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Gravitational waves (GWs) from compact binary coalescences can constrain the cosmic expansion of the
Universe. In the absence of an associated electromagnetic counterpart, the spectral siren method exploits
the relation between the detector frame and the source frame masses to jointly infer the parameters of the
mass distribution of black holes (BHs) and the cosmic expansion parameterH0. This technique relies on the
choice of the parametrization for the source mass population of BHs observed in binary black hole mergers
(BBHs). Using astrophysically motivated BBH populations, we study the possible systematic effects
affecting the inferred value for H0 when using heuristic mass models like broken power law, power law
plus peak, and multipeak distributions. We find that, with 2000 detected GW mergers, the resulting H0

obtained with a spectral siren analysis can be biased up to 3σ. The main sources of this bias come from the
failure of the heuristic mass models used so far to account for a possible redshift evolution of the mass
distribution and from their inability to model unexpected mass features. We conclude that future dark siren
GW cosmology analyses should make use of source mass models able to account for redshift evolution and
capable to adjust to unforeseen mass features.
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I. INTRODUCTION

September 2015 marks the date of the first detection
of a gravitational wave (GW) [1] emitted by the merger
of a binary black hole (BBH). Since then, the LIGO-
Virgo-KAGRA scientific collaboration has detected more
than 90 GW signals from compact binary coalescences
(CBCs) [2–4]. These detected GW signals enable us to
directly measure the luminosity distances dL of the sources
without making any assumption on the cosmological
model. However, GW signals do not directly provide
the source redshift unless an electromagnetic (EM) counter-
part is observed. The redshift is required to measure the
Universe’s expansion. This is an interesting prospect given
the current tension on the measurements of the Universe’s
local expansion rate, the Hubble constant H0 [5]. The
multiple GW detections opened the field of GW cosmol-
ogy. To exploit the tens of GW sources observed without an
EM counterpart, additional methods have been developed
to obtain the source redshift. The “spectral siren” [6]
method relies on the intrinsic degeneracy between the
redshift z of a source and its detector mdet and source frame
ms masses, through the relation mdet ¼ ð1þ zÞms. The
redshift of the sources is implicitly estimated by measuring

the detector masses and jointly fitting the source mass
distribution andcosmological parameters [7–9]. Thismethod
depends on the choice of the phenomenological models for
the BBH source mass distribution and their capacity to
describe the true underlying BBH population [6,7,10–18].
The spectral siren method is also tightly connected with the
“galaxy catalog method” [15–17,19], which identifies the
possible galaxy hosts of the GW source by using galaxy
surveys. Even with the extra information from galaxy
surveys, BBH source mass models still have to be used.
In fact, in the case where the galaxy survey is highly
incomplete, the sourcemassmodels are the ones that provide
the implicit redshift of the GW sources [8].
In this study, we explore how the commonly used pheno-

menological source mass models can fit complex and
astrophysically motivated distributions of BBH mergers.
The rationale of this study is to understand how a mismatch
between the source mass models and the population of
BBHs would translate to anH0 bias. To make this study, we
start with a BBH population generated synthetically by
modeling several astrophysical processes. Then we perform
a hierarchical Bayesian inference [9] to measure H0

alongside the phenomenological BBH mass models.
This paper is organized as follows. In Sec. II we describe

the framework built to simulate the GW detections and
introduce the basic principles of hierarchical Bayesian*g.pierra@ip2i.in2p3.fr
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inference. We also present the phenomenological BBH
population models for the mass spectrum. In Sec. III, we
discuss several sanity checks to test the validity of the
framework.We also investigate the robustness of the spectral
siren method when a wrong mass model is used for the
inference and when the source mass spectrum includes an
unmodeled redshift evolution. In Sec. IV, we consider a
spectral siren analysis using a realistic catalog of BBH
mergers, finding a biased estimate of H0 if simple phenom-
enologicalmassmodels are employed. Section IValso argues
about the possible different sources of the bias, specifically
the importance of the redshift evolution of themass spectrum
when estimating the cosmological parameters. Finally, in
Sec. V we draw the conclusions for this study.

II. BAYESIAN INFERENCE, GW OBSERVATIONS,
AND CBC POPULATION MODELING

In this section, we describe our simulation procedure. We
first simulate BBH observations using a detection criteria
based on the signal-to-noise ratio (SNR) that we describe in
Sec. II A. Then we use the hierarchical Bayesian inference,
summarized in Sec. II B, to reconstruct cosmological and
population properties.

A. A fast generator of GW observations

The workflow that we use to generate the GW observa-
tions is the following. From a population of BBH mergers
described by the two source masses and the redshift of the
merger, we compute an approximate value of the optimal
SNR. Instead of calculating the SNR from the full wave-
form and the matched filter, we use the relation below as a
proxy for the optimal SNR [7,20],

ρ ¼ δ × 9

�
Mc

Mc;9

�5
6

�
dL;9
dL

�
; ð1Þ

where Mc is the binary detector chirp mass, dL is the
luminosity distance, ρ is the optimal SNR, and δ is a
projection factor. Although Eq. (1) can underestimate the
SNR of events with chirp masses above 30M⊙, it should
suffice to provide us with a representative sample of the
BBH population. The luminosity distance and the binary
chirp mass are computed assuming a flatΛ cold dark matter
(ΛCDM) cosmology with H0 ¼ 67.8 km s−1Mpc−1 and
Ωm;0 ¼ 0.308, consistent with cosmic microwave back-
ground measurements from Planck [21]. The parameters
with a superscript of “9” are the detector chirp mass and
luminosity distance values for which a signal with δ ¼ 1
would have a SNR of 9. We set the reference chirp mass to
Mc;9 ¼ 25 M⊙ and the luminosity distance dL;9 ¼
1.5 Gpc [22]. The projection factor δ captures the varia-
tions of the optimal SNR when dealing with a three-
detector network and encapsulates the combined impact of
the polarization of the GWs and the sky localization. We

draw it according to a cumulative density function intro-
duced in [23].
To mimic the presence of detector noise in the data,

we also calculate a “detected” SNR ρdet from the optimal
SNR. The detected SNR is drawn from a χ2 distribution
with 6 degrees of freedom (two for each detector). A GW is
detected if its detected SNR exceeds a SNR threshold of 12
and the GW frequency corresponding to the innermost
stable circular orbit (ISCO) is higher than 15 Hz. The GW
and ISCO frequencies are related by

fGW ¼ 2fISCO; ð2Þ
where fISCO is approximated as [24]

fISCO ¼ 1

2π

1

63=2
c3

G

�
1M⊙

Md
tot

�
103 Hz ð3Þ

For this study, we chose to not generate errors on the
detector frame masses and luminosity distances. We
assume that we are perfectly able to measure them from
the GW signal. We make this choice for two motivations.
The first is that we want to ease the computational load
of the analysis and explore multiple test cases with
thousands of GW detections. The second is that we want
to maximize the potential effect of the systematics arising
from the phenomenological mass models, which could be
hidden by the error budget on the masses.

B. The hierarchical likelihood

The detection of GW events can be described by an
inhomogeneous Poisson process in the presence of selec-
tion biases [7–9,25]. For a set of NGW GW signals detected
over an observation time Tobs, the probability of having a
specific GW dataset fxg given population hyperparameters
Λ can be written as

LðfxgjΛÞ ∝ e−NexpðΛÞ
YNGW

i

Tobs

Z
dθdz

× LGWðxijθ; z;ΛÞ
1

1þ z
dNCBC

dθdzdts
ðΛÞ: ð4Þ

The hyperparameters Λ describe the BBH population and
also include cosmological expansion parameters. For a flat
ΛCDM cosmology, the expansion parameters are the
Hubble constant H0 and the fraction of matter density
today Ωm;0. Other population hyperparameters are the ones
controlling the shape of the BBH mass spectrum. We
describe the phenomenological models for the BBH mass
spectrum in Sec. II C and in more detail Appendix A 1. In
Eq. (4) the individual GW likelihood LGWðxijθ;ΛÞ gauges
the errors on the estimation of the intrinsic parameters θ
for a certain GW event xi. For our study, the intrinsic
parameters θ ¼ ðms

1;m
s
2Þ denote the masses in the source

frame. In Eq. (4), the factor 1
1þz accounts for the time
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dilatation between the detector and source frame times td
and ts.

dNCBC

dθdzdts
ðΛÞ ð5Þ

is the CBC merger rate per source time, comoving volume,
and masses. Finally, Nexp is the expected number of GW
detections during a time Tobs. This term encapsulates the
GW selection biases and can be written as

NexpðΛÞ ¼ Tobs

Z
dθdz Pdetðz; θ;ΛÞ

dNCBC

dθdzdts
ðΛÞ 1

1þ z
;

ð6Þ
where Pdetðz; θ;ΛÞ represents the probability of detecting a
certain CBC at a redshift z, characterized by some specific
GW parameters θ and given cosmological hyperparameters
Λ. The detection probability is given by the integral of the
GW likelihood over all the detectable data realizations,
namely,

Pdetðz; θ;ΛÞ ¼
Z
x∈ det

dxLGWðxjθ; z;ΛÞ: ð7Þ

The spectral siren CBC rate is then parametrized as

dNCBC

dθdzdts
¼ dNCBC

dm⃗sdVcdts

dVc

dz
ðΛÞ

¼ R0ψðz;ΛÞppopðm⃗sjΛÞ ×
dVc

dz
: ð8Þ

In Eq. (8), R0 is the local (z ¼ 0) CBC merger rate per time
per comoving volume, the primary source frame masses are
defined by m⃗s ¼ ðms

1;m
s
2Þ, and ψðz;ΛÞ is the phenomeno-

logical function for the CBC merger rate that evolves with
redshift with ψðz ¼ 0;ΛÞ ¼ 1. The ppop term is a proba-
bility density function of the phenomenological models for
the source frame masses ppopðm⃗sjΛÞ. The last term in
Eq. (8) is the differential of the comoving volume per
redshift, which for a flat ΛCDM cosmology is

dVc

dz
¼

�
c
H0

�
3
�Z

z

0

dz0

Eðz0Þ
�
2

; ð9Þ

where the term EðzÞ in Eq. (9) is the dimensionless Hubble
parameter defined as

EðzÞ ¼ HðzÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ð1 − ΩmÞ

q
: ð10Þ

An important assumption that we implicitlymade in Eq. (8)
whenwriting ppopðm⃗sjΛÞ is that the CBCmass spectrum does
not evolve in redshift. This assumption is typically made in
most of the state-of-the-art literature [8,9,26,27]. In the
following, we will discuss how the assumption for the source
mass distribution to be independent on redshift could translate
to an H0 bias.

C. The phenomenological population models of BBHs

Phenomenological CBC merger rate models of masses
and redshift are central to this study. Currently, spectral siren
analysis as in [26] uses simple parametric models describing
the distribution of source framemasses andCBCmerger rate.
For themasses, we employ three of these models: the broken
power law (BPL), the power law plus peak (PLP), and the
multipeak (MLTP). The threemassmodels are represented in
Fig. 1. The CBC merger rate as a function of redshift is
parametrized following the Madau and Dickinson [28] star
formation rate. In Appendixes A 1 and A 2, we provide the
detailed probability density functions for the models and the
set of population parameters and prior ranges used in the rest
of the paper. In the following, we provide a general
description of these models.
The BPL model [29] is the simplest model that we

employ. It is composed of a power law, with a smooth
tapering at its low mass edge, plus a break in the power law
at a mass mbreak. The low mass smoothing is introduced to
model the effects of the stellar progenitor metallicity [29],
which could create a smooth transition for black hole
production. The break in the power law mimics the left

FIG. 1. Simple representation of the three phenomenological mass models, the broken power law (left), the power law plus peak
(middle), and the multipeak (right).
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edge of the pair-instability supernovae [30] gap. The second
power law, defined after the break, could explain the
existence of a second population of BBHs inside the pair-
instability supernovaegap due to dynamically formedBBHs.
The PLP model [31] is based on a power law with the

same low mass smoothing as the BPL model and incor-
porates a Gaussian peak introduced to account for a
potential accumulation of BBH just before the pair-insta-
bility supernovae gap [31]. The PLP mass model is more
flexible than the BPL model: the position and the width of
the peak can vary and allow the model to potentially catch
high mass events, without changing the lower part of the
spectrum. The fraction of events in the Gaussian peak is
given by the parameter λpeak (see Appendix A 1).
The MLTP mass model is built similar to the PLP model,

but with a second Gaussian peak available at higher masses.
The motivations for the second Gaussian component are that
BBH systems could arise from second-generation black
holes produced by hierarchical mergers. The MLTP model
is more flexible and can reduce into a PLP model, if the
secondary component is not supported by the Bayesian
inference.
In previous studies [7,8,26], a significant correlation

between the Hubble constant and possible local over-
densities in the BBH mass spectrum was found. In
particular, the position of the Gaussian peak for the PLP
model (μg) showed a strong correlation with H0.

III. APPLICATION TO ANALYTICAL
BBH POPULATIONS

Here we consider diverse populations of BBHs generated
from parametric models to study how the PLP, BPL, and
MLTP models infer H0 for several scenarios. In Sec. III A,
we use the same mass models (BPL, PLP, and MLTP) for
the generation of the BBHs catalog for the inference. In
Sec. III B, we still generate BBHs from one of our three
models, but we perform the inference using the other two.
In Sec. III C we simulate GW events with an extended
version of the PLP model that includes a redshift evolution
of the Gaussian peak in order to test the bias onH0 obtained
by the redshift-independent models. We will quantify the
H0 bias according to what confidence interval (C.I.) the true
values of H0 are found from the hierarchical posterior. In
principle, biases should be quantified using parameter-
parameter (PP) plots that indicate what is the fraction of
time that the true value ofH0 is found in a given C.I. for the
posterior. As an example, if no bias is present, the true value
of H0 would be found in 50% of the C.I. for 50% of the
cases and so on. However, here we do not calculate PP
plots, as they are computationally demanding. We argue for
the presence of possible biases when the true value of H0

is excluded at 2σ or more C.I. The motivation to choose
this criterion is that the probability of obtaining such
discrepancy due to statistical fluctuations, and not due to
biases, is only 5%.

In the rest of the paper, wewill use the posterior predictive
checks (PPCs) to assess how well the PLP, BPL, and MLTP
models can fit themass spectrum.The astrophysical posterior
predictive distribution, given the observed GW events, for
redshift and source masses is defined as

ppopðz;ms
1;m

s
2jfxgÞ ¼

Z
dΛppopðz;ms

1;m
s
2jΛÞpðΛjfxgÞ:

ð11Þ

The posterior predictive distribution for the luminosity
distance and detector frame masses is defined as

pobsðdL;md
1;m

d
2jfxgÞ ¼

Z
dΛppopðdL;md

1;m
d
2jΛÞ

×pðΛjfxgÞPdetðdL;md
1;m

d
2Þ: ð12Þ

We will discuss how the mapping between source and
detector frame, and themismatch of theBBHmass spectrum,
will translate to an H0 bias.

A. Using the same mass models
for simulation and inference

We simulate three test populations of BBHmergers, with
the three source mass distributions and the CBC merger
rate evolution described before. The parameters of the
population models used for the simulation of the catalogs
are summarized in Appendix B, in Tables V–VIII. For
the three populations, we generate 2000 detected GW
events, which will be used in the spectral siren analysis.
We choose to work with 2000 GW events since for this
number of detections it is typically possible to have a data-
informed posterior bounded in the prior range H0 ∈
½20; 140� km s−1Mpc−1. We jointly estimate the cosmologi-
cal parameterH0, as well as all the mass and the CBCmerger
rate parameters using hierarchical Bayesian inference.
Figure 2 presents the marginal posterior distributions for

H0 obtained for each source mass model. For all the simu-
lations, the true value of the Hubble constant is estimated
within the 90% C.I. We verified that the true values of all
the other population parameters describing the CBCmerger
rate and mass spectrum are contained in the 90% C.I. of
their marginal posterior. The inferredH0 is more precise for
the PLP and the MLTP mass models rather than the BPL
model. The more precise constraint on H0 is given by the
fact that the PLP and MLTP models contain sharper
features in the source mass spectrum. Similar results have
been obtained using ∼20 independent population realiza-
tions for each of the three H0 posteriors shown in Fig. 2.
Figure 3 shows the PPCs for the BPL, PLP, and MLTP

mass models. The figure demonstrates that all the structures
in the mass and rate spectrum are well reconstructed by
the analysis. In particular, the inference can correctly
reconstruct all the features present in the mass spectra.
In conclusion, when using the correct mass model for
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inference, both the correct population and cosmological
expansion parameters are recovered. Additionally, this test
demonstrates the importance of having features in the BBH
mass spectrum to improve the precision for cosmological
expansion parameters.

B. Using different mass models
for simulation and inference

We generate three populations of 2000 detected CBCs
from the BPL, PLP, and MLTP mass models and then we
perform the estimation of populations and cosmological
parameters with the other two mass models.
Figure 4 shows the marginal posterior distributions of the

Hubble constant inferred. We find that, when the detections
are simulated with the BPL model and the inference
performed with PLP and MLTP models, the true value
of H0 is contained in the 68% C.I. despite the wrong mass
model being used for the inference. In contrast, when
simulating with the PLP and MLTP models and inferred

FIG. 2. Marginal posterior of the Hubble constant derived from
the spectral siren inference, with the PLP, BPL, and MLTP mass
models and a catalog of 2000 detected GW events. The vertical
red line is the injected value in the simulation, fixed to the
Planck15 value of H0 ¼ 67.7 km s−1 Mpc−1.

FIG. 3. Posterior predictive checks for the three catalogs of BBHs simulated and inferred with the BPL model (in blue), the PLP model
(in light blue), and the MLTP mass model (in green) with 2000 GWevents. The left column correspond to the source frame masses and
redshift, from top to bottom ms

1, m
s
2, and z. The injected populations are under the form of a histogram, and the 90% CL reconstructed

spectrum is shown as colored contours. The right column displays the detector frame masses and luminosity distances, with selection
effects taken into account, from top to bottom mdet

1 , mdet
2 , dL.
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with the BPL model, we find the true value of H0 is
excluded at a 98.7% C.I. level. This bias is linked to the
difficulties of the BPL model in catching all the sharp mass
features contained in the PLP and MLTP models mass
spectra. The mismatching of the mass features result in a
systematically mismatched redshift for the sources and then
on a bias on H0. We have repeated the study cases
presented in this section with ∼20 independent population
realizations, finding that the result in Fig. 4 is not a mere
statistical fluctuation.
Similar to Sec. III A, we look at the PPC to understand the

cosmological results. Figure 5 shows the PPCs for the case in
which the simulated population was generated from a MLTP
model and the Bayesian inference performed with the BPL
and PLP models. From the source frame mass spectrum
of m1 and m2, we see that the PLP model inference can
reconstruct a peak located around 50M⊙, while the recon-
structed mass spectrum from the BPL model misses the high
mass feature by underestimating it. The resulting bias in H0

can be understood as, for lower values ofH0, GWevents are
placed at lower redshifts, hence with higher source frame
masses. By lowering the H0 value, the BPL model is trying
to fit the overdensity of high mass events produced by the
MLTP model. Concerning the simulations with the most
complex of the models, the MLTP model, we find that both
the PLP and BPLmodels are not able to correctly reconstruct
the lowest part of the mass spectrum. However, the mismatch
is not sufficient to introduce anH0 bias for the reconstruction
with the PLP model. The CBC merger rate as a function of
redshift, in all cases, is correctly reconstructed. In conclu-
sion, the sharper mass features in the BBH mass spectrum
can source a significant bias on H0.

C. Mass models response to a redshift evolution
of the mass spectrum

In this section, we perform a test to examine the
robustness of redshift-independent mass models to a

possible evolution of the mass spectrum in redshift. In
doing so, we will assume a linear dependence between the
features of the mass spectrum and the redshift. This simple
model has already been explored in [6] for the evolution of
the low and high edges of the mass spectrum, finding a
resulting mild H0 bias when the low edge of the mass
spectrum is not modeled correctly. In this paper, we modify
the PLP mass model to include a peak position linearly
evolving with redshift. The redshift evolution of the mass
spectrum for the simulated BBH population is incorporated
in the parameter that governs the position of the Gaussian
component, while the edges are kept fixed in redshift. This
type of evolution could be the result of an interplay of the
pair-instability supernova (PISN) mass scale and time
delays between binary formation and merger [14,32] that
highly suppress the mass spectrum above the PISN scale
(the Gaussian peak). The impact of such models has been
explored in [33] on Gravitational-Wave Transient Catalog
(GWTC) 3, finding no statistically significant preference and
a consistentH0 posterior against the nonevolving PLPmodel.
Here, we do not suppress the mass spectrum above the

PLP model peak, but just assume a linear dependency,

μgðzÞ ¼ μ0g þ zðμ1g − μ0gÞ; ð13Þ

where μ0g ¼ μgðz ¼ 0Þ and μ1g ¼ μgðz ¼ 1Þ are the posi-
tions of the Gaussian peak at z ¼ 0 and z ¼ 1. We fix μ0g ¼
30M⊙ and we considered seven values for μ1g from 25M⊙
to 35M⊙.
For each simulation, we run a full hierarchical Bayesian

inference using the redshift-independent PLP model to
reconstruct H0 as well as the other population parameters
from 2000 GW detections. We report the H0 estimation
with 68.3% C.I. for these analyses in Fig. 6, showing the
variations of the inferred H0 value as a function of the
position of μ1g. For instance, if the Gaussian peak shifts of
about five solar masses from redshift 0 to redshift 1, H0 is

FIG. 4. Left: the marginal distribution of the Hubble constant inferred with the PLP and the MLTP mass models while generating the
BBH catalog with the BPL model. Middle: produced simulating the BBH events with the PLP model and inferred with the BPL and the
MLTP models. Right: H0 results obtained while generating the GW events with the MLTP model and inferred with the BPL and PLP
mass models. On each of the plots, the true value of the Hubble constant in each population is represented by the vertical red line.
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found outside the 99.7%C.I. Figure 6 shows that the redshift
evolution of the structures in the mass spectrum can bias the
inferred value of the Hubble constant. Even when consid-
ering a mild evolution of the mass spectrum in redshift, the
bias on the inferredH0 is significant. We also notice that the
systematic bias obtained onH0 is linearly proportional to the
magnitude of the redshift evolution of the mass spectrum
feature. As we will describe in the following paragraph, the
bias is introduced by the fact that the source frame mass
spectrum is not reconstructed correctly. Comparable results
have been achieved utilizing ten independent simulation
realizations for each data point, showing the consistency of
the result presented in Fig. 6.
Figure 7 summarizes the PPC for this test case. The right

column shows the detected mass distributions for three of
the seven simulations. In the detector frame, the three
simulations display similar distributions for the masses
and luminosity distance of detected GW events. The
distributions are the ones that are fit by the nonevolving

PLP models. However, in the source frame, the three
simulations have a significantly different mass spectrum
(due to redshift evolution). The PLP model is not able to
catch this evolution and produces a wrong reconstruction of
the mass spectrum. In particular, the nonevolving PLP
model always reconstructs a peak located at 30M⊙. This is
the consequence of the fact that about 80% of the GW
detections are located at low redshift (z < 0.3), where, even
for redshift evolving models, the peak of the Gaussian
component is located around μ0g ¼ 30M⊙.
The introduction of an H0 bias is due to the misplacing

of the Gaussian component for events at higher redshifts.
When μ1g > μ0g and the PLP model is not able to fit it, we
obtain an H0 biased to higher values. The motivation for
this bias is that, for highH0 values, GWevents are placed at
higher redshifts and hence at lower source masses. By
placing the events at lower source masses, the PLP model is
able to accommodate them in the peak that fits around
30M⊙ in the source frame. When μ1g < μ0g, we observe a bias

FIG. 5. Posterior predictive checks for the wrong model analysis. The blue histograms are the injected population of BBHs, generated
with a MLTP mass model, with the same set of parameters as depicted in Sec. III A. The two colored contours are the 90% CL
reconstructed populations, inferred, respectively, with the PLP model in light blue and the BPL mass model in green. This posterior
predictive check corresponds to the result presented in Fig. 4 (right).
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to lower values of H0. Similar to the previous case, this is
due to the fact that GW events are placed at lower redshifts;
therefore, they will have a higher source mass that can be
placed in the peak at 30M⊙. This simple test case shows that
the evolution in redshift of a feature in the mass spectrum
could potentially bias the GW-based H0 estimation.

D. Summary of the tests

To summarize, theH0 bias is closely linked to the ability
of the mass model to catch and reconstruct the features of
the CBC mass spectrum. A bias on the H0 value can be
introduced from several factors.
We have shown that, in the case where the true under-

lying population of CBCs presents sharp features and the
reconstruction model is not able to include them, a
significant bias on H0 can be obtained. We have also
shown that, if any of the mass features of the spectrum
evolve in redshift, an H0 bias can be introduced even if the
evolution is of the order of a few solar masses.

FIG. 6. Evolution of the H0 value inferred with respect to the
final position of the PLP model peak at z ¼ 1. The blue points
correspond to the median of the inferred posterior of the Hubble
constant, for each of the analysis. The point of reference (no
redshift evolution) is for μg ¼ 30 at z ¼ 1. The error bars are the
1σ intervals of the posteriors and the green line is the best linear
fit passing by all points.

FIG. 7. Posterior predictive check for the simulated populations, incorporating an additional linear evolution of the Gaussian
component μgðzÞ with respect to the redshift, between z ¼ 0 and z ¼ 1. The colored contours are the 90% CL estimated spectrum
obtained with the spectral siren analysis. The colored histograms display the injected populations in each run, denoted by the position of
their Gaussian peak at z ¼ 1. Only three out of the seven populations are shown: the μ1g ¼ 30 analysis in purple (reference run with no
redshift evolution), the μ1g ¼ 35M⊙ in green, and the μ1g ¼ 25 in blue.
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IV. APPLICATION TO A COMPLEX
BBH POPULATION

In this section, we study how the BPL, PLP, and MLTP
models respond to a population of BBHs generated from
synthetic astrophysical simulations. We use a catalog,
referred to as “A03,” of BBH mergers formed by various
formation channels from [34,35]. We then present the
results of the hierarchical Bayesian analysis obtained with
the BPL, PLP, and MLTP mass models in Sec. IV B.
Finally, in Sec. IV C, we investigate the possible sources of
bias for the Hubble constant.

A. General description of the A03 catalog

For this study, we employ the A03 catalog from [35].
This model consists of four different channels: isolated
binary evolution and dynamical assembly of BBHs in
young, globular, and nuclear star clusters. They are mixed
based on their corresponding redshift-dependent rates as
described in [35]. The dynamical formation channels
assume an initial black hole mass function obtained with
the MOBSE population synthesis code [36]. In model A03,
we assume the delayed model of [37] for core-collapse
supernovae, the pair-instability supernova formalism
of [38], and we take into account the dependence of the
black hole (BH) mass function on the metallicity of the
progenitor stars, as discussed in [36]. The BHs then pair up
dynamically with other BHs and harden because of
dynamical interactions in their host star clusters [34];
we also allow for hierarchical mergers of BBHs, as
described in [35]. The isolated binary evolution channel
consists of systems evolved with the MOBSE binary pop-
ulation synthesis code accounting for binary star evolution
[36]. For these runs, we include a treatment formass transfer,
common envelope (with efficiency parameter α ¼ 1), tidal
evolution, natal kicks, and gravitational wave decay as
described in [36]. A further discussion of the astrophysical
processes included in model A03 and the corresponding
uncertainties are beyond the scope of this study. Here, we
explore the possibility that nontrivial structures of the
mass distribution for BBHs can introduce a bias on the
estimation of H0.
Figure 8 shows the distribution of the primary mass

ms
1 for different redshift bins. The BBH mass spectrum

presents several features: Moving from lower to higher
masses, a feature at 10M⊙, a “valley” between 13 and
15M⊙, and a second large peak at 16M⊙. In the high
mass region of the spectrum, a local overdensity of BBHs
is visible around 25M⊙, plus several less significant
peaks up to 90M⊙. These structures are also visible on
the ms

2 distribution. Another property of the A03 catalog
is the evolution in redshift of the primary and secondary
source frame masses. From Fig. 8, we notice that the
structures in the mass spectrum are evolving as the
redshift increases. The feature at 20M⊙ is nonexistent

for mergers below z ¼ 2 and emerges while shifting to
the lower masses in the higher redshift bins.
Figure 9 shows the BBH mass spectrum in a redshift

range of 0 < z < 1.75. This range corresponds to the
typical range in which our simulation is able to detect
BBH mergers. The evolution of the BBH mass spectrum
at low redshifts is fainter than the one at high redshift;
nevertheless, peaks around 11M⊙ appear while shifting
to higher masses and the structure around 25M⊙ is
drifting to lower masses. Since real GW events at high
redshift (z > 1) are hardly detectable in the O4-like
network, this effect is thought to be subdominant for
population and cosmological inferences [39]. If these
structures are evolving with respect to the redshift, as
discussed in [40–44], the mass models could mismatch
the features and produce a biased value of H0 as shown
in Sec. II C.
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FIG. 8. Kernel density estimation of the primary masses m1 in
source frame from the A03 BBH catalog. Each plot corresponds
to a slice in redshift, going from z ¼ 0 up to z ¼ 7. This figure
highlights the overall mass spectrum evolution with respect to the
redshift, especially the appearance of peaks and their shift.
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FIG. 9. Kernel density estimation of the primary masses m1 in
source frame from the A03 BBH catalog. Each plot corresponds
to a slice in redshift, going from z ¼ 0 up to z ¼ 1.75. This figure
highlights the overall mass spectrum evolution with respect to the
redshift, especially the appearance of peaks and their shift.
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B. Vanilla analysis of the A03 catalog

Using the A03 BBH catalog, and with the framework
described in Sec. II A, we generate GW catalogs made of
2000 detected GW events. For each catalog, we perform a
full hierarchical Bayesian inference, reconstructing poste-
riors on H0, as well as the other population parameters of
the redshift rate and the three redshift-independent BBH
mass models. The prior ranges used for the Bayesian
inference are reported in Tables I–IV.
Figure 10 shows the marginal posterior distributions of

the Hubble constant estimated. When using the PLP and
MLTP mass models, we find an H0 bias toward higher
values. In particular, we estimate for the PLP model H0 ¼
103þ11

−10 and H0 ¼ 87þ9
−8 km s−1 Mpc−1 at 68.3% C.I. The

true value of H0 is excluded from the 99.7% C.I. for the
PLP model and the 95% C.I. for the MLTP model. From
Fig. 10, it is possible to note that the BPL mass model
obtains an uninformativeH0 posterior. We obtain a value of
H0 ¼ 82þ20

−19 km s−1Mpc−1, which includes the injected H0

FIG. 10. Marginal posterior distributions of the Hubble con-
stant H0 obtained with 2000 GW events, using the PLP model in
light blue, the BPL model in blue, and the MLTP mass model
in green. The vertical red line represents the true value of the
Hubble constant intrinsic to the A03 catalog and equal to
H0 ¼ 67.7 km s−1 Mpc−1.

FIG. 11. Posterior predictive check for the spectral siren analysis with 2000 GWobservations, generated from the A03 BBH catalog.
The plain black histograms are the injected population, in the source frame (left column) and in the detector frame (right column). The
three colored contours depict the 90% CL for the three inferences (BPL, PLP, and MLTP).
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within the 68% C.I. As we will argue later, the BPL model
recovers a less informative posterior on H0, as it does not
contain any strong mass feature. We note that, even if the
BPL model does not display an H0 bias for 2000 events, it
might still display it as more and more GW detections are
collected. The bias is not introduced by any of the other
population parameters “railing” over the prior ranges. In
fact, we verified that all the parameters are well constrained
in their prior ranges. Equivalent findings have been produced
through ∼15 distinct simulation realizations for each of the
three posterior distributions displayed in Fig. 10.
The PPC plot in Fig. 11 gives insights into the origin of

the H0 bias. While the reconstructed distributions of detec-
tor frame masses and luminosity distance do not show any
particular deviation between the injected population and
the recovered one, the reconstructed source population
display larger differences. In the source frame, the CBC
merger rate is correctly reconstructed by the BPL model,
whereas the PLP and MLTP models significantly under-
estimate the presence of BBHs between 40M⊙ and 80M⊙.
Therefore, from observed data, the PLP and MLTP models

predict a significantly larger number of BBHs at lower
source masses. This is achieved by pushing the value of
the Hubble constant at higher values so that events are
found at higher redshifts and have on average a lower
value of source masses. Another indicator in support of the
finding that the PLP and MLTP models place events at
higher redshifts is the reconstruction of the CBC merger
rate in redshift. In fact, from the bottom left plot of
Fig. 11, we can see that the PLP and MLTP models
reconstruct a biased merger rate in redshift that prefers
higher values of redshifts for the BBH mergers. Instead,
the BPL model inference manages to fit the overall trend
of the A03 source frame population. The BPL model
reconstructs better the source frame masses between
40M⊙ and 80M⊙.
Even though the PLP and MLTP models have enough

degrees of freedom to approximate a smooth distribution
of masses (as the ones present in the A03 catalog), they
still fail to reconstruct the mass spectrum. The motivation
for which the PLP and MLTP models are not able to
correctly reconstruct the mass spectrum of the A03 catalog

FIG. 12. Posterior predictive check of the spectral siren analysis of 2000 GWobservations generated from the A03 BBH catalog. The
plain black histograms are the injected population, in the source frame (left column) and in the detector frame (right column). Each
colored histogram corresponds to a bin in redshift from z ¼ 0 to z ¼ 2. The three colored contours depict the 90% CL computed with the
BPL, PLP, and MLTP mass models.

STUDY OF SYSTEMATICS ON THE COSMOLOGICAL … PHYS. REV. D 109, 083504 (2024)

083504-11



and H0 is not trivial. A first hypothesis for this result was
that the PLP and MLTP models were catching local peaks
in the mass spectrum (at a fixed redshift) that were
evolving in redshift. In fact, from the posterior distribu-
tions, we observed that the PLP and MLTP models were
finding local peaks at low masses (≈17M⊙) with a large
standard deviation and a higher peak at ≈30M⊙. To test
this hypothesis, we performed a PPC in Fig. 12, dividing
the true population in redshift bins. Unfortunately, the
PPC does not clearly show a discrepancy between the
population reconstruction and any of the mass spectra for
the redshift bins. As this test is inconclusive on the origin
of the H0 bias, we performed additional studies that we
discuss below.

C. Investigating the sources of the H0 bias:
Blinding the mass-redshift relation

In order to test further the possibility that the redshift
evolution of the mass spectrum is introducing an H0 bias,
we performed a simulation where we blind the A03’s mass

FIG. 13. Marginal posterior distributions of the Hubble con-
stant H0 obtained with 2000 GW events, using the PLP and the
MLTP mass models. The vertical purple line represents the true
value of the Hubble constant intrinsic to the A03 catalog and
equal to H0 ¼ 67.7 km s−1 Mpc−1. This distribution is obtained
using the A03 catalog, where the redshift evolution of the mass
spectrum has been removed.

FIG. 14. Comparison of posterior predictive checks for the spectral siren analysis of the A03, with and without redshift evolution of
the mass spectrum, using 2000 GWevents. The blue contour and histograms are the vanilla population and are the same results shown in
Fig. 11. The purple histograms are the new A03 population with no redshift evolution of the mass spectrum and the purple contours are
the 90% CL inferred spectrum with the population, denoted “A03 no redshift evolution.”
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spectra to the redshift evolution. To remove the redshift
dependency of the mass spectrum, we randomly shuffle the
pairs of BBH merger redshifts and masses. This procedure
artificially removes the redshift dependence of the mass
spectrum while conserving its nontrivial shape. For the
Bayesian inference, we only use the PLP and MLTP
mass models since they were displaying a non-negligible
bias of H0.
The result of the joint inference with the PLP mass

model is presented in Fig. 13. For the PLP model, we obtain
H0 ¼ 67.0þ9.7

−8.9 km s−1Mpc−1 and for the MLTP model we
obtain H0 ¼ 75.13þ7.8

−7.9 km s−1 Mpc−1, the true value of H0

is contained within the 68.3% C.I. of the posterior.
Figure 14 shows the PPC plot for this test. The figure
overlaps the reconstruction for the original A03 catalog
and the one after the redshift-blinding procedure. From the
detector frame point of view, we see that the two
reconstructed distributions do not significantly differ.
However, from the source frame point of view, the PLP
model, for the redshift-blinded A03 catalog, is able to
reconstruct better the BBH masses present in the range
30M⊙–60M⊙. Although the reconstruction of the mass
spectrum above 60M⊙ is still poor, the PLP model for the
nonredshift evolving A03 is able to include the true value
of H0. As a consequence, also the reconstruction of the
BBH merger rate as a function of redshift slightly
improves, resulting in an underestimation of about
20%–30% of the true CBC merger rate. We have also
found similar results for the MLTP model. We verified by
running the simulations with 20 different population
realizations that the value of H0 obtainable by the PLP
and MLTP models from the redshift-blinded A03 is
always unbiased.
It is important to notice that, even after blinding the

redshift evolution of the A03 mass spectrum, the PLP and
MLTP models are not yet able to completely reconstruct
the source frame distributions. As such, we still expect a
systematic bias onH0 to be present and hidden by the large
statistical uncertainties that can be seen in Fig. 13.
Identifying the source of these systematic biases is not
trivial, but from the test that we performed, we are sure that
the redshift evolution of the mass spectrum is expected to
be the dominant source of the H0 bias.

V. CONCLUSIONS

In this work we have extensively studied the interplay
between systematic biases on H0 and the reconstruction of
the BBH mass spectrum for Spectral Siren Cosmology. We
performed several simulations using BBH merger catalogs
generated with three of the current mass models used in
literature and we also considered a catalog of synthetically
simulated BBHs.

In Sec. III, we showed that simple phenomenological
models that do not contain sharp features could introduce a
bias on H0 if the true population of BBHs includes a local
overdensity of sources. Moreover, we showed that the
redshift evolution of source frame mass features can induce
an H0 bias if not accounted for in the mass models. In
particular, the Hubble constant would act as a free
parameter and shift to higher values if the true source
mass spectrum is underestimated, hence placing more
events at higher redshift and, equivalently, decreasing the
global source mass spectrum. This result is, respectively,
true if the source mass spectrum is overestimated, creating a
shift of H0 to lower values.
In Sec. IV, using the A03 BBH catalog, we showed that,

even if the detector frame is well reconstructed by the
inference, we might still get a biased value of the Hubble
constant. Deviations up to 2σ and 3σ from the injected value
were observed for the MLTP and PLP model inferences,
respectively. We observed that, while each model yielded to
different populations in the source frame, they produce
remarkably similar populations in the detector frame. This
discrepancy in the source frame mapping appeared to be
related to the response of the models to the GW events, as
eachmodel attempted to accommodate to the true population
in its ownuniquemanner. Consequently, theHubble constant
is used as a compensatory factor, when necessary, to align the
inferred populations with the observed data. Finally, we find
that the H0 bias obtained with the PLP and MLTP mass
models disappears when the redshift evolution of the source
mass spectrum is removed from the population.
In light of these findings, we demonstrate that the most

commonly used mass models, namely PLP, BPL, and
MLTP models, combined with the spectral siren analysis
for GW cosmology, are not suitable choices if the BBH
population exhibits even a slight redshift evolution of its
mass spectrum. In addition, even if the mass spectrum is not
evolving with redshift, the mismatching of sharp structures
in the BBH mass distribution can also be responsible for a
biased estimation of the Hubble constant. We showed that
this kind of assumption can be dangerous for the spectral
siren method and, more generally, for methods that make
use of nonevolving parametric models of the mass spec-
trum, since the constraining power on the Hubble constant
relies on the ability of the phenomenological mass models
to fit the position of structures in the mass spectrum. Given
that the true distribution of BBHs in our Universe remains
unknown and may differ significantly from the current
state-of-the-art models, future GW cosmology studies
based on the spectral siren method should incorporate
source mass models capable of absorbing effects such as
the redshift evolution of the mass spectrum and possessing
sufficient degrees of freedom to accommodate unforeseen
mass features. Failure to do so may introduce biases in
future Hubble constant measurements, especially when
dealing with a large number of detected GW events.
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APPENDIX A: MASS AND REDSHIFT
POPULATION MODELS

1. Source mass models

In this appendix, we present in more detail the three
phenomenological sourcemassmodels used in this paper for
the spectral siren inference. These models are the current
mass models used by the LIGO-Virgo-KAGRA scientific
collaboration for cosmology results [2–4]. We give the
mathematical expressions of priors and probability density
functions for the power law plus peak, broken power law, and
the multipeak model. Note that they are the same models
described in [9]. All three models are made of combinations
of truncated power law and truncated Gaussian distributions.
The usual truncated power law distribution is given by

Pðxjxmin; xmax; αÞ ¼
� 1

N x
α; ðxmin ≤ x ≤ xmaxÞ;

0; otherwise;
ðA1Þ

where N is the normalization factor defined as

N ¼

8>><
>>:

ln
�
xmax
xmin

	
; ðif α ¼ −1Þ;

1
αþ1

�
xαþ1
max − xαþ1

min

	
; otherwise

ðA2Þ

The truncated Gaussian distribution with mean μ and
standard deviation σ,

G½a;b�ðxjμ; σÞ ¼
(

1
N

1

σ
ffiffiffiffi
2π

p exp
h
− ðx−μÞ2

2σ2

i
; a ≤ x ≤ b;

0; otherwise;
ðA3Þ

where N is also the normalization factor expressed as

N ¼
Z

a

b

1

σ
ffiffiffiffiffiffi
2π

p e−
ðx−μÞ2
2σ2 dx: ðA4Þ

The broken power law. This model, introduced in [29], is
made of two truncated power laws attached at a breaking
point b,

b ¼ mmin þ ðmmax −mminÞf; ðA5Þ
where f belongs to [0, 1]. When f ¼ 0, the breaking point
b is equal to mmin. The probability density functions for ms

1

and ms
2 are then defined as

πðms
1jmmin;mmax; αÞ ¼

1

N

�
Pðms

1jmmin; b;−α1Þ

þ Pðbjmmin; b;−α1Þ
Pðbjb;mmax;−α2Þ

× Pðms
1jmmax; b;−α2Þ

�
; ðA6Þ

πðms
2jmmin;ms

1; βÞ ¼ Pðms
2jmmin; β;ms

1Þ: ðA7Þ

N is the normalization factor defined as

N ¼ 1þ Pðbjmmin; b;−α1Þ
Pðbjb;mmax;−α2Þ

: ðA8Þ

Table I presents the parameters that control the BPL model
distribution, as well as the prior distributions used to
perform the joint inference of the cosmology and the
BBH population presented in Sec. IV.
The power law plus peak. This model, composed of a

truncated power law and a Gaussian component, was first
introduced in [45]. The probability density functions of the
primary masses are given by

πðms
1jmmin;mmax; αÞ ¼ ð1 − λÞPðms

1jmmin;mmax;−αÞ
þ λGðms

1jμg; σgÞ; ð0 ≤ λ ≤ 1Þ;
ðA9Þ

πðms
2jmmin;mmax; αÞ ¼ Pðms

2jms
1;mmin; βÞ: ðA10Þ

TABLE I. Summary of the prior ranges used with the BPL mass models for the spectral siren analysis.

Parameter Description Prior

α1 Power law index number 1 primary mass Uð−4; 10Þ
α2 Power law index number 2 primary mass Uð−4; 10Þ
β Power law index secondary mass Uð−4; 10Þ
mmin Minimum value of the source mass ½M⊙� Uð1M⊙; 10M⊙Þ
mmax Maximum value of the source mass ½M⊙� Uð100M⊙; 200M⊙Þ
δm Smoothing parameter ½M⊙� Uð0M⊙; 10M⊙Þ
b Breaking point ½M⊙� Uð0M⊙; 1M⊙Þ
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Table II presents the parameters that control the PLP model
distribution, as well as the prior distributions used to
perform the joint inference of the cosmology and the
BBH population presented in Sec. IV.
The multipeak. This model is an extension of the PLP

model; it consists of a truncated power law and two
Gaussian components. This parametrization was first
applied in [29] and the primary mass probability density
functions (PDFs) are given by

πðms
1jmmin;mmax; αÞ ¼ ½ð1 − λÞPðms

1jmmin;mmax;−αÞ
þ λλlowGðms

1jμlowg ; σlowg Þ
þ λð1 − λlowÞGðms

1jμhighg ; σhighg Þ�;
ðA11Þ

πðms
2jmmin;mmax; βÞ ¼ Pðms

2jms
1;mmin; βÞ: ðA12Þ

Table III presents the parameters that control the MLTP
model distribution, as well as the prior distributions used to
perform the joint inference of the cosmology and the BBH
population presented in Sec. IV.
All of the three mass models described above are

normalized functions, since they are all made of normalized
PDFs.

2. Merger rate evolution model

In this paper, we use a specific parametrization of the
CBC merger rateRðzÞ, also denoted ppopðzjΛÞ in Sec. II as
a function of the redshift. This model is constructed after
the Madau and Dickinson star formation rate [28]. Using
the same notation as in Eq. (8), the CBC merger rate is

TABLE III. Summary of the prior ranges used with the MLTP mass models for the spectral siren analysis.

Parameter Description Prior

α Power law index primary mass Uð1; 10Þ
β Power law index secondary mass Uð−4; 10Þ
mmin Minimum value of the source mass ½M⊙� Uð1M⊙; 10M⊙Þ
mmax Maximum value of the source mass ½M⊙� Uð50M⊙; 200M⊙Þ
δm Smoothing parameter ½M⊙� Uð0M⊙; 10M⊙Þ
μlowg Mean of the lower Gaussian peak ½M⊙� Uð11M⊙; 30M⊙Þ
μhighg Mean of the higher Gaussian peak ½M⊙� Uð40M⊙; 80M⊙Þ
σlowg Standard deviation of the higher Gaussian peak ½M⊙� Uð6M⊙; 17M⊙Þ
σhighg Standard deviation of the higher Gaussian peak ½M⊙� Uð6M⊙; 17M⊙Þ
λg Proportion of events in the peaks Uð0; 1Þ
λlowg Proportion of events in the lower peak Uð0; 1Þ

TABLE II. Summary of the prior ranges used with the PLP mass models for the spectral siren analysis.

Parameter Description Prior

α Spectral index for the power law of the primary mass distribution Uð1; 10Þ
β Spectral index for the power law of the mass ratio distribution Uð−4; 10Þ
mmin Minimum mass of the primary mass distribution ½M⊙� Uð1M⊙; 12M⊙Þ
mmax Maximum mass of the primary mass distribution ½M⊙� Uð50M⊙; 200M⊙Þ
λg Fraction of the model in the Gaussian component Uð0; 1Þ
μg Mean of the Gaussian in the primary mass distribution ½M⊙� Uð10M⊙; 40M⊙Þ
σg Width of the Gaussian in the primary mass distribution ½M⊙� Uð6M⊙; 17M⊙Þ
δm Range of mass tapering at the lower end of the mass distribution ½M⊙� Uð0M⊙; 12M⊙Þ

TABLE IV. Summary of the prior ranges used with the CBC merger rate for the spectral siren analysis.

Parameter Description Prior

γ Slope of the power law regime for the rate evolution before the point zp Uð0; 10Þ
k Slope of the power law regime for the rate evolution after the point zp Uð0; 6Þ
zp Redshift turning point between the power law regimes with γ and k Uð0; 4Þ
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expressed as

ppopðzjΛÞ ¼ ½1þ ð1þ zpÞ−γ−k�
ð1þ zÞγ

1þ ð 1þz
1þzp

Þγþk ðA13Þ

Table I presents the parameters that control the CBC merger rate distribution, as well as the prior distributions used to
perform the joint inference of the cosmology and the BBH population presented in Sec. IV.

APPENDIX B: INJECTED BBHS POPULATIONS

This appendix presents the values for each of the mass and CBC merger rate parameters, chosen to perform the spectral
siren analysis of Sec. III, for each of the following mass models: BPL, PLP, and MLTP.

1. Mass parameters simulated

a. Broken power law parameters

b. Power law plus peak parameters

TABLE V. Summary of the prior ranges used with the BPL mass models for the spectral siren analysis.

Parameter Description Injected value

α1 Power law index number 1 primary mass 1.5
α2 Power law index number 2 primary mass 5.5
β Power law index secondary mass 1.4
mmin Minimum value of the source mass ½M⊙� 5M⊙
mmax Maximum value of the source mass ½M⊙� 100M⊙
δm Smoothing parameter ½M⊙� 5M⊙
b Breaking point ½M⊙� 0.4M⊙

TABLE VI. Summary of the values injected to construct the PLP model mass distribution of the BBH populations
analyzed in Sec. III.

Parameter Description Injected value

α Spectral index for the power law of the primary mass distribution 2
β Spectral index for the power law of the mass ratio distribution 1
mmin Minimum mass of the primary mass distribution ½M⊙� 5M⊙
mmax Maximum mass of the primary mass distribution ½M⊙� 100M⊙
λg Fraction of the model in the Gaussian component 0.1
μg Mean of the Gaussian in the primary mass distribution ½M⊙� 35M⊙
σg Width of the Gaussian in the primary mass distribution ½M⊙� 5M⊙
δm Range of mass tapering at the lower end of the mass distribution ½M⊙� 5M⊙
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c. Multipeak parameters

2. Rate parameters simulated
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