase modu-
lation and magnification through an additional process. For
example, the phase modulation is obtained by computing the
imaginary part of logF; therefore, even if FðnÞ are obtained,
we need to perform nontrivial calculations to obtain the
correction terms to the phase modulation.
Having said that, it is possible to systematically compute

the correction terms to the physical quantities by introduc-
ing a new variable J defined as F ¼ eiωJ as suggested in
[20]. Using J, Eq. (2.3) becomes

�
∂

∂χ
−

i
2ωχ2

∇2
θ

�
J ¼ fðχ; θÞ; ðA8Þ

where fðχ; θÞ ¼ −2Φ − ð∇θJÞ2=ð2χ2Þ. Following the
same step, we can write this equation in the following form:

Jðχs; θsÞ ¼
Z

dχ
Z

dθGðχs − χ; θs − θÞfðχ; θÞ

¼
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�

×

�
−2Φ −

1

2χ2
ð∇θJÞ2

�
: ðA9Þ

Now, let us define JðnÞ as the components of J proportional to
the nth order of the gravitational potential, i.e.,
J ¼ Jð1Þ þ Jð2Þ þOðΦ3Þ. By inserting J ¼ Jð1Þ þ Jð2Þ þ
OðΦ3Þ. into Eq. (A9) and equating the same order terms,
JðnÞ can be formally obtained order by order. Then, the
expressions for Jð1Þ and Jð2Þ are given as follows:

Jð1Þðχs; θsÞ ¼
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�
ð−2Φðχ; θsÞÞ;

ðA10Þ

Jð2Þðχs; θsÞ ¼ −
Z

χs

0

dχ exp

�
i
Wðχ; χsÞ∇2

θ

2ω

�

×
ð∇θJð1Þðχ; θsÞÞ2

2χ2
: ðA11Þ

In order to further simplify the expression for Jð2Þ, it is
convenient to introduce several notionsΦ1ð2Þ ≡Φðχ1ð2Þ; θsÞ
and∇θ1ð2Þ and∇θ12. Here,∇θ12 are defined to act on bothΦ1

andΦ2, whereas∇θ1ð2Þ only acts onΦ1ð2Þ. Then, Eq. (A11) is
rewritten as
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Jð2Þðχs;θsÞ¼−2
Z

χs

0

dχ
χ2

exp

�
i
Wðχ;χsÞ∇2

θ12

2ω

�Z
χ

0

dχ1

Z
χ

0

dχ2∇θ1

�
exp

�
i
Wðχ1;χÞ∇2

θ1

2ω

�
Φ1

�
·∇θ2

�
exp

�
i
Wðχ2;χÞ∇2

θ2

2ω

�
Φ2

�
:

ðA12Þ

In this notation, ∇θ12 and ∇θ1ð2Þ all commute with each other; thus, Jð2Þ is given by the following expression:

Jð2Þðχs; θsÞ ¼ −2
Z

χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2 exp

�
i
ðW∇Þð2Þ

2ω

�
∇θ1Φ1 · ∇θ2Φ2; ðA13Þ

where ðW∇Þð2Þ ≡Wðχ; χsÞ∇2
θ12 þWðχ1; χÞ∇2

θ1 þWðχ2; χÞ∇2
θ2. The phase modulation S and magnification K are obtained

from the relation iωJ ¼ K þ iSþ iωΔts, where the Shapiro time delay Δts is given by Δts ¼ limω→∞ JðωÞ [20]. Using
Eqs. (A10), (A13), and the definition of K and S, the following expressions for Sð1Þ; Sð2Þ; Kð1Þ, and Kð2Þ are obtained:

Sð1Þ ¼ −2ω
Z

χs

0

dχ

�
cos

�
Wðχ; χsÞ∇2

θ

2ω

�
− 1

�
Φ; ðA14Þ

Sð2Þ ¼ −2ω
Z

χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2

�
cos

�ðW∇Þð2Þ
2ω

�
− 1

�
ð∇θ1Φ1 ·∇θ2Φ2Þ; ðA15Þ

Kð1Þ ¼ 2ω

Z
χs

0

dχ sin

�
Wðχ; χsÞ∇2

θ

2ω

�
Φ; ðA16Þ

Kð2Þ ¼ 2ω

Z
χs

0

dχ
χ2

Z
χ

0

dχ1

Z
χ

0

dχ2 sin

�ðW∇Þð2Þ
2ω

�
ð∇θ1Φ1 ·∇θ2Φ2Þ: ðA17Þ

Note that in this expression, the geometric optics limit can
be easily obtained by taking ω → ∞. Indeed, the magni-
fication reduces to the weak-lensing convergence in this
limit (Appendix A of [20]). In addition, higher-order
corrections can be computed in the same way without
going through any conversion processes. Throughout this
derivation, we consider that the GW source is located at the
origin and the observer is at ðχs; θsÞ; however, as shown in
[23], these expressions remain unchanged if we swap the
location of the observer and GW source.

APPENDIX B: ENERGY DENSITY OF
GRAVITATIONAL WAVES

Here, we provide a brief derivation of the energy density
of GWs propagating in curved spacetime characterized by
Eq. (2.1). When there is a clear separation between the
metric components due to the background ḡμν (typical
variation scale L) and highly oscillatory perturbations hμν
(typical wavelength λ), the total metric gμν is separated into
two parts [36]:

gμν ¼ ḡμν þ hμν; ðB1Þ

where ḡμν is given by Eq. (2.1). The Einstein equations
Rμν − 1

2
gμνR ¼ 8πGTμν are rewritten by expanding the

Ricci tensor as Rμν ¼ R̄μν þ Rð1Þ
μν þ Rð2Þ

μν þ � � �, where R̄μν

is the Ricci tensor computed using ḡμν alone, and RðnÞ
μν are

the correction terms to Rμν and are of the nth order in hμν.

Then, Rð1Þ
μν and Rð2Þ

μν are explicitly given as follows:

Rð1Þ
μν ¼ 1

2
½∇α∇μhνα þ∇α∇νhμα −∇α∇αhμν −∇μ∇νh�;

ðB2Þ

Rð2Þ
μν ¼ 1

2
ḡρσ ḡαβ

�
1

2
∇μhρα∇νhσβþð∇ρhναÞð∇σhμβ−∇βhμσÞ

þhραð∇ν∇μhσβþ∇β∇σhμν−∇β∇νhμσ −∇β∇μhνσÞ

þ
�
1

2
∇αhρσ −∇ρhασ

�
ð∇νhμβþ∇μhνβ−∇βhμνÞ

�
;

ðB3Þ

where ∇μ is a covariant derivative with respect to the
background metric ḡμν [25]. Up to quadratic order in hμν,
we have the Einstein equations for R̄μν:

R̄μν −
1

2
ḡμνR̄ ¼ 8πGðT̄μν þ tμνÞ; ðB4Þ
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where T̄μν is the energy-momentum tensor contributed by
matter components, and it varies slowly with time and space,
and tμν is an effective energy-momentum tensor of GWs. In
our case, the derivative of background gravitational potential

is small compared to the derivative of GWs due to L ≫ λ.
Under this assumption and by ignoring the derivative of the
background potential, the explicit expression of tμν up to
relevant order is given as [6,34,37]

tμν ¼ −
1

8πG



Rð2Þ
μν −

1

2
ḡμνRð2Þ

�
t;x

¼ 1

32πG



ḡαρḡβσ∂μhαβ∂νhρσ −

1

2
ḡμνḡληḡαρḡβσ∂λhαβ∂ηhρσ

�
t;x
: ðB5Þ

Note that h� � �it;x is a spacetime average whose integral
region is greater than the typical wavelength of GWs and
much smaller than the typical scale over which the back-
ground metric varies. With this definition, it is possible to
assign a gauge-invariant local energy of GWs. Now, we
introduce the polarization tensor eμν such that hμν ¼ ϕeμν
(eμνeμν ¼ 2; eμμ ¼ 0) and by setting eμν to a constant [6,38],
we obtain the following:

tμν ¼
1

16πG



∂μϕ∂νϕ −

1

2
ḡμν∂λϕ∂λϕ

�
t;x
: ðB6Þ

Using this notation, the total energy of GWs in volume V
averaged out over a certain period of time T, denoted as
h� � �it ¼ ð1=TÞ R tþT

t dt0ð� � �Þ, is given by

E ¼
Z

ht00itdV

¼ 1

16πG

Z
tþT

t

dt0

T

Z
dV

�
1

2
ð∇ϕÞ2 þ 1

2
ϕ̇2 − 2Φϕ̇2

�
:

ðB7Þ

By combining the conservation of energy ∂μtμν ¼ 0, we
obtain the following:

∂0E ¼ −
Z

∂iht0iitdV

¼ −
1

16πG

Z
tþT

t

dt0

T

Z
S
dSni · ð−ϕ̇∂iϕÞ: ðB8Þ

Note that the spacetime average h� � �it;x is removed when
ð1=TÞ R tþT

t dt0
R
dV is taken. This expression is the same as

the one derived in Sec. III using the wave equation (2.2).
Thus, the conserved quantity associated with Eq. (2.2) is
properly considered as the energy of GWs.
Note that only one degree of freedom associated with the

polarization of GWs is considered in this discussion. When
accounting for two polarization components (hμν ¼ ϕ×e×μνþ
ϕþeþμν) and assuming that the polarization tensors e×μν and eþμν
are independent, the total energy of GWs is simply given by
the sum of the energy of the ×modeE× and theþmodeEþ,
i.e., E ¼ E× þ Eþ.
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