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Certain relations among neutron-star observables that are insensitive to the underlying nuclear matter
equation of state are known to exist. Such universal relations have been shown to be valid for cold and
stationary neutron stars. Here, we study these relations in more dynamic scenarios: protoneutron stars and
hypermassive neutron stars, allowing us to investigate the time evolution of these relations from the birth to
the death of a neutron star. First, we study protoneutron stars. We use an effective equation of state,
extracted from three-dimensional core-collapse supernova simulations, to obtain the structure of spheri-
cally symmetric protoneutron stars. We then consider nonradial oscillations to compute their f-mode
frequency (f), as well as slow rotation and small tidal deformation, to compute their moment of inertia (I),
spin-induced quadrupole moment (Q), and Love number. We find that well-established universal relations
for cold neutron stars involving these observables (namely, the I-Love-Q and f-Love relations) are
approximately valid for protoneutron stars, with a deviation below ≈10% for a postbounce time above
≈0.5 s, considering eight different supernova progenitors and one equation of state (SFHo). Next, we study
hypermassive neutron stars. The bulk of a neutron star is defined as the region enclosed by the isodensity
surface that corresponds to the maximum compactness (C) inside the star. We obtain a new universal
relation between the f-mode frequency and the compactness of cold and nonrotating neutron stars, using
bulk quantities. We show that this relation has an equation-of-state-variation of ≈3%, considering a set of
ten equations of state. Bulk quantities of postmerger remnants can be obtained from numerical-relativity
simulations. Using results from binary neutron star merger simulations, we study the evolution of
hypermassive neutron stars on the f-C plane, considering two different mass ratios and one equation of
state (SFHo). We find that the relation between the peak frequency of the gravitational-wave signal and the
compactness from these hypermassive neutron stars deviates from the universal f-C relation by
≈70%–80%, when the peak frequency is taken directly as a proxy for the f-mode. As our results are
limited to a single equation of state, the deviations we obtain when universal relations for cold neutron stars
are used for protoneutron stars or hypermassive neutron stars can be conservatively considered as a lower
limit. Finally, we discuss the reliability of the universal relations in the context of future observations of
gravitational waves from remnants of core-collapse supernovae or binary neutron star mergers.
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I. INTRODUCTION

The structure of neutron stars (NSs) depends on
their equation of state (EOS, the pressure as a function
of the density). However, the extremely dense matter
(≳2 × 1014 g=cm3) in the interior of these objects is not
yet sufficiently constrained by experiments in nuclear/
particle physics [1], thus making us turn to astrophysical
observations to constrain their properties. Currently, we
already have significant constraints on the EOS imposed by

NS mass measurements through radio observations (PSR
J0740þ 6620 [2], PSR J0348þ 0432 [3], and PSR
J1614 − 2230 [4]) of high-mass pulsars and NS radius
measurements through x-ray observations (PSR J0030þ
0451 [5–7] and PSR J0740þ 6620 [8–10]). The recent
detections of gravitational waves (GWs) from binary
neutron star (BNS) mergers by the LIGO-Virgo collabora-
tion, GW170817 [11] and GW190425 [12], have provided
additional constraints [13–15] through measurements of the
binary tidal deformability. Constraints on the EOS from
multimessenger observations of NSs are found in, e.g.,
[16,17]. The moment of inertia of the primary pulsar in the*tpx5df@virginia.edu
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double pulsar binary system PSR J0737-3039 has recently
been constrained [18], and we also expect constraints on the
EOS [19] as the observation period increases and the
measurement accuracy improves [14]. Recently, the pres-
ence of high-frequency (∼kHz) quasiperiodic oscillations in
short gamma-ray bursts was reported [20]. These frequen-
cies could be related to the oscillations of short-lived
postmerger remnants (hypermassive NSs), and their future
detection by third-generation ground-based GW detectors
could provide strong constraints to the EOS [21].
The EOS of NS matter can be constrained with forward

modeling (see, e.g., the Bayesian analysis performed
in [22]). However, when modeling NSs, we have to assume
that we know the EOS a priori, then we are able to compute
NS observables, and finally use data from astrophysical
observations and nuclear/particle physics experiments to
obtain information about the EOS a posteriori. Many
models for the EOS have been proposed, and this “EOS
freedom” is one of the main sources of uncertainties in the
theoretical modeling of these objects.
In general, the study of relations involving NS observ-

ables (mass, radius, tidal deformability, etc.) provides us
with new tools to constrain the EOS. If the relation between
two observables is strongly dependent on the EOS, we can
constrain the EOS through measurements of both of the
observables in the relation. On the other hand, if the relation
is insensitive to the EOS, i.e., universal, having a meas-
urement of one observable in the relation allows us to infer
the other one even if such an observable is difficult to
measure directly. One of the most well-studied universal
relations are the “I-Love-Q relations,” proposed by Yagi
and Yunes [23–25], which relate the moment of inertia (I),
the spin-induced quadrupole moment (Q), and the tidal
deformability (Λ, defined in terms of the Love number)
of NSs.
Several studies have extended the validity of I-Love-Q,

e.g.: Maselli et al. [26] showed that the I-Love relation is
universal throughout the inspiralling phase of a BNS
system, depending on the inspiral frequency; Pappas and
Apostolatos [27] argued that, more generally, the first four
NS multipole moments are related in a way independent of
the EOS, and such no-hair relations for NSs were studied in
more detail both analytically [28] and numerically [29];
additionally, the I-Love-Q relations have also been studied
for polytropic stars [30], anisotropic stars [31], hybrid stars
[32], strange stars [33], incompressible stars [34,35], boson
stars [36], dark stars [37], and gravastars [38–40]; further-
more, they were also investigated in alternative theories of
gravity [23,24,41–46]; possible explanations for this uni-
versality were reported by Yagi et al. [47], and Sham et al.
[48]. Some studies, however, found cases in which the
relations are not valid: Haskell et al. [49] showed that the
universality is lost for long spin periods (≳10 s) and strong
magnetic fields (≳1012 G); Doneva et al. [50] found that the
universality is lost for sequences of rapidly rotating NSs

(up to the mass-shedding limit) when the rotational fre-
quency is fixed, although the universality can be recovered
when the dimensionless spin parameters are fixed, as shown
by Pappas and Apostolatos [27] and Chakrabarti et al. [51].
Newly-born protoneutron stars (PNSs), have also been

shown to break the I-Love-Q relations. PNSs are early
remnants of core-collapse supernovae (CCSNe) and,
although the supernova problem is not yet fully solved
[52], models of the stellar core after the bounce [53–55]
allow us to investigate the validity of well-established
universal relations for NSs during the early postbounce
phase. Martinon et al. [56] showed that the I-Love-Q
relations for PNSs are different from the NS relations
before ∼1 s after the bounce, when the entropy gradients
are significant. Marques et al. [57] pointed out that,
generally, the universality of the I-Q relation is lost when
thermal effects become important, even if the entropy is kept
constant. Raduta et al. [58] confirmed the previous findings
and demonstrated that the universality holds if thermody-
namic conditions are kept the same, i.e., same entropy per
baryon and lepton fraction.
Nonetheless, PNSs have been shown to follow some

universal relations involving their quasinormal modes
(QNMs). Torres-Forné et al. [59] proposed relations
between f-, p-, and g-modes and the average density of
the shock region, as well as the surface gravity of the PNS;
these relations were shown to not depend on the EOS, the
neutrino treatment, or the progenitor mass. Sotani and
collaborators [60–64] have proposed relations between the
f-mode frequency and the average density of the PNS. This
relation, in particular, has been shown to not depend on the
EOS or the progenitor mass, and was also explored in
recent works [65,66]. Generally, these relations are not as
tight as I-Love-Q (i.e., they show deviations larger than
∼1%), as a consequence of the extra degrees of freedom in
the modeling of PNSs and the inherent errors of numerical
simulations.
QNMs of NSs have also been shown to correlate

with other NS observables in an EOS-independent way.
Andersson et al. [67] found an empirical relation between
the f-mode frequency and the average density of the star,
and proposed a similar relation for the damping time.
Benhar et al. [68,69] extended these results to new EOSs
and presented updated fits for these relations. Tsui and
Leung [70] reported a relation between the f-mode
frequency (multiplied by the NS mass) and the compact-
ness of the star, the “f-C relation.” Lau et al. [71] proposed
a similar relation but with respect to the effective compact-
ness (which is the inverse of the square root of the
dimensionless moment of inertia, see Sec. II B 2), and
this relation was updated by [72]. Chan et al. [73] showed
that the f-mode can also be related to the tidal deform-
ability in an EOS-insensitive way. This relation is referred
to as the “f-Love relation,” and was further studied in [74],
where implications from GW170817 were also explored.
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In BNS mergers, we can describe the ringdown phase of
the GW signal by the QNMs of the remnant. The future
detections of QNMs from long- or short-lived postmerger
remnants, such as supramassive NSs (SMNSs) or hyper-
massive NSs (HMNSs), could carry important information
about the EOS. In particular, numerical-relativity simula-
tions have shown that the f-mode is the dominant mode in
the GW spectrum of postmerger remnants [75–79]. The
future detection of GWs from such objects could establish
constraints on the EOS through universal relations between
the peak frequency and NS observables during the pre-
merger phase of the GW signal [80–89].
Universal relations for NSs should be used with care

when applying them to situations outside of their validity.
In this work, we are interested in two scenarios: proto-
neutron stars and hypermassive neutron stars. We study the
time evolution of the I-Love-Q relations for PNSs using
results from the state-of-the-art 3D CCSN simulations in
Radice et al. [90], thus extending previous works [56–58].
In particular, we study the f-Love relation by computing
the f-mode for PNSs within full general relativity, improv-
ing on previous works that used Newtonian equations of
motion [66,91]. We also study the evolution of the f-C
relation for HMNSs using results from the BNS simulations
in Kastaun and Ohme [92]. In contrast with recent works
that relate the peak frequency of the HMNS with premerger
quantities [85,89,93], we take a first step toward relating
such frequencies with properties of the HMNS itself.
The rest of this paper is organized as follows. In Sec. II,

we study properties and universal relations for PNSs (or at
“the birth” of a NS). In Sec. III, we carry out similar studies
but for HMNSs (or at “the death” of a NS). We conclude in
Sec. IV. Unless otherwise stated, we use c ¼ G ¼ 1 units.

II. “THE BIRTH”: PROTONEUTRON STARS

We begin by studying properties and universal relations
for PNSs, formed after CCSNe explosions. We use results

from the 3D CCSN simulations described in Radice et al.
[90], for which the SFHo EOS [94] was used, and eight
different supernova progenitors were considered. In
Table I, we provide some information about the models
from the simulations. We consider 1D angle-averaged
radial profiles for the pressure and total mass density
from these simulations to construct a time-dependent
effective barotropic EOS, or, simply, “effective EOS”
(see Fig. 1). We then obtain the structure of spherically
symmetric PNSs by solving the Tolman-Oppenheimer-
Volkoff (TOV) equations. We label these PNSs as “TOV
solutions” (Sec. II A). We finally use relativistic stellar
perturbation theory to obtain their QNMs and I-Love-Q,
using this effective EOS (Sec. II B), and present the time
evolution of the universal relations.

A. TOV solutions

PNSs right after the bounce have high temperature and
lepton-rich composition, as opposed to NSs. During the
early postbounce phase, i.e., for a postbounce time ≲0.5 s,
the PNS mass is increasing as significant accretion is
happening (and its rate depends on the density profile of
the progenitor, see [95]), and the PNS radius is decreasing as
neutrinos are slowly streaming out of the neutrinosphere.
Nonetheless, since the hydrodynamical timescale in a PNS
is∼10−3 s (and decreases as the postbounce time increases),
we can assume that hydrostatic equilibrium holds during the
PNS evolution [53,55].
For a postbounce time ≳0.5 s, the PNS goes through the

long-term Kelvin-Helmholtz phase, which can last tens of
seconds. During this stage, the PNS deleptonizes and slowly
cools down to become a “cold” NS [53,55]. The final NS is
cold because its internal temperature (∼109 K) is much
lower than the Fermi temperature of its composing nucleons
(∼1011 K). Thus, we refer to their EOS as cold (viz. zero-
temperature) and barotropic, namely it is a function relating
two thermodynamic variables, such as pressure and total
mass density. For PNSs, however, this approximation is not
valid as its internal temperature right after the bounce is

FIG. 1. Relation between pressure p and total mass density ρ
for various postbounce times tpb for the PNS generated by the
9M⊙ progenitor (see Table I), where the SFHo EOS [94] was
used. For reference, we include the zero-temperature EOS.

TABLE I. Progenitor mass, maximum postbounce time, and
explosion status for the 3D CCSN simulations in [90]. We use the
pressure and total mass density profiles from these models to
construct time-dependent TOV solutions for PNSs (see Sec. II A).
The only model that does not explode within the simulation time
is the one for the 13M⊙ progenitor (for more details, see [95,96]).

Progenitor mass ½M⊙� Maximum time [s] Explode?

9 1.042 Yes
10 0.767 Yes
11 0.568 Yes
12 0.468 Yes
13 0.454 No
19 0.871 Yes
25 0.616 Yes
60 0.398 Yes
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higher (≳1011 K). Thus, PNSs are “hot” objects, and we
refer to their EOS as hot and nonbarotropic.
The simulation data, provided by [90], are tables for

various postbounce times tpb, with radial profiles for the
quantities: pressure pðtpb; r̄Þ, baryonic mass density
ρBðtpb; r̄Þ, specific internal energy eðtpb; r̄Þ, adiabatic index
for the fluid perturbations Γ1ðtpb; r̄Þ, and lapse function
αðtpb; r̄Þ; here, r̄ is the isotropic radial coordinate, and we
treat tpb as a “time coordinate” since the profiles from the
simulations correspond to specific postbounce times. We
assume the EOS is effectively barotropic for each tpb
(similarly to [97]). The total mass density ρðtpb; r̄Þ is given
by ρ ¼ ρBð1þ eÞ. Thus, we extract the relation pðtpb; ρÞ by
eliminating r̄ðtpb; ρÞ, which is obtained by inverting
ρðtpb; r̄Þ, from pðtpb; r̄Þ. This “p vs ρ” relation is our
time-dependent effective barotropic EOS, shown in Fig. 1
for the PNS generated by the 9M⊙ progenitor.
As a first step, we restrict ourselves to spherical

symmetry and solve the TOV equations for the sequence
of discrete tpb of each progenitor mass. We characterize the
PNSs by these equilibrium solutions or “TOV solutions,”
which are described by the radial profiles for the pressure
pðtpb; rÞ, total mass density ρðtpb; rÞ, gravitational mass
mðtpb; rÞ, and gravitational potentialΦðtpb; rÞ; here, r is the
Schwarzschild radial coordinate.
For cold and spherically symmetric NSs, we usually

define the circumferential radius R through the condition
pðRÞ ¼ 0. However, we cannot impose this condition here
because, for each tpb, there is no “surface” separating the
“interior” of the PNS from its surroundings. The common
choice in the literature is that the “surface” is defined by a
baryonic mass density cutoff ρsrfB normally taken as
ρsrfB ¼ 1011 g=cm3. In this work, we follow [98] and take
ρsrfB ¼ 1010 g=cm3, but we also generate results for ρsrfB ¼
1011 g=cm3 and ρsrfB ¼ 1012 g=cm3, and present a com-
parison in Appendix A. We can use the relation pðtpb; ρBÞ,
which we construct similarly to pðtpb; ρÞ, and determine the
pressure cutoff psrf ¼ pðtpb; ρsrfB Þ. Then, the circumferential
radius is given by RðtpbÞ ¼ rðtpb; psrfÞ, where we obtain
rðtpb; pÞ by inverting pðtpb; rÞ. The total gravitational mass
is given by MðtpbÞ ¼ mðtpb; RÞ.
In the left panel of Fig. 2, we show the time evolution of

R and M for the PNSs generated by the eight progenitors
shown in Table I. We note the following features: (i) the
circumferential radius is in a range ≈25–125 km, and
decreases with time; (ii) the gravitational mass is in a
range ≈1.0–1.8M⊙, and increases with time.
It is instructive to check if the radial profiles for our TOV

solutions agree with the simulation data, and thus we show
a comparison in Appendix B. We obtained that the pðtpb; rÞ
and ρðtpb; rÞ profiles are similar, but the mðtpb; rÞ and
Φðtpb; rÞ profiles are significantly different, by virtue of
general-relativistic effects. These differences affect, for

example, the radius and mass of our solutions, which
are lower than the results obtained from the simulation by
≈ 6–12% and ≈15–19%, for tpb ≳ 0.2 s (see Fig. 8 in
Appendix B).
The evolution of the radius and the mass has an impact

on the evolution of other important PNS observables, such
as frequencies of nonradial oscillations (as shown in
Sec. II B 1). The study of radial oscillations is also
important since it encodes the stability of the PNS against
radial perturbations as it evolves. We investigate the radial
stability of our TOV solutions in Appendix C, and note that
our PNSs are radially stable for all tpb, when entropy and
composition gradients in the EOS are taken into account
(see Fig. 10 in Appendix C).

B. I-Love-Q and f -Love for protoneutron stars

After obtaining the structure of spherically symmetric
PNSs, we can perturb these background solutions, and
compute PNS observables. We consider nonradial pertur-
bations, small rotation, and small tidal deformation to
obtain the PNS f-mode, moment of inertia, spin-induced
quadrupole moment, and tidal deformability. Finally, we
study the time evolution of universal relations involving
these observables for PNSs, namely the I-Love-Q and f-
Love relations.

1. Nonradial oscillations

Nonradial oscillations of PNSs can be excited, as a
consequence of the turbulent nature of the collapse. These
oscillations are coupled to the emission of GWs, and can
be described by the QNMs of the PNSs. The GW signal
from CCSNe has been extensively modeled, in particular,
through 2D (axisymmetric, [98–110]) and 3D ([111–144])
simulations. Nevertheless, it was only recently that
some works have proposed that the spectrogram of the
GW signal from such simulations is dominated by
the fundamental quadrupolar oscillation mode of the
PNS [66,90,98,145–147], making it one of the most
relevant modes in the analysis of GW signals from
CCSNe.
In general, the complex frequencies of the QNMs are

defined by ω≡ 2πf þ iτ−1, where f is the oscillation
frequency and τ is the damping time. We can define the
dimensionless ω as ω̄≡Mω.1 The QNMs are divided into
families [148,149]; for nonrotating and nonmagnetized
stars, we have: (i) f-, p-, and g-modes, which are fluid
modes, and exist only for polar oscillations (even-parity
perturbations); (ii) w-modes, which are spacetime modes,
and exist for both polar and axial oscillations (the latter

1This definition is not unique. We could have, e.g., ω̃≡MBω
(see Sec. III and Appendix A) or even ω̂≡ ω=

ffiffiffiffiffiffiffiffi
ρB;0

p
(see the end

of Sec. II B 1), whereMB is the total baryonic mass and ρB;0 is the
central baryonic mass density.
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corresponding to odd-parity perturbations). Further, the
QNMs can be classified by their restoring force, which is
responsible for re-establishing the equilibrium on the
perturbed star.
We focus on the f-mode, or the fundamental mode,

whose radial eigenfunction for the fluid perturbations has
no nodes inside the star, following the Cowling classi-
fication [150]. The f-mode of cold and nonrotating NSs has
a frequency in the range ≈1.5–3.0 kHz and a damping time
in the range ≈0.1–0.5 s. The frequencies of the p- and
g-modes are, respectively, higher and lower than the
f-mode frequency, while the damping times are higher.
We investigate the time evolution of universal relations,

involving QNMs, that are well established for cold and
nonrotating NSs. Similarly to the f-mode, the relation
between the p1-mode frequency and the tidal deformability
is also EOS-insensitive [151] (and the same has been found
for the g1-mode [152]). Nonetheless, since the GW spectro-
grams from the CCSN simulations described in [90] are
dominated by the f-mode frequency at late tpb, we do not
show results for p- or g-modes. Finally, w-modes have not
yet appeared in the GW spectrum of CCSN simulations,
possibly indicating that, if excited, w-modes may have
negligible amplitudes. However, given the relative simplic-
ity of the eigenvalue problem for the axial w-modes (when
compared to the f-mode), we report, in Appendix D, results
for the first curvature mode frequency and damping time
(which are also universal against the tidal deformabil-
ity [153]).
We use relativistic stellar perturbation theory to com-

pute the f-mode complex frequency of our TOV solutions

for the sequence of tpb of each progenitor mass (see
Sec. II A). In particular, we follow the procedure of
Lindblom and Detweiler [154], i.e., we solve the pertur-
bation equations in the form shown in [155], based on
previous works [154,156], and considering the corrections
pointed out in [157]. We impose regularity of the solutions
at the center, and match them to the Zerilli function and its
derivative at the surface. Then, we use a shooting method
to find the complex frequency that gives us an outgoing
wave solution for the Zerilli equation at infinity.2 We take
Γ1 ≈ Γ0 in the perturbation equations, where Γ1 is the
adiabatic index for the fluid perturbations and Γ0 ≡
ðd lnp=d ln ρBÞEOS is the background adiabatic index3

for the effective EOS. Thus, as g-modes are absent,4 we
can use the Cowling classification for the modes, even at
early tpb (this is not the case in, e.g., [66]).
In the right panel of Fig. 2, we show the results for the

oscillation frequency fðtpbÞ and damping time τðtpbÞ for the
PNSs generated by the eight progenitors shown in Table I.
The frequencies of the f-mode for hot and young NSs have
already been studied in, e.g., [97,159–161]. In general,
thermal effects are expected to lower the frequency of the

FIG. 2. Left: time evolution of the circumferential radius R and the gravitational mass M for PNSs generated by eight different
progenitors (see Table I). The radius is determined by the density cutoff ρsrfB ¼ 1010 g=cm3 (see main text). As expected, the mass
increases and the radius decreases over time (asymptotically approaching cold NS values), owing to matter accretion and neutrino
emission, respectively. Right: time evolution of the oscillation frequency ff and the damping time τf of the f-mode for PNSs generated
by eight different progenitors (see Table I). The frequencies are lower and the damping times are (much) longer, compared to the ones for
cold NSs (fNSf ≈ 1.5–3.0 kHz and τNSf ≈ 0.1–0.5 s), due to the thermal effects on the effective EOS.

2In practice, we terminate the integration at r ¼ 25=ReðωÞ,
and match the solution with the asymptotic expansion given
by [155].

3Strictly speaking, Γ0 cannot be referred as an adiabatic index,
since the entropy is not kept constant inside the PNSs. For a
discussion on adiabatic indices for PNSs, see Sec. 6 of [158].

4The condition Γ1 ¼ Γ0 implies that the Schwarzschild dis-
criminant is zero, and so are the frequencies of the g-modes [148].
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oscillation mode, since thermal pressure increases the radius
of the stars, and thus decreases their compactness. In the
right panel of Fig. 2, we see that the frequencies for the
PNSs are in a range ≈0.1–1.0 kHz, which is indeed lower
than the typical NS frequencies. We also see that the
damping times are in a range ≈10–103 s, much longer
than those for cold NSs. These lower frequencies and larger
damping times make the future detection of this mode
by third-generation ground-based GW detectors more

promising if they are excited with enough energy. We also
performed the calculation of the f-mode considering the
adiabatic index Γ1 from the simulations when solving the
perturbation equations, and we verified that the frequencies
and damping times agree with the ones obtained by
considering Γ1 ≈ Γ0 for late tpb (see Fig. 11 in Appendix C).
Once we have computed the f-mode for different time

slices and progenitor masses, we can investigate universal
relations for PNSs involving this mode. Following

FIG. 3. Upper left: relation between the f-mode frequency ff and the average density
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
for PNSs from eight progenitors. This

relation is universal against the progenitor mass and the deviation is j1 − ff;fit=ffj ≲ 2%. The fitting coefficients are shown in Table II.
For reference, we include the fit from Rodriguez et al. [66] (see main text), that we denote as ff;R, and we see that j1 − ff;fit=ff;Rj ≲ 21%.

The vertical dashed line indicates the starting point (≈0.005M1=2
⊙ =km3=2) for the validity of the Cowling classification for the f-mode

in [66]. Upper right: relation between the dimensionless f-mode frequency f̂f (see main text) and the postbounce time tpb for PNSs from

eight progenitors. This relation is not as tight as the relation between ff and
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
since the deviation is j1 − f̂f;fit=f̂f;numj ≲ 12%. The

fitting coefficients are shown in Table II. For reference, we include the fit from Afle et al. [91] (see main text), that we denote as f̂f;A, and

we see that j1 − f̂f;fit=f̂f;Aj ≲ 43%. The vertical dashed line indicates the starting point (≈0.2 s) for the f-mode in the GW spectrogram,
as considered by [91]. Lower left: time evolution of the dominant frequency extracted from the GW spectrograms, fpeak (see
Appendix A), and the f-mode frequency computed from perturbation theory, fpert (see Sec. II B 1), for PNSs from eight progenitors. We
fit the relations to a second-order fit and the relative difference between fpert and fpeak is ≲43%, which agrees with the deviation in the

relation between f̂f and tpb (not being the case for the relation between ff and
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, see main text). Lower right: relative difference

between fpert;fit (fpeak;fit) and fpert (fpeak). The progenitor-mass-variation is ≲9%.
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Rodriguez et al. [66], we study the relation between the

f-mode frequency ff and the average density
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
of

the PNSs. We show this result in the upper left panel of
Fig. 3, where we can see that the relation is universal against
the progenitor mass. We also present the fit proposed
by [66], which also used the results from the CCSN
simulations described in [90]. The f-mode frequencies in
their fit are obtained in the Cowling approximation and
follow a different classification (the classification based on
modal properties, see [66] for more details), that matches the
Cowling classification at late tpb (tpb ≳ 0.4 s), i.e., high
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
(≳0.005 M1=2

⊙ =km3=2). Thus, we present a com-
parison between the relations for the same range inffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. We see that: (i) the relative difference

j1 − ff=ff;fitj, between our fit ff;fit and our data ff, is
≲2%; (ii) the relative difference j1 − ff;fit=ff;Rj, between
our fit ff;fit and their fit ff;R, is ≲21%. The fitting
coefficients are shown in Table II.
Following Afle et al. [91], we can also investigate the

relation between the f-mode frequency, normalized by the
central baryonic mass density ρB;0, and the postbounce
time tpb. We define ω̂f ≡ ωf=

ffiffiffiffiffiffiffiffi
ρB;0

p
, and show the relation

between f̂f ≡ Reðω̂fÞ=2π and tpb in the upper right panel
of Fig. 3, where we note that the relation is universal
against tpb. We also present the fit proposed by [91], that
also used the results from the CCSN simulations described
in [90]. The f-mode frequencies in their fit were obtained
from the GW spectrograms. The initial time for the f-mode
(namely, the time such that the f-mode starts contributing
to the GW signal) in their work was set to 0.2 s, thus we
show a comparison between the relations for the same
initial time. We see that (i) the relative difference
j1 − f̂f=f̂f;fitj, between our fit f̂f;fit and our data f̂f, is

≲12%; (ii) the relative difference j1 − f̂f;fit=f̂f;Aj, between
our fit f̂f;fit and their fit f̂f;A, is ≲43%. The fitting
coefficients are shown in Table II.
When comparing our results with Rodriguez et al. [66],

we note that our frequencies, for the same average

densities, are lower. Similarly, when comparing our results
with Afle et al. [91], we see that our normalized frequen-
cies, for the same postbounce times, are lower. In the latter
case, since we are normalizing the f-mode frequency by
the central baryonic mass density ρB;0, which we take from
the simulation data, this comparison is equivalent to a
direct comparison between the frequencies. In the lower
panels of Fig. 3, we show a comparison between the
frequencies from the GW spectrograms (see Appendix A
for more details), that we denote by fpeak, and the
frequencies from perturbation theory (see Sec. II B 1),
that we denote by fpert. We obtain that (i) the relative
difference j1 − fpert=fpeakj, between fpert and fpeak, is
≲43% (lower left panel); (ii) the progenitor-mass-
variation in the relations, given by the relative differences
j1 − fpert=fpert;fitj and j1 − fpeak=fpeak;fitj, is ≲9% (lower
right panel).
Therefore, we obtain that the source of the difference

between our results and Afle et al. [91] (≲43%) is the
modeling of the PNSs. We solve the general-relativistic
equations to obtain background and perturbed PNSs, as
opposed to [90], that adopted the conformally flat approxi-
mation to obtain the simulated PNSs, and the quadrupole
formula to obtain their GW signal5 (see Appendix B for
more details).
We attribute the lower difference between our results and

Rodriguez et al. [66] (≲21%) to the Cowling approxima-
tion adopted in the f-mode calculation.6 The differences in
the modeling of the PNSs do not affect their average
density significantly (with a relative difference ≲10%, see
Fig. 8 in Appendix B).

TABLE II. Fitting coefficients for the relations: ff vs
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
(upper left panel of Fig. 3), f̂f vs tpb (upper right

panel of Fig. 3), and fpert vs tpb as well as fpeak vs tpb (lower left panel of Fig. 3). The functional form of the fit is
yfit ¼

P
n
i¼0 cix

i, where n ¼ 2. The relative difference is Δy ¼ j1 − yfit=yj, and we show the root mean square Δyrms

and the maximum Δymax.

y
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
[M1=2

⊙ =km3=2] tpb [s] tpb [s] tpb [s]

x ff [kHz] f̂f fpert [kHz] fpeak [kHz]

c0 −2.632 × 10−1 −4.875 × 10−3 −1.013 × 10−1 −9.204 × 10−3

c1 2.147 × 102 3.587 × 10−1 2.229 2.574
c2 −7.655 × 103 −1.593 × 10−1 −1.057 −1.036
Δyrms 4.288 × 10−3 4.063 × 10−2 2.735 × 10−2 3.645 × 10−2

Δymax 1.519 × 10−2 1.231 × 10−1 7.956 × 10−2 8.181 × 10−2

5The dominant frequencies from the GW spectrograms in [91]
match the f-mode frequencies obtained with the perturbation
analysis, using Newtonian equations of motion, shown in [98].

6In [66], the formalism used for the calculation of the f-mode
was also the one presented in [98], and the Cowling approxi-
mation reduces the frequency, as shown in Fig. 5 of [66].
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2. Slow rotation

PNSs could be fast- and differentially-rotating right after
the bounce, by virtue of angular momentum conservation
and the nonaxisymmetric nature of the collapse (see, e.g.,
[162]). However, during the long-term Kelvin-Helmholtz
phase, the angular momentum loss through neutrino emis-
sion makes their angular velocity decrease [163–166]. On
top of that, viscosity mechanisms such as the magnetorota-
tional instability [167,168], remove their differential rotation
in a comparably short timescale. It is then reasonable that we
use the slow and uniform rotation approximation to model
rotating PNSs. We add slow and uniform rotation to our
TOV solutions,7 and compute their moment of inertia IðtpbÞ
and spin-induced quadrupole moment QðtpbÞ, for the eight
progenitors shown in Table I, by implementing the Hartle-
Thorne formalism [169,170]. We define the dimensionless I
as Ī ≡ I=M3, and the dimensionless Q as Q̄≡Q=ðχ2M3Þ;
here, χ ≡ J=M2 is the dimensionless spin, where J is the
spin angular momentum.

3. Small tidal deformation

The evolutionary paths of main-sequence star binaries
can have PNSs in binary systems with main sequence stars,
white dwarfs, or NSs [171]. Thus, in principle, PNSs could
be tidally deformed. However, the separation distance
between the stars in the binary would be too large and
make tidal effects almost negligible, even in a common
envelope scenario.8 Still, we add small tidal deformation to
our TOV solutions and compute their tidal deformability
ΛðtpbÞ, for the eight progenitors shown in Table I, following
the procedure of Hinderer [172] and Hinderer et al. [173].
We define the dimensionless Λ as Λ̄≡ Λ=M5, and we treat
it as the varying parameter in the universal relations (as we
show in Sec. II B 4).

4. Time evolution of I-Love- Q and f -Love

Once we have computed all of the relevant PNS
observables, namely: the dimensionless f-mode complex
frequency ω̄f, moment of inertia Ī, spin-induced quadru-
pole moment Q̄, and tidal deformability Λ̄, we can
explicitly verify whether well-established universal rela-
tions for cold NSs are satisfied for PNSs. Here, we focus on
the I-Love-Q and f-Love relations, which have been
shown to be the tightest universal relations between
NS observables (in Appendix D, we show results for the
w-Love relation).

In the left panel of Fig. 4, we take Λ̄ as the independent
variable and investigate its correlation with Ī and Q̄, and
with Re(ω̄f) and Im(ω̄f). For comparison, we also show
the same relations for ten zero-temperature EOSs, includ-
ing SFHo. We consider EOS models for npeμ nuclear
matter (AP3 [174], FPS [175], MPA1 [176], MS1 [177],
SFHo [94], SLy4 [178], and WFF1 [179]), as well as
models that include hyperons (GNH3 [180] and H4 [181])
and color-flavored-locked quark matter (ALF2 [182]). We
can see that the I-Love-Q and f-Love relations for PNSs
are different from those for cold NSs, and the former have
a slight dependence on the progenitor mass. However, as
the postbounce time tpb increases (from high Λ̄ to low Λ̄),
the PNS relations approach the cold NS relations. We
found that the relations are approximately recovered in
≈1 s, confirming the result of Martinon et al. [56] for the
I-Love-Q relations. There are two caveats: (i) these
results are for the SFHo EOS only, and, unfortunately,
3D CCSN simulations for other EOSs were not available;
(ii) we have considered that the PNS density cutoff is
ρsrfB ¼ 1010 g=cm3, but in Appendix B, we show results for
ρsrfB ¼ 1011 g=cm3 and ρsrfB ¼ 1012 g=cm3, and we obtain
that the universality is recovered earlier, as ρsrfB increases.
We can investigate the time evolution of the relative

difference Δy ¼ j1 − yPNS=yNSj between the PNS observ-
ables yPNS and the NS observables yNS, where y ¼ yðxÞ, for
x ¼ Λ̄ and y∈ fĪ; Q̄;Reðω̄fÞ; Imðω̄fÞg. We compute Δy
considering the NS observables for the SFHo EOS (since
this was the EOS used in the simulations in [90]). We show
this result in the right panel of Fig. 4, for the eight
progenitors shown in Table I, where we can see that Δy
decreases as the postbounce time tpb increases. These
results show that the universal relations for cold NSs that
we are considering here are approximately valid for
PNSs at late postbounce times, i.e., Δy ≈ 1%–10% for
tpb ≳ 0.5 s. Thus, we extend the results in [56–58] by using
state-of-the-art 3D CCSN simulations, and show
that the f-Love relation is also recovered within the time
that the I-Love-Q relations are recovered (≈1 s), besides
giving an estimate for the relative error of these relations for
earlier times, which could be useful in future observations
(see discussion in Sec. IV).

III. “THE DEATH”: HYPERMASSIVE
NEUTRON STARS

We next study the properties of HMNSs, formed after
BNS mergers. We use results from numerical-relativity
simulations of BNS mergers, from Kastaun and Ohme
[92], for two mass ratios: 0.9 and 1.0, where the SFHo
EOS [94] was used. In Table III, we give some details
about the models from the simulations. Motivated by the
discussion of bulk properties of HMNSs by [92] (see more
in Sec. III A), we obtain a new universal relation between

7In the CCSN simulations described in [90], only nonrotating
progenitors were considered.

8The radius of the progenitor star is ∼106 km and the radius of
the core right before collapse is ∼103 km.
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bulk quantities of cold and nonrotating NSs, the “bulk
f − C relation,” and study the evolution of HMNSs on the
plane of this new universal relation.

A. TOV core equivalents

When two NSs merge, there are four possible outcomes
for the postmerger remnant9 [183]: (i) formation of a stable
NS; (ii) formation of a SMNS, which is supported against
collapse by uniform rotation and either collapses to a black
hole on timescales ∼1 s − 1 yr or forms a stable NS;
(iii) formation of a HMNS, which is supported against
collapse by differential rotation and either collapses to a
black hole on timescales ∼10 ms–100 ms or evolves to a
SMNS; and (iv) prompt collapse to a black hole.

HMNSs are rapidly and differentially rotating stars,
described by a hot EOS [183,184]. We cannot study these
objects’ structure using the approximations we used for
PNSs. To obtain, e.g., the total baryonic mass of a HMNS at
a postmerger time tpm, we need the baryonic mass density
ρB as a function of the spatial coordinates at tpm. This

TABLE III. Total baryonic mass, mass ratio, and maximum
postmerger time (time for the formation of the apparent horizon)
for the numerical-relativity BNS simulations in [92]. In both
cases, the chirp mass is 1.187M⊙, consistent with the measured
value for GW170817 (1.186� 0.001M⊙) [11].

Total baryonic mass ½M⊙� Mass ratio Maximum time [ms]

3.008 0.9 ≈9
3.001 1.0 ≈12

FIG. 4. Left: time evolution of I-Love-Q and f-Love relations for PNSs generated by eight different progenitors (see Table I). We
consider Λ̄ as the independent variable and show its correlation with Ī and Q̄, and with Re(ω̄f) and Im(ω̄f). For reference, we include the
relations for cold NSs, considering ten zero-temperature EOSs (see main text). We note that, as the postbounce time tpb increases (from
high Λ̄ to low Λ̄), the PNS relations approach the NS relations. Right: time evolution of the relative difference Δy ¼ j1 − yPNS=yNSj
between PNS observables yPNS and the NS observables yNS, where y ¼ yðxÞ, for x ¼ Λ̄ and y∈ fĪ; Q̄;Reðω̄fÞ; Imðω̄fÞg. We note that
Δy decreases as tpb increases. In particular, Δy ≲ 10% for tpb ≳ 0.5 s (see horizontal and vertical dashed lines).

9The outcome depends primarily on the masses of the stars in
the binary and on their EOS.
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function cannot be obtained trivially from BNS simulations,
since HMNSs are highly nonaxisymmetric, which brings
ambiguity in specifying the spatial dependence of ρB.
To overcome this, Kastaun et al. [185] proposed a

measure for the description of postmerger remnants that
does not depend on spatial coordinates, although it depends
on the foliation of the spacetime. For a given time slice tpm,
we consider a surface of constant ρB measured in the fluid
rest frame. Thus, for each isodensity surface, we can
measure the proper three-volume V, thus the volumetric
radius RV ¼ ð3V=4πÞ1=3, and the enclosed baryonic mass
MB. Then, we have a MB vs RV relation for each tpm. We
can use this relation as a replacement for the ρB function,
i.e., we can determine the total baryonic mass by specifying
the total radius. We can also define a new compactness in
terms ofMB and RV, given by C̃V ≡MB=RV. Kastaun et al.
[185] defined the “bulk” as the region enclosed by the
isodensity surface ρblkB that gives the maximum compactness

C̃blk
V at each tpm. Similarly, the corresponding volumetric

radius and baryonic mass of the bulk are given by Rblk
V and

Mblk
B ¼ MBðRblk

V Þ, respectively.
Even though this measure was defined for nonaxisym-

metric postmerger remnants (and was further used in
[92,186–188]), we can use it for cold and nonrotating
NSs. It has been shown that the MB vs RV profiles of cores
of postmerger remnants are similar to those of NSs. The
TOV solutions that best approximate the cores of postmerger
remnants are called “TOV core equivalents.” Further, it has
been conjectured that if a postmerger remnant does not admit
a TOV core equivalent, it promptly collapses to a black
hole [186]. Moreover, if it admits a TOV core equivalent, the
remnant collapses to a black hole when theMB vs RV profile
of this remnant matches that of the maximum-mass TOV
core equivalent. If proven, this conjecture would allow us to
accurately model the cores of long- or short-lived postmerger
remnants with TOV core equivalents, with no concerns
about radial stability (before the collapse to a black hole). In
particular, the HMNSs in [92] that we consider in this work
admit TOV core equivalents.
To illustrate the definition of the bulk (which delimits

the TOV core equivalent), we show, in Fig. 5, the relation
between C̃V and ρB for four NS masses, as well as the C̃blk

V
vs ρblkB relation, using the zero-temperature SFHo EOS. We
note that C̃V is almost insensitive to the low-density parts
of the star (note the slope of the curves for ρsrfB ≲ ρblkB in
Fig. 5). As pointed out in [185], C̃blk

V could be a good
candidate for a universal-relation parameter with respect to
other NS observables, such as the QNM frequencies.
Indeed, we can calculate the QNM frequencies of the
bulk ωblk, and relate the real and imaginary parts of their
dimensionless counterparts, ω̃blk ≡Mblk

B ωblk, with C̃blk
V . In

Fig. 6, we present this relation for the f-mode, considering

FIG. 6. Relation between the dimensionless f-mode frequency of the bulk Reðω̃blk
f Þ ¼ ReðMblk

B ωblk
f Þ and compactness of the bulk

C̃blk
V ¼ Mblk

B =Rblk
V , considering ten zero-temperature EOSs (see main text). The “spiraling” dashed curves show the instantaneous GW

frequency of the simulated HMNSs on the Reðω̃blk
f Þ − C̃blk

V plane and the “plus” markers are the normalized peak frequencies, for two
mass ratios q (see Table III). The relative difference j1 − ysim=ySFHoj between the normalized peak frequency from the simulation
ysimðC̃blk

V Þ and the frequency for the cold and nonrotating NS described by the SFHo EOS ySFHoðC̃blk
V Þ, for the same compactness C̃blk

V , is
≈73% for q ¼ 0.9 and ≈78% for q ¼ 1.0, where y ¼ Reðω̃blk

f Þ. The vertical dashed line indicates the maximum compactness of the bulk
for the SFHo EOS, beyond which the simulated HMNS collapses to a black hole.

FIG. 5. Relation between the compactness C̃V ¼ MB=RV and
baryonic mass density ρB for 0.5M⊙, 1.0M⊙, 1.5M⊙, and 2.0M⊙
NSs described by the zero-temperature SFHo EOS. We also show
the relation between the compactness of the bulk C̃blk

V ¼
Mblk

B =Rblk
V and the surface density of the bulk ρblkB for the same

EOS.
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ten zero-temperature EOSs, including SFHo (similarly to
Fig. 4). The EOS-variation is ≲3% for a fourth-order fit
(see Table IV in Appendix E).
Note that the f-C relation shown in Fig. 6 involves the

normalized f-mode frequency of the bulk and the compact-
ness of the bulk. These quantities are defined in terms of the
baryonic mass of the bulkMblk

B and the volumetric radius of
the bulk Rblk

V . This relation is slightly different from the one
widely used in previous literature (e.g., [70]), since their
dimensionless frequency and compactness are defined in
terms of the gravitational mass and circumferential radius
of the NSs. In Appendix E, we compare these different
relations involving the f-mode and the compactness for
different definitions.
We obtain that the different relations are similar when the

compactness is greater than ≈0.2, however the maximum
compactness is larger when it is defined in terms of the
baryonic mass (≈0.43), as opposed to when it is defined in
terms of the gravitational mass (≈0.35). This maximum
range of validity is what makes it possible for us to study
the evolution of HMNSs on the f-C plane (as we show in
Sec. III B), since the collapse only happens when the
maximum compactness is reached.

B. f -C for hypermassive neutron stars

We verify that, considering bulk quantities, the dimen-
sionless f-mode frequency Re(ω̃blk

f) correlates well with
the compactness C̃blk

V , resulting in a new universal relation
that we refer to as “bulk f-C relation.” We can therefore
investigate the evolution of the HMNSs in [92] on the
Reðω̃blk

f Þ − C̃blk
V plane, as we show in Fig. 6, for two mass

ratios, q ¼ 0.9 and q ¼ 1.0. This relation allows us to
directly compare the gravitational waveform peak frequency
of HMNSs (i.e., the frequency at the peak of the Fourier
transform of the postmerger GW signal) with the f-mode
frequency of NSs with the same compactness, taking the
EOS-variation of≲3% as a caveat. We see that the deviation
of the peak frequency from the universal relation is ≈73%
for q ¼ 0.9 and≈78% for q ¼ 1.0, which clearly shows that
the universality does not hold for HMNSs.
This result is expected because we did not include

rotational or thermal effects in the bulk f-C relation.
Chakravarti and Andersson [189] attempted to include these
effects in the dimensionless f-mode frequency ω̄f of cold
and nonrotating NSs by using simple approximations and
obtained that ω̄f changes by a factor of ∼3. This factor
accounts for the deviation seen in the relation between the
premerger tidal deformability and the dimensionless post-
merger frequency when compared to the f-Love relation for
cold and nonrotating NSs. We obtained smaller deviations
(∼2), considering the bulk f-C relation in Fig. 6.
Nonetheless, we note that our independent variable, the
bulk compactness of the HMNS, is a postmerger variable in

the bulk f-C relation, which is not the case in the relation
investigated in [189].
The inclusion of rotational and thermal effects in cold and

nonrotating NSs needs to be done carefully and following
what has been found in the current simulations, if wewant to
recover, e.g., the peak frequency of the postmerger remnant.
For instance, HMNSs can have a core that is slowly rotating,
while the maximum angular velocity is reached in the
outer parts of the remnant [92,185–188,190–193], thus we
need an accurate description of the nonuniform rotational
profile (see, e.g., [194]). The nonuniform thermal profile
(see previously cited works) should also be precisely
modeled.

IV. FINAL REMARKS

We constructed TOV solutions for PNSs, by using 1D
angle-averaged pressure-density relations from the 3D
CCSN simulations in [90], considering eight supernova
progenitors and the SFHo EOS. We then used relativistic
stellar perturbation theory to compute their f-mode; their
moment of inertia (I) and quadrupole moment (Q), using
the slow rotation approximation; and their tidal deform-
ability (or Love number), using the small tidal deformation
approximation. We verified that the I-Love-Q and f-Love
relations for cold NSs are recovered within a postbounce
time of ≈1 s. We showed that these well-established
universal relations for cold NSs are approximately valid
for PNSs for a postbounce time ≳0.5 s, with a relative
difference ≈1%–10%.
We were not able to investigate the EOS-variation of

these relations since 3D CCSN simulations for EOSs other
than SFHo were not available. Thus, our results put a lower
limit on the error when more EOSs are considered. On top
of that, the time of recovery of the universal relations can be
different for other EOSs (it could be lower or higher). Then,
with our analysis, we can say that the universal relations
considered in this work can be applied to PNSs at least
≈0.5 s (≈1 s) after the bounce with a minimum error of
≈10% (≈1%).
By using the prescription described in [185], we

obtained a new universal relation between the normalized
f-mode frequency and the compactness of the bulk of cold
and nonrotating NSs, with an EOS-variation of ≈3%. The
same bulk quantities for HMNSs were obtained in the BNS
merger simulations in [92], considering two mass ratios
and the SFHo EOS. We confronted the relation between the
HMNS quantities from these simulations, namely, the GW
peak frequency and the compactness, with the preceding
f-C relation. As expected, the universal relation was not
satisfied by the HMNSs, with a relative difference
≈70%–80%, as rotational and thermal effects are necessary
for the description of these objects. The precise modeling of
these effects and their impact on, e.g., the oscillation modes
of postmerger remnants is yet to be explored. We consid-
ered only two mass-ratios in our analysis and, once again,
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just one EOS. Similarly to the PNS case, our results for the
error are a lower limit when more EOSs are taken into
account.
The future detection of a GW signal from a CCSN

explosion or a BNS merger could bring valuable informa-
tion about the macroscopic properties of newly born PNSs
or postmerger remnants. Universal relations would poten-
tially be a suitable tool in the analysis of the upcoming GW
data by eliminating the uncertainty caused by the unknown
EOS in the parameter estimation. Such relations should be
used with care since additional degrees of freedom in the
description of, e.g., PNSs or HMNSs might break their
universality. For instance, we showed that some of the well-
established universal relations for cold NSs, the I-Love-Q,
f-Love, and f-C relations, are not valid when rotational
and thermal effects (crucial in the modeling of PNSs or
HMNSs) are considered.
Nevertheless, our results suggest that some of these

universal relations could still be used with an error
≲10% (≲1%) in the early (late) life of a PNS. For example,
in the event of a GW detection from a CCSN explosion, the
f-Love relation could be used to estimate the PNS tidal
deformability, which in turn could be used to infer their
moment of inertia and quadrupole moment through the
I-Love-Q relations; further, these measurements could be
translated to constraints on the hot EOS.
Unfortunately, we cannot say the same for the HMNSs,

since their f-C relation shows high deviations from the NS
relation during their short life. Nonetheless, it is possible
that HMNSs have universal relations between their quasi-
periodic oscillation frequencies and bulk properties. For
example, in [195], the authors proposed relations between
the premerger binary tidal deformability and the SMNS
compactness. It is known that the GW peak frequency of
postmerger remnants is well correlated with the premerger
tidal deformability [93,196], so this suggests a relation
between the SMNS peak frequency and compactness. The
study of such relations for HMNSs, considering its bulk
properties, would be possible with the availability of more
simulations in the future.
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APPENDIX A: DIFFERENT DENSITY CUTOFFS
FOR PROTONEUTRON STARS

The PNS radius is not uniquely defined, since the
boundary between the “interior” and the “exterior” of the
star is not clear. The “surface” is usually defined by a
baryonic mass density cutoff ρsrfB that needs to be carefully
chosen. For example, Torres-Forné et al. [146] points out
that considering the neutrinosphere (ρsrfB ∼ 1012 g=cm3) as a
proxy for the radius can underestimate the PNS size, and
thus considers ρsrfB ¼ 1011 g=cm3 as a more realistic cutoff.
This is indeed the regular choice in the literature (see
[60,106,147,197]). In this work, we follow [98], and our
main results are presented with ρsrfB ¼ 1010 g=cm3 (see, e.g.,
Fig. 2), which was also adopted in [60,61].
The definition of the “surface” has an impact on

the macroscopic properties of the PNSs. For instance, the
f-mode frequency of the PNSs depends on the outer
boundary condition for the eigenvalue problem. In particular,
Sotani et al. [198] showed that the oscillation frequencies are
affected by the outer boundary, characterized either by
constant density surfaces or by the shock radius (as done
previously in [146]). Here, we compare how different density
cutoffs affect our results. We obtain TOV solutions for three
density cutoffs: ρsrfB ¼ 1010 g=cm3, ρsrfB ¼ 1011 g=cm3, and
ρsrfB ¼ 1012 g=cm3. These choices are in accordance with
most of the previously mentioned works and comprise a
broad range for the PNS radius.
We show results for the circumferential radius, the

gravitational mass, and the f-mode, for the PNS generated
by the 9M⊙ progenitor, in the left panels of Fig. 7. As ρsrfB
increases, the PNS radius and mass decrease for all tpb, as
expected. This difference is smaller at late tpb and it
becomes even less important as tpb increases further since
the PNS is slowly cooling. As for the f-mode, we note that
the frequency increases and the damping time decreases for
all tpb, as a consequence of the change in the radius and the
mass, or, to be more precise, the increase in the average
density. Similarly, as tpb increases, the different choices for
the density cutoff do not affect the f-mode significantly.
The f-Love relation at late tpb is not severely affected

by ρsrfB , as we show in the right panels of Fig. 7, where we
also include the relative error for the I-Love and Q-Love
relations. We note that the relative difference between the
PNS relations and the NS relations decreases as ρsrfB
increases, i.e., universality is recovered earlier. In par-
ticular, for ρsrfB ¼ 1012 g=cm3, the PNS I-Love relation
crosses the NS I-Love relation (a similar behavior is seen
for the imaginary part of the w-Love relation for
ρsrfB ¼ 1010 g=cm3, see Appendix D). We also performed
this analysis for the other progenitors and the results are
similar.
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APPENDIX B: TOV SOLUTIONS
VS SIMULATION DATA FOR
PROTONEUTRON STARS

The treatment of gravity in the CCSN simulations in [90]
is not fully general relativistic. The 3þ 1 formalism was
used and the lapse function α ¼ expðΦeffÞwas computed in
terms of an effective relativistic potential Φeff (see Case A
in [199]) that serves as an approximation for the TOV
potential. Moreover, the conformal flatness condition was
adopted and the conformal factor ψ was fixed to 1. It is then
expected that the radial profiles for our TOV solutions
should differ from the radial profiles from the simulations
since we are taking the time-dependent p vs ρ relation as an
effective EOS and solving the general-relativistic equa-
tions. As ψ ¼ 1, the isotropic radial coordinate r̄ is
equivalent to the Schwarzschild radial coordinate r, and
thus it is straightforward to perform this comparison. We
present these results in the left panels of Fig. 8, where we
show the gravitational potential ΦðrÞ ¼ ln αðrÞ, the gravi-
tational mass mðrÞ, the total mass density ρðrÞ, and the
pressure pðrÞ profiles at tpb ¼ 0.1 s and tpb ¼ 1.0 s for the
PNS generated by the 9M⊙ progenitor.
We note that, as expected, the potentialΦðrÞ is deeper in

our TOV solutions. This difference in the potential is
responsible for the slight modification in the profiles of the
pressure pðrÞ and the density ρðrÞ (relative to the simu-
lation data, although r̄ ¼ r), which, in turn, affects
the profile of the mass mðrÞ. In particular, we note that
the total gravitational mass,M ¼ mðr ¼ RÞ, where R is the
circumferential radius (defined by a density cutoff of
ρsrfB ¼ 1010 g=cm3, see Sec. II A), is lower in our TOV

solutions. In the right panels of Fig. 8, we compare results
for different observables for the PNSs from the eight
progenitors, considering tpb ≳ 0.2 s (this is the minimum
time such that we perform the comparison for the f-mode
frequency between the TOV solutions and the simulation
data, following Afle et al. [91], see Fig. 3). We show the
relative difference j1 − yTOV=ysimj between PNS observ-
ables computed from our TOV solutions yTOV and from the
simulation data ysim, where y∈ fR;M; ρ̄; C̄g; here, ρ̄ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
is the average density and C̄ ¼ M=R is the

compactness. We note that the results from our TOV
solutions (i) for the radius and the compactness are lower
by ≈6–12%; (ii) for the total mass are lower by ≈15–19%;
and (iii) for the average density are lower by ≈1%–9%.
Regardless of these differences, we use these TOV
solutions as backgrounds for perturbations, and compute,
e.g., their f-mode frequency.
The GW signal from the CCSN simulations in [90] was

obtained through the quadrupole formula (see, e.g., [99]),
that gives an approximation to the amplitude of the signal.
Thus, we should expect that the time-dependent frequen-
cies of these GW signals should differ from the frequencies
computed using perturbation theory. We present this
comparison in Fig. 9, where we show the spectrogram
for the GW signal of the PNS generated by the 25M⊙
progenitor, which has the most energetic signal [90]. We
extracted the frequency of the GW signal, which we denote
as fpeak, through a short-time Fourier transform analysis,
following [91]. The peak frequency fpeak is characterized
by the high-power “track” on the time-frequency plane of
Fig. 9. We denote the frequency obtained through

FIG. 7. Left: time evolution of circumferential radius R, gravitational massM, f-mode oscillation frequency ff, and f-mode damping
time τf for three different density cutoffs: ρsrfB ¼ 1010 g=cm3, ρsrfB ¼ 1011 g=cm3, and ρsrfB ¼ 1012 g=cm3, considering the PNS
generated by the 9M⊙ progenitor. The differences are more significant at early tpb and decrease as tpb increases. Right: time evolution of
relative difference Δy ¼ j1 − yPNS=yNSj between PNS observables yPNS and NS observables yNS for three different density cutoffs,
where y∈ fĪ; Q̄;Reðω̄fÞ; Imðω̄fÞg. In general, Δy decreases as ρsrfB increases. We obtained similar results for the other progenitors.
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perturbation theory as fpert. We see that fpert as a function
of the postbounce time is lower than fpeak, with a relative
difference ≲40% (see lower left panel of Fig. 3 for more
details). We attribute these differences to the approxima-
tions that were adopted in the simulations in [90] for the
description of the spacetime and the estimation of the GW
signal, which produced simulated PNSs that are less
compact than our TOV solutions (see Fig. 8).

APPENDIX C: RADIAL STABILITY
OF PROTONEUTRON STARS
AND THE ADIABATIC INDEX

For cold NSs, the mass-radius relation has a maximum
point, which corresponds to the maximum mass Mmax. NSs

become radially unstable when Mðρ0Þ > Mmax, such that
∂M=∂ρ0 < 0, where ρ0 is the central total mass density. This
is generally known as the “maximum-mass” criterion or the
“turning-point” principle (see, e.g., [200]). The mass-radius
relation can have multiple maximum points, i.e., more than
one stable branch, when the EOS have first-order phase
transitions [201]; further, it can have extended branches of
stability when the phase conversion is slow [202]. The
existence of multiple stable branches or extended branches
in the mass-radius relation has already been shown to
severely affect well-established universal relations for cold
NSs (e.g., f-Love [203] and w-Love [204]).
For PNSs, ρ0 changes as tpb increases; thus, we cannot

interpret the mass-radius relation as for cold NSs. Naïvely,
we can treat tpb as a parameter and obtain mass-radius
relations for our PNSs, namely we can construct multiple
TOV solutions for a fixed tpb with various ρ0 that are
smaller than that used in the simulation and obtain a
“mass-radius relation” for each tpb. We illustrate this
procedure in the left panel of Fig. 10, for the PNS
generated by the 9M⊙ progenitor, where the black points
represent the stars with ρ0 given by the data and the
colorful curves represent the “mass-radius relations” for
these stars. We note that the configurations are radially
stable only for tpb ≳ 0.5 s.
We can verify the maximum-mass criterion through an

analysis of the radial oscillations of the PNSs by checking
the sign of their fundamental radial mode frequency
squared F2

0. If F2
0 > 0, the configurations are radially

stable, since F2
0 < F2

1 < � � �, by definition [205]. Gondek

FIG. 9. GW spectrogram for the 25M⊙ progenitor. The f-mode
frequency (fpert, computed using perturbation theory) is lower
than the simulation frequency (fpeak, obtained from the short-time
Fourier transform), and we attribute this difference to the
approximations used in the simulations in [90] (see main text).

FIG. 8. Left: radial profiles for the gravitational potentialΦðrÞ, gravitational massmðrÞ, total mass density ρðrÞ, and pressure pðrÞ for
our TOV solutions and the simulation data. The profiles are for the PNSs generated by the 9M⊙ progenitor at tpb ¼ 0.1 s and
tpb ¼ 1.0 s. We note that the ΦðrÞ profiles for our TOV solutions are deeper, slightly modifying the ρðrÞ and pðrÞ profiles, and thus
affecting the mðrÞ profile. Right: relative differences between PNS observables from TOV solutions yTOV and simulation data ysim,
where y∈ fR;M; ρ̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
; C̄ ¼ M=Rg, and for tpb ≳ 0.2 s. In general, yTOV < ysim, considering the eight different progenitors (see

Table I).
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et al. [158] already pointed out that the maximum-mass
criterion is approximately valid for PNSs, regardless of
thermal and neutrino trapping effects. These effects are
encoded in the adiabatic index Γ, a quantity that relates the
perturbed pressure and density in the oscillating star (see,
e.g., [206]). In general, we have Γ≡ ð∂ lnp=∂ ln ρBÞC,
where “C” stands for some condition to be applied on the
derivative. In equilibrium, this definition reduces to
Γ0 ≡ ðd lnp=d ln ρBÞEOS, where the derivative is taken
from the p vs ρB relation (i.e., the EOS) of the unperturbed
background; or to Γ1 ≡ ð∂ lnp=∂ ln ρBÞs;fYig, where the
derivative is taken at constant entropy per baryon s and
particle abundances fYig.
We consider these two cases, where we obtain Γ0 from

the background effective EOS (see Footnote 3), and Γ1

from the simulations. In the right panel of Fig. 10, we
confirm that, for the PNS generated by the 9M⊙ progenitor,
with Γ ¼ Γ0, the configurations are indeed radially stable
only for tpb ≳ 0.5 s. We obtained similar results for the
other progenitors. This radial instability for early times is
likely to be not physical since the PNS is losing energy
through neutrino emission and this process could act as a
dissipation mechanism, especially it would prevent the
exponential growth of the radial oscillations.
In fact, by taking the effects of the perturbed EOS into

account, i.e., when considering Γ ¼ Γ1, we obtain that the
PNSs are radially stable for all times, as we show in the right
panel of Fig. 10. Thus, the temperature and composition
gradients encoded in Γ1 are crucial for the determination of
the radial stability of the PNSs, and the maximum-mass
criterion is not applicable. The results in the right panel of
Fig. 10 are for the PNS radius defined by the density cutoff
ρsrfB ¼ 1010 g=cm3, but we also computed the frequen-
cies for different density cutoffs (ρsrfB ¼ 1011 g=cm3 and

ρsrfB ¼ 1012 g=cm3, see Appendix B) and the results are
similar.
We performed a similar analysis for the nonradial

f-mode frequency, namely we compared the frequencies
and damping times for Γ ¼ Γ0 and Γ ¼ Γ1. As opposed to
the fundamental radial mode, we obtained that the results
agree for later postbounce times, as we show in Fig. 11 for
the 9M⊙ progenitor (which corresponds to the longest
simulation available, see Table I). Thus, the approximation
Γ1 ≈ Γ0 does not affect our results regarding the time
evolution of the universal relations (see Sec. II B 4). For

FIG. 10. Left: MðtpbÞ vs RðtpbÞ relation for the PNS generated by the 9M⊙ progenitor. The black points show the stars that we are
actually considering in this work, since their central density is the same as the one in the simulation data. We extend these configurations
to lower central densities, and the colorful curves show the slope of the mass-radius relation for each time slice. We note that, for
tpb ≳ 0.5 s, the black points are in stable branches (i.e., the mass is increasing and the radius is decreasing). Right: time evolution of the
fundamental mode squared F2

0 for the radial oscillations of PNSs generated by eight different progenitors (see Table I). We note that, for
the 9M⊙ progenitor: (i) if Γ ¼ Γ0, F2

0 > 0 for tpb ≳ 0.5 s, which agrees with the qualitative analysis using the turning point principle;
(ii) if Γ ¼ Γ1, F2

0 > 0 for all tpb, thus breaking the validity of the maximum-mass criterion (see main text). We obtained similar results
for the other progenitors.

FIG. 11. Time evolution of the f-mode frequency (upper panel)
and damping time (lower panel) for the 9M⊙ progenitor,
computed with perturbation theory, considering Γ ¼ Γ0 and Γ ¼
Γ1 (see main text). For comparison, we also show the GW
frequency obtained from the spectrogram, with a short-time
Fourier transform (see Figs. 3 and 9). We obtained similar results
for the other progenitors.
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earlier times (tpb ≲ 0.32 s), we were not able to compute
the f-mode in terms of the Cowling classification, since its
radial eigenfunction starts having nodes (similar to what
has been found in [66,98]).

APPENDIX D: w-LOVE FOR
PROTONEUTRON STARS

The GW spectrum of the CCSN simulations in [90] at late
tpb shows a clear signature (see Fig. 9). At early tpb (≲0.4 s),
we can describe the spectrum using the gravity (g-) and
pressure (p-) modes of the PNS (considering the Cowling
classification; however, this is not the only possible clas-
sification for the oscillation modes, see [66]), but at late tpb
(≳0.4 s), we can characterize the narrow “track” in the GW
spectrograms using the fundamental (f-) mode. These
(f-, p-, and g-) modes are associated with perturbations
of the remnant PNS fluid, which are coupled to the
perturbations of the spacetime.
As a result of the highly asymmetric collapse, spacetime

deformations are expected, and purely spacetime (w-)
modes can be excited [207]. These modes are mostly
associated with oscillations of the spacetime and are barely
coupled to any fluid motion. w-modes can be classified as
curvature, interface, or trapped modes; the curvature modes
are the most relevant w-modes in astrophysical applications
[148] and for cold NSs, their frequency is ≈5–10 kHz and
their damping time is ≈0.01–0.05 ms, which are, respec-
tively, higher and shorter, compared to any of the f-, p-, or
g-modes. Unfortunately, w-modes are yet to be identified in

the GW spectrum of CCSN simulations. Nevertheless, it is
instructive to see how their frequencies compare to the
frequencies of the fluid modes of PNSs and how the well-
established universal relations for cold NSs are affected by
thermal effects on the effective EOS.
Following Sotani et al. [61], we focus on the fundamental

axial w-mode, the first curvature mode, which we simply
refer to as the w-mode. Sotani et al. [61] proposed that, for
PNSs, the relation between the frequency of the w-mode
(multiplied by the PNS radius) and the compactness is
universal. This relation is referred to as the “w − C relation,”
and was already studied for cold NSs (see, e.g., [67,70]).
Blázquez-Salcedo et al. [208] investigated phenomenologi-
cal relations for the axial w-modes, and Mena-Fernández
and González-Romero [209] related the w-mode to the tidal
deformability, to which we refer to as the “w-Love relation”
(the relation between the w-mode and the quadrupole
moment was studied in [30]). Here, we focus on the
w-Love relation.
The eigenvalue problem for axial perturbations is sim-

pler than the one for polar perturbations. We solve the
perturbation equation derived by [210]. We impose regu-
larity of the solution at the center, and match it to the
Regge-Wheeler function and its derivative at the surface.
Then, we use a shooting method to find the complex
frequency that gives us an outgoing wave solution for the
Regge-Wheeler equation at infinity, using the continued
fraction method (see Appendix B of [211]).
We show results for the frequencies and damping times,

and the w-Love relation in Fig. 12. We see that, similarly to

FIG. 12. Left: time evolution of the oscillation frequency fw and the damping time τw of the w-mode of PNSs generated by eight
different progenitors (see Table I). Similarly to the f-mode case (see Fig. 2), the frequencies are lower while the damping times are
(slightly) longer than those for cold NSs (fNSw ≈ 5–10 kHz and τNSw ≈ 0.01–0.05 ms). Right: time evolution of the w-Love relation. We
consider Λ̄ as the independent variable and show its correlation with Re(ω̄w) and Im(ω̄w). For reference, we include the relations for cold
NSs, considering ten zero-temperature EOSs (as in Fig. 4). Similarly to the case for I-Love-Q or f-Love, the PNS relations approach the
cold NS ones as the postbounce time tpb increases (from high Λ̄ to low Λ̄).
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the f-mode case, the frequencies and damping times for the
w-mode of the PNSs are, respectively, lower and longer
than those for cold NSs. The damping times, in particular,
are only slightly longer, as opposed to the f-mode damping
times that are longer than the cold NS ones by up to four
orders of magnitude (see right panel of Fig. 2). In principle,
these lower frequencies could facilitate the detection of the
w-mode in the future. Nonetheless, it is still unclear if the
contribution of this mode to the GW signal from a CCSN is
relevant enough in terms of radiated energy [61]. Moreover,
we note that the PNS relations approach the cold NS
relations as the postbounce time tpb increases (from high Λ̄
to low Λ̄), similarly to the case for I-Love-Q or f-Love. In
particular, we note that the imaginary part of the w-Love
relation for the PNSs first crosses and then approach the
cold NS relation.

APPENDIX E: DIFFERENT f -C RELATIONS FOR
COLD AND NONROTATING NEUTRON STARS

The relation between the f-mode complex frequency
and the compactness of cold and nonrotating NSs, the f-C
relation, was proposed by Tsui and Leung [70]. In Sec. III,
we proposed a new universal relation between the f-mode

frequency and the compactness, using bulk quantities of
cold and nonrotating NSs (the bulk f-C relation). On the
one hand, the compactness of the bulk is defined in terms
of the baryonic mass and the volumetric radius of the bulk
(C̃blk

V ≡Mblk
B =Rblk

V , see Sec. III) [185]. On the other hand,
the usual compactness is defined in terms of the gravita-
tional mass and the circumferential radius of the NS
(C̄≡M=R). In the same way, the dimensionless f-mode
frequency of the bulk is defined in terms of the baryonic
mass (ω̃blk ≡Mblk

B ωblk, see Sec. III), while the dimension-
less f-mode frequency of the NS is defined in terms of the
gravitational mass (ω̄≡Mω). When comparing the bulk
f-C relation with the conventional f-C relation in the
literature, we have to take these differences into account.
We define the following quantities: C̄blk

V ≡Mblk=Rblk
V

and ω̄blk ≡Mblkωblk, and C̃≡MB=R and ω̃≡MBω,
where Mblk is the gravitational mass of the bulk and
MB is the baryonic mass of the NS. Thus, we can compare
ω̄blk − C̄blk

V with ω̄ − C̄ (the usual f-C relation), and
ω̃blk − C̃blk

V (the bulk f-C relation) with ω̃ − C̃. We present
this comparison in the upper panels of Fig. 13. We are only
showing results for radially stable stars. We note that:
(i) for the same compactness, the real and imaginary parts

FIG. 13. Upper: NS and bulk f-C relations for different definitions (see main text). The bulk relations are below the NS ones (except
for the imaginary part, when the compactness is close to its maximum). The maximum compactness (see vertical dashed lines) for the
tilde-defined (defined in terms of the baryonic mass) quantities is ≈0.43, and for the bar-defined (defined in terms of the gravitational
mass) quantities is ≈0.35. The relative difference j1 − yfit=yj between yfit and y is ≲4% for the real part relations and ≲2% for the
imaginary part relations (see the horizontal dashed lines), where y is a dependent variable. Lower panels: f-C relations corresponding to
the different definitions (see main text), for the SFHo EOS. For this compactness range (that is similar to the one in Fig. 6), the relations
are very similar, although the maximum range of their validity is significantly different (see vertical dashed lines).
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of the dimensionless complex frequency of the bulk
are smaller than the NS ones (except for the imaginary
part, when the compactness is close to the maximum
one, see lower panels of Fig. 13); (ii) the different
definitions for the dimensionless complex frequency
and the compactness, with respect to the baryonic mass
(tilde-defined quantities) or the gravitational mass (bar-
defined quantities), affect the maximum compactness: for
the tilde-defined quantities, it is ≈0.43, and for the bar-
defined quantities it is ≈0.35; (iii) the relative difference
j1 − yfit=ynumj between fourth-order fit values yfit and
numerical values ynum is ≲4% for the real part relations
and ≲2% for the imaginary part relations. The fitting
coefficients are shown in Table IV. In general, the different

relations are similar when the compactness is greater than
≈0.2, and the maximum compactness is larger when it is
defined in terms of the baryonic mass.
The lower panels of Fig. 13 are zoomed-in versions of

the upper panels, showing the relations for the SFHo EOS
only. The range for the compactness is similar to the one in
Fig. 6, where we show the evolution of the HMNSs. We
note that, although the relations are similar, the maximum
compactnesses for the tilde-defined and bar-defined rela-
tions are significantly different. In an attempt to include
rotational or thermal effects in these relations, we should
take these differences into account, and consider not only
the change in the frequency but also the changes in mass
and radius.
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