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Tuning into the bass notes of the large-scale structure requires careful attention to geometrical effects
arising from wide angles. The spherical Fourier-Bessel (SFB) basis provides a harmonic-space coordinate
system that fully accounts for all wide-angle effects. To demonstrate the feasibility of the SFB power
spectrum, in this paper we validate our SFB pipeline by applying it to log-normal, and both complete and
realistic EZmock simulations that were generated for eBOSS DR16 LRG sample. We include redshift
space distortions and the local average effect (also known as integral constraint). The covariance matrix is
obtained from 1000 EZmock simulations and inverted using eigenvalue decomposition.
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I. INTRODUCTION

Upcoming galaxy surveys such as SPHEREx, Euclid,
DESI, PFS, and others will have significant constraining
power on very large scales. This will allow constraints on
local-type primordial non-Gaussianity that is predicted by
inflation.
The typical power spectrum multipole estimator was

introduced by Yamamoto et al. [1] (for a review and
implementation see, e.g., [2]). In the Yamamoto estimator,
a single line-of-sight (LOS) is chosen for each pair of
galaxies, and for efficient implementation that LOS is
typically chosen to one of the galaxies in each pair.
However, while the Yamamoto estimator is a significant
improvement over the assumption of a flat sky with a fixed
LOS, it still suffers from wide-angle effects that can mimic a
non-Gaussianity parameter fNL ∼ 5 [3]. Further extensions
to the Yamamoto estimator such as using the midpoint or
bisector between the galaxy pair as the LOS [4] are also
possible. However, while certainly less, those estimators,
too, will contain wide-angle effects.
The spherical Fourier-Bessel decomposition fully

accounts for all wide-angle effects, because it is the natural
coordinate system for the radial/angular separation. [5–8]
In this paper we validate the SFB power spectrum

estimator developed in Grasshorn Gebhardt and Doré [8]
on the realistic eBOSS DR16 luminous red galaxy
EZmocks [9]. For the covariance matrix we use all 1000
EZmocks.
This paper is organized as follows. In Sec. II we review

the SFB basis, in Sec. III we review our SuperFaB
estimator, in Sec. IV we detail the theoretical modeling

including window, weights, shot noise, local average effect,
and pixel window. We validate our analysis pipeline with
log-normal mocks in Sec. V, and with EZmocks in Sec. VI.
The likelihood is constructed and run with an adaptive
Metropolis-Hastings sampler in Sec. VII. We conclude in
Sec. VIII. Many details such as a derivation of the local
average effect and velocity boundary conditions are del-
egated to the appendices.

II. SPHERICAL FOURIER-BESSEL BASIS

Similar to the Cartesian basis power spectrum analysis,
the spherical Fourier-Bessel analysis also separates scales
according to a wave number k. This stems from the
Laplacian eigenequation ∇2f ¼ −k2f that defines both
bases, with the difference coming mainly from the geom-
etry of the boundary conditions.
The spherical Fourier-Bessel basis offers several advan-

tages and disadvantages over the more familiar Cartesian-
space analysis. The two chief advantages of SFB is in the
separation of angular and radial modes due to the use of
spherical polar coordinates, and in the complete modeling of
wide-angle effects. Many observational effects are local in
origin, and, thus, manifest themselves purely as angular
systematics. Wide-angle effects come from the geometry of
the curved sky, and they have a similar signature as local
non-Gaussianity in the endpoint estimator [1,2,10–13]. Due
to the use of a spherical coordinate system and spherical
boundaries, SFB is well suited for both these types of
systematics.
Besides the lesser familiarity of the SFB power spec-

trum compared to Cartesian-space power spectrum multi-
poles, the SFB power spectrum suffers from an increased
computational cost due to the lack of the fast Fourier*gebhardt@caltech.edu; NASA Postdoctoral Program Fellow
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transform, and it suffers from an increase in the number of
modes. The large number of modes contains a wealth of
information that may be exploited, such as distinguishing
between redshift space distortions and evolution of galaxy
bias and growth rate with redshift, to name a few. However,
the presence of so many modes also presents challenges in
the analysis.
The spherical Fourier-Bessel basis is defined by the

eigenfunctions of the Laplacian in spherical polar coor-
dinates with spherical boundaries. Thus, the density con-
trast is expanded in SFB coefficients as (e.g., [14])

δðrÞ ¼
X
nlm

gnlðrÞYlmðr̂Þδnlm; ð1Þ

δnlm ¼
Z

d3r gnlðrÞY�
lmðr̂ÞδðrÞ; ð2Þ

where the second is the inverse of the first, and Ylmðr̂Þ are
spherical harmonics, and

gnlðrÞ ¼ cnljlðknlrÞ þ dnlylðknlrÞ ð3Þ

are linear combinations of spherical Bessel functions of the
first and second kind, chosen to satisfy the orthonormality
relation Z

rmax

rmin

dr r2gnlðrÞgn0lðrÞ ¼ δKnn0 : ð4Þ

The index n denotes the wave number knl, and cnl and
dnl are constants [8,15]. For comparison, we include the
SFB transform over an infinite flat universe in Eqs. (A4)
and (A5).
In this paper, we assume potential boundaries [16] which

ensure that the density contrast is continuous and smooth
on the boundaries. Further, we assume a spherical boundary
at some minimum distance rmin and some maximum
distance rmax so that the SFB analysis is performed in a
thick shell between rmin and rmax [8,15]. We have also
verified that velocity boundary conditions (that ensure
vanishing derivative at the boundary) give essentially the
same result, see Sec. V B 3.

III. SUPERFAB ESTIMATOR

For our SFB estimator we use SuperFaB. We refer the
interested reader to Grasshorn Gebhardt and Doré [8] for all
the details, and give only a very short overview here. In
brief, SuperFaB is similar to the 3DEX approach developed
in Leistedt et al. [17]. SuperFaB assumes the number
density is given by a discrete set of points,

nðrÞ ¼
X
p

δDðr − rpÞ; ð5Þ

where the sum is over all points (galaxies) in the survey. To
calculate the fluctuation field, we include a weighting [18]

wðrÞ ¼ 1

1þ n̄WðrÞClnn0
; ð6Þ

and we approximate Clnn0 ∼ 104 h−3Mpc3, so that the
observed density fluctuation field is

δobsðrÞ ¼ wðrÞ nðrÞ − αnrðrÞ
n̄max

; ð7Þ

where nðrÞ is the observed number density and nrðrÞ is a
uniform random catalog subject to the same window
function and systematics. n̄max is the maximum number
density in the data catalog, in our convention.
To perform the discrete SFB transform Eq. (2), we first

perform the radial integral for each ðn;lÞ combination by
directly summing over the galaxies, and pixelizing on the
spherical sky using the HEALPix scheme [19]. The angular
integration is then performed using HEALPIX.JL[20].
This SFB transform is performed for both the data

catalog and the random catalog, and the result is subtracted
with appropriate normalization to obtain the fluctuation
field δ̂nlm.
Finally, we construct the pseudo-SFB power spectrum

ĈwWA
lnn0 ¼ 1

2lþ 1

X
m

δ̂nlmδ̂
�
n0lm; ð8Þ

where we attach the suffixes “wW” for the weight and
window, and the suffix “A” for the local average effect, and
the caret (̂ ) indicates estimation from data. Window
function and other effects will be forward modeled, and
we turn to that next.

IV. SFB POWER SPECTRUM MODEL

In this section we detail our approach for calculating a
theoretical model for the estimator of Sec. III. We start with
a full-sky calculation, and then add the window function,
weights, local average effect (LAE), and pixel window. In
the window function we generally include survey geometry
and radial selection function.
In the SFB basis, the full-sky linear power spectrum

Clnn0 ≃ Clðknl; kn0lÞ on the light cone in redshift space is
expressed as [21]

Clnn0 ¼
Z

∞

0

dqWnlðqÞWn0lðqÞγ−3Pmðγ−1qÞ; ð9Þ

where PmðqÞ is the matter power spectrum, γ is an Alcock-
Paczynski-like parameter, and
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WnlðqÞ ¼
ffiffiffi
2

π

r
q
Z

rmax

rmin

dr r2gnlðrÞwðrÞϕðrÞDðrÞ

× e
1
2
σ2uq2∂2qr ½bðr; qÞjlðqrÞ − fðrÞj00lðqrÞ�; ð10Þ

with the radial basis functions gnlðrÞ defined in Eq. (3),
wherewðrÞ is a weighting function, ϕðrÞ is a radial selection
function, DðrÞ is the linear growth factor, bðr; qÞ is a scale-
dependent linear galaxy bias, σ2u is a velocity dispersion, and
f is the linear growth rate.
The velocity dispersion term we approximate by expand-

ing the exponential operator (that acts on the spherical
Bessels only) in a Taylor series to get

e
1
2
σ2uq2∂2qrjðdÞl ðqrÞ ≈ jðdÞl ðqrÞ − 1

2
σ2uq2j

ðdþ2Þ
l ðqrÞ; ð11Þ

where jðdÞl ðqrÞ is the dth derivative with respect to qr.1

The velocity dispersion is a combination of fingers-of-
God (FoG) effect and redshift measurement uncertainty,
σ2u ¼ σ2u;FoG þ σ2z . The FoG effect is modeled to be propor-
tional to the linear growth rate fðzÞ. The redshift meas-
urement uncertainty is kept constant 1.05h−1 Mpc in our
model, taken from Ross et al. ([22], their Fig. 2).
Local non-Gaussianity is modeled via a scale-dependent

bias [23]

bðr; qÞ ¼ bðrÞ þ fNLbϕðrÞ
3ΩmH2

0

2q2TðqÞD̄ðrÞ ; ð13Þ

where for this paper we assume the universal bias
relation [23–26]

bϕðrÞ ¼ 2δc½bðrÞ − 1�; ð14Þ

TðqÞ is the transfer function, and D̄ðrÞ is the growth factor
normalized to the scale factor a during matter domination,

D̄ðrÞ ¼ DðrÞ
ð1þ zmdÞDðrmdÞ

; ð15Þ

where the “md” suffix indicates a time deep within matter
domination.
In its most complete form, the SFB power spectrum

contains off-diagonal terms where knl ≠ kn0l. In a

homogeneous universe we would have Clðk;k0Þ∝
δDðk−k0Þ. However, both redshift space distortions and
growth of structure on the light cone break homogeneity in
the observed galaxy sample. For details we refer the reader
to Khek et al. [21] and Pratten and Munshi [27,28].
The bulk of the computation is spent on the spherical

Bessel functions in WnlðqÞ in Eq. (10). However, those
only depend on the combination qr, not on q and r
separately. Thus, we choose discretizations for q and r
such that in q-r space the “iso-qr” lines go precisely
through grid points. This condition demands that the
discretizations for q and r are logarithmic, i.e.,

qi ¼ q̄minRiΔn; ð16Þ

rj ¼ r̄minRj; ð17Þ

where q̄min and r̄min are the central values of the lowest
bins, lnR is the spacing in log-space, and Δn ≥ 1 is an
integer to allow sparse sampling of q. Then, qr is sampled
at only a few discrete m ¼ iΔnþ j,

ðqrÞm ¼ q̄minr̄minRiΔnþj: ð18Þ

This transforms the problem of calculating the spherical
Bessels from a two-dimensional to a one-dimensional
problem.

A. Window function convolution

The window function limits the density contrast to that
observed by a survey δobsðrÞ ¼ WðrÞδðrÞ, where we define
the window WðrÞ ¼ n̄ðrÞ=n̄max. In SFB space the window
effect becomes a convolution,

δobsnlm ¼
X
NLM

WNLM
nlm δNLM; ð19Þ

where the coupling matrix is

Wn0l0m0
nlm ¼

Z
dr r2gnlðrÞgn0l0 ðrÞ

×
Z

d2r̂Y�
lmðr̂ÞYl0m0 ðr̂ÞWðr; r̂Þ: ð20Þ

As a result, the modes of the SFB power spectrum are
coupled,

Cobs
lnn0 ¼

X
LNN0

MLNN0
lnn0 CLNN0 ; ð21Þ

where we calculate the coupling matrix M by

MLNN0
lnn0 ¼ 1

2lþ 1

X
mM

WNLM
nlm WN0LM;�

n0lm : ð22Þ

1Another reasonably well-performing approximation is [21]

e
1
2
σ2uq2∂2qr jðdÞl ðqrÞ ≈ e−

1
2
σ2uq2jðdÞl ðqrÞ; ð12Þ

which is motivated by two extreme cases: when q is small, the
exponential operator does nothing; if it is large, the convolution
implied by the exponential operator averages over many oscil-
lations, thus leading to a vanishing value. However, for large l
this approximation suppresses power significantly.
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However, in practice Eqs. (20) and (22) can be evaluated
more efficiently as described in Grasshorn, Gebhardt, and
Doré [8].
For the eBOSS dataset, it is sufficient to assume a

separable window,

WðrÞ ¼ Mðr̂ÞϕðrÞ; ð23Þ

where Mðr̂Þ is an angular window, and ϕðrÞ ∝ nðzÞ is the
radial selection function.

B. FKP weights

The effect of adding arbitrary weights wðrÞ, e.g.,
for optimizing the statistical power similar to Feldman
et al. [18] as in Eq. (7) is the following.
Since in the limit of infinitely many galaxies both the

observed number density nðrÞ and the random catalog
density nrðrÞ are proportional the window WðrÞ, Eq. (7)
implies that the observed density contrast is related to the
true underlying theoretical density contrast by

δobs ¼ wWδ: ð24Þ

However, the window WðrÞ and the weights wðrÞ enter
the observed power spectrum differently. In particular, for
the clustering signal we simply change W → wW, e.g., in
Eq. (19). On the other hand, the shot noise changes from
N ∝ W to N ∝ w2W. We leave the detailed argument to
Appendix B.

C. Local average effect

The local average effect or integral constraint comes
from measuring the number density of galaxies from the
survey itself. This implies that the observed density contrast
in the survey is measured relative to the average true
density contrast. That is, δobsðrÞ ∼ δðrÞ − δ̄ðzÞ, where δ̄ðzÞ
is the average density contrast in a thin redshift bin. This

removes power from the largest angular scales. As a result
the observed clustering and shot noise power spectra are
given by four terms each

CwWA ¼ C1 − C23 − C4; ð25Þ

NwWA ¼ N1 − N23 − N4; ð26Þ

where the terms on the right-hand side are derived in
Appendix C. In practice, all but the C1 and N1 terms
essentially vanish for l ≳ 2=fsky.

D. Pixel window

With our SuperFaB estimator only angular modes are
affected by the HEALPix pixelization scheme Górski
et al. [19]. We include the HEALPix pixel window in
the theoretical modeling after the window and weights
convolution, and before adding the shot noise, since shot
noise is not affected by the pixel window.

V. VALIDATION WITH LOG-NORMAL MOCKS

In this section we validate our pipeline using our own
implementation of log-normal mocks [29,30]. Similar to
Agrawal et al. [31], our log-normals contain linear redshift
space distortions, and optionally can have a large Gaussian
FoG component.
We start with validating our model calculation on the full

sky, then our window convolution and the importance of
off-diagonal terms, local average effect, and boundary
conditions.

A. Full-sky log-normal mocks

In Fig. 1 we start with a full-sky survey in the radial
range 750–1000 h−1Mpc. The three panels compare our
model described in Sec. IV to the average over 1000
simulations; the first panel to the left compares the shot

FIG. 1. Here we show the SFB power spectrum for a full-sky survey with top-hat redshift bin 750–1000 h−1 Mpc. In each panel the
colored points show the simulations average with the color indicating the lmode. Small black points indicate the theoretical calculation
results. Left: shot noise only. Center: real-space log-normal simulations. Right: redshift-space log-normal simulations. In all panels the
SFB power spectrummodes separates into on-diagonal (k ¼ k0) and off-diagonal (k ≠ k0) modes. The off-diagonal modes cluster around
zero power.
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noise calculation with the estimator run on a uniform
random data catalog; the center panel compares the model
with a log-normal simulation in real space; the last panel
compares the same in redshift space.
In each panel of Fig. 1, the color indicates the l mode.

Further, the modes broadly break into those that are on the
diagonal k ¼ k0 and those that are off diagonal. For
the modes shown, the diagonal terms are all above
Clnn ≳ 1000 h−3 Mpc3, while the off-diagonal k ≠ k0
terms are closer (but not necessarily equal) zero.
Crucially, nonzero power is present in the off-diagonal
terms even in real space.

B. eBOSS DR16 LRG log-normal mocks

Next, we validate our pipeline using the eBOSS DR16
LRG mask in the North Galactic Cap (NGC) and its radial
selection function. The radial selection and angular win-
dows are estimated from 1000 random catalogs provided by
the SDSS collaboration [9]. Since we use the estimated
window as the exact window for both generating and
analysing the log-normal mocks, the details of this win-
dow-estimation procedure are irrelevant here, and we defer
its description to Sec. VI.
Suffice to say that the resulting angular window encodes

the fraction of each pixel that is observed. On the left of

FIG. 2. Catalog projection eBOSS DR16 LRGs. Left: angular projection at Healpix resolution nside ¼ 256. Right: radial selection
function.

FIG. 3. eBOSS-NGC-LRG-sky log-normal mocks. We only display k ¼ k0 (Δn ¼ 0) modes. The top row of panels displays the power
spectrum for the three cases of uniform random mocks (left), log-normal mocks in real space (center), and log-normal mocks in redshift
space (right). The bottom row displays the corresponding residuals to the theory.
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Fig. 2 we show the number of points in each pixel for the
random catalog. Both NGC and south galactic cap (SGC)
are shown. However, in this section we only use the NGC.
The radial selection is shown on the right of Fig. 2, and it is
estimated from the data catalog. We again defer the details
to Sec. VI.
To ensure the presence of the local average effect

(Sec. IV C), we generate uniform random catalogs that
match the radial number density distribution of each “data”
catalog in the following way. For each redshift bin we draw
exactly the same number of galaxies as in the data catalog.
We adhere to the angular varying-depth window at that
redshift by first uniformly drawing galaxies on the full sky,
then rejecting points with probability proportional to the
depth of the window. In this way a random catalog is created
with the exact same redshift distribution as the data catalog
(within the resolution of the analysis), and an angular
distribution matching the angular window at each redshift.
We show our log-normal simulation results in Fig. 3, for

uniform random data catalogs (left panels), real-space log-
normals (center panels), and redshift-space log-normals

(right panels). In addition to the observed power spectrum
(convolved with window), we also show the difference to
the calculated theory power spectrum. We get generally
good agreement. The discrepancy at k≳ 0.04 hMpc−1
comes from the incomplete window convolution that needs
to make use of modes above our maximum kmax ¼
0.05 hMpc−1 used in the analysis.

1. Importance of off-diagonal terms

In Fig. 3 we used off-diagonal knþΔn;l ≠ knl terms up to
Δnmax ¼ 4. As already mentioned for the full-sky case,
these off-diagonal terms are important. We explicitly show
this in Fig. 4, where we limit Δnmax ¼ 0 (left panel),
Δnmax ¼ 2 (center panel), and Δnmax ¼ 4 (right panel) for
the redshift-space mocks. The figure shows that the on-
diagonal Δn ¼ 0 terms are sufficiently modeled using
Δnmax ¼ 2. However, to model the off-diagonal terms as
well, we conclude from Figs. 3 and 4 that for the eBOSS
DR16 LRG redshift range and radial selection, Δnmax ¼ 4
is needed and sufficient.

FIG. 4. LRG-sky redshift-space log-normals. If the model is calculated only with on-diagonal modes (k ¼ k0, orΔn ¼ 0), then there is
significant discrepancy between the simulation average and the theory model, as shown in the left panel. Even with just two off
diagonals included (center panel) the modeling is significantly improved. The right panel shows when modeling with up to Δnmax ¼ 4
off diagonals.

FIG. 5. 1=16th sky, constant radial selection between 500–1000 h−1 Mpc. Left: theory LAE calculation up to lmax ≲ 16. Right: theory
LAE calculation up to lmax ≲ 32.
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2. Local average effect modeling

Since the calculation for the local average effect in
Appendix C is computationally expensive, we perform the
calculation only up to some lmax. In Fig. 5 we show the
result when lmax ¼ 1=fsky and when it is lmax ¼ 2=fsky.

The residuals only become percent level with the
larger lmax.

3. Potential vs velocity boundaries

While potential boundaries have the property of being
able to better model the density field with fewer modes,
they have the unfortunate property that a sphere in real
space does not stay a sphere in redshift space. Thus, our
modeling in Sec. IV is technically inconsistent. However,
those boundary effects are vanishingly small in the case of
eBOSS DR16 LRGs, which we show in Fig. 6, where we
compare with velocity boundary conditions [16] that set the
derivative to vanish on the boundaries, and, thus, a sphere
in real space is also a sphere in redshift space. We show the
derivation of the basis functions for velocity boundaries
(including k ¼ 0 mode) in Appendix D.
To better assess if there is a relevant difference between

the boundary conditions, Fig. 7 shows the difference
between them. Since we use log-normal simulations that
are inaccurate especially on small scales, we do not expect
the theory and measured average to agree perfectly.
However, both potential and velocity boundaries show the
same systematics. Thus, we conclude that the difference is
insignificant.

VI. VALIDATION WITH EZMOCKS

To capture the full complexity of the eBOSS data, we use
the EZmocks generated by Zhao et al. [9]. This allows us to

FIG. 6. Comparison between potential (top) and velocity (bottom) boundary conditions with log-normal simulations for a thin shell
covering half the sky. Top row shows the modes with potential boundaries that ensure a continuous and smooth field at the boundary,
bottom row with velocity boundaries that set the vanishing velocity at the boundary.

FIG. 7. Left column shows the potential boundary modes, right
column the velocity boundary modes, and the difference to our
theory code for log-normal simulations with RSD. While the log-
normals are afflicted by systematics, they are essentially the same
whether potential or velocity boundaries are used. See right
column of Fig. 6 for the absolute values of the modes.
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FIG. 8. Each row shows the SFB power spectrum measured in each of the redshift slices used to generate the LRG EZmocks in the
NGC. We show the full SFB power spectrum in the slice in the left panels, the residual relative to the theory in the center left panels, the
same residual rescaled by the standard deviation as measured from the simulations in the center right panels, and a histogram of those
standard-deviation-rescaled residuals in the left panels. In the two right-most columns the green dashed lines are the 16, 50, and
84 percentiles. In the right-most column we also show in orange a Gaussian fit, in black solid a Gaussian of unity width with black
dashed lines as the corresponding 16, 50, and 84 percentiles. We adjusted the bias parameters to fit each slice. We added a buffer of
Δz ¼ 0.05 to each slice in order to avoid leakage due to RSD from neighboring slices.
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test several potential sources of systematics that were not
included in the log-normal mocks. First, we estimate the
window from the 1000 random catalogs provided, and so
the randoms are afflicted by a shot noise component.
However, we find that this is negligible. Second, the
complete EZmocks include redshift evolution in the growth
factor, galaxy bias, and radial dispersion (i.e., FoG and
redshift uncertainty) that is lacking in the log-normal
mocks. Third, the realistic EZmocks build on the complete
EZmocks adding photometric systematics, fiber collisions,
and redshift failures [9,22,32–34].
We match the cosmology to that used to create the

EZmocks: a flat ΛCDM cosmology with H0 ¼
67.77 km s−1 Mpc−1 and Ωm ¼ 0.307115. In our fiducial
cosmology the LRG redshift range 0.6 ≤ z ≤ 1.0 corre-
sponds to radial distances 1540 < r

h−1 Mpc < 2467.

Our procedure for estimating the angular mask/window
is as follows. We average over 1000 random catalogs
provided by the SDSS collaboration [9]. At HEALPix
resolution nside ¼ 256 and with 554 comoving distance
bins, the number of random catalog points is added up for
each voxel2 to then estimate the number density in each
voxel. The angular window is estimated by taking the mean
over all redshift bins and then normalizing. The angular
footprint on sky is shown on the left of Fig. 2.
The radial selection function is estimated from the data in

each cap separately. First, the data catalog is binned into
40 radial bins of width Δz ¼ 0.01, and then cubically
splined. The radial selection function is shown on the right
of Fig. 2.

A. Complete EZmocks

To model the evolution of structure and galaxy bias with
redshift, the EZmock catalogs for the LRG sample are

generated in five redshift slices [9]. We show SFB
measurements from each of these slices in Fig. 8. In order
to avoid leakage due to RSD from neighboring slices we
chose redshift slices that are thinner by Δz ¼ 0.05 on each
side than the original slices used to generate the mocks.
For each redshift slice, the left column of Fig. 8 shows

the average over 999 complete EZmock simulations and a
theory curve where the linear galaxy bias was adjusted to fit
the measurement in that slice. The center left column shows
the residuals with the error bars estimated from the 999
EZmocks. The center right column shows the residuals
relative to the standard deviation of that mode, ignoring
mode couplings, and dashed horizontal lines indicating the
16th, 50th, and 84th percentiles. The left-most column
shows a histogram of those relative residuals as well as a
Gaussian fit in orange, and a standard Gaussian in black.
Slices 1 and 2 cover a smaller redshift range and, thus,

have fewer modes (and no Δn ¼ 2 modes). Modes are also
coupled due to the limited sky coverage, so that the number
of degrees of freedom is fairly small, and slice 2, in
particular, is quite noisy. Slice 3 contains the most galaxies,
and the 16th, 50th, and 84th percentiles are nearly exactly
coincident with the 1-σ lines.
The linear galaxy biases thus obtained are plotted as step

functions in Fig. 9.
The sensitivity of the SFB power spectrum to the

evolution of the linear galaxy bias bðzÞ is shown in
Fig. 10, where we compare theory curves for constant
bias and the step-function bias. The difference is on the
level of ∼5%.
Using the bias model in Fig. 9, we now show the

comparison with the complete EZmocks with all five
redshift slices in Fig. 11. In the figure, we extend the
range of modes up to kmax ¼ 0.1 hMpc−1. However, we
only show up to k ¼ 0.08 hMpc−1 because of the incom-
plete window convolution above that.
As Fig. 11 shows, the model is unbiased on large scales.

However, small angular modes with high l (yellow points
in the figure) are significantly biased relative to their
covariance. This comes from the fact that we measured
the radial selection function from the data which is afflicted
by systematics that are not present in the complete
EZmocks. We remedy this situation with the realistic
EZmocks in the next section.

B. Realistic EZmocks

Several observational systematics enter the analysis of
the eBOSS DR16 ELG samples. Building on top of the
complete EZmocks, the realistic EZmocks add the effects
of photometric systematics, close-pair fiber collisions, and
redshift failures. Weights to correct for these systematics
are provided by the EZmocks.
In addition to the systematic weights we apply Feldman-

Kaiser-Peacock (FKP) weights according to Eq. (6). We

FIG. 9. eBOSS DR16 LRG growth factor, growth rate, bias,
and FoG evolution.

2We use the word voxel in three dimensions in analogy to pixel
in two dimensions.
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chose to apply our own FKP weights instead of those
provided by EZmocks, for no other than practical reasons,
e.g., to apply them to our log-normal simulations.
Figure 12 shows the average over the 1000 EZmocks

for the NGC in the top panels and for the SGC in the
bottom panels of the figure. The simulations and data
analysis are fully consistent with each other, and the
agreement is within the statistical expectation for both
NGC and SGC.

VII. MONTE CARLO MARKOV CHAIN (MCMC)
FITTING AND COVARIANCE MATRIX

In this section we test our likelihood construction and
MCMC fitting. The covariance matrix is estimated from
1000 realistic EZmocks [9]. We briefly describe how we
invert such a noisy covariance matrix using the eigenvector
method outlined in Wang et al. [7], and then we apply that
to a few realizations of the EZmocks.
Assuming the SFB power spectrum modes are Gaussian

distributed, we construct the likelihood as follows:

−2 lnL ¼ constþ ðĈ − CÞTM−1ðĈ − CÞ; ð27Þ

where Ĉ is the vector of measured Clnn0 values, C is the
SFB power spectrum model and M is the covariance
matrix.

A. On the inversion of noisy convariance matrices

A covariance matrix estimated from simulations is
afflicted by noise. In our case, the number of modes
exceeds the number of simulations. Thus, only 1000
eigenvalues of the covariance matrix are measured from
the 1000 simulations, and the rest are zero within machine
precision. An example is shown in Fig. 13.
Therefore, the inverse of the measured covariance matrix

will be dominated by the noise of the unmeasured eigen-
values. To solve this we use the approach outlined in Wang
et al. [7] that ensures that the inverted matrix is dominated
by well-constrained eigenmodes. The assumption is that
the eigenvectors with large eigenvalues are the best
determined. Thus, only the eigenvectors with the largest
eigenvalues are retained.
There are a few unfortunate consequences of this

approach. First, the modes that have a small variance
and, thus, would contribute most to the likelihood are
thrown away. However, here we are interested in the largest
scales, and these modes tend to have larger uncertainties
due to the limited volume in the survey. Thus, we expect
these large modes to be retained in this approach. Second,
among the modes with large uncertainties, the noise in the

FIG. 10. The SFB power spectrum is sensitive to redshift
evolution, as exemplified here by comparing the SFB power
spectrum with the biases for the five redshift slices set equal
(black points) with the step-function bias (larger colored points).
Both are the theoretical curves.

FIG. 11. This figure is similar to Fig. 8, except that now the full redshift range over all five slices of the complete LRG NGC EZmocks
is used. Without any further fitting of bias and cosmological parameters compared to Fig. 8, we get generally good agreement between
the mocks’ average and theory, with a significant discrepancy only on smaller scales, as seen in the center right panel.
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covariance estimate means that there is some stochasticity
as to the exact modes that get retained. Some modes will be
over estimated, and those will definitely be retained, which
merely degrades the constraints. However, it is also
possible (e.g., if the numbers of modes is similar to the
number of simulations) that some covariance entries get
underestimated, in which case we could get biased con-
straints. We leave a more detailed investigation to a
future paper.

The inversion works essentially as a lossy compression
algorithm. First, the variable condition number of an
eigenmode i is defined as

ϱi ¼
λmax

λi
; ð28Þ

where λ1 ≤ … ≤ λN ¼ λmax are the eigenvalues sorted
from smallest to largest. We then keep only the largest
eigenvectors starting at the smallest imin such that
ϱimin

≥ ϱthreshold ¼ 1000. The compression matrix R is then
constructed from these J ¼ N − imin þ 1 eigenvectors ej,

R ¼ ðeimin
;…; eNÞ† ∈CJ×N; ð29Þ

which satisfies RR† ¼ 1. Then, the compressed data
vector is

FIG. 12. This figure is similar to Fig. 11, except that here we used the realistic EZmocks that include systematics, and we
have also included FKP weights in the power spectrum estimation. Furthermore, the top row of panels shows the comparison between
mocks’ average and theory for the NGC, and the bottom row for the SGC. The same cosmological and bias parameters were used for
NGC and SGC.

FIG. 13. Eigenvalues of the full covariance matrix estimated
from 1000 EZmocks, sorted from smallest to largest, dashed
means negative. The largest 1000 eigenvalues are well con-
strained. The smaller eigenvalues are consistent with numerical
machine-level noise around a mean of zero. The gray line
indicates the cutoff for which we use eigenvalues in the matrix
inversion.

FIG. 14. Histogram of best-fit fNL for 100 simulations. The
blue line marks the fiducial fNL ¼ 0, the dashed lines the 16th
and 84th percentiles.
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Δ ¼ Rδ; ð30Þ
and the compressed covariance matrix is

C ¼ RMR†; ð31Þ
which is positive definite if M is positive definite. The
likelihood analysis is then performed in compressed space
with data vector Δ and covariance matrix C.
Wang et al. [7] have shown that the matrix R can be

recycled between iterations of the MCMC fitting procedure
as long as the parameter space that is being explored stays
in a similar region.

B. MCMC fitting

As a final step in this autocorrelation SFB validation
paper, we use single EZmock simulations as data. First, we
will measure the bias parameters and fNL from the average
of the simulations, then we include RSD, FoG, and single-
parameter Alcock-Paczynski.

For our MCMC we developed in Julia an adaptive
Metropolis-Hastings sampler [35]. Adaptive here means
that the covariance matrix of the proposal distribution is
updated every few steps. Therefore, the chain is Markovian
only asymptotically in the limit of a large number of steps.
We use the following procedure to get a robust estimate
of the errors. The number of steps is a multiple of
M ¼ nðnþ 1Þ, where n is the number of parameters.
We first run the chain for 100M steps to get an estimate
for the maximum likelihood point. Then, we run it again
for 100M points to get an estimate of the covariance matrix
for the parameters. We then run it twice more, each time
updating both the starting point with the new maximum
likelihood point and the initial covariance matrix. Finally,
we run the adaptive Metropolis-Hastings sampler for
700M steps, and these samples will be the ones used as
output of the MCMC.
Figure 14 shows a histogram over 100 sims, fitting only

fNL and keeping all other parameters constant. We used

FIG. 15. MCMC results for a single EZmock. The blue crosses mark the fiducial value as measured from all EZmocks, the orange
point marks the point that had the highest likelihood in the chain. All parameters except the bias b4 for the highest redshift slice are
reasonably well constrained and consistent with the fiducial.
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only the NGC, and l ≥ 4, and kmax ¼ 0.08hMpc−1. While
the noise is large, the set of ensembles is consistent with
fNL ¼ 0, as we would expect given the input simulations.
Figure 15 shows an MCMC run with the five biases

(one for each redshift slice) and fNL as parameters. The
measured bias parameters are essentially the same as when
we fix fNL ¼ 0, and they are consistent with the average
measured from all EZmocks in Sec. VI A, generally within
the 68% contours.
Finally, Fig. 16 shows an MCMC run for the five biases,

fNL, Kaiser parameter f0, FoG σu, and Alcock-Paczynski
parameter γ. The FoG parameter only enters as its square,
hence negative values are equally allowed.
While the error contours are large, they are largely un-

biased. Crucially, the EZmocks were created with fNL ¼ 0,
and we successfully recover that from the simulations.

VIII. CONCLUSION

In this paper we validate our pipeline for using the
SuperFaB estimator for cosmological inference on the
spherical Fourier-Bessel pseudopower spectrum. We
develop a reasonably fast SFB power spectrum calculator
along the lines of Khek et al. [21]. We derive in detail the
shot noise and the local average effect with weights.
We start the validation with full-sky log-normal simu-

lations in real and redshift space (similar to [31]), and

then progressively add redshift-space distortions, realistic
masks, radial selection, and systematic weights using the
EZmocks of Zhao et al. [9]. We also verify the use of
potential and velocity boundary conditions.
We model the EZmocks bias prescription by steps as

shown in Fig. 9. For the NGC and SGC separately, we
verify that the model including all systematics is consistent
with the measured modes of the EZmocks, Fig. 12.
Finally, we construct a Gaussian likelihood for the power

spectrum, we measure the covariance matrix from all 1000
EZmocks with a large-eigenvalue inversion, and we verify
that the measured fNL from 100 EZmocks is consistent
with zero, Fig. 14, and that all the parameters of the model
are consistent with their fiducial values.
For the future we plan to apply the method on the data,

improve the covariance estimate, and develop the multi-
tracer SFB analysis.
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APPENDIX A: USEFUL FORMULAS

Spherical Bessel functions and spherical harmonics
satisfy orthogonality relations

δDðk − k0Þ ¼ 2kk0

π

Z
∞

0

dr r2jlðkrÞjlðk0rÞ; ðA1Þ

δKll0δ
K
mm0 ¼

Z
dΩr̂ Ylmðr̂ÞY�

l0m0 ðr̂Þ: ðA2Þ

The Laplacian in spherical coordinates is

∇2f ¼ 1

r2
∂

∂r

�
r2
∂f
∂r

�
þ 1

r2 sin θ
∂

∂θ

�
sin θ

∂f
∂θ

�
þ 1

r2sin2θ
∂
2f

∂ϕ2
: ðA3Þ

The SFB transform pair is

δðrÞ ¼
Z

dk
X
lm

� ffiffiffi
2

π

r
kjlðkrÞYlmðθ;ϕÞ

�
δlmðkÞ; ðA4Þ

δlmðkÞ ¼
Z

d3r

� ffiffiffi
2

π

r
kjlðkrÞY�

lmðr̂Þ
�
δðrÞ: ðA5Þ

APPENDIX B: SHOT NOISE
AND FKP WEIGHTING

Here we consider the effect of the weighting on the
clustering signal and shot noise. We start with the Poisson
statistics of the sampled field [18,36]

hnðrÞnðr0Þi ¼ n̄ðrÞn̄ðr0Þ½1þ ξðr; r0Þ�þ n̄ðrÞδDðr− r0Þ; ðB1Þ

αhnðrÞnrðr0Þi ¼ n̄ðrÞn̄ðr0Þ; ðB2Þ

α2hnrðrÞnrðr0Þi ¼ n̄ðrÞn̄ðr0Þ þ αn̄ðrÞδDðr − r0Þ; ðB3Þ

where nðrÞ is the number density of the data catalog,
nrðrÞ that of the random catalog, and we define

n̄ðrÞ ¼ hnðrÞi ¼ αhnrðrÞi, and α is the ratio of the number
of points in the data catalog to the number of points in the
random catalog. With Eq. (7) the correlation function
becomes

hδobsðrÞδobsðr0Þi ¼ wðrÞwðr0ÞWðrÞWðr0Þξðr; r0Þ

þ ð1þ αÞw
2ðrÞWðrÞδDðr0 − rÞ

n̄
; ðB4Þ

where we used the window functionWðrÞ ¼ n̄ðrÞ=n̄, which
is how we define it throughout the paper. Equation (B4)
shows that there is a difference between the window and the
weighting. This difference appears in the shot noise term,
which must still include the square of the weighting
function, but contains the window only linearly.
The SFB transform of the shot noise term becomes [i.e.,

Eq. (2)]

Nobs ¼ 1þ α

n̄
SFB2½w2ðrÞWðrÞδDðr0 − rÞ�; ðB5Þ

¼ 1þ α

n̄
ðw2WÞn0l0m0

nlm ; ðB6Þ

where our notation ðw2WÞ signifies the window convolu-
tion matrix Eq. (20), but with W → w2W. The pseudo-
power shot noise is

Nobs
lnn0 ¼

1þα

n̄
1ffiffiffiffiffiffi
4π

p
Z

drr2gnlðrÞgn0lðrÞðw2WÞ00ðrÞ: ðB7Þ

Equation (B4) also shows that the coupling matrix
is modified by calculating it with the substitution
WðrÞ → wðrÞWðrÞ.
In summary, the following changes are introduced by the

weighting:
(1) In the estimator, each galaxy needs to be multiplied

by the weight wðrÞ at its location, see Sec. III. [If
no random catalog is used, then this also means
that Wlnðr̂Þ must be calculated with the substitu-
tion WðrÞ → wðrÞWðrÞ.]

(2) The coupling matrix is computed with the substitu-
tion WðrÞ → wðrÞWðrÞ.

(3) The shot noise is calculated with the substitu-
tion WðrÞ → w2ðrÞWðrÞ.

(4) The local average effect changes as a result of the
weighting, and we defer the details to Appendix C.

APPENDIX C: LOCAL AVERAGE EFFECT
WITH WEIGHTING

In this section we recognize that the average number
density n̄ in Eq. (7) must in practice be measured from the
survey itself. This is often called the integral constraint
[37,38] or the local average effect [39,40].
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Compared to Grasshorn Gebhardt and Doré [8] we
include a weighting wðrÞ. We also consider an extension
where n̄ðzÞ is independently determined at every red-
shift [38].
Measuring the average number density is accomplished

by dividing the total number of galaxies in the survey (or
the total number in each redshift bin) by the effective
volume. However, the total number of galaxies in the
survey is a stochastic quantity such that the average number
density is given by

n̄ ¼ ð1þ δ̄Þn̄true; ðC1Þ

where n̄true is the true density contrast if one were to
measure on a much larger survey volume. Defining the
effective volume

Veff ¼
Z

d3rWðrÞ; ðC2Þ

the average density contrast within the survey volume is

δ̄ ¼ 1

Veff

Z
d3rWðrÞδðrÞ; ðC3Þ

or, if we measure the number density as a function of
redshift,

δ̄ðzÞ ¼ 1

4πfeffskyðzÞ
Z

d2r̂ WðrÞδðrÞ; ðC4Þ

where we define the effective sky fraction as

feffskyðzÞ ¼
1

4π

Z
d2r̂ WðrÞ: ðC5Þ

That is, we fold the radial selection ϕðzÞ into the effective
sky fraction. Next, we define the triplet μ ¼ ðnμ;lμ; mμÞ.
Then, the average density field in SFB space becomes

δ̄μ ¼ δKlμ0δ
K
mμ0

(
V−1
effdμd

�
νWνρδρ for δ̄ ¼ const

W̃μρδρ for δ̄ ¼ δ̄ðzÞ ; ðC6Þ

where we sum over repeated indices and we defined the
SFB transform of a unit uniform field,

dμ ¼
ffiffiffiffiffiffi
4π

p
δKlμ0δ

K
mμ0

Z
dr r2gnμ0ðrÞ; ðC7Þ

and

eWμρ ¼
Z

d3r gμðrÞgρðrÞY�
μðr̂ÞYρðr̂Þ

WðrÞ
feffskyðzÞ

; ðC8Þ

which is the mixing matrix if the window is W=feffsky [e.g.,

Eq. (34) in [8] ]. If the window is separable, thenW=feffsky is

purely a function of r̂, and eW is proportional the coupling
matrix due to the angular window. The Kronecker deltas in
Eq. (C6) ensure that eW only needs to be calculated for
lμ ¼ mμ ¼ 0, and it describes the coupling of the angular
DC mode to the higher multipoles for a partial sky.
With our model in Eq. (7), the measured density contrast

is (similar to [41])

δobsðrÞ≡ δwWAðrÞ ¼ wðrÞWðrÞ δðrÞ − δ̄

1þ δ̄
; ðC9Þ

where δðrÞ is the true density contrast, the superscript “A”
refers to the local average effect, and the superscript “W”
refers to the effect of the window convolution.
The SFB transform of Eq. (C9) is

δwWA
μ ≃ ðwWÞμρ½δρ − δ̄ρ�; ðC10Þ

to first order in δ̄, and we defined the mixing matrix
ðwWÞμρ ¼ wμσWσρ.
The observed weighted correlation function is

hδwWA
μ δwWA;�

ν i ¼ ðwWÞμρ½hδρδ�λi − hδρδ̄�λi
− hδ̄ρδ�λi þ hδ̄ρδ̄�λi�ðwWÞλν; ðC11Þ

where we used that the mixing matrix is Hermitian,
ðwWÞ�κλ ¼ ðwWÞλκ.
Equation (C11) contains four terms. The first term is the

clustering term,

P1
μν ¼ ðwWÞμρhδρδ�λiðwWÞλν: ðC12Þ

The other terms in Eq. (C11) we call P2
μν, P3

μν, and P4
μν with

similar definitions as P1
μν, and they are due to the local

average effect. The second and third terms are related by
taking the adjoint. That is,

P3
μν ¼ ðwWÞμρhδ̄ρδ�λiðwWÞλν ¼ P2;�

νμ : ðC13Þ

The second and third terms are the computationally most
expensive to calculate. The reason is that the correlation
between the two isotropic fields δðrÞ and δ̄ðr0Þ comes from
the anisotropic region on the partial sky defined by the
window function. Thus, the correlation hδðrÞδ̄ðr0Þi is
anisotropic, and this couples l ¼ 0 modes with higher-l
modes. Hence, treating hδρδ̄�λi as a pseudopower spectrum
with ðlρ; mρÞ ¼ ðlλ; mλÞ is inadequate, in general.
However, we use the heuristic that only modes up to lρ ≲
1=ð2fskyÞ couple to lλ ¼ 0, since that is approximately the
width of the window function in spherical harmonic space.
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We treat the clustering and shot noise terms separately so
that Pi ¼ Ci þ Ni. We define the observed weighted power
spectrum and shot noise as

CwW
μν ¼ ðwWÞμσCσρðwWÞρν; ðC14Þ

NwW
σρ ¼ 1

n̄
ðw2WÞσρ ¼

1

n̄
wσαWαβwβρ; ðC15Þ

where Cσρ enforces the isotropy condition lσ ¼ lρ and
mσ ¼ mρ, and the shot noise is from Eq. (B6). Then,

P1
μν ¼ CwW

σρ þ NwW
μν : ðC16Þ

To calculate the local average effect terms we treat them
in two different ways, depending on whether we consider a
constant δ̄ or δ̄ðzÞ. In either case, the result can be separated
into clustering and shot noise terms. Furthermore, we will
only consider the pseudo-SFB power spectrum.

1. Constant average density contrast

Considering a constant δ̄, the result will be written as the
matrix equations

CwWA ¼ CwW − T̃Cþ trðCWDÞDwW; ðC17Þ

NwWA ¼ NwW − ½2n̄−1 − trðNWDÞ�DwW; ðC18Þ

where T̃ is given in Eq. (C31). The traces are given in
Eqs. (C35) and (C36), and DwW can be calculated effi-
ciently, as shown in Grasshorn, Gebhardt, and Doré [8].
Next, we calculate the second term in Eq. (C11) assum-

ing constant δ̄. Using Eq. (C6), we write

P2
μν ¼ wμσWσρhδρδ̄�λiWλκwκν; ðC19Þ

¼V−1
effwμσ½CW

σι þNW
σι �dιd�λWλκwκν;

¼V−1
effwμσ½CW

σι þNW
σι �dιdwW;�

ν ;

¼V−1
effwμσCW

σιdιd
wW;�
ν þ n̄−1DwW

μν ;

¼V−1
effðwWÞμρ½CρωWωιdιd�λ �ðwWÞλνþ n̄−1DwW

μν ; ðC20Þ

where we used that NW
σι ¼ n̄−1Wσι, and ðwWÞμρ is the

mixing matrix for wðrÞWðrÞ, and we defined

DwW
μν ¼ ðwWÞμαDαβðwWÞβν; ðC21Þ

along with

Dαβ ¼ dαd�β: ðC22Þ

The term in brackets is

½CρωWωιdιd�λ � ¼
X
nω

ClρnρnωWnωlρmρ
dλ; ðC23Þ

where we used

dWnlm ¼
X
n0
Wn000

nlmdn000; ðC24Þ

¼
Z

dr r2gnlðrÞWlmðrÞ
Z

dr0 r02
X
n0
gn00ðrÞgn00ðr0Þ;

¼ Wnlm; ðC25Þ

and the last step follows from the orthogonality of the
basis functions in harmonic space,

P
n gn0ðrÞgn0ðr0Þ ¼

r−2δDðr − r0Þ. Thus, we get

P2
μν ¼ C2;wW

μν þ n̄−1DwW
μν ; ðC26Þ

where

C2;wW
μν ¼ ðwWÞμρ

�
V−1
eff

X
nω

ClρnρnωWnωlρmρ
dλ

�
ðwWÞλν;

ðC27Þ

¼ V−1
eff

X
nρlρmρ

ðwWÞnρlρmρ

nμlμmμ

X
nω

Wnωlρmρ
Clρnρnω

× ðwWÞ�nνlνmν
; ðC28Þ

where the last line follows again from Eq. (C25) and the
Hermitian property of ðwWÞλν. For the pseudopower
spectrum we set ðlμ; mμÞ ¼ ðlν; mνÞ, and average overmμ,

C2;wW
lμnμnν

¼
X

lρnρnω

T
lρnρnω
lμnμnν

Clρnρnω ; ðC29Þ

where

T
lρnρnω
lμnμnν

¼ 1

Veffð2lμ þ 1Þ
X
mμ

ðwWÞ�nνlμmμ

×
X
mρ

ðwWÞnρlρmρ

nμlμmμ
Wnωlρmρ

: ðC30Þ

Further, we use Eq. (C13) to calculate both terms two
and three in Eq. (C11),

T̃
lρnρnω
lμnμnν

¼ T
lρnρnω
lμnμnν

þ T
lρnρnω;�
lμnνnμ

: ðC31Þ

The local average effect primarily affects the large scale
modes. We recommend calculating T̃ fully up to
lmax ∼ 1=fsky, and setting T̃ ¼ 0 on smaller scales.
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For the last term in Eq. (C11) we use Eq. (C6) to get

P4
μν ¼ wμσWσρhδ̄ρδ̄�λiWλκwκν; ðC32Þ

¼ wμσWσρDρϵ½CW
ϵα þ NW

ϵα�D�
αλWλκwκν; ðC33Þ

where we have avoided needing to calculate the ill-defined
Nϵα. However, the window-convolved NW

ϵα is well defined,
as shown by Eq. (C15) because the weighting matrix w is
generally invertible.
To simplify further, we specialize to the case of a

constant δ̄. Eq. (C22) then allows writing Eq. (C33) as

P4
μν ¼ ½CW

ϵα þ NW
ϵα�DαϵDwW

μν ; ðC34Þ

where we used the definition Eq. (C21). Further, we find

½CW
ϵαDαϵ� ¼

X
lnn0

ð2lþ 1ÞClnn0DW
lnn0 ; ðC35Þ

½NW
ϵαDαϵ� ¼ n̄−1

X
n

V−1
effdn00d

W
n00: ðC36Þ

Then, the power spectrum with local average effect can be
calculated with Eqs. (C17) and (C18).

2. Redshift-dependent average density contrast

For the radial local average effect, we use separate
approaches for the clustering and shot noise terms, because
each are afflicted by separate computational concerns. For
the shot noise it is nontrivial to calculate the window-
corrected shot noise N ¼ W−1=n̄, and using the approach
that works for the shot noise would require going to very
high kmax for the clustering term.
We start with the fourth term in Eq. (C11). Using the

second line in Eq. (C6), we get

P4
μν ¼ ðwWÞμρhδ̄ρδ̄�λiðwWÞλν; ðC37Þ

¼ ðwWÞμρδKlρ0δKmρ0
eWρσhδσδ�τi eWτλδ

K
lλ0

δKmλ0
ðwWÞλν: ðC38Þ

Thus, the fourth clustering and shot noise terms are

C4
μν ¼ ðwWÞμρδKlρ0δKmρ0

CW̃
ρλδ

K
lλ0

δKmλ0
ðwWÞλν; ðC39Þ

N4
μν ¼ ðwWÞμρδKlρ0δKmρ0

NW̃
ρλδ

K
lλ0

δKmλ0
ðwWÞλν: ðC40Þ

To calculate the shot noise term, consider that Eq. (C8)
implies that

eWρσ ¼ ðfeff;−1sky ÞρκWκσ; ðC41Þ

where ðfeff;−1sky Þρκ is the mixing matrix for feff;−1sky ðzÞ, and it is
proportional to δKlρlκ

δKmρmκ
. Therefore, Eq. (C15) implies

NeW
ρλ ¼ n̄−1ðfeff;−1sky Þρκ eWκλ ¼ n̄−1 eeWρλ; ðC42Þ

where we defined

eeWρλ ¼
Z

d3r gρðrÞgλðrÞY�
ρðr̂ÞYλðr̂Þ

WðrÞ
feff;2sky ðzÞ ; ðC43Þ

in analogy with Eq. (C8). However, we will only need the
lρ ¼ lλ ¼ 0 terms,

eeWnλ00
nρ00 ¼

Z
dr r2gρðrÞgλðrÞ

1

feffskyðzÞ
¼ ðfeff;−1sky Þnλ00nρ00

; ðC44Þ

with the definition Eq. (C5). Since ðfeff;−1sky Þρλ ∝ δKlρlλδ
K
mρmλ

,

setting lρ ¼ 0 will also set lλ ¼ 0. Thus, the shot noise
term Eq. (C40) becomes

N4
lμnμnν

¼ n̄−1
X
lρnρ

δKlρ0
1

2lμ þ 1

X
mμmρ

ðwWÞnρlρmρ

nμlμmμ

×
X
nλlλmλ

ðfeff;−1sky Þnλlλmλ
nρ00

ðwWÞnνlμmμ

nλlλmλ
; ðC45Þ

¼ n̄−1
X
nρ

1

2lμ þ 1

X
mμ

ðwWÞnρ00nμlμmμ
ðw eWÞnνlμmμ

nρ00
; ðC46Þ

which is what we use to calculate the N4 term.
Alternatively, Eq. (C40) can be written

N4
lμnμnν

¼
X
lρnρnλ

ðMwWÞlρnρnλlμnμnν
δKlρ0ðN

eWÞnλ00nρ00
: ðC47Þ

Thus, N4 is the projection of 1=feffskyðzÞ into the weighted
partial sky. which is more readily interpreted as a term
projected onto the weighted partial sky. However, it
requires going to high frequencies if, e.g., the selection
function has a strong redshift dependence.

N2
lμnμnν

¼1

n̄
1

2lμþ1

X
mμ

X
nσnλ

ðwWÞnσ00nμlμmμ
ðf−1skyÞnλ00nσ00

ðwWÞnνlμmμ

nλ00
:

ðC48Þ

The clustering term Eq. (C39) pseudopower is

C4
lμnμnν

¼
X
lρnρnλ

�
1

2lμ þ 1

X
mμ

ðwWÞnρ00nμlμmμ

× ðwWÞnνlμmμ

nλ00

�
δKlρ0C

W̃
0nρnλ

; ðC49Þ

¼
X
lρnρnλ

ðMwWÞlρnρnλlμnμnν
δKlρ0

X
lσnσnτ

ðMeWÞlσnσnτ
lρnρnλ

Clσnσnτ ; ðC50Þ
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where we introduced the pseudopower coupling matrices
MX that replaces the window with X. Symbolically, we
may write this as a matrix equation,

C4 ¼ MwWδKl0M
W̃C: ðC51Þ

The matrix MeW first couples modes due to the partial sky
coverage at each redshift. Then, the Kronecker-delta selects
the angular direct current (DC) mode for the local average
effect. Finally, the coupling matrix MwW projects the
power into the observed partial sky with weighting.
The Kronecker delta may be written in matrix form as

ðδKÞlρnρnλlαnαnβ
¼ δKlρ0½δKlρlαδKnρnαδKnλnβ �: ðC52Þ

That is, it is the unit matrix, with all elements set to zero
where lρ ≠ 0.
For a full-sky survey WðrÞ ¼ ϕðrÞ, we get feffskyðzÞ ¼

ϕðrÞ, and so eWμρ ¼ δKμρ is the identity. Hence, MW̃ is also
the identity. Further, MwW ∝ δKlμlρ , for an FKP-style

weighting that only depends on the selection function
ϕðrÞ. Thus, C4 ∝ δKl0, as required.
The simplest case, fskyðrÞ ¼ wðrÞ ¼ WðrÞ ¼ 1, yields

C4
lμnμnν

¼ δKlμ0
C0nμnν : ðC53Þ

3. δ̄ðzÞ second and third terms

For the second and third terms in Eq. (C11) in the case of
a radial local average effect δ̄ðzÞ, we get using Eq. (C6)

P2
μν ¼ ðwWÞμρhδρδ̄�λiðwWÞλν; ðC54Þ

¼ ðwWÞμρhδρδ�κi eWκλδ
K
lλ0

δKmλ0
ðwWÞλν: ðC55Þ

Thus, the clustering and shot noise terms are

C2
μν ¼ ðwWÞμρCρκ

eWκλδ
K
lλ0

δKmλ0
ðwWÞλν; ðC56Þ

N2
μν ¼ ðwWÞμρNρκ

eWκλδ
K
lλ0

δKmλ0
ðwWÞλν: ðC57Þ

Since N ¼ n̄−1W−1 [from Eq. (C15)], and eW ¼
ðfeff;−1sky ÞW ¼ Wðfeff;−1sky Þ, the pseudoshot noise is equal to
the fourth term,

N2 ¼ N3 ¼ N4: ðC58Þ

The clustering pseudopower C2 becomes

C2
lμnμnν

¼ 1

2lμ þ 1

X
mμ

ðwWÞnρlρmρ

nμlμmμ
Clρnρnκ

eWnλ00
nκlρmρ

ðwWÞnνlμmμ

nλ00
; ðC59Þ

¼
X
lρnρnκ

�
1

2lμ þ 1

X
mμmρ

ðwWÞnρlρmρ

nμlμmμ

X
nλ

eWnλ00
nκlρmρ

ðwWÞnνlμmμ

nλ00

�
Clρnρnκ : ðC60Þ

Including the third term C3 via Eq. (C13), we get

C2þ3
lμnμnν

¼ C2
lμnμnν

þ hnμ ↔ nνi� ¼
X
lρnρnκ

T
lρnρnκ
lμnμnν

Clρnρnκ ; ðC61Þ

where

T
lρnρnκ
lμnμnν

¼ 1

2lμ þ 1

X
nλmρ

eWnλ00
nκlρmρ

X
mμ

h
ðwWÞnρlρmρ

nμlμmμ
ðwWÞnνlμmμ

nλ00
þ ðwWÞnρlρmρ

nνlμmμ
ðwWÞnμlμmμ

nλ00

i
; ðC62Þ

where we exploit that the elements of T must be real. We
also exploit the symmetry Clnn0 ¼ Cln0n. This adds the term
with nκ and nρ interchanged whenever nκ and nρ are
different.
For a full-sky survey, WðrÞ ¼ ϕðrÞ, we have feffskyðzÞ ¼

ϕðrÞ and W̃μρ ¼ δKμρ, and ðwWÞμρ ∝ δKlμlρδ
K
mμmρ

. Therefore,

T
lρnρnκ
lμnμnν

¼ δKlμ0½ðMwWÞlρnρnκlμnμnν
þ ðMwWÞlρnρnκlμnνnμ

�δKlρ0: ðC63Þ

This basically suppresses modes with

l≲ 1

fsky
: ðC64Þ
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However, to calculate these to high precision, we need to
calculate the mixing matrices up to

lmax ≲ 2

fsky
; ðC65Þ

or even up to 3
fsky

.

APPENDIX D: RADIAL SPHERICAL FOURIER-
BESSEL MODES WITH VELOCITY BOUNDARY

CONDITIONS

In this appendix we derive the radial basis functions of
the Laplacian with Neumann boundary conditions at rmin
and rmax. Specifically, we require the derivatives of the
basis functions to vanish on the boundary. Fisher et al. [16]
referred to these as velocity boundaries, since it implies that
the velocities vanish on the boundary.
The radial part of the Laplacian eigenequation in

spherical polar coordinates Eq. (A3) is

0 ¼ d
dr

�
r2

dglðkrÞ
dr

�
þ ½ðkrÞ2 − lðlþ 1Þ�glðkrÞ; ðD1Þ

where function g depends on l. Our first aim is to derive the
discrete spectrum of k modes for a given l. We then use
that to derive the form of the gl. Following Fisher et al.
[16], we demand that the orthonormality relation Eq. (4)Z

rmax

rmin

dr r2gnlðrÞgn0lðrÞ ¼ δKnn0 ðD2Þ

is satisfied, where we defined gnlðrÞ ¼ glðknlrÞ. However,
we modify the approach in Fisher et al. [16] to integrate
from rmin to rmax, which will in general add spherical
Bessels of the second kind to the solution. Equation (D1)
multiplied by glðkrÞ yieldsZ

rmax

rmin

dr
d
dr

�
r2
dglðkrÞ

dr

�
glðk0rÞ

¼
Z

rmax

rmin

dr½lðlþ 1Þ − ðkrÞ2�glðkrÞglðk0rÞ: ðD3Þ

Subtract from this equation the same equation with k and k0
interchanged,

½k02 − k2�
Z

rmax

rmin

dr r2glðkrÞglðk0rÞ

¼
Z

rmax

rmin

dr

�
d
dr

�
r2

dglðkrÞ
dr

�
glðk0rÞ

−
d
dr

�
r2
dglðk0rÞ

dr

�
glðkrÞ

�
: ðD4Þ

Partial integration of the terms on the rhs gives

Z
dr

d
dr

ðkr2g0lðkrÞÞglðk0rÞ

¼ kr2g0lðkrÞglðk0rÞjrmax
rmin

− kk0
Z

drr2g0lðkrÞg0lðk0rÞ; ðD5Þ

where primes denote derivatives with respect to the argu-
ment. Then, Eq. (D4) becomes

½k02 − k2�
Z

rmax

rmin

dr r2glðkrÞglðk0rÞ

¼ kr2g0lðkrÞglðk0rÞjrmax
rmin

− k0r2g0lðk0rÞglðkrÞjrmax
rmin

: ðD6Þ

The rhs will vanish for any k whenever

0 ¼ Akr2maxg0lðkrmaxÞ − Br2maxglðkrmaxÞ
− akr2ming

0
lðkrminÞ þ br2minglðkrminÞ; ðD7Þ

for any constants a, b, A, and B (given by k0).
To choose a, b, A, and B, we need to choose boundary

conditions. The Neumann boundary conditions are

g0lðkrmaxÞ ¼ 0; ðD8Þ

g0lðkrminÞ ¼ 0: ðD9Þ

These will ensure that a spherical boundary in real space
remains a spherical boundary in redshift space as long as
the observer is at r ¼ 0. Thus, the theoretical redshift-space
modeling will be greatly simplified.
Writing the basis as a combination of spherical Bessel

functions of the first and second kinds,

glðkrÞ ¼ cnljlðkrÞ þ dnlylðkrÞ; ðD10Þ

where we anticipate that the function gl will also depend
on n. Then,

0 ¼ cnlj0lðknlrminÞ þ dnly0lðknlrminÞ; ðD11Þ

0 ¼ cnlj0lðknlrmaxÞ þ dnly0lðknlrmaxÞ: ðD12Þ

This is equivalent to choosing B ¼ b ¼ 0 in Eq. (D7).
Thus, the conditions Eqs. (D11) and (D12) lead to a set of
orthogonal basis functions gnlðrÞ ¼ glðknlrÞ.
Both jl and yl satisfy the two recurrence relations

j0lðkrÞ ¼ −jlþ1ðkrÞ þ
l
kr

jlðkrÞ; ðD13Þ

j0lðkrÞ ¼ jl−1ðkrÞ −
lþ 1

kr
jlðkrÞ: ðD14Þ

Solving both Eqs. (D11) and (D12) for dnl=cnl,
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−krminjlþ1ðkrminÞ þ ljlðkrminÞ
−krminylþ1ðkrminÞ þ lylðkrminÞ

¼ −krmaxjlþ1ðkrmaxÞ þ ljlðkrmaxÞ
−krmaxylþ1ðkrmaxÞ þ lylðkrmaxÞ

; ðD15Þ

which needs to be satisfied for knl. When rmin ¼ 0, then
dnl ¼ 0 so that the yl, which diverge as their argument
vanishes, do not contribute.
The solution knl ¼ 0 is valid for l ¼ 0 only, because

otherwise the normalization for gnl does not exist, see
Eq. (D10) and the next section.

1. Normalization

The normalization of gl is obtained by dividing Eq. (D6)
by k02 − k2, and taking the limit k0 → k ¼ knl,

1 ¼
Z

rmax

rmin

dr r2g2lðkrÞ ¼ lim
k0→k

−k0r2g0lðk0rÞglðkrÞjrmax
rmin

ðk0 − kÞðk0 þ kÞ :

ðD16Þ

Thus, the key is to calculate

lim
k0→knl

g0lðk0RÞ
k0 − knl

¼ Rg00lðknlRÞ; ðD17Þ

where R is either rmin or rmax, and we expanded g0l in a

Taylor series around k0 ∼ knl. Hence,

1 ¼ −
1

2
r3glðknlrÞg00lðknlrÞjrmax

rmin
: ðD18Þ

We can evaluate by using

g00lðkrÞ ¼
1

ðkrÞ2 ½ðlðl − 1Þ − ðkrÞ2ÞglðkrÞ þ 2krglþ1ðkrÞ�;

ðD19Þ

which follows from Eqs. (D13) and (D14).
For the special case knl ¼ l ¼ 0, the normalization is

given by Z
rmax

rmin

dr r2 ¼ 1

3
ðr3max − r3minÞ: ðD20Þ

Choosing knl, cnl, and dnl that satisfy Eqs. (D15),
(D12), and (D18) guarantees the orthonormality of the gl,Z

rmax

rmin

dr r2glðknlrÞglðkn0lrÞ ¼ δKnn0 : ðD21Þ

Note that the condition l ¼ l0 is not enforced by the gl.
Instead, l ¼ l0 comes from the spherical harmonics,
i.e., Eq. (A2).

[1] K. Yamamoto, M. Nakamichi, A. Kamino, B. A. Bassett,
and H. Nishioka, A measurement of the quadrupole power
spectrum in the clustering of the 2dF QSO survey, Publ.
Astron. Soc. Jpn. 58, 93 (2006).

[2] N. Hand, Y. Li, Z. Slepian, and U. Seljak, An optimal FFT-
based anisotropic power spectrum estimator, J. Cosmol.
Astropart. Phys. 07 (2017) 002.

[3] J. Benabou, I. Sands, H. S. Grasshorn Gebhardt, C.
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