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A first application of the equation of state (EoS) in the quark-meson-coupling (QMC) model in
thermodynamic scenarios corresponding to stationary and rotating isentropic protoneutron stars (PNS),
producing results in agreement with recent observation, was published recently. In addition, a tabulated
form of the EoS in the parameter space suitable for use in simulations of cold binary neutron star mergers
(BNS) and their time development, has been deposited for public use in the CompOSE database. However,
the theoretical background of the QMC EoS of hot hyperonic matter has not yet been presented. In this
work, we report, for the first time, details of the QMC theory of dense matter, including nucleons, leptons,
and the full hyperon octet, extended to particle number density from nB ¼ 0 up to 1.2 fm−3, over the
temperature range 0–100 MeV, with the entropy per particle between S=A ¼ 0 and 2kB and lepton fraction
from YL ¼ 0 to 0.6. The main objective of this work is to explore the effect of the exchange (Fock) terms at
finite temperature, when they are self-consistently incorporated in the fully relativistic QMC Lagrangian.
As already mentioned above, these terms are missing in most relativistic mean field models of hot dense
hyperonic matter. We show that they have a non-negligible effect on observables of astrophysical objects
and that it is essential they are included in realistic mean field calculations.

DOI: 10.1103/PhysRevD.109.083035

I. INTRODUCTION

The observation of gravitational waves from the pre-
merger stage of coalescence of cold binary neutron stars
(BNS) by the LIGO and Virgo collaborations [1] has
stimulated increased interest in simulating the postmerger
stages of the event, which have not yet been observed. In
particular, we do not yet have information concerning the
equation of state (EoS) post-merger, nor the fate of the hot
remnant. The role of hyperons in cold and hot dense matter
has been extensively studied for many years using various
theoretical approaches. We presented a comprehensive
survey of such efforts up to 2020 in [2] (but see also
Refs. [3,4] for a more extensive survey up to 2016).
Models based on a relativistic mean field (RMF) theory

of finite-temperature dense matter, including the full baryon
octet and consistent with modern data on binary neutron
star collisions and CCSN are rather scarce [5–13]. To our
knowledge, these models have used only Hartree theory to
extract the EoS for proto-neutron stars (PNS), particle
composition and other relevant properties. We note that the
first extensive study of the effect of omitting or including

the Fock terms in cold hypernuclear matter, with the entire
baryon octet and density dependent couplings, was pre-
sented by Li et al. [14].
In a previous paper [2] we examined high-density matter

in the cores of cold neutron stars (NS) and hot isentropic
protoneutron stars (PNS) using the quark-meson-coupling
model (QMC-A) [15] extended to finite temperatures. The
temperature effects were demonstrated in two scenarios,
(i) lepton rich matter with trapped neutrinos and lepton
fraction YL ¼ 0.4 and entropy per baryon S=A ¼ 1kB and
(ii) deleptonized, chemically equilibrated matter with
S=A ¼ 2kB, both containing either only nucleons or the
full baryon octet. The EoS, gravitational mass, radius,
baryon composition, moments of inertia and Kepler fre-
quency for slow and fast rigidly rotating stars were
explored over a wide range of temperatures and baryon
number densities. The onset of hyperons in cold dense
matter was studied through the adiabatic index and the
speed of sound. The results were compared with two
relativistic mean field (RMF) models, the chiral mean field
model (CMF) [16–19] and the generalized relativistic
density functional (GRDF) with DD2 (nucleon-only) and
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DD2Y-T (full baryon octet) interactions [9,20,21]. Full EoS
tables, covering the range of temperatures from T ¼ 0 to
100 MeV, S=A between 0 and 6kB, lepton fraction from
YL ¼ 0.0 to 0.6, and baryon number density range
nB ¼ 0.05–1.2 fm−3, suitable either for simulations of
core-collapse supernova (CCSN) or NS merger modeling,
have been posted at [22,23].
However, the full details of the general QMC derivation

at finite temperature have not been published yet. Here we
present, for the first time, a fully consistent, relativistic
Hartree-Fock formulation of the EoS of hyperonic matter at
high density and temperature in the framework of the
QMC model.
The main objectives of the present work are to report the

theoretical development of the QMCmodel PNS, including
the effect of the Fock terms, and to present a comprehensive
demonstration of the impact of these Fock terms on the
properties of neutrinoless PNS in beta-equilibrium, with
cores containing the full hyperon octet. In order to explore
these effects, we have chosen to work at constant
S=A ¼ 2kB. While this system has been chosen as an
example, consistent with our previous investigation [2,24],
it has a more general significance representing the state of
hyperonic matter just after deleptonization.
In Sec. II we present the Hamiltonian of the quark-meson

coupling model and its thermodynamics. We explain how
we compute the partition function in Sec. III. In Sec. IV we
give explicit expressions for relevant thermodynamic quan-
tities, as well as the conditions for chemical equilibrium.
The computational details are presented in Sec. V, while the
results and discussion form the content of Sec. VI.
Concluding remarks are presented in Sec. VII.

II. THE QUARK-MESON COUPLING MODEL

A. Hamiltonian

In order to ensure that the presentation is as accessible
as possible we begin with the simplest version of the
quark-meson coupling (QMC) model. This model takes
into account the effect of the exceptionally strong rela-
tivistic mean scalar fields in dense nuclear matter (see for
example Ref. [25]) upon the internal structure of the
bound hadrons [15,26–28]. This leads naturally to the
introduction of the scalar polarizability, which describes
the fact that the internal valence quark wave functions
adjust self-consistently to oppose the applied scalar field,
just as, for example, the electric polarizability opposes an
applied electric field. The density dependence introduced
in this way is equivalent to introducing repulsive three-
body forces between the hadrons in the medium [29,30]
with no additional parameters. Indeed, as the Lorentz
scalar and vector interactions between the hadrons are
generated by the exchange of mesons between the con-
fined quarks in different hadrons (e.g., the σ meson for the
scalar-isoscalar force and the ω for the vector-isoscalar

force), these many-body forces are entirely determined by
the particular confining quark model under considera-
tion [31,32].
To introduce the finite temperature formalism, we first

consider just the σ and ω mesons interacting with a single
flavor of fermion. In this case the Hamiltonian takes the
form [26]

H ¼ HB þHM;

where the meson part, which we assume static, is

HM ¼
Z

dr⃗

�
1

2
ð∇!σÞ2þVðσÞ

�
−
1

2

Z
dr⃗ ½ð∇!ωÞ2þm2

ωω
2�:

The σ potential is typically taken to have the form

VðσÞ ¼ 1

2
m2

σσ
2 þ λ3

3!
ðgσσÞ3 þ

λ4
4!
ðgσσÞ4; ð1Þ

but in this work we set λ3 ¼ λ4 ¼ 0. Note that we neglect
the spatial components of the meson fields because their
expectation value vanishes in uniform matter.
The baryon component of the Hamiltonian in the finite

volume V is

HB ¼ 1

V

Z
d3r
X
kk0

eiðk−k0Þ:ra†kak0Kðk;k0; σ;ωÞ;

where the sum includes the sum over spin. The infinite
volume limit amounts to the replacement

1

V

X
k

→
2

ð2πÞ3
Z

dk

The kinetic term is defined as

Kðk;k0; σ;ωÞ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þMðσÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þMðσÞ2

q �
þ gωω

with the effective mass

MðσÞ ¼ M − gσσ þ d
2
ðgσσÞ2: ð2Þ

and we define Kðk; σ;ωÞ≡ Kðk;k; σ;ωÞ.
The coupling constants gσ and gω are, respectively, the

couplings of the σ and ω mesons to the nucleon in free
space, which in turn are calculated in terms of the more
fundamental couplings to the u and d quarks confined in
the MIT bag [33]. The effect of the self-consistent solution
of the coupling of the scalar meson to the confined quarks is
reflected in the scalar polarizability, d, appearing in Eq. (2).
This is not a free parameter but must be calculated within
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the particular confining quark model under consideration.
The generalization to include the effect of more than one
flavor of baryon flavor is given in Refs. [15,34].

B. Thermodynamics of the model

To determine the thermodynamic properties of nuclear
matter at temperature T we use the grand canonical
ensemble. We compute the partition function

ZðV; β; μÞ ¼ Tre−βðH−μNÞ ¼ e−βΦ ð3Þ

where V is the volume, β ¼ 1=kT and μ ¼ fμðpÞ; μðnÞ;…g
stands collectively for the chemical potentials of the bary-
ons. Herewe assume that only members of the baryon octet,
fp; n;Λ; � � �g, are present in the system. In Eq. (3) Φ is the
grand potential, H the total Hamiltonian and N stands
collectively for the particle numbers of the various baryon
flavors. In the QMC model [15] H depends on the second
quantized operators ak;f of the baryons and on the fields
ðσ;ωÞ, which describe the σ and ω mesons. The trace in
Eq. (3) involves both a sum over baryon states and a
functional integration over the meson fields, which are time
independent in the model.
We assume that the meson fields can each be written as a

C-number, σ̄; ω̄, plus small fluctuations, so that:

σ ¼ σ̄ þ
X
q≠0

eiq:rδσq

ω ¼ ω̄þ
X
q≠0

eiq:rδωq;

where the zero mode is excluded from the sum and we
impose δσq ¼ δσ−q; δωq ¼ δω−q to ensure that the fields
are Hermitian. The integration over σ, ω is then (up to an
irrelevant multiplicative factor)

Z
DσDω ¼

Z
dσ̄dω̄

Z Y
q

δσq
Y
q0
δωq0 :

Since the thermodynamic functions involve only the
logarithmic derivatives with respect to β, μ, V, multiplica-
tive factors which are independent of these variables can be
ignored.
We expand the Hamiltonian up to terms quadratic in the

fluctuations. For the meson part we find:

HM ¼ V
�
Vðσ̄Þ þ 1

2

X
q

δσ2q

�
q2 þ d2V

dσ2

��

− V
�
m2

ω

2
ω̄2 þ 1

2

X
q

δω2
qðq2 þm2

ωÞ
�
;

while the baryon part becomes:

HB ¼ H0 þ
X
q≠0

ðHσ
qδσq þHω

qδωqÞ þ
X
qq0≠0

Hm
q−q0δσqδσq0 ;

with

H0 ¼
X
k

Kkkðσ̄; ω̄Þa†kak

Hσ
q ¼ 1

2

X
k

�
a†kakþq

∂Kkkþq

∂σ
þ q → −q

�
;

Hm
qq0 ¼ 1

2

X
k

a†kakþqþq0
∂
2Kkkþqþq0

∂σ2
;

Hω
q ¼ 1

2

X
k

�
a†kakþq

∂Kkkþq

∂ω
þ q → −q

�
:

Here we have used the symmetry δσ−q ¼ δσq, so thatHσ
q ¼

Hσ
−q and Hσ†

q ¼ Hσ
q and similarly for the component of the

Hamiltonian involving the ω field.
The integration over δσq; δωq can be carried out explic-

itly, since the dependence on these fluctuations is quadratic

H−μN ¼ V
�
Vðσ̄Þ−m2

ωω̄

2

�
þ
X
k

Kkkðσ̄; ω̄Þa†kak−μN

þV
2

 X
q≠0

δσ2q

�
q2þd2V

dσ2

�
−
X
q≠0

δω2
qðq2þm2

ωÞ
!

þ
X
q≠0

ðH̃σ
qδσqþ H̃ω

qδωqÞþ
X
qq0≠0

Hm
q−q0δσqδσq0 :

The contribution arising from the δσ integration can be
written as

Zδσ ¼
Z Y

q

δσqe−βS;

with

S ¼ V
2

X
q≠0

δσ2q

�
q2 þ d2V

dσ2

�
þ
X
qq0≠0

Hm
q−q0δσqδσq0

þ
X
q≠0

Hσ
qδσq:

By a change of integration variables (which induces only an
irrelevant multiplicative Jacobian) we can choose δσq so as
to diagonalize the quadratic part of S, that is

X
q0

�
V
2

�
q2þd2V

dσ2

�
δðq;q0ÞþHm

q−q0

�
δσq0 ¼ αðqÞδσq: ð4Þ

So we can write
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S¼
X
q≠0

αðqÞδσ2qþHσ
qδσq

¼
X
q≠0

" ffiffiffiffiffiffiffiffiffiffi
αðqÞ

p
δσqþ

Hσ
q

2
ffiffiffiffiffiffiffiffiffiffiffiðαðqÞp

#
2

−
X
q≠0

 
Hσ

q

2
ffiffiffiffiffiffiffiffiffiffiffiðαðqÞp

!
2

:

The first term in S contributes an irrelevant factor to Z, so
the contribution of the δσ integration is simply

Zδσ ¼ e−βHδσ ;

with

Hδσ ¼ −
X
q≠0

 
Hσ

q

2
ffiffiffiffiffiffiffiffiffiffi
αðqÞp

!
2

:

We estimate the effect of Hm in Eq. (4) assuming it is a
perturbation. At leading order one finds

αðqÞ ∼ V
2

�
q2 þ d2V

dσ2

�
þHq−q

¼ V
2

�
q2 þ d2V

dσ2
þ 1

V

X
a†kak

∂
2Kkk

∂σ2

�
: ð5Þ

Obviously this induces an effective σ mass:

m̃2
σ ¼ m2

σ þ λ3σ̄ þ 1

V

X
a†kak

∂
2Kkk

∂σ2
:

In the following we neglect this effect because the bare σ
mass is not so well known. So, keeping the leading term in
Eq. (5), we obtain

Hδσ ¼ −
1

2V

X
q≠0

ðHσ
qÞ2

q2 þm2
σ
:

In summary, we have:

Z ¼
Z

dσ̄dω̄
X
n

hnje−βðHmeanþHfluc−μNÞjni; ð6Þ

so that, including the ω by analogy:

Hmean ¼ Emeson þH0

H0 ¼
X
k

Kkkðσ̄; ω̄Þa†kak

Emeson ¼ V
�
Vðσ̄Þ −m2

ωω̄
2

2

�

Hfluc ¼ −
1

2V

X
q≠0

ðHσ
qÞ2

q2 þm2
σ
þ 1

2V

X
q

ðHω
q Þ2

q2 þm2
ω
: ð7Þ

The generalization to include flavor and isovector exchange
is given below.

III. FINITE TEMPERATURE HARTREE-FOCK
METHOD WITH HYPERONS

A. Perturbative effect of Hfluc

The next step is to compute the sum over hadronic states
in Eq. (6). We write

H0 þHfluc ¼
X
k

eðkÞa†kak þ δH

δH ¼
X
k

½KðkÞ − eðkÞ�a†kak þHfluc;

and assume that one can choose eðkÞ such that δH can be
considered as a perturbation. Using thermal perturbation
theory [35] at leading order in δH we get, with

Z ¼ exp−βðΦB þ EmesonÞ;
where

ΦB ¼ ΦB0 þ
X
k

nðkÞ½KðkÞ − eðkÞ�

þ 1

4V

X
kk0

nðkÞnðk0Þ
�

1

ðk − k0Þ2 þm2
σ

�
∂Kkk0

∂σ

�
2

−
1

ðk − k0Þ2 þm2
ω
g2ω

�

and ΦB0 is defined in Eq. (8).
We now generalize the discussion to include neutrons

and protons as well as the hyperons (labeled by “f”), along
with the isovector interaction associated with ρ and π
exchange. The mean field corresponding to the time
component of the neutral ρ meson is labeled b3, in order
to distinguish it from the density, ρ. In the infinite volume
limit this leads to:

ΦB ¼ ΦB0 þ
2V

ð2πÞ3
X
f

Z
dk⃗nðk; fÞ½Kðk; fÞ − eðk; fÞ�

þ V
ð2πÞ6

X
ff0

Z
dk⃗dq⃗nðk; fÞnðq; f0ÞWff0 ðk⃗; q⃗Þ

ΦB0 ¼ −
V
β

2

ð2πÞ3
X
f

Z
dk⃗ ln ð1þ e−βðeðk;fÞ−μðfÞÞÞ; ð8Þ

with

nðk; fÞ ¼ 1

1þ exp ½βðeðk; fÞ − μðfÞÞ� ;

and

Kðk; fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

fðσ̄Þ
q

þ gfωω̄þ gρmðfÞb̄3 ð9Þ

Emeson ¼ V
�
Vðσ̄Þ −m2

ωω̄
2

2
−
m2

ρb̄33
2

�
; ð10Þ
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where mðfÞ is the isospin projection of the flavor f ¼
p; n;Λ;… (þ 1

2
;− 1

2
; 0….).

The kernel Wff0 ðk; qÞ describes the Fock terms asso-
ciated with the four mesons ðσ;ω; ρ; πÞ:

Wff0 ðk⃗; q⃗Þ ¼ δðf; f0Þ
�

1

ðk⃗ − q⃗Þ2 þm2
σ

�
∂Kkq

f

∂σ

�2

−
1

ðk⃗ − q⃗Þ2 þm2
ω

ðgfωÞ2
�

−GρSðf; f0Þ
m2

ρ

ðk⃗ − q⃗Þ2 þm2
ρ

−
�
gA
2fπ

�
2

Πðf; f0Þ m2
π

ðk⃗ − q⃗Þ2 þm2
π

:

Here we have defined

Sff0 ¼ δmm0m2 þ tðδm;m0þ1 þ δm0;mþ1Þ; ð11Þ

where ðt; mÞ are the isospin labels corresponding to the
baryon of flavor f and the matrix Πðf; f0Þ is:

p n Λ Σ− Σ0 Σþ Ξ− Ξ0

p 1 2 0 0 0 0 0 0

n 2 1 0 0 0 0 0 0

Λ 0 0 0 −12=25 −12=25 −12=25 0 0

Σ− 0 0 −12=25 16=25 16=25 0 0 0

Σ0 0 0 −12=25 16=25 0 16=25 0 0

Σþ 0 0 −12=25 0 16=25 16=25 0 0

Ξ− 0 0 0 0 0 0 1=25 2=25

Ξ0 0 0 0 0 0 0 2=25 1=25

B. The determination of eðk;f Þ
We determine eðk; fÞ by applying the finite temperature

Hartree-Fock variational principle

δΦ
δeðp;mÞ ¼ 0: ð12Þ

This condition is applied for arbitrary values of σ̄; ω̄; b̄3.
Then, using Eq. (8), we find

δΦ
δeðp;mÞ ¼

2

ð2πÞ3
X
f

Z
dk⃗

δnðk; fÞ
δeðp;mÞ

�
Kðk; fÞ − eðk; fÞ

þ 1

ð2πÞ3
X
f0

Z
dq⃗nðq; f0ÞWff0 ðk⃗; q⃗Þ

�
:

Hence the Hartree-Fock (HF) equations are

eðk; fÞ ¼ Kðk;fÞ þ 1

ð2πÞ3
X
f0

Z
dq⃗nðq;f0ÞWff0 ðkẑ; q⃗Þ;

ð13Þ

where the rotational invariance ofW has been used to put k⃗
along an arbitrary axis. This clearly generalizes the HF
equations for the single particle energies eðk; fÞ. We note
that these equations must be solved self-consistently,
because nðk; fÞ depends on eðk; fÞ. If we substitute
Eq. (13) into the expression for the grand potential we find:

ΦB ¼ΦB0−
V

ð2πÞ6
X
ff0

Z
dk⃗dq⃗nðk;fÞnðq;f0ÞWff0 ðk⃗; q⃗Þ

ð14Þ

¼ΦB0þ
V

ð2πÞ3
X
f

Z
dk⃗nðk;fÞ½Kðk;fÞ−eðk;fÞ�: ð15Þ

Note that the above expressions, Eqs. (14) and (15), which
give the values ofΦB at the solution, are not stationary with
respect to variation of eðk; fÞ. If one needs to invoke the
stationarity one must use the full expression, Eq. (8).

C. Solving the Hartree-Fock equation

For clarity of presentation we omit the dependence on
unnecessary parameters and write the self-consistent
Eq. (13) in the symbolic form

eðTÞ ¼ K þ F½eðTÞ; T�:
We assume that we can solve them by iteration:

eðnþ1ÞðTÞ ¼ K þ F½eðnÞðTÞ; T�; ð16Þ

realizing that the choice of the initial step, eð0ÞðTÞ, is
critical. In the initial work in Ref. [2], we used the obvious
choice eð0ÞðTÞ ¼ K, which resulted in very slow conver-
gence as T → 0, because the Fermi distribution is discon-
tinuous in this limit. To obtain satisfactory convergence we
introduced a form factor to cut off the high momenta. In
practice we made the replacement

Wff0 ðk⃗; q⃗Þ → Wff0 ðk⃗; q⃗Þ
 

M2
r

ðM2
r þ ðk⃗ − q⃗Þ2

!
2

;

with Mr ∼ 0.5 ÷ 1 GeV, with a typical cutoff of order
10 GeV. Although this can be interpreted as an effect of
the hadron size, it may also be viewed as an ad hoc recipe.
Fortunately there is a much better solution. Suppose that

eðTÞ is the exact solution at some temperature T. Then if
we choose the starting point

eð0ÞðT þ ΔTÞ ¼ eðTÞ;
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we have a good chance that the iteration process at T þ ΔT
will converge rapidly, provided that ΔT is not too large.
Of course, we do not have the solution at finite T but at

least we can find it relatively easily at T ¼ 0. Indeed, at
T ¼ 0 Eq. (13) become

eðk;fÞ¼Kðk;fÞþ 1

ð2πÞ3
X
f0

Z
kFðf0Þ

0

dq⃗Wff0 ðkẑ; q⃗Þ; ð17Þ

with the Fermi momentum defined by

eðkFðfÞ; fÞ ¼ μðfÞ:

If we substitute this into Eq. (17) we get

μðfÞ¼KðkFðfÞ;fÞþ
1

ð2πÞ3
X
f0

Z
kFðf0Þ

0

dq⃗Wff0 ðkFẑ; q⃗Þ:

These equations determine kFðfÞ (or equivalently the
density of flavor f), when the chemical potentials μðfÞ
are given. This allows one to pass from the grand canonical
to the canonical ensemble. For our purpose what matters is
that the equations for kFðfÞ are easy to solve, since they are
just a system of 2 (nonlinear) equations for p, n and Ξ�,
along with a system of 4 equations for the set Λ;Σ�;0. Once
the Fermi momenta are known, Eq. (17) determine eðk; fÞ
at T ¼ 0. That is, at T ¼ 0 the HF equations for eðk; fÞ do
not require a self-consistent solution.
Having found an exact solution at T ¼ 0, the iteration

procedure described above works well.

D. Equations for the meson fields

The full partition function is

Z ¼
Z

dσ̄dω̄db̄3e−βðEmesonþΦBÞ:

To integrate over σ̄; ω̄; b̄3 we use the saddle point approxi-
mation. This amounts to estimating the integral according
to

Z ∼ e−βðEmesonþΦBÞsaddle ;

where an irrelevant multiplicative factor has been ignored
and the saddle point is defined by

d
dσ̄

ðEmeson þΦBÞ ¼ 0; ð18Þ

with analogous equations for the other mesons. They are
determined by the saddle point equations

d
dσ̄

ðEmeson þΦBÞ ¼ 0

d
dω̄

ðEmeson þΦBÞ ¼ 0

d
db̄3

ðEmeson þΦBÞ ¼ 0: ð19Þ

Since ΦB is stationary with respect to eðk; fÞ, because of
Eq. (12), we do not need to worry about the dependence of
Φ on σ̄; ω̄; b̄3 through eðk; fÞ. On the other hand, we must
take into account the dependence of W on the σ field. We
note that this rearrangement effect, arising from the field
dependence of the interaction, was omitted in Refs. [2,36].
From (8) we find

d
dσ̄

ΦB ¼ 2V
ð2πÞ3

X
f

Z
dk⃗nðk; fÞ d

dσ̄
Kðk; fÞ

þ V
ð2πÞ6

X
ff0

Z
dk⃗dq⃗nðk; fÞnðq; f0Þ dW

ff0 ðk⃗; q⃗Þ
dσ̄

;

with analogous equations for ω̄; b̄3. Then, using Eqs. (9)
and (10), we obtain the mean field equations:

dVðσ̄Þ
dσ̄

þ 2

ð2πÞ3
X
f

Z
dk⃗nðk; fÞ d

dσ̄
Kðk; fÞ

þ 1

ð2πÞ6
X
ff0

Z
dk⃗dq⃗nðk; fÞnðq; f0Þ dW

ff0 ðk⃗; q⃗Þ
dσ̄

¼ 0

−m2
ωω̄þ 2

ð2πÞ3
X
f

gfω

Z
dk⃗nðk; fÞ ¼ 0

−m2
ρb̄3 þ gρ

2

ð2πÞ3
X
f

mðfÞ
Z

dk⃗nðk; fÞ ¼ 0: ð20Þ

In summary, the calculation of the grand potential Φ ¼
ΦB þ Emeson involves:

(i) The solution of the self-consistent HF equations,
Eq. (13), to determine the single particle ener-
gies, eðk; fÞ.

(ii) The solution of the mean field equations, Eqs. (20),
to determine σ̄; ω̄; b̄3—see the Appendix for details.

(iii) The calculation of ΦB according to Eq. (14) or (15).
After substitution of the solutions eðk; fÞ; σ̄; ω̄ and b̄3, Φ
becomes a function of μ and β and we can compute the
useful thermodynamic quantities.

IV. THERMODYNAMIC QUANTITIES

From the definition of the partition function we have

hNðfÞi ¼ −
∂Φ

∂μðfÞ
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and using Eq. (13) one readily finds the following relations

∂Φ
∂μðfÞ ¼

∂ΦB0

∂μðfÞ
∂Φ
∂β

¼ ∂ΦB0

∂β
: ð21Þ

This implies the simple result

hNðfÞi ¼ −
∂ΦB0

∂μðfÞ ¼
2V

ð2πÞ3
Z

dk⃗nðk; fÞ: ð22Þ

Thus, because of the self-consistency conditions, we
recover the naive expression for the particle number, which
must be computed with the self-consistent energy eðk; fÞ,
rather than the mean field energy Kðk; fÞ.

A. Entropy

Using relation (21) we have

∂

∂β
Φ¼ ∂

∂β
ΦB0

¼−
1

β
ΦB0þ

1

β

2V
ð2πÞ3

X
f

Z
dk⃗nðk;fÞ�eðk;fÞ−μðfÞ�;

and hence

hSi ¼ ∂

∂T
T lnZ ¼ β2

∂

∂β
Φ ¼ β2

∂

∂β
ΦB0

¼ Vβ
2

ð2πÞ3
X
f

Z
dk⃗

�
1

β
ln
�
1þ e−βðeðk;fÞ−μðfÞÞ

�

þ nðk; fÞ�eðk; fÞ − μðfÞ��:
Using this expression one can check that S → 0 when
T → 0, as it should.

B. Energy

From the defining relation

hE − μNi ¼ −
∂

∂β
lnZ ¼ Φþ β

∂

∂β
Φ;

we have:

hE−μNi¼Φ−ΦB0þ
2V

ð2πÞ3
X
f

Z
dk⃗nðk;fÞ�eðk;fÞ−μðfÞ�

¼Emesonsþ
V

ð2πÞ3
X
f

Z
dk⃗nðk;fÞ½Kðk;fÞ−eðk;fÞ�

þ 2V
ð2πÞ3

X
f

Z
dk⃗nðk;fÞ�eðk;fÞ−μðfÞ�;

so

hEi¼Emesonsþ
V

ð2πÞ3
X
f

Z
dk⃗nðk;fÞ½Kðk;fÞþeðk;fÞ�:

ð23Þ

It is obvious that the thermodynamic relation

hEi ¼ Φþ ThSi þ μhNi ¼ −Pþ ThSi þ μhNi

is satisfied by the above expressions and we use it to
compute the energy.

C. β equilibrium equations

The chemical potentials are in equilibrium under the
constraint of (local) electric and baryon charge conserva-
tion and the antiparticles must satisfy the relation
μðāÞ ¼ −μðaÞ. Then, if the lepton numbers (Le, Lμ) are
conserved, all lepton species ðe−; ν̄e; eþ; νeÞ and
ðμ−; ν̄μ; μþ; νμÞ, must be present. This corresponds to the
neutrino trapping case. On the other hand, if the neutrinos
escape from the (proto-)star, then the lepton number is not
conserved. Hence we distinguish 2 cases.

1. Lepton number is not conserved

Assuming that there are no trapped neutrinos, we have
the equilibrium equations:

μðμ−Þ ¼ μðe−Þ
μi − μn ¼ −μðe−ÞQi; i ¼ p;Λ;…

and the conservation equations:

nðeþÞ − nðe−Þ þ nðμþÞ − nðμ−Þ ¼ −
X
i

ρiQiX
i

ρi ¼ ρB;

where ρi are the baryon densities. If we assume that the
positive leptons are present, we use μðeþ; μþÞ ¼
−μðe−; μ−Þ to compute their densities.

2. Lepton number is conserved

In this case all neutrinos and charged leptons are active,
so the equilibrium equations become

μðe−Þ − μðνeÞ ¼ μðμ−Þ − μðννÞ ð24Þ

μi − μn ¼ −½μðe−Þ − μðνeÞ�Qi; ð25Þ

while the conservation equations are

nðe−Þ þ nðνeÞ − nðeþÞ − nðν̄eÞ ¼ Le ð26Þ
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e → μ ¼ Lμ ð27Þ

nðeþÞ − nðe−Þ þ nðμþÞ − nðμ−Þ ¼ −
X
i

ρiQi ð28Þ

X
i

ρi ¼ ρB: ð29Þ

To determine the equilibrium composition completely one
must specify the lepton numbers (or fractions).

V. COMPUTATION METHOD

To demonstrate the effect of the Fock terms in the QMC
energy functional, we need to check that their effect can be
distinguished from the consequence of choosing different
input parameters in a simple mean-field treatment.
Consistent with our previous work [2,24], we used the
QMC model with five parameters, three meson-nucleon
coupling constants, Gσ, Gω, and Gρ, as well as the mass of
the σ meson,Mσ , and the strength of the sigma meson cubic
self-coupling, λ3. As before,Mσ was fixed to 700 MeVand
λ3 to zero, leaving the three coupling constants variable.
These couplings are adjusted in the model to reproduce the
empirical values of parameters of symmetric nuclear matter
(SNM) at saturation density, ρ0, the energy per particle,
E0=A, and the symmetry energy coefficient, J, of asym-
metric nuclear matter (ANM). To our knowledge, such a
mapping of the QMC and nuclear matter parameter spaces,
being of the same dimension, is a unique feature of the
QMC model. However, ρ0, E0=A and J are correlated and
not exactly known (see e.g., [24,37] and their range is a
subject of ongoing research (see for example Ref. [38]).
In order to identify ranges of the QMC coupling

constants, compatible with the generally acceptable ranges
of the SNM parameters, we have adopted the method used
in Ref. [24]. Since then the QMC-A model has been further
technically developed and the results changed in a minor
way, as discussed later. Also, the previous work focused on
the role of the symmetry energy in the high-density matter
in astrophysical objects, whereas in the present work we
investigate the role of the exchange terms in the
QMC model.
Here we construct a 3D rectangular mesh with sides ρ0 ¼

0.14–0.18 fm−3 (in steps of 0.01 fm−3), E0=A ¼ −14 to
−18 MeV (in steps of 1 MeV) and J between 28 and
32 MeV (in steps of 2 MeV, a total of 110 points. At each
point, the QMC predictions for the slope of the symmetry
energy L, the volume incompressibility K, the couplings
constants Gσ, Gω, Gρ, and the single-particle potentials UY

for Y ¼ Λ, Σ and Ξ hyperons at saturation density in
symmetric nuclear matter are computed. For each of these
choices we compute the gravitational mass, radius and
central density of a maximum mass hot protoneutron star
(PNS) with a fixed entropy density, S=A ¼ 2kB, as well as

the radius, central density and tidal deformability of a cold
1.4M⊙ neutron star. These calculations were performed
both with (HF—Hartree-Fock) and without (MF—mean-
field) the exchange Fock term in the QMC calculation,
under exactly the same thermodynamic conditions. In this
way it was possible to compare results with and without the
inclusion of the exchange terms and thus eliminate any
ambiguity in identifying the effect of the Fock terms.

VI. RESULTS AND DISCUSSION

There are several possible paths one could follow in
order to explore the sensitivity of the calculated observables
to the selection of the planes cut through the 3D mesh of
input parameters. We have found that the most illustrative
approach was to follow the dependence of an observable on
E0=A for fixed values of ρ0 and J. While the sensitivity to
ρ0 was usually very telling, the sensitivity to the choice of J
was very limited and the resulting changes did not exceed a
few percent. Thus, for clarity of the figures, in most cases,
we chose J ¼ 30 MeV for illustration of the results. We
note that a similar effect was already observed in Ref. [24].
Starting with Fig. 1, we observe the incompressibility K

decreasing linearly from 321.7 MeV at ðE0=A; ρ0Þ ¼
ð−18 MeV; 0.18 fm−3Þ to 261.3 MeV at ðE0=A; ρ0Þ ¼
ð−14 MeV; 0.14 fm−3Þ in the HF calculation. The same
pattern, with a minor difference in slope, is observed in the
MF model, with range of K values, from 312.0 MeV at
ðE0=A; ρ0Þ ¼ ð−18 MeV; 0.18 fm−3Þ to 256.0 MeV at
ðE0=A; ρ0Þ ¼ ð−14 MeV; 0.14 fm−3Þ. The incompressibil-
ity is systematically lower in the MF model, except for a
minor overlap where ρ0 takes its lowest values in the HF
case and its highest values in the MF case.
The scenario illustrating the sensitivity of a quantity to

the variation of the symmetry energy parameter, J, is shown

FIG. 1. Volume incompressibility as a function of E0=A for
fixed ρ0 in the range 0.14 to 0.18 fm−3 and J ¼ 30 MeV. Solid
(dashed) curves and full (empty) symbols represent calculations
with (without) HF (MF) the exchange term.
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in Fig. 2. We observe a clear separation of the HF results,
exhibiting a weak increase with E0=A and ρ0 and being
lower in all cases than the MF results; the latter show an
even weaker opposite trend and always lie above the HF
numbers. This behavior is an obvious consequence of the
exchange terms.
The QMC coupling constants are obviously the main

vehicle transporting the exchange effects to the calculation
of physical quantities at zero temperature. In Fig. 3 we
show their sensitivity to these effects, in selected scenarios
which are further used to demonstrate the difference
between the HF and MF models. The couplings Gσ and
Gω appear to be always higher in the HF model, in contrast
to Gρ which shows a minor increase in the MF model above
the HF model. Interestingly, Gω and Gρ are practically
identical in the MF model which is not the case in the HF
model. Clearly, the coupling constants are sensitive to the
exchange terms, with Gσ decreasing with increasing ρ0 and
also as E0=A decreases in magnitude. These dependencies
of the other constants are minor.

Turning now to compact objects, we explore the gravi-
tational mass and radius of a neutrinoless PNS with a core
containing the full hyperon octet at constant entropy,
S=A ¼ 2kB. Looking at the left panels of Fig. 4, two
effects can be observed. First, there is a difference between
the maximum gravitational mass, Mg, that can be achieved
in the HF and MF models, as much as 0.2M⊙. This is
highly significant in this context. The effect of modest
changes in J in both models is minimal and does not need
to be taken into account. The second effect is that of ρ0,
which reduces the maximum value of Mg from about 2M⊙

at ρ0 ¼ 0.14 fm−3 to about 1.8M⊙ at 0.18 fm−3 but leaves
the difference between the HF and MF results very similar.
In the right hand panels, the effect of varying ρ0 follows

the trend of the maximal mass, showing a reduction of the
radius for decreasing maximum mass. The difference
between the HF and MF models is still visible, showing
systematically larger radii in the MF models. As before, the
effect of the value of J is minimal.
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Taking the PNS stars with maximum mass, as indicated
in top left panel in Fig. 4, we show in Figs. 5 and 6 (once
again at fixed entropy per baryon, S=A ¼ 2kB) the
composition of the PNS core as predicted by the HF
and MF models. The effect of the exchange term is rather
remarkable, especially on the population of Σ hyperons,
showing a dramatic decrease in population with increasing
particle number density when Fock terms are included.
Because at finite T hyperons are present at some level at
all densities, there is no density threshold for their
appearance. However, we can, for example, compare
the fractional occurrence of some of the hyperons at a
given baryon density. For example, the population of Ξ0

baryons reaches ni=nB ¼ 10−2, at a considerably higher
density in the MF case.
The appearance of hyperons in high density matter is

determined by the single-particle potentials, UY , which are
dependent on the nucleon-hyperon and hyperon-hyperon
interactions. In cold matter, they affect the density

dependence of the threshold for hyperon appearance,
and in matter at finite temperature the hyperonic population
in the whole density spectrum. The appearance of Σ
hyperons in the cores of cold neutron stars has been an
issue for many years (see e.g., Refs. [24,36,39] for more
detail).
While these potentials are treated as variable parameters

in traditional RMF models, they appear naturally in the
QMC model. As a consequence of a significant enhance-
ment in-medium of the hyperfine interaction that splits the
Λ and Σ masses in free space [34], one finds an effective,
repulsive three-body force for the Σ hyperons, without
additional parameters [2]. This effect increases with
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density, so that even though the Σ potential is not as
repulsive as suggested by phenomenology [40], Σ hyperons
never appear in the present work at T ¼ 0, unlike for
example Ref. [14] when the Σ potential at saturation density
is reduced to zero. The absence of Σ hyperons in cold
matter at densities below about 1 fm−3 is supported by the
nonobservation of bound Σ-hypernuclei at medium or high
mass [41–43].
We illustrate the exchange term dependence of the UY in

Fig. 7 for the Λ (black), Σ (red), and Ξ (green) hyperons.
We observe that the Fock term significantly increases the
potentials toward a positive value, i.e., makes the inter-
actions less attractive and bringing the UΛ and UΣ toward
the expected range. This trend is only weakly dependent on
the saturation density ρ0 and energy per particle E0=A. UΣ.
However, it provides a very sensitive constraint on the two
nuclear matter parameters. The expected value of UΣ is

positive or small negative. In this work, we get UΣ ¼
−0.96 MeV with the HF model (see Table 1 in [2]). A finer
mesh of these three parameters would provide more
accurate values of these parameters and hence of the
UΣ [24].
It is interesting to follow the global effect of exchange

terms on the mass-radius relation in warm stars with the full
baryon octet in the core. We selected PNSs with the
maximum and minimum gravitational mass from all 109
points within the input parameter space in both HF (black
solid and dashed curves) and MF (red curves) models. The
effect of the exchange terms is well demonstrated in
gravitational masses, slopes of the curves and radii, as
illustrated in Fig. 8, once again at fixed entropy per baryon,
S=A ¼ 2kB. It is notable that the central density reached in
a maximum mass star is considerably higher in the
MF case.
Finally, we explore the prediction of the HF and MF

models for the radius, R1.4, and tidal deformability, Λ1.4, of
a cold 1.4 Msolar star. This case is important because of the
mergers of neutron stars as a source of gravitational waves.
Examination of Fig. 9 reveals the particular sensitivity to
the choice of ρ0 of the tidal deformability (see right panels),
as well as the systematic decrease of the radius of the star as
ρ0 increases. At the same time, the difference between the
HF and MF models is quite obvious in both quantities.
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VII. CONCLUDING REMARKS

We have presented the first complete formal develop-
ment of a relativistic Hartree-Fock treatment of the EoS of
dense matter at finite temperature including hyperons. The
Fock terms are, of course, essential to ensure that the
participating baryons obey the Pauli exclusion principle.
The formalism was then used to explore the importance of
including the Fock terms, as opposed to the much simpler
application of mean-field theory.

In order to demonstrate the relevance of the Fock terms,
it was essential to distinguish their effect from the choice of
input parameters. This investigation confirmed and
extended the findings reported in Ref. [24], namely that
the input parameters do have important effects on the
results. However, those parameters are not as well known as
one would like.
The first finding was that in almost all cases the

properties of neutron stars were linearly dependent on
the input parameters within their range of uncertainty. The
most important property investigated was the maximum
mass of the stars, for which the highest sensitivity corre-
sponded to variations in ρ0, while there was very little
sensitivity to J.
By exploring the properties of neutron stars across an

extensive mesh of EoS calculated over a range of nuclear
matter parameters, it was possible to establish clear
differences in the predictions with and without the Fock
terms; differences which cannot be mimicked by the
variation of nuclear matter parameters within the generally
accepted range of uncertainty. Figures 5 and 6 illustrate the
difference between the fractions of various hyperons in
these two cases.
By far the most important difference is illustrated in

Fig. 8, where we see that for those sets of nuclear matter
parameters which produce the largest or smallest maximum
mass stars in either the mean-field or Hartree-Fock cases,
both the maximum and minimum values are considerably
larger in the Hartree-Fock calculations and the radii of the
stars are significantly smaller.
In the light of these results we suggest that it will be

important for future theoretical studies of neutron star
properties, for cold and especially warm stars, to include
the Fock terms.

ACKNOWLEDGMENTS

J. R. S. and P. A. M. G. are grateful for the hospitality at
the University of Adelaide during some parts of this work.
This work was supported in part by the University of
Adelaide and by the Australian Research Council under the
Discovery Project DP230101791 and through the ARC
Centre of Excellence for Dark Matter Particle Physics.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Observation of gravitational waves from
a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[2] J. R. Stone, V. Dexheimer, P. A. M. Guichon, A. W.
Thomas, and S. Typel, Equation of state of hot
dense hyperonic matter in the Quark–Meson-Coupling

(QMC-A) model, Mon. Not. R. Astron. Soc. 502, 3476
(2021).

[3] J. M. Lattimer and M. Prakash, The equation of state of hot,
dense matter and neutron stars, Phys. Rep. 621, 127 (2016).

[4] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Equations of
state for supernovae and compact stars, Rev. Mod. Phys. 89,
015007 (2017).

11

12

13

14
R

1.
4 [

km
]

200

400

600

800

1000

�
1.

4

11

12

13

14

R
1.

4 [
km

]

200

400

600

800

�
1.

4

-18 -17 -16 -15 -14
E/A [MeV]

11

12

13

14

R
1.

4 [
km

]

-18 -17 -16 -15 -14
E/A [MeV]

200

400

600

800

�
1.

4

�
0
 = 0.14 fm

-3

�
0
 = 0.16 fm

-3

�
0
 = 0.14 fm

-3

�
0
 = 0.16 fm

-3

�
0
 = 0.18 fm

-3
�

0
 = 0.18 fm

-3

J=30 MeV

J=30 MeV

J=30 MeV J=30 MeV

J=30 MeV

J=30 MeV

FIG. 9. R1.4 (left) and tidal deformability Λ1.4 (right) of a cold
neutron star vs E0=A for fixed ρ0 for 0.14, 0.16 and 0.18 fm−3

and J ¼ 30 MeV cases. Solid (dashed) curves and full (empty)
symbols represent results calculated with (without) HF (MF) the
exchange term.

GUICHON, STONE, and THOMAS PHYS. REV. D 109, 083035 (2024)

083035-12

https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1093/mnras/staa4006
https://doi.org/10.1093/mnras/staa4006
https://doi.org/10.1016/j.physrep.2015.12.005
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007


[5] C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, and
S. Yamada, Tables of hyperonic matter equation of state for
core-collapse supernovae, J. Phys. G 35, 085201 (2008).

[6] K. Sumiyoshi, C. Ishizuka, A. Ohnishi, S. Yamada, and H.
Suzuki, Emergence of hyperons in failed supernovae: Trigger
of the black hole formation, Astrophys. J. 690, L43 (2009).

[7] M. Oertel, A. F. Fantina, and J. Novak, An extended
equation of state for core-collapse simulations, Phys. Rev.
C 85, 055806 (2012).

[8] G. Colucci and A. Sedrakian, Equation of state of hyper-
nuclear matter, Phys. Rev. C 87, 055806 (2013).

[9] M. Marques, M. Oertel, M. Hempel, and J. Novak, New
temperature dependent hyperonic equation of state: Appli-
cation to rotating neutron star models and I-Q relations,
Phys. Rev. C 96, 045806 (2017).

[10] M. Fortin, S. S. Avancini, C. Providencia, and I. Vidana,
Hypernuclei and massive neutron stars, Phys. Rev. C 95,
065803 (2017).

[11] A. R. Raduta, M. Oertel, and A. Sedrakian, Proto-neutron
stars with heavy baryons and universal relations, Mon. Not.
R. Astron. Soc. 499, 914 (2020).

[12] S. Khadkikar, A. R. Raduta, M. Oertel, and A. Sedrakian,
Maximum mass of compact stars from gravitational wave
events with finite-temperature equations of state, Phys. Rev.
C 103, 055811 (2021).

[13] H. Kochankovski, A. Ramos, and L. Tolos, Equation of state
for hot hyperonic neutron star matter, Mon. Not. R. Astron.
Soc. 517, 507 (2022).

[14] J. J. Li, W. H. Long, and A. Sedrakian, Hypernuclear stars
from relativistic Hartree-Fock density functional theory,
Eur. Phys. J. A 54, 133 (2018).

[15] P. A. M. Guichon, J. R. Stone, and A.W. Thomas, Quark–
Meson-Coupling (QMC) model for finite nuclei, nuclear
matter and beyond, Prog. Part. Nucl. Phys. 100, 262 (2018).

[16] P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-
Bielich, H. Stoecker, and W. Greiner, Nuclei in a chiral SU
(3) model, Phys. Rev. C 59, 411 (1999).

[17] V. Dexheimer and S. Schramm, Proto-neutron and neutron
stars in a chiral SU(3) model, Astrophys. J. 683, 943 (2008).

[18] J. Roark, X. Du, C. Constantinou, V. Dexheimer, A. W.
Steiner, and J. R. Stone, Hyperons and quarks in proto-
neutron stars, Mon. Not. R. Astron. Soc. 486, 5441 (2019).

[19] V. Dexheimer, R. de Oliveira Gomes, S. Schramm, and H.
Pais, What do we learn about vector interactions from
GW170817?, J. Phys. G 46, 034002 (2019).

[20] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H.
Wolter, Composition and thermodynamics of nuclear matter
with light clusters, Phys. Rev. C 81, 015803 (2010).

[21] H. Pais and S. Typel, Comparison of equation of state
models with different cluster dissolution mechanisms, in
Nuclear Particle Correlations and Cluster Physics (World
Scientific, Singapore, 2017), pp. 95–132.

[22] https://compose.obspm.fr/eos/205.
[23] https://compose.obspm.fr/eos/206.
[24] J. R. Stone, P. A. Guichon, and A.W. Thomas, Nuclear

symmetry energy and hyperonic stars in the QMC model,
Front. Astron. Space Sci. 9, 903007 (2022).

[25] R. Brockmann and R. Machleidt, Relativistic nuclear
structure. I. Nuclear matter, Phys. Rev. C 42, 1965 (1990).

[26] P. A. M. Guichon, A possible quark mechanism for the
saturation of nuclear matter, Phys. Lett. B 200, 235 (1988).

[27] P. A. M. Guichon, K. Saito, E. N. Rodionov, and A.W.
Thomas, The role of nucleon structure in finite nuclei, Nucl.
Phys. A601, 349 (1996).

[28] K. Saito, K. Tsushima, and A.W. Thomas, Nucleon and
hadron structure changes in the nuclear medium and impact
on observables, Prog. Part. Nucl. Phys. 58, 1 (2007).

[29] P. A. M. Guichon and A.W. Thomas, Quark structure
and nuclear effective forces, Phys. Rev. Lett. 93, 132502
(2004).

[30] P. Guichon, H. Matevosyan, N. Sandulescu, and A. Thomas,
Physical origin of density dependent forces of skyrme type
within the quark meson coupling model, Nucl. Phys. A772,
1 (2006).

[31] W. Bentz and A.W. Thomas, The stability of nuclear matter
in the Nambu-Jona-Lasinio model, Nucl. Phys. A696, 138
(2001).

[32] D. L. Whittenbury, H. H. Matevosyan, and A.W. Thomas,
Hybrid stars using the quark-meson coupling and proper-
time Nambu–Jona-Lasinio models, Phys. Rev. C 93, 035807
(2016).

[33] T. A. DeGrand, R. L. Jaffe, K. Johnson, and J. E. Kiskis,
Masses and other parameters of the light hadrons, Phys.
Rev. D 12, 2060 (1975).

[34] P. A. M. Guichon, A.W. Thomas, and K. Tsushima, Bind-
ing of hypernuclei in the latest quark-meson coupling
model, Nucl. Phys. A814, 66 (2008).

[35] J. Negele and H. Orland, Quantum Many Particle Systems
(CRC Press, Taylor and Francis Group, Routledge, 2018).

[36] J. Rikovska-Stone, P. A. M. Guichon, H. H. Matevosyan,
and A.W. Thomas, Cold uniform matter and neutron stars in
the quark-mesons-coupling model, Nucl. Phys. A792, 341
(2007).

[37] J. R. Stone, Nuclear physics and astrophysics constraints on
the high density matter equation of state, Universe 7, 257
(2021).

[38] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch, R.
Michaels, A. Ono, J. Piekarewicz, M. B. Tsang, and
H. H. Wolter, A way forward in the study of the symmetry
energy: Experiment, theory, and observation, J. Phys. G 41,
093001 (2014).

[39] C. Providencia, M. Fortin, H. Pais, and A. Rabhi, Hyperonic
stars and the nuclear symmetry energy, Front. Astron. Space
Sci. 6 (2019), 10.3389/fspas.2019.00013.

[40] E. Friedman and A. Gal, In-medium nuclear interactions of
low-energy hadrons, Phys. Rep. 452, 89 (2007).

[41] T. Harada and Y. Hirabayashi, Σ− production spectrum in
the inclusive (π−, Kþ) reaction on Bi-209 and the Σ−
nucleus potential, Nucl. Phys. A767, 206 (2006).

[42] T. Harada and Y. Hirabayashi, P-wave resonant state of the
4
ΣHe-hypernucleus in the 4He (K−; π−) reaction, Phys. Lett.
B 740, 312 (2015).

[43] T. Nagae, Sigma hypernuclei, in Handbook of Nuclear
Physics (Springer Nature, Singapore, 2022), pp. 27–41.

HARTREE-FOCK FORMULATION OF THE QMC MODEL AT … PHYS. REV. D 109, 083035 (2024)

083035-13

https://doi.org/10.1088/0954-3899/35/8/085201
https://doi.org/10.1088/0004-637X/690/1/L43
https://doi.org/10.1103/PhysRevC.85.055806
https://doi.org/10.1103/PhysRevC.85.055806
https://doi.org/10.1103/PhysRevC.87.055806
https://doi.org/10.1103/PhysRevC.96.045806
https://doi.org/10.1103/PhysRevC.95.065803
https://doi.org/10.1103/PhysRevC.95.065803
https://doi.org/10.1093/mnras/staa2491
https://doi.org/10.1093/mnras/staa2491
https://doi.org/10.1103/PhysRevC.103.055811
https://doi.org/10.1103/PhysRevC.103.055811
https://doi.org/10.1093/mnras/stac2671
https://doi.org/10.1093/mnras/stac2671
https://doi.org/10.1140/epja/i2018-12566-6
https://doi.org/10.1016/j.ppnp.2018.01.008
https://doi.org/10.1103/PhysRevC.59.411
https://doi.org/10.1086/589735
https://doi.org/10.1093/mnras/stz1240
https://doi.org/10.1088/1361-6471/ab01f0
https://doi.org/10.1103/PhysRevC.81.015803
https://compose.obspm.fr/eos/205
https://compose.obspm.fr/eos/205
https://compose.obspm.fr/eos/205
https://compose.obspm.fr/eos/206
https://compose.obspm.fr/eos/206
https://compose.obspm.fr/eos/206
https://doi.org/10.3389/fspas.2022.903007
https://doi.org/10.1103/PhysRevC.42.1965
https://doi.org/10.1016/0370-2693(88)90762-9
https://doi.org/10.1016/0375-9474(96)00033-4
https://doi.org/10.1016/0375-9474(96)00033-4
https://doi.org/10.1016/j.ppnp.2005.07.003
https://doi.org/10.1103/PhysRevLett.93.132502
https://doi.org/10.1103/PhysRevLett.93.132502
https://doi.org/10.1016/j.nuclphysa.2006.04.002
https://doi.org/10.1016/j.nuclphysa.2006.04.002
https://doi.org/10.1016/S0375-9474(01)01119-8
https://doi.org/10.1016/S0375-9474(01)01119-8
https://doi.org/10.1103/PhysRevC.93.035807
https://doi.org/10.1103/PhysRevC.93.035807
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1016/j.nuclphysa.2008.10.001
https://doi.org/10.1016/j.nuclphysa.2007.05.011
https://doi.org/10.1016/j.nuclphysa.2007.05.011
https://doi.org/10.3390/universe7080257
https://doi.org/10.3390/universe7080257
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.3389/fspas.2019.00013
https://doi.org/10.1016/j.physrep.2007.08.002
https://doi.org/10.1016/j.nuclphysa.2005.12.018
https://doi.org/10.1016/j.physletb.2014.11.057
https://doi.org/10.1016/j.physletb.2014.11.057

