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We use the concept of coadded rotation curves of Salucci et al. to investigate the properties of
axisymmetric multistate scalar field dark matter (SFDM) halos in low surface brightness (LSB) galaxies
and dwarf disc galaxies. To this end, we expand the wave function of the scalar field into its multistates and
solve the field equations numerically. We fit their rotation curves in two-state configurations finding that a
two-state configuration fits better than the single ground-state (soliton) configuration in the dwarf disc and
in the smaller of the LSB galaxies. We obtain a SFDM mass μ ¼ 2.38� 0.12 × 10−23 eV=c2 for the dwarf
disc galaxies and μ ¼ 1.05� 0.14 × 10−23 eV=c2 for the smaller of the LSB galaxies. For the larger of the
LSB galaxies a mass of the order of μ ¼ Oð10−24Þ −Oð10−25Þ eV=c2 is obtained, where the mass μ is the
effective mass measured by an outside observer due to the finite temperature of the SFDM in the galaxy.
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I. INTRODUCTION

It is now well accepted that to understand how galaxies
and clusters of galaxies were formed, in addition to the
baryonic matter, which is responsible for contributing to the
gravitational pull necessary to maintain stable all these
structures in the Universe, it is necessary to introduce an
extra element known as dark matter. It is also well known
that without this dark matter component, it is difficult to
explain the observed anisotropies in the cosmic microwave
background radiation, the large-scale structure formation in
the Universe, the galactic formation process, or the gravi-
tational lenses of distant objects, among others. In this way,
today, it is well established that dark matter is a funda-
mental ingredient of the cosmic inventory.
In this direction, the standard cosmological model

assumes that the dark matter of the Universe is comprised
of a nonrelativistic, collisionless gas—cold dark matter
(CDM)—and usually assumed to be weakly interacting
massive particles (WIMPs) which originated as a thermal
relic of the Big Bang [1,2]. Although WIMP dark matter
describes observations well at cosmological scales, it is in
apparent conflict with some observations on small scales
[e.g., the problem of cuspy-core halo density profiles,
overproduction of satellite dwarfs within the local group,
and others; see, for example, [3–7]]. All of these discrep-
ancies are based on the fact that from CDM N-body
simulations of structure formation, the CDM clusters form
halos with a universal Navarro-Frenk-White (NFW)

density profile at all scales [8], which is proportional to
r−1 (a ‘cuspy’ profile) at small radii, whereas it decays as
r−3 for large radii. Furthermore, the attempts to detect
WIMPs directly or indirectly [9] have no successful results,
and a large range of parameters thought to be detectable has
not been measured. To help us solve all these issues several
alternative dark matter models have been proposed.
One of the strongest candidates to substitute the standard

CDM is the scalar field dark matter (SFDM) model. This
model states that dark matter is an ultralight real or complex
scalar field, minimally coupled to gravity, and interacting
only gravitationally with baryonic matter. The main idea
was originated about two decades ago by [10–16] and [17],
with some hints traced further back in [18,19]. However, it
was systematically studied for the first time by [20,21] [for
a review of SFDM, see [22–26] ] and [27] for a current
review.
Over the years, the idea has been rediscovered or

renamed by various authors, the most popular names being
SFDM [10], wave dark matter [28], fuzzy dark matter [14],
Bose-Einstein condensate dark matter [29], and ultralight
axion dark matter [30,31]. In this work, we use the most
general name SFDM.
The SFDM model alleviates problems at small scales

because of the dynamical properties derived from its
macroscopic-sized de Broglie wavelength. It solves the
cusp/core problem in CDM as seen in several cosmological
simulations of structure formation [28,32–36] in which the
SFDM halos have cored density profiles within their inner
most regions of galactic systems. These halos have a central
core [referred to in the literature as solitons[36–39] ] and*Corresponding author: lepadilla@icf.unam.mx
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are surrounded by an envelope generated by a quantum
interference pattern that is well fitted by an NFW density
profile.
Solitons have a size of similar magnitude to the de

Broglie wavelength of individual bosons:

λdB ∝ ðμ0vÞ−1;

where v is the “average virial velocity” of the bosons
and μ0 its mass, that, to reproduce galactic cores of one
kiloparsec of size, is typically assumed in the range of
μ0 ∼ ð10−20 − 10−22Þ eV=c2.
In different simulations, a strong scaling correlation has

been found between the mass Mc of the core and the mass
Mh of the whole halo given by Mc ∝ Mβ

h.
1 The particular

value of the β parameter is still under debate given that
different authors have obtained different results. The value
β ¼ 1=3was found in [28,32] from their fully cosmological
simulations. And β ¼ 5=9 by [35,42] adopting more
simplified scenarios on galaxy formation but with better
resolution. It was thanks to this scaling relation that has
been proposed in [41] [see also [43] ] that these soliton
profiles could be also responsible for explaining the
presence of supermassive black holes at galactic nuclei
in the most massive galaxies. On the other hand, there have
been some other works that have tried to fix this β
parameter but have not succeeded, since, they affirm, that
the results of their simulations were not consistent with a
single value of β for all their simulated galaxies. The latter
is consistent with the results presented in [44], in which the
authors studied the scaling relations for SFDM halos. In
that work, the authors used a modified version of the
GADGET code (AX-gadget) to study how the different
scaling relations for cores and envelopes in the SFDM are
modified once incorporating the different effects that are
added once studying galaxies in a real cosmological
environment. Their results showed that not all galaxies
can be described with a single β and the scaling relations
reported by [28,32,35] and [42] are only consistent with
galaxies in some limiting cases, being only valid for the
most relaxed and spherical symmetric systems.
Due to the discrepancy of β in the core-halo mass

relation, it is clear that this topic is not yet closed. In this
direction, it has been a related idea that was proposed for
the first time in [45] in which the gravitational coexistence
of different energy eigenstates of the wave function (multi-
states) are responsible for describing a complete galaxy in
this SFDM scenario. Recently, in [46] they showed a
general method to find solutions of multistate configura-
tions. This method encompasses the spherical multistates of
[47], excited single states, l-boson stars [48] as well as the

new axisymmetric multistates, furthermore, they show a
possible formation process of these axisymmetric configu-
rations by the collision of single states. Although they do
not give a bound, they show that the particular solutions
they consider are stable. The possibility of multistates is
still in its infancy, as the scientific community is just
beginning to study this scenario.
The idea of introducing these multistate configurations,

which we take as our work proposal, is the following: For
an expanding universe, the scalar field cools down due to its
expansion. After a while, this causes the scalar field, the
boson gas, to freeze and condense. For an ideal boson gas,
the condensation temperature goes like Tc ∼ μ−5=30 , imply-
ing that if the mass of the scalar field is big, the
condensation temperature is small, but if the mass is light,
or ultralight, the condensations temperature could be very
high. However, after the turnaround, galaxies start to form
and recollapse, increasing the temperature of the bosons
again. Depending on the initial conditions of the galaxy
formation, the boson particles can reach excited states,
although most of the boson particles remain in the con-
densate state, i.e. the ground state.
These exited particles can be interpreted as other scalar

fields. Thus, if after its formation a galaxy contains boson
particles in several quantum states, this can be seen as a
galaxy with different scalar fields, too. In this case, the
scalar field can be seen as living in a thermal bath, where the
Klein-Gordon equation is modified as □Φ − dV=dΦ ¼ 0,
where the scalar field potential VðΦÞ is

VðΦÞ ¼ −
μ20c

2

ℏ2
jΦj2 þ 1

2
ΛjΦj4 þ 1

4
k2BT

2jΦj2

−
π2k2B
90ℏ2c2

T4: ð1Þ

In the above expression, kB is the Boltzmann’s constant and
T the thermal bath temperature (see for example [49,50]).
With this scalar field potential, the system experiments a
symmetry breakdown at the critical temperature kBTC ¼
2μ0c2=

ffiffiffiffi
Λ

p
. In our case, the mass μ0 is ultralight, but the

self-interaction parameter Λ is also very small,2 several
orders of magnitude smaller than the mass. When the scalar
field reaches temperatures enough below this one, the
system condensates [54]. This transforms the dispersion
relation of the Klein-Gordon equation into (see [55,56])

1We recommend [40] for the extension of this core-halo mass
relation in the presence of baryonic components or [41] when a
self interaction between the SFDM particles is allowed.

2It is worth mentioning that the T ¼ 0 ¼ Λ case is the most
widely studied since it takes theminimumnecessary considerations
to have an ultralight scalar field as a candidate for dark matter,
which is why we intend to take this model as a workhorse for our
work, by considering a finite temperature-dependent mass of the
galactic halo (see main text). The case with T ¼ 0 and Λ ≠ 0 has
also been widely studied in the literature, where it has been shown
that said self-interaction term can have important consequences at
the cosmological level (see for example [51–53]).
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ω2 ¼ k2c2 þ 2μ20c
4

ℏ2

�
1 −

T2

T2
C

�
ð2Þ

where ω is the frequency associated with the kinetic
energy of the scalar field and k is its wave number. The
critical temperature of condensation is very high because it
is inversely proportional to the mass of the scalar field
Tc ∼ μ−5=30 . But the critical temperature of symmetry
breaking is higher than the critical temperature of con-
densation TC > Tc [54]. This means that the scalar field
breaks its symmetry and after that condensates. After
condensation, the scalar field starts a process of gravita-
tional cooling and forms stable objects that we see as the
halo of galaxies. The important term here is the second
one on the right-hand side because Eq. (2) can be written
as ω2 ¼ k2c2 þ μ2c2, defining μ ¼ μ0c=ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2=T2

C

p
. It

follows that, if the scalar field collapses into a halo, and its
final temperature is bigger than the cosmological average
temperature, the system effectively sees a smaller mass μ,
even when the mass μ0 is constant. We explain these results
using an example. Cosmological observations have con-
strained the mass of the SFDM using the Ly-α observations
such that the scalar field mass should be μ0 ∼ 10−21 eV
[57]. Now let us suppose that during its collapse the
halo of a galaxy reaches the thermal bath temperature
T ∼ 0.9999995TC, then the effective mass becomes
μ ¼ 10−24 eV. Observe that the real mass of the scalar
field remains to be 10−21 eV, but all the phenomena in the
galaxy can be explained using the value 10−24 eV. Of
course, a galaxy with this temperature contains most of the
particles in the ground state, but a great amount of them are
now in excited states. If the scalar field collapses into a halo
where its temperature is similar to the average cosmological
temperature, the system sees effectively a mass close to μ0.
On the other hand, we expect that small galaxies contain the
ground state and maybe one excited state, while the big
galaxies contain several excited states. Therefore, we
expect that the scalar field in big galaxies is warmer and
the system sees a smaller effective mass of the scalar field
than in small galaxies, where the effective mass could be
bigger, but always smaller than for cosmological constric-
tions. We then expect that the effective mass of the scalar
field in each galaxy depends on its final temperature of
collapse, which determines its size and properties. In other
words, the thermal bath will cause the SFDM halo of the
galaxy not to remain any more in the ground state; it will be
a part of the bosons that emigrate to different excited states.
Therefore we plan here to work with multistate SFDM.
Our intention in this work is to test multistate SFDM

profiles with rotation curves. In Ref. [58], it was demon-
strated that excited states are stable systems as long
as the ground state solution is included in the multi-
state configuration. Specifically, when excited states exist
independently, without the presence of the ground state,

they tend to relax towards it. However, when the ground
state is incorporated into the multistate configuration,
these composite systems exhibit remarkable stability over
extended periods. Such stability is adequate for elucidating
the presence of a galaxy’s halo, incorporating contributions
from both states. For this purpose, we decided to use the so-
called universal rotation curve (URC) method, which was
introduced in [59,60] for the case of spiral galaxies, but it
has also been applied to low surface brightness (LSB)
galaxies [61], dwarf disc galaxies [62] and LSB and dwarf
disc combined [63]. The URC is the model that fits the
coadded rotation curve, which is constructed from a sample
of rotation curves with normalized radii and normalized
circular velocities. The URC thus is a function with two
parameters: the normalized radial coordinate and a galaxy
family identifier that could be, for example, the optical
velocity vopt ¼ vðRoptÞ (measured velocity at the optical
radius Ropt, the radius of the sphere encompassing 83% of
the luminous matter), galaxy luminosity LB, or absolute
magnitude MK . The great advantage of using URCs is that
once we have found a good mass model for the coadded
rotation curve, it is possible to recover the mass model of
each galaxy within that particular family.
The article is organized as follows: In Sec. II we present

the multistate scalar field dark matter (multiSFDM) model,
the background, the properties, and the particular configu-
rations we will use in the paper. In Sec. III B 1 we present
the mass model for the dwarf disc galaxies, in Sec. III B 2
the mass model for the LSB galaxies, in Sec. IV the
discussion of the results, and finally in Sec. V we give our
conclusions.

II. THE SCALAR FIELD DARK MATTER MODEL

In what follows we will assume that the scalar field is at a
temperature different from zero, which allows the scalar
field to be in different excited states. Therefore, we can
expand the scalar field in these multistate configurations.
We solve the equations for self-gravitating scalar fields Ψ
of effective mass μ that play the field theory version of
spinless particles coupled to Einstein’s gravity in the weak
field and nonrelativistic regimes: the three-dimensional
Gross-Pitaevskii-Poisson system, which in the case where
there is no self interaction, becomes the Schrödinger-
Poisson system [47]:

iℏ
∂Ψnlm

∂t
¼ −

ℏ2

2μ
∇2Ψnlm þ μVΨnlm;

∇2V ¼ 4πG
X
nlm

jΨnlmj2

whereΨnlmðx⃗; tÞ is the wave function in the state labeled by
ðn; l; mÞ, Vðx⃗; tÞ is the self-gravitational potential (the
potential produced by the dark matter density

P jΨnlmj2),
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andG is the gravitational constant. The ground state is found
when n ¼ 1, l, m ¼ 0.
If we consider stationary states, Ψnlmðt; r; θ;φÞ ¼

μ̂cffiffiffiffiffiffi
4πG

p eiEnlmt=ℏΦnlmðr; θ;ϕÞ, it becomes

∇̂2Φnlm − 2ðV̂ þ ÊnlmÞΦnlm ¼ 0; ð3aÞ

∇̂2V̂ ¼
X
nlm

jΦnlmj2; ð3bÞ

where c is the speed of light, ℏ is the reduced Planck
constant, V̂ ≡ V=c2, Ênlm ≡ Enlm

μc2 , and μ̃≡ μc=ℏ has units

of length−1 and makes the coordinates and the Laplace
operator dimensionless: r̂ ¼ μ̃r and ∇̂2 ¼ 1

μ̂2
∇2.

The Schrödinger-Poisson system has the scaling
property

ðr̂;Φnlm;V̂;Ênlm;NÞ→ðr̂=
ffiffiffi
λ

p
;λΦnlm;λV̂;λÊnlm;

ffiffiffi
λ

p
NÞ ð4Þ

that give us two free parameters for our model, the particle
effective mass μ and the scaling parameter λ.3 Using this λ
parameter, it is possible to construct an infinite number of
solutions of the Schrödinger-Poisson system once one
solution is known.
In what follows, we work with dimensionless variables

and we will drop the ^ symbol for simplicity,4 and only
when dimensional variables are used in the figures, the
units will be stated.
We can consider several cases for a dark matter halo:

(a) The simplest possibility is to consider a single state,
when all boson particles are in the same state Ψnlm, with n
taking only one value 1,2,..., and also for l and m taking
one of its possible values l ¼ 0; 1;…; n − 1 and m ¼
−l;−lþ 1;…; l. In this case, there is only one
Schrodinger equation (3a) and only one term in the
right-hand side of Eq. (3b). It happens that in the single
state case only the ground state Ψ100 is stable [64].
Additionally, it has been also shown that arbitrary and
isolated configurations relax through gravitational cooling
to the ground state [65,66].
One other possibility is (b) multistates (multiSFDM),

states where some particles are in the ground state and
some in other excited states. The dark matter density in
the right-hand side of Eq. (3b) is then of the form
jΨ100j2 þ jΨnlmj2, n ¼ 2; 3;…; l ¼ 0; 1;…; n − 1;

m ¼ −l;−lþ 1;…; l, and there is one Schrödinger equa-
tion (3a) for each state. The idea is that a galaxy should be
described with a collection of states. The particular value of
the n, l, m parameters should depend on the process of
evolution and formation of the galaxy we are interested in
modeling, so in general these parameters should not be able
to be set in a general way for all types of galaxies.
However, as an example and to show the enormous

advantages that these multistate configurations give us, in
this work we will adopt working with scenarios of only two
states, that is, we will take the ground state together with
one excited state of the previous system.5 Particularly, we
shall only concentrate on the multistate configurations that
we present in what follows, to say, we shall work with the
multistate configurations ð100; 21mÞ and (100,200), which
turn out to be the first excited states. Of course, our choice
to work with these configurations is very simplistic since,
in general, one would expect that a system of only two
states (a ground state and an excited state) should not be
sufficient to describe the entire range of masses for galaxies
that exist in the Universe, however, to compensate for this
lack of multistates we will allow the mass of the scalar field
to acquire smaller values as the masses of the galaxies are
more massive (a greater number of multistates should
translate into an effective lower mass for the scalar field,
as explained in the Introduction, but never smaller than the
value provided by cosmological constrictions).

A. multiSFDM case (100, 21m)

Following the general framework of [46] for the
multiSFDM case ðΨ100;Ψ21mÞ, the system (3) becomes

∇2
r0ψ100ðrÞ ¼ 2ðV00 − E100Þψ100;

∇2
r1ψ21mðrÞ ¼ 2ðV00 þ Cr2V20 − E21mÞψ21m;

∇2
r0V00ðrÞ ¼ ψ2

100 þ r2ψ2
21m;

∇2
r2V20ðrÞ ¼ jCjψ2

21m; ð5Þ

where we have expanded the gravitational potential in
spherical harmonics Ylmðθ;ϕÞ as

Vðr; θÞ ¼
ffiffiffiffiffiffi
4π

p
ðV00ðrÞY00ðθ;ϕÞ þ V20ðrÞr2Y20ðθ;ϕÞÞ

and the scalar field states have been written as Φnlm ¼
ψnlmðrÞrlYlmðθ;ϕÞ. The constant C ¼ 2=

ffiffiffi
5

p
for m ¼ 0

and C ¼ −1=
ffiffiffi
5

p
for m ¼ �1. The l-laplacian operator is

defined as

∇2
rl ≡

∂
2

∂r2
þ 2ðlþ 1Þ

r
∂

∂r
:

3Whenever more states are considered, extra free parameters
appear, those could be, for example, the ratio between
wave function amplitudes ζ ≡ ψ100

ψnlm
.

4To return to the dimensional variables is necessary to multiply
the dimensionless variable by μ and the universal constants (as
conveniently). Once the scaling parameter is established it is also
necessary to multiply (as conveniently) the variables by λ. For
example r̂ → r ¼ r̂μ̃−1λ−1=2.

5The idea of using in all cases the ground state is because it has
been demonstrated that for multistate configurations to be stable,
the ground state must be presented in the system [47].

SOLÍS-LÓPEZ, PADILLA, and MATOS PHYS. REV. D 109, 083034 (2024)

083034-4



The enclosed mass at radius r of the dark matter halo is

MðrÞ ¼ c2

Gμ̃
NðrÞ

with N ¼ P
n;l;m Nnlm the dimensionless enclosed mass.6

Here, the number of particles Nnlm of each state is

Nnlm ¼
Z

jΦnlmj2r2drdΩ:

The circular velocity of a particle due to this SFDM halo
is given by7

v2h ¼
P0

r
−

ffiffiffi
5

p

2
r2ðrP2 þ 2V20Þ ð6Þ

where

P0 ¼ r2
dV00

dr
; P2 ¼

dV20

dr
:

The system (5) with the following boundary conditions

ψ100ðrfÞ ¼ 0;
dψ100

dr

����
r¼0

¼ 0;

ψ21mðrfÞ ¼ 0;
dψ21m

dr

����
r¼0

¼ 0;

V00ðrfÞ ¼ −
NT

rf
; P0ðrfÞ ¼ NT;

V20ðrfÞ ¼ 0; P2ð0Þ ¼ 0;

becomes a boundary value problem that is solved using
the shooting method. Here NT is the total mass enclosed
by the boundary radius r ¼ rf, NT ¼ NðrfÞ. Although
solutions can be found for m ¼ 0 and m ¼ 1, in this study
we simplify our description and work only with the
case m ¼ 0.
We fix the central value ψ100ð0Þ ¼ 1 to find the

eigenvalues E100 and E210 and the initial values V00ð0Þ,
V20ð0Þ, ψ210ð0Þ of the bound multiSFDM configuration.
We solve it in a fixed range of ð0; rfÞ and we vary the
boundary value NT to find a family of solutions. In Fig. 1

we show the plots of ψ210, V00, V20, and the enclosed mass
N for the family of solutions we found.
In Table I the different quantities that characterize each

of the solutions of the family are shown: the total mass of

FIG. 1. Family of solutions of the multiSFDM ðΨ100;Ψ210Þ.
The excited state radial function ψ210 (upper), first function V00

(middle panel) and second function V20 (next panel) in the
expansion of the potential V, and the enclosed mass NðrÞ (bottom
pannel). In the color scale, the total mass NT ¼ NðrfÞ of each of
the solutions in the family is shown.

6Notice that the mass scale of the configurations is

Ms ¼
c2

Gμ̃
¼ 1012M⊙

�
10−22 eV

μc2

�

and then the physical mass of the multistate configuration is
obtained from

ffiffiffi
λ

p
NMs.7This is the dimensionless variable v2h=c

2 that has to be
multiplied by λ once it is known, because of the scaling property
vh →

ffiffiffi
λ

p
vh.
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the configuration NT (that we use as the solution identifier
within the family); the energy eigenvalues of the ground
state E100 and the excited state E210; the total energy of the
configuration ET ¼ ðE100N100 þ E210N210Þ=NT ; the mass
ratio η ¼ N210ðrfÞ=N100ðrfÞ and amplitude ratio ζ ¼
ψ100ð0Þ=ψ210ð0Þ between states of the configuration.
In Fig. 2 we show as representative examples two cases

of the dark matter mass density ρ ¼ jΦ100j2 þ jΦ210j2 as a
function of the ðr; θÞ coordinates, one solution with
NT ¼ 2.0, where the monopole term ψ100 dominates over

the dipole term ψ210, and the solution with NT ¼ 5.5 where
the opposite happens.

B. multiSFDM case (100, 200)

For the multiSFDM case ðΨ100;Ψ200Þ the system (3)
becomes

∇2
r0ψ100ðrÞ ¼ 2ðV00 − E100Þψ100;

∇2
r0ψ200ðrÞ ¼ 2ðV00 − E200Þψ200;

∇2
r0V00ðrÞ ¼ ψ2

100 þ ψ2
200;

where the gravitational potential is simply

Vðr; θÞ ¼
ffiffiffiffiffiffi
4π

p
V00ðrÞY00ðθ;ϕÞ ¼ V00ðrÞ

and the circular velocity

v2h ¼
P0

r
: ð7Þ

In [47], these multistate configurations were shown to be
stable only when N200ðrfÞ=N100ðrfÞ < 1.1 so we restrict
ourselves to work only with this kind of solutions. Once
again we use the total mass NT as a solution identifier
within the family. In Table II we show the energy
eigenvalues, the total energy, and the mass and amplitude
ratios for each solution in the family. We also plot the
corresponding family of solutions for this case in Fig. 3.

TABLE I. multiSFDM (100,210). Total mass of the configu-
ration (column 1), energy eigenvalues of the ground (2) and
excited state (3), total energy of the configuration (4), mass ratio
between states of the configuration η ¼ N210ðrfÞ=N100ðrfÞ (5),
and amplitude ratio between states of the configuration
ζ ¼ ψ100ð0Þ=ψ210ð0Þ (6).
NT E100 E210 ET η ζ

(1) (2) (3) (4) (5) (6)

2.1 −0.69 −0.40 −0.69 0.01 37.27
2.3 −0.69 −0.40 −0.66 0.14 7.70
2.5 −0.84 −0.54 −0.77 0.29 5.01
2.7 −0.84 −0.54 −0.74 0.48 3.73
3.0 −1.03 −0.72 −0.90 0.71 2.93
3.5 −1.25 −0.92 −1.07 1.27 2.02
4.0 −1.51 −1.16 −1.28 1.97 1.47
4.3 −1.68 −1.31 −1.42 2.50 1.25
4.5 −1.80 −1.42 −1.52 2.90 1.12
5.0 −2.12 −1.71 −1.79 4.12 0.87
5.5 −2.49 −2.04 −2.11 5.83 0.67

FIG. 2. Projection in the ðx; zÞ plane of the dimensionless mass density as a function of the (x, y, z) dimensionless cartesian
coordinates for the multiSFDM ðΨ100;Ψ210Þ. The left panel shows the solution with NT ¼ 2.0where the monopole term ψ100 dominates
over the dipole term ψ210, and the right panel is the solution with NT ¼ 5.5 where the excited state ψ210 dominates. In color scale, the
mass density is shown.
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III. COADDED ROTATION CURVES:
DATA ANALYSIS

A. URCs theory

A coadded rotation curve is a representative rotation
curve of a sample of galaxies with some particular proper-
ties in common (optical velocity vopt, galaxy luminosity LB,
or absolute magnitudeMK). Once the radial coordinate and
circular velocity measurements are normalized, all these
rotation curves have the same shape and can be represented
by only one coadded rotation curve. In Fig. 4 we show the

circular velocity measurements, the normalized data, and
the coadded rotation curve of the dwarf disc galaxies as an
example.
The coadded rotation curve is constructed first by setting

a unique binning in the radial coordinate to all individual
normalized rotation curve. In each bin, there should be only
one velocity measurement (if more, then the velocities are
averaged). Once this procedure has been done for all
individual rotation curves, the next step is to compile all
individual rotation curves into only one coadded rotation
curve, which is done by making a weighted average of all
the velocity data in each bin.
The mass model of the coadded rotation curve is called

URC. After finding the best-fitting parameters of the URC,
we can apply the inverse transformation [described in [62]]
to find the best-fitting parameters of each of the galaxies in
the family.

FIG. 3. Family of solutions of the multiSFDM ðΨ100;Ψ200Þ.
The wave function ψ200 (upper panel) and the potential V (bottom
panel). In the color scale, the total mass NT of each of the
solutions in the family is shown.

TABLE II. Same as in Table I but now using state ψ200.

NT E100 E200 ET η ζ

(1) (2) (3) (4) (5) (6)

2.18 −0.737 −0.337 −0.71 0.07 6.00
2.30 −0.745 −0.341 −0.70 0.14 4.11
2.40 −0.766 −0.359 −0.70 0.20 3.37
2.50 −0.788 −0.377 −0.70 0.27 2.90
2.60 −0.811 −0.395 −0.71 0.34 2.56
2.66 −0.830 −0.412 −0.72 0.38 2.41
2.70 −0.834 −0.414 −0.71 0.41 2.31
2.75 −0.840 −0.418 −0.71 0.45 2.20
2.94 −0.917 −0.486 −0.76 0.59 1.89
2.97 −0.896 −0.463 −0.73 0.62 1.84
3.10 −0.925 −0.491 −0.75 0.71 1.75
3.30 −0.977 −0.532 −0.77 0.88 1.54
3.50 −1.032 −0.575 −0.80 1.07 1.37

FIG. 4. Upper panel: Circular velocity measurements of 36
dwarf disc galaxies; middle panel: the normalized rotation curves;
and bottom panel: the coadded rotation curves of dwarf disc
galaxies. Data from [62].
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B. Mass models

1. Dwarf disc galaxies

We use the coadded rotation curve from [62] that
comes from a sample of 36 dwarf disc galaxies from the
local volume catalog [67]. These galaxies have an expo-
nential disk scale length ad in the range (0.18,1.63) kpc and
optical velocity vopt ¼ vðRoptÞ in the range ð17; 61Þ km=s.
The optical radius Ropt ¼ 3.2ad. Absolute magnitude
MK ∈ ð−19.9;−14.2Þ.
To fit the coadded rotation curve of the dwarf spiral

galaxies we use a simple model of a galaxy, consisting of a
stellar disc, an HI disc, and a dark matter halo. The circular
velocity of a particle due to these components is

vðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2h þ v2d þ v2HI

q
where vh, vd, and vHI are the circular velocities due to the
halo and the stellar and HI discs, respectively.
The stellar disc is modeled using a razor-thin exponential

disc profile whose surface mass density written in cylin-
drical coordinates ðρ;ϕ; zÞ is given by

ΣdðρÞ ¼ Σ0e−ρ=ad ;

where ad is the disc scale length, and Σ0 is the central
surface density and it is related to the total mass of the disc
Md as Md ¼ 2πΣ0a2d. The circular velocity due to this
density profile is [68]

vdðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMdy2

ad
ðI0ðyÞK0ðyÞ − I1ðyÞK1ðyÞÞ

s
;

where In and Kn are the modified Bessel functions of the
first and second kind, respectively, and we have defined
y≡ r=ð2adÞ.
The HI disc is also modeled using a razor-thin expo-

nential disc profile but with aHI ¼ 3ad ¼ 3Ropt=3.2, Ropt ¼
2.5 kpc and MHI ¼ 1.7 × 108M⊙.

2. Low surface brightness galaxies

Reference [61] uses a sample of 72 LSB galaxies with
optical velocities in the range vopt ∈ ð24; 300Þ km=s and
classify it into five groups (bins) depending on its optical
velocity. Bin 1 with 13 galaxies, vopt ∈ ð24; 60Þ km=s and
mean disc scale length ad ¼ 1.7 kpc. Bin 2with 17 galaxies,
vopt∈ ð60; 85Þ km=s and mean disc scale length ad ¼
2.2 kpc. Bin 3 with 17 galaxies, vopt∈ð85;120Þkm=s and
mean disc scale length ad ¼ 3.7 kpc. Bin 4with 15 galaxies,
vopt∈ ð120; 154Þ km=s and mean disc scale length ad ¼
4.5 kpc. Bin 5 with 10 galaxies, vopt ∈ ð154; 300Þ km=s and
mean disc scale length ad ¼ 7.9 kpc. When the individual
rotation curve of the galaxies within a group are expressed in

a normalized radius r=Ropt they all have almost the same
distribution of matter. For each bin, [61] calculated the
coadded rotation curve (see Fig. 5).
We model LSB galaxies with a stellar disc and a dark

matter halo. To streamline the data Markov Chain
Monte Carlo (MCMC) fitting process, as a first approxi-
mation, we neglected the contribution of an HI gaseous
disc. In fact, [61] showed that this assumption does not
affect the mass modeling. The circular velocity of a particle
due to these components is

vðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2h þ v2d

q
where vh andvd are the circular velocities due to the halo and
the stellar disc, respectively. The stellar disc is modeled with
the same exponential profile as the dwarf disc galaxies. For
each coadded rotation curve we use the mean disc scale
length, so we end up with only one disc parameter Md.
In the case of bin 5, we also consider a galaxy bulge that

is modeled using a velocity profile as suggested in [61]:

vbðrÞ ¼ vin

ffiffiffiffiffiffiffiffiffi
α
rin
r

r
;

where rin ¼ 0.2ad is the radius of the innermost measure of
the rotation curve circular velocity vin ¼ 127 km=s, thus
the only bulge parameter to fit is the α parameter.
For the dark matter component we will use the circular

velocity profiles [Eqs. (6) and (7)] of all multistate
configurations we have presented (see Fig. 6). Strictly
speaking, our analysis should not be limited solely to the
family of states that we have presented. However, exploring
the entire parameter space of our system would result in a
very large computational effort. For this reason, by restrict-
ing ourselves to this family of states, which cover different
mass scales of the configurations quite well, we believe
that it will be sufficient to give an estimate of the mass

FIG. 5. Coadded rotation curves for each of the five bins of the
low surface brightness galaxies. Data from [61].
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parameter of our model. In addition, with our results, we
can also put this model into context with the CDM model,
which we will do later.
Summarizing, we have a total of three parameters to fit,

namely,
ffiffiffi
λ

p
[remember the scaling property described in

Eq. (4)], μ̃, and Md, except for the case of bin 5 where we
have an extra fitting parameter α. When only a single state
is considered there are two free parameters for our model,
the particle effective mass μ̃ and the scaling parameter λ, but
whenever more states are considered, extra free parameters
appear, for example, the ratio between total masses η.
Because of the complexity of finding solutions, it is not
possible to take η as a continuous parameter, so we will use
a set of fixed solutions within each family and discriminate
between them.

C. Statistical calibration method

We use the MCMC method sampling the parameter
space from uniform priors (see Table III). For a better

understanding of this method, we recommend review-
ing [69].
For each of the configurations of multiSFDM, we use

5 × 104 steps with 30% burn-in and 50 walkers to sample
the parameter space. The results for each one of the varied
parameters were calculated using the Lmfit [70] and Emcee
[71] Python packages.

IV. RESULTS AND DISCUSSION

A. Dwarf disc galaxies

We performed the fit of the dwarf disc galaxies coadded
rotation curve with each of the solutions of both
multiSFDM families. We select the best fit in each family
using the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). AIC gives a measure
of the fit of a given model to the data. It measures the
goodness of a fit and it gives a penalty on the number of
parameters in the model. If the model is simpler (has few
parameters) the penalty is less. The lower AIC value says
that the model has better performance. The BIC works as
the AIC but with a different penalty in the number of
parameters in the model. In AIC, the penalty is 2k, with k
being the number of parameters of the model, and in BIC
the penalty is lnðnÞk, n being the number of data points
to fit.
To see whether the multistates give a better fit of the

rotation curves, we also made the adjustment considering
the dark matter halo in the ground state Ψ100, which is
commonly used to describe the core in SFDM galaxies and
it is also typically used to model dwarf-sized galaxies. To
do that, we use the Gaussian ansatz [37,41,72]:

ρðrÞ ¼ M

ðπR2
cÞ3=2

e−r
2=R2

c ð8Þ

as an approximation of the ground state density. We
decided to use this Gaussian profile since previous works
see, for example, [41] ] have shown that this profile can
very well describe the numerical solution of the ground
state configuration of the Schrödinger-Poisson system. In
Table IV we present the results of the fits.
If we use the AIC, BIC, and χ2red we can state that the

best fit is obtained with the multiSFDM ðΨ100;Ψ210Þ

FIG. 6. Circular velocity vh for the ðΨ100;Ψ200Þ family (upper
panel), the ðΨ100;Ψ210Þ family (bottom panel). In the color scale,
the total mass NT of each of the solutions in the family is shown.

TABLE III. Uniform priors used in the MCMC fitting.

Parameter Dwarf disc

LSB

bin 1 bin 2 bin 3 bin 4 bin 5

(1) (2) (3) (4) (5) (6) (7)ffiffiffi
λ

p ½10−7; 1� ½10−7; 1� ½10−7; 1� ½10−7; 1� ½10−7; 1� ½10−7; 1�
μ (eV=c2) ½10−26; 10−18� ½10−26; 10−18� ½10−26; 10−18� ½10−26; 10−18� ½10−26; 10−18� ½10−27; 10−19�
Mdð1010M⊙Þ ½10−6; 100� ½10−5; 101� ½10−6; 101� ½10−6; 101� ½10−5; 102� ½10−5; 102�
α ½10−6; 10�
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configuration, particularly the solution characterized with
the total mass NT ¼ 3.5 (physical massMT ¼ ffiffiffi

λ
p

MsNT ¼
3.01 × 109M⊙) and having a particle effective mass
μ ¼ ð2.38� 0.12Þ × 10−23 eV=c2. In the upper panel of
Fig. 7 we show the plot of the fit and the contribution of the
disc, HI disc, and dark matter separately; and in the bottom
panel we show a corner plot of the posterior distribution of
the fitting parameters. In Table VIII of the Appendix the

parameters of each of the dwarf disc galaxies used to form
the coadded rotation curve are given.
The fit with this dark matter model is consistent with

having a stellar disc mass Md ≈ 108M⊙, which is also
consistent with the one obtained in [62] with the Burkert
profile as dark matter model.

B. LSB galaxies

As in the case of the dwarf disc galaxies, we also perform
the fit of the five different bins of the LSB galaxies coadded
rotation curve with each of the solutions of both
multiSFDM families. We select the best fit in each family
using the AIC and BIC parameters and in Table V we
present the results of the best fit found for each of the two
families of configurations for all five bins. For bins 1, 2, and
3 we also show the best fit using only the ground state as the
dark matter halo with the Gaussian ansatz. For bins 4 and 5,
it is not possible to fit the coadded rotation curve using a
single state since the rotation curve of the ground state falls
too fast to explain the flatness of the observed rotation
curve at large radii. This is expected since these bins are
where the largest and most massive galaxies belong, so it
would be expected that the ground state alone would not be
able to model these galaxies.
For the LSB bin 1 (see also Fig. 8) the best fit between

families was achieved with the ðΨ100;Ψ210Þ configuration,
specifically the solution labeled by NT ¼ 3.5 (physical
mass MT ¼ 7.7 × 109M⊙) and a particle effective mass
μ ¼ ð1.05� 0.14Þ × 10−23 eV=c2. In Table IX of the
Appendix the parameters of each of the LSB bin 1 galaxies
used to form the coadded rotation curve are given.
For the largest LSB galaxies, the particle effective mass is

smaller μ ¼ Oð10−24Þ −Oð10−25Þ eV=c2, the same order
of magnitude that spiral galaxies like the Milky Way
have [73]. However, it would be expected that the reason
why these lighter masses are preferred in these bins is
because the largest and most massive galaxies belong to it,
so configurations with only one excited state should not
describe this type of galaxies correctly and then, the smaller
mass is introduced to account for the missing multistate
configurations.
For bin 5, let us consider for example, a three-state

spherically symmetric multistate configuration made of the

TABLE IV. Fit results for the dwarf disc galaxies coadded rotation curve. MultiSFDM family name (column 1), the total mass of the
configuration (2), reduced χ2 (3), the Akaike information criterion (4), the Bayesian information criterion (5), SFDM particle mass (6),
scaling parameter (7), stellar disc mass (8), and total halo mass MT (9).

Family NT χ2red AIC BIC μ� σμ ð10−24 eV=c2Þ ffiffiffi
λ

p � σ ffiffi
λ

p ð×10−3Þ Md � σMd
ð107M⊙Þ MT ð1010M⊙Þ

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ψ100 1.5 1.6 9.5 11.4 17.4� 0.6 0.191� 0.001 12.00� 1.37 0.225
ðΨ100;Ψ200Þ 2.6 1.50 8.29 10.2 18.3� 1.0 0.183� 0.002 4.34� 1.76 0.347
ðΨ100;Ψ210Þ 3.5 1.27 6.01 7.9 23.8� 1.2 0.154� 0.002 10.28� 1.49 0.301

NOTE—We only show the result of the best fit per family.

FIG. 7. Upper panel: Dwarf Disc galaxies coadded rotation
curve. The disc, HI disc, and dark matter contributions are
also shown. Dark matter is in the multiSFDM ðΨ100;Ψ210Þ. The
best-fit parameters are shown in Table IV. The horizontal line is
the disc characteristic length ad. Bottom panel: We show the
posterior distribution of parameters, as an example, in this
case. Particle mass μ̃ is in 1/kpc units and disc mass Md is in
1010M⊙ units.
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first three spherical states ðΨ100;Ψ200;Ψ300Þ, with energy
eigenvalues E100¼−1.35, E200¼−0.82, and E300¼−0.54,
the configuration have a total mass NT ¼ 4.51. In Fig. 9 we
show the plot of the solution, the three wave functions ψ100

(zero nodes), ψ200 (one node), ψ300 (two nodes), and the
potential V.
In Fig. 10 we show the fit of the LSB bin 5 coadded

rotation curve, the effective mass of the multiSFDM
μ ¼ ð1.24� 0.06Þ × 10−24 eV=c2 becomes bigger than
for a two-state configuration. The rest of the fit parame-
ters take the values

ffiffiffi
λ

p ¼ ð0.777� 0.009Þ × 10−3, Md ¼
ð646.8� 315.3Þ × 107M⊙, and α ¼ 0.8� 0.1. We note
that this configuration, besides that it allows a bigger dark
matter particle mass, has the ripples seen in the data.

This confirms that in the most massive galaxies, the
higher energy excited states have a greater effect on
modeling the galaxy. It is clear then that our two-state
configurations scenario should be applied only for the less
massive galaxies and that the addition of more excited
states increases the particle mass to agree with the order of
magnitude found in dwarf galaxies.
In Fig. 11 the baryonic fraction Md=Mh as a function of

the halo massMd is plotted for all LSB bins and dwarf disc
galaxies. The empirical relation of [74] is also shown as a
comparison with the CDM results.
In cored profiles an interesting quantity to calculate is

the central surface density. For doing that we first define
the dark matter characteristic radius rc as the radius at
which the density of the ground state component of the

TABLE V. Fit results for the LSB galaxies coadded rotation curves. LSB bin number (column 1), multiSFDM family name (2), total
mass of the configuration (3), reduced χ2 (4), the Akaike information criterion (5), the Bayesian information criterion (6), SFDM particle
mass (7), scaling parameter (8), stellar disc mass (9), bulge parameter (10), and total halo mass in physical units MT (11).

Bin Family NT χ2red AIC BIC
μ�σμ

ð10−24 eV=c2Þ

ffiffiffi
λ

p �σ ffiffi
λ

p

ð×10−3Þ
Md�σMd

ð107M⊙Þ α� σα MT ð1010M⊙Þ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 Ψ100 1.5 1.3 6.1 7.6 7.3� 0.7 0.214� 0.003 63.5� 11.9 0.60
ðΨ100;Ψ200Þ 3.10 1.44 6.900 8.3 7.4� 1.02 0.205� 0.005 37.5� 16.0 1.14
ðΨ100;Ψ210Þ 3.5 1.29 5.624 7.1 10.5� 1.40 0.173� 0.005 55.0� 13.5 0.77

2 Ψ100 1.3 1.2 4.1 5.3 2.1� 0.4 0.374� 0.021 411.7� 19.9 3.09
ðΨ100;Ψ200Þ 2.94 1.02 2.677 3.9 2.0� 0.47 0.350� 0.030 362.5� 20.0 6.72
ðΨ100;Ψ210Þ 5.5 0.91 1.496 2.7 3.4� 0.55 0.221� 0.014 354.9� 19.3 4.81

3 Ψ100 0.8 0.2 −17.4 −16.0 1.20� 0.13 0.446� 0.022 1381.5� 66.4 3.94
ðΨ100;Ψ200Þ 3.50 0.19 −17.211 −15.8 1.1� 0.16 0.419� 0.020 1238.0� 70.8 18.24
ðΨ100;Ψ210Þ 3.5 0.19 −17.299 −15.8 1.6� 0.23 0.361� 0.017 1349.8� 66.6 10.47

4 ðΨ100;Ψ200Þ 2.18 5.24 17.255 17.8 1.3� 0.26 0.373� 0.027 4295.4� 131.0 8.33
ðΨ100;Ψ210Þ 5.5 4.77 16.410 17.0 1.4� 0.40 0.262� 0.026 4280.4� 128.9 13.71

5 ðΨ100;Ψ200Þ 2.50 1.73 9.086 10.7 0.24� 0.16 0.716� 0.196 16806.5� 576.9 0.8� 0.1 97.89
ðΨ100;Ψ210Þ 4.0 1.73 9.076 10.7 0.39� 0.21 0.525� 0.117 16793.1� 583.1 0.8� 0.1 71.11

NOTE—We only show the result of the best fit per family.

FIG. 8. LSB bin 1 galaxies coadded rotation curve. The disc and
dark matter contributions are also shown. Dark matter is in the
multiSFDM ðΨ100;Ψ210Þ. The best-fit parameters are shown in
Table V. The horizontal line is the disc characteristic length ad.

FIG. 9. Three-state ðΨ100;Ψ200;Ψ300Þ multistate configuration.
The three wave functions and the gravitational potential are
shown.
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multiSFDM configuration ρ100ðrÞ≡ jΨ100ðrÞj2 drops to the
half of its initial value:

ρ100ðrsÞ ¼ 0.5ρ100ð0Þ:

The dark matter central surface density is then defined as

Σ0 ¼ ρ0rc ð9Þ

where ρ0 is the dark matter density at r ¼ 0.
In Fig. 12 the dark matter central surface density Σ0 is

plotted for all bins and each galaxy. As in the case of
other cored profiles, the central surface density is almost
constant and independent of the baryonic characteristics
as luminosity or absolute magnitude [75]. For the
multiSFDM model, the central surface density has a value
of log10ðΣ0=M⊙pc−2Þ ¼ 1.24� 0.07.
It is worth mentioning that in [76] (see also [40]) it was

shown that the constancy of this central surface density is a
direct consequence of assuming the radial acceleration
relation (RAR) to be valid, with the latter being an
empirical function between the observed acceleration in
stars and the acceleration inferred to be produced by
baryons. That is, in the case of assuming a dark matter
profile that possesses a core (as is the case in our scenario),

this RAR predicts that the central cores in all galaxies must
comply with Σ0 ¼ Cte, thus making this a universal
constant for all galaxies.

C. NFW

From N-body simulations of CDM, [8] found an
equilibrium density profile for dark matter halos

ρðrÞ ¼ ρ0
ðr=rsÞð1þ r=rsÞ2

where rs is the scale radius and ρ0 is a characteristic density.
The halo circular velocity contribution is

vh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ

r

r
; ð10Þ

where MðrÞ is the enclosed mass at radius r given by

MðrÞ ¼ 4πr3sρ0

�
−

r
rþ rs

þ ln

�
rþ rs

r

��
; ð11Þ

which give us a two-parameter (rs; ρ0) profile.
We performed the same MCMC fitting procedure we did

with the SFDM model. In Table VI we show the results for
the LSB bins 1 to 5, the reduced χ2, the AIC and BIC
criteria, and the best-fitting parameters. For the case of
dwarf disc galaxies, we could not fit the rotation curves
with the NFW profile, which is consistent with the fact that
dwarf disc galaxies necessarily need a core to be able to
explain their rotation curves.
Comparing the AIC, BIC, and χ2 we see that multiSFDM

can better describe the LSB coadded rotation curve for bins
1, 2, 3, and 5 than the NFW profile. This turns out to be
very interesting, since our model, as simple as it seems in
only adopting two-state configurations, seems to fit the data
better than the standard cosmological model. It is clear that
if we continue to increase the number of states, we will

FIG. 10. LSB bin 5 fit with a three-state ðΨ100;Ψ200;Ψ300Þ
spherically symmetric multistate configuration. The scalar dark
matter mass μ ¼ ð1.24� 0.06Þ × 10−24 eV=c2 becomes bigger
than for a two-states configuration.

FIG. 11. The baryonic fractionMd=Mh as a function of the halo
mass Md for dwarf disc and LSB bins 1 to 5. The blue line is the
relation of [74].

FIG. 12. Dark matter central surface density Σ0 ¼ ρ0rc as a
function of the optical velocity vopt. Red markers are the
quantities calculated from the dwarf disc and LSB bins, and
blue markers are calculated for the individual galaxies belonging
to each bin.
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adjust the rotation curves better and better, which will
reduce the χ2 of our model, although this will also result in
a greater penalty for the model. In this way, we would
expect there to be a preferred number of states where the
value of our selection criteria (AIC and BIC) would be
reduced to the minimum, even less than those reported by
our model with only two states. Thus, we would expect
that, in general, the multiSFDM model would be preferred
for universal rotation curves to CDM.

D. diCintio profile

As the NFW profile is based in CDM-only simulations,
[77] introduced a double power-law dark matter density
profile to account for stellar feedback

ρ ¼ ρ0
ð rrsÞγð1þ ð rrsÞαÞðβ−γÞ=α

ð12Þ

where α, β, and γ are found by fitting the profile to
hydrodynamical simulations. [77] found the best fit of the
parameters as a function of the stellar-to-halo mass ratio
Md=Mh, giving

α ¼ 2.94 − log10ðð10Xþ2.33Þ−1.08 þ ð10Xþ2.33Þ2.29Þ
β ¼ 4.23þ 1.34X þ 0.26X2

γ ¼ −0.06þ log10ðð10Xþ2.56Þ−0.68 þ 10Xþ2.56Þ

where X ¼ log10ðMd=MhÞ. The NFW profile is recovered
when ðα; β; γÞ ¼ ð1; 3; 1Þ. The free parameters to fit the
rotation curves are then the scale radius rs, the stellar mass
Md, and the halo mass Mh.

In Table VII we show the results for the LSB bins 1 to 3,
the reduced χ2, the AIC and BIC criteria, and the best fitting
parameters. Bin 4 and 5 should be still modeled with the
NFW profile since the diCintio profile for large halo masses
becomes the NFW profile.
All three bins have better fits with the diCintio profile

than with the multistate SFDM model, but with a much
smaller stellar-mass Md ¼ Oð107ÞM⊙, they have been
inconsistent with the results of [61] using a cored
Burkert profile.

V. CONCLUSIONS

In this work we consider spherically symmetric and
axisymmetric multistate scalar dark matter as dark matter
halos in dwarf disc and low surface brightness galaxies.
The multistate configurations are equilibrium solutions of
the Gross-Pitaevskii-Poisson equations when the boson
particles are in more than one state. Particularly, we work in
multistate configurations where bosonic particles are able
to be in the ground state (Ψ100) and one excited state (Ψ210

or Ψ200).
We test this model by fitting coadded rotation curves of

LSB galaxies and dwarf disc galaxies using an MCMC
method. We determine the parameters that provide the best
fit to data. The resulting parameters of the baryonic mass
model are consistent with the ones found in similar works
that use different dark matter models [61,62].
Both in LSB galaxies and in dwarf disc galaxies do the

multistates models fit better the rotation curves than a
single ground state. In LSB bins 1, 2, 3, and 5 the multistate
models fit better the rotation curves than the NFW profile;
only in LSB bin 4 galaxies NFW profile describes better the

TABLE VI. LSB rotation curves fitting results with an NFW profile. Velocity bin (column 1), reduced χ2 (2), the Akaike information
criterion (3), the Bayesian information criterion (4), stellar disc mass (5), scale radius (6), and characteristic density (7).

Bin χ2red AIC BIC Md � σMd
ð107M⊙Þ rs � σrs (kpc) ρ0 � σρ0 ð10−4M⊙=pc3Þ

(1) (2) (3) (4) (5) (6) (7)

1 4.23 19.84 21.3 19.2� 10.88 64.4� 23.1 2.156� 1.076
2 1.72 4.91 6.4 168.5� 47.91 34.8� 23.1 8.235� 5.979
3 1.14 4.16 5.6 873.7� 73.70 109.1� 43.4 2.162� 1.004
4 1.51 6.06 6.7 2144.1� 465.47 14.2� 2.7 52.398� 20.356
5 1.78 9.39 11.0 12891.1� 1229.26 47.6� 20.6 9.275� 6.097

TABLE VII. LSB rotation curves fitting results with a diCintio profile. Velocity bin (column 1), reduced χ2 (2), the Akaike
information criterion (3), the Bayesian information criterion (4).

Bin χ2red AIC BIC Md � σMd
ð107M⊙Þ rs � σrs (kpc) Mh � σMh

ð107M⊙Þ
(1) (2) (3) (4) (5) (6) (7)

1 1.01 2.63 4.1 18.9� 16.20 4.174� 1.283 2923.591� 709.820
2 0.87 0.95 2.1 1.4� 0.34 48.537� 29.750 30135.090� 11948.730
3 0.91 1.37 2.8 3.9� 0.64 8.660� 1.289 21268.698� 1590.216
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rotation curve. The diCintio profile, a CDM profile that
accounts for stellar feedback, shows better fits than the
multiSFDM model with the disadvantage that they require
a really low stellar massMd. It should be mentioned that, in
order for the multiSFDM model to be correctly compared
with the phenomenological model of diCintio, it would also
be necessary to consider the effect of stellar feedback in
multiSFDM, which we have not considered in this work.
For the dwarf disc galaxieswe obtained a better fit with the

ðΨ100;Ψ210Þ configuration thanwith the ðΨ100;Ψ200Þ and the
ground state alone Ψ100 configurations, obtaining a SFDM
particle effective mass μ ¼ 2.38� 0.12 × 10−23 eV=c2.
Similarly for the LSB bin 1 a particle effective mass
μ ¼ 1.05� 0.14 × 10−23 eV=c2 is obtained for the better
fit with the ðΨ100;Ψ210Þ configuration. In the most massive
LSB galaxies (bins 2 to 5) the particle effective mass is
smaller μ ¼ Oð10−24Þ −Oð10−25Þ eV=c2. This last result is
expected since smallermasses of theSFDMparticle allow for
more extended configurations in the scenarios studied here,
which in turn enables a less pronounced Keplerian fall for
small radii. Of course, this smaller mass parameter for large
galaxies is only a consequence of not introducing a complete
family of mutistate configurations, as we explained in the
Introduction, however, the computational difficulty of build-
ing configurations of many multistates does not allow us to
freely test them.
The addition of excited states postpones the Newtonian

drop in the circular velocity to greater distances, which
makes it have a smaller extension and therefore a greater
particle mass.
These results encourage further studies on different

configurations of multistate scalar field dark matter halos
with a greater number of states that could fit better the
larger galaxies and have consistent bounds of the scalar
field particle mass.
Software: Lmfit Python package [70], Emcee Python

package [71].
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APPENDIX: DENORMALIZATION PROCESS

The denormalization process allows us to find the
parameters of the mass model for each of the galaxy
members in the coadded rotation curves. For doing that we
first note that the scale radius rc and disc scale length ad of
the dwarf disc and all the LSB bins are correlated (see
Fig. 13), the correlation can be fitted yielding to

log10rc ¼ 0.41þ 1.33log10ad. ðA1Þ

This expression can give us the core radius of any of the
members of the LSB or dwarf disc galaxies in the coadded
rotation curves as a function of its measured disc scale
length.
Similarly there is a correlation between the disc scale

length and the dark matter central density ρ0 and the virial
radius rvir (see Fig. 13). The logarithmic fit results in

log10 ρ0 ¼ −3.13 − 1.49 log10 ad; ðA2Þ

and

log10rvir ¼ 1.15þ 1.28log10ad. ðA3Þ

This last expression allows us to know the virial radius of
each individual galaxy and hence the halo virial mass
Mvir ¼ MhðrvirÞ.
As mentioned in [61,62] the good fit and the small

intrinsic scatter of the coadded rotation curve allow us to
write

FIG. 13. Core radius, dark matter central density, and virial radius as a function of the disc scale length of the dwarf disc and all LSB
bins. The blue line is the logarithmic fit.
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Md;i

v2opt;iRopt;i
¼ Md

v2optRopt
¼ cte ðA4Þ

and

MHI;i

v2opt;iRopt;i
¼ MHI

v2optRopt
¼ cte ðA5Þ

where Md;i;MHI;i; vopt;i; Ropt;i are, respectively, the disc
mass, HI disc mass, optical velocity, and optical radius of
the individual galaxies conforming the coadded rotation
curve. The quantities without the i index are the mean
quantities of the coadded rotation curve that we had been
working with. As vopt;iRopt;i are known quantities for each
galaxy using Eqs. (A4) and (A5) it is possible to find the disk
mass Md;i;MHI;i of each galaxy.
In Tables VIII and IX the parameters of all the dwarf disc

galaxies and LSB bin 1 galaxies are shown.

TABLE VIII. Mass model parameters of the dwarf disc galaxies.

Name ad kpc vopt km=s rc kpc Md 107M⊙ MhðRoptÞ 1010M⊙ Mvir 10
10M⊙ MHI 10

7M⊙ M=L M⊙=L⊙

(1) (2) (3) (4) (5) (6) (7) (8) (9)

UGC1281 0.99 53.80 2.55 7.37 0.1078 0.3010 12.18 10.54
UGC1501 1.32 50.20 3.74 8.55 0.1813 0.3034 14.14 10.00
UGC5427 0.38 54.00 0.71 2.85 0.0091 0.1796 4.71 9.43
UGC7559 0.88 37.40 2.18 3.16 0.0834 0.3010 5.23 12.02
UGC8837 1.55 47.60 4.63 9.03 0.2236 0.3063 14.93 9.98
UGC7047 0.57 37.00 1.22 2.01 0.0281 0.2855 3.32 4.81
UGC5272 1.28 55.00 3.59 9.95 0.1730 0.3030 16.46 41.47
DDO52 1.30 60.00 3.66 12.03 0.1772 0.3032 19.89 22.29
DDO101 0.94 58.80 2.38 8.35 0.0965 0.3010 13.81 4.59
DDO154 0.75 38.00 1.76 2.78 0.0571 0.3003 4.60 32.24
DDO168 0.83 60.00 2.02 7.68 0.0729 0.3009 12.70 25.19
Haro29 0.28 32.60 0.47 0.76 0.0038 0.0851 1.26 5.29
Haro36 0.97 56.50 2.48 7.96 0.1033 0.3010 13.16 15.58
IC10 0.38 41.00 0.71 1.64 0.0091 0.1796 2.71 3.34
NGC2366 1.28 55.00 3.59 9.95 0.1730 0.3030 16.46 9.77
WLM 0.55 33.00 1.17 1.54 0.0255 0.2806 2.55 14.43
UGC7603 1.11 60.30 2.97 10.37 0.1352 0.3012 17.15 5.39
UGC7861 0.62 61.00 1.37 5.93 0.0352 0.2936 9.80 1.66
NGC1560 1.10 56.10 2.93 8.90 0.1329 0.3011 14.71 8.34
DDO125 0.49 17.00 1.00 0.36 0.0186 0.2583 0.60 1.32
UGC5423 0.52 39.50 1.08 2.09 0.0219 0.2711 3.45 3.79
UGC7866 0.54 28.70 1.14 1.14 0.0243 0.2778 1.89 3.39
DDO43 0.57 35.30 1.22 1.83 0.0281 0.2855 3.02 20.76
IC1613 0.60 19.00 1.31 0.56 0.0322 0.2909 0.92 2.16
UGC4483 0.16 20.80 0.22 0.18 0.0007 0.0133 0.29 8.20
KK246 0.58 34.60 1.25 1.78 0.0295 0.2875 2.95 13.41
NGC6822 0.56 35.00 1.19 1.76 0.0268 0.2832 2.92 3.89
UGC7916 1.63 37.00 4.95 5.74 0.2357 0.3073 9.48 41.15
UGC5918 1.23 45.00 3.40 6.40 0.1622 0.3024 10.59 14.13
AndIV 0.48 32.20 0.97 1.28 0.0176 0.2532 2.12 34.57
UGC7232 0.21 37.00 0.32 0.74 0.0016 0.0344 1.22 4.25
DDO133 0.90 42.40 2.25 4.16 0.0877 0.3010 6.88 10.93
UGC8508 0.28 25.50 0.47 0.47 0.0038 0.0851 0.77 6.05
UGC2455 1.06 47.00 2.79 6.02 0.1238 0.3011 9.95 1.44
NGC3741 0.18 23.60 0.26 0.26 0.0010 0.0202 0.43 4.95
UGC11583 0.17 52.20 0.24 1.19 0.0009 0.0165 1.97 6.30
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