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TianQin is a proposed space-based gravitational-wave observatory mission that critically relies on the
stability of an equilateral-triangle constellation. Comprising three satellites in high Earth orbits of a 10° km
radius, this constellation’s geometric configuration is significantly affected by gravitational perturbations,
primarily originating from the Moon and the Sun. In this paper, we present an analytical model to quantify
the effects of lunisolar perturbations on the TianQin constellation, derived using Lagrange’s planetary
equations. The model provides expressions for three kinematic indicators of the constellation: arm’s
lengths, relative line-of-sight velocities, and breathing angles. Analysis of these indicators reveals that
lunisolar perturbations can distort the constellation triangle, resulting in three distinct variations: linear
drift, bias, and fluctuation. Furthermore, it is shown that these distortions can be optimized to display solely
fluctuating behavior, under certain predefined conditions. These results can serve as the theoretical
foundation for numerical simulations and offer insights for engineering a stable constellation in the future.
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I. INTRODUCTION

The successful detection of gravitational waves (GWSs)
by the ground-based observatory LIGO [1] has opened up
the era of GW astronomy. To detect GWs in the millihertz
range (0.1 mHz—1 Hz), known for the rich sources and the
ability to circumvent the impact of seismic noise, space-
based GW observatories are highly favored [2,3]. For such
observatories, proposed projects include LISA [4,5],
DECIGO [6], TianQin [7], and Taiji [8]. Among these,
TianQin is a geocentric space-based GW observatory
mission that consists of three drag-free controlled satellites
with an orbital radius of 10° km [7]. The three satellites
form a nearly equilateral-triangle constellation, standing
almost vertical to the ecliptic, and they employ high-
precision laser-ranging interferometry to measure distance
changes between satellites for the detection of GWs.
The mission will bring rich science prospects to GW
astronomy [9-11].

TianQin, as well as other three-satellite GW missions,
relies crucially on the stability of an equilateral-triangle
constellation [3,7]. Unequal variations in the three arm’s
lengths of the constellation prevent the cancellation of laser
frequency noise, which has a profound impact on the
design of frequency stabilization systems and requires
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time-delay interferometry (TDI) [12—-14]. The relative
line-of-sight velocities between satellites induce Doppler
frequency shifts, affecting phase meter bandwidth and
ultrastable oscillator design [15]. Moreover, changes in
the three breathing angles of the triangle directly influence
the design of telescopes and beam pointing mechanisms
[7]. It is crucial to minimize variations in the triangular
constellation, as indicated by these three kinematic
indicators.

Analytical analysis of satellite motion and constellation
variations holds significant importance [16-20]. To identify
orbits with minimal variations in the constellation, exten-
sive efforts have been dedicated to numerical orbit opti-
mization and analysis (for a review, see Ref. [19]). The use
of analytical models, as opposed to numerical simulations,
allows for deeper physical insights and often yields clearer
solutions for issues related to satellite motion [16,17].
Moreover, these analytical models provide the basis for
further numerical simulations, enhancing orbit optimiza-
tion efficiency [18,19]. They also enable theoretical studies
on intersatellite optical links and light propagation [17,20].

Concerning analytical efforts, Ref. [21] first presented
the analytical coordinates of the TianQin satellites, based
on unperturbed Keplerian orbits, which showed that the
arm’s lengths of the constellation remain constant when
orbital eccentricities are ignored. Furthermore, the leading-
order effect of the third-body perturbation was considered
to derive expressions for both arm’s lengths and breathing
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angles [22]. These expressions were constructed iteratively,
assuming circular orbits, and they were used to study the
impact of initial orbit errors. Moreover, the effect of the
Earth’s nonspherical gravitational perturbation was ana-
lyzed in [23], with a particular focus on its influence on
intersatellite range acceleration noise.

The analytical investigation into the influence of gravi-
tational perturbations on the TianQin constellation is
incomplete. Existing models have neglected the satellite’s
orbital eccentricity, a crucial factor for constellation
stability [24,25]. Moreover, relying solely on the lead-
ing-order lunar perturbation is insufficient to address the
high-altitude TianQin orbits. These issues highlight the
necessity for an analytical study to develop a more explicit
and higher-precision model.

In the exploration of three-satellite constellations in
heliocentric GW missions, such as LISA [18,20,26-30]
and Taiji [17,31], expressions for these three indicators
have been derived and analyzed using either Keplerian
orbits or perturbation solutions of satellite orbits. Valuable
references are also found in geocentric satellite formation
missions, including NASA’s four-satellite Magnetospheric
Multiscale (MMS) mission [16], and extensive studies on
third-body perturbations in general satellites (see [32] and
references therein). Perturbation solutions for third-body
effects can be derived by solving Lagrange’s planetary
equations [33], where the perturbative potential depends on
the orbital elements of both the satellite and the perturbing
bodies. To directly obtain solutions with instantaneous
elements, perturbation methods [33-36], especially the
mean element method [34,35], are utilized. This method
employs a slowly precessing elliptical orbit as a reference,
effectively reducing errors in analytical solutions.

In this work, we will construct an analytical model for
the TianQin constellation. To address its near-circular, high
Earth orbits, we utilize singularity-free Lagrange equations
while accounting for lunar and solar perturbations, as well
as Earth’s J, perturbation. This model will then be used to
analyze and optimize the three kinematic indicators.
Additionally, to facilitate the perturbation-inclusive study,
the unperturbed Keplerian orbits of TianQin satellites will
also be presented.

The paper is organized as follows. In Sec. II, we
introduce the Keplerian orbits of the satellites and present
the design of the nominal equilateral-triangle constellation.
The gravitational perturbations on the constellation are
studied in Sec. III. In Sec. IV, we make the concluding
remarks.

II. FUNDAMENTALS OF STABLE
TIANQIN CONSTELLATION

In this section, we describe the motion of TianQin
satellites in the geocentric ecliptic coordinate system and
present the orbit design of satellites for a stable equilateral-
triangle constellation. For the convenience of readers, the

table in Appendix A lists the main symbols used in the
paper along with their meanings.

A. Keplerian orbits of satellites

Within the central gravitational field of the Earth, a
satellite moves in a Keplerian orbit, as illustrated in Fig. 1.
{X,Y,Z} is the orbital right-handed coordinate system,
with the origin at the Earth’s center of mass. The satellite’s
orbital plane is the same as the X-Y plane, where the X axis
points toward the perigee. In this system, the satellite’s
Cartesian coordinates (X,Y,Z,X,Y,Z) can be denoted
as [33,35]

X =rcosv =a(cosE —e),
Y:rsinv:amsinE,

Z=0,

X:—@sinE, (1)
Y:@mcosE,

Z=0,

FIG. 1. Depiction of the TianQin constellation in the geocentric
ecliptic coordinate system. The ecliptic plane is spanned by the x
and y axes, with the x axis directed toward the vernal equinox.
Also illustrated is the orbital coordinate system {X,Y,Z} for
SC1, where the X axis points toward the perigee of the satellite’s
orbit, and the Z axis (not shown) is perpendicular to the orbital
plane. The angles i, Q, w, and v denote the orbital inclination,
longitude of ascending node, argument of perigee, and true
anomaly, respectively. Specifically, i = 94.7° and Q = 210.4° are
set to orient the TianQin detector plane toward the reference
source, the white-dwarf binary RX J0806.3 4 1527.
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with r representing the geocentric radius, v the true
anomaly, a the semimajor axis, e the orbital eccentricity,
u = GM, the Earth’s gravitational constant, and E the
eccentric anomaly. E satisfies Kepler’s equation,

E—esinE=M, (2)

where M denotes the mean anomaly. Specifically, M is given
by M = n(t — t,) in the two-body problem, with the mean
motion n and the passing time of the perigee #,. Equation (2),
which is a transcendental equation, can be solved iteratively,
resulting in the following expression [21]:

E=M+esinM + e*>cosMsinM + O(e?).  (3)

By substituting Eq. (3) into Eq. (1), one can obtain the
explicit coordinates (X,Y,Z,X,Y,Z).

The orbital planes may not be identical for the three
TianQin satellites. Thus, the geocentric ecliptic coordinate
system {x,y,z} is also employed, where the x-y plane is
the ecliptic plane. The x axis points toward the vernal
equinox, and the z axis is normal to the ecliptic plane. The
coordinates (x,y,z) and (x,y,z) in this system can be
obtained by (X,Y,Z) and (X, Y, Z) through the following
transformation [33,35]:

My "X
Y| = R(=QR ()R, (-0) | ¥ |, (4)
L - _Z_
T e
V| = R(-QR(-)R(-w) | ¥ |, (5)

where Q, i, and @ denote the satellite’s longitude of the
ascending node, inclination, and argument of perigee,
respectively. Additionally, R_(y) and R, (y) are the rotation
matrices that rotate vectors by an angle y about the z or x
axis,

[ cosy siny O]
R.(y) = | —siny cosy O], (6)
0 0 1]
1 0 0 7
R.(y)=10 cosy siny|. (7)
|0 —siny cosy |

Combining Egs. (1) and (3)—(7), the position vector and
velocity vector of SCk (k =1, 2, 3), ry = (xz, Y, 2), and
I = (&, Y. 24) are given by

X = ay [cos Q; cos A, — cos iy sin & sin 4,

+ %ek(COS i ferx — COS iy sin Qkfslk)} + O(ep).

—

Vi = ay |sin &y cos 4, + cos i; cos £ sin Ay,
+ 3 e (sin Q; foyy + cos iy cos Qkfslk)} + O(ep),

7 = a, (sin iy sinA; + 5 e sin ikfslk) + O(e?), (8)

Xy = \/ia% [— cos Q sin Ay — cos iy sin Q; cos 4y
+ er(=cos Qi fop — cos iy sin Qo)) + O(ef).
Vi = \/ia% [— sin Q sin 4; + cos i cos Q; cos 4,

+ e (—sin Q; foor + €08 iy cos Qi foor)] + O(e3),

Z = \/% (siniy cos Ay + ey siniyfeor) + O@%)’
where
Ay == My + ay, 9)

fclk==cos(21k—a)k)—3cosa)k,fslk::sin(Z/Ik—wk)—3sina)k,
chk = COS(Zlk - Cl)k), and fs2k = sin(Z/Ik - a)k). Define
c€{a, e i,Q w1}, and o(r) in Eq. (8) are straightfor-
wardly determined in the two-body problem by

oi(t) = oo + S,mi(t — tg), for Keplerian orbit, (10)

where

1, =24,

oo == 0k (to), o, = {0’ o4 (11)

Note that Eq. (8) remains valid even when considering
gravitational perturbations, with the only change being the
replacement of o4(¢) in Eq. (10) with the corresponding
perturbation solution.

B. Orbit design of the TianQin constellation

The TianQin constellation is composed of three satellites
in geocentric orbits, forming a triangular configuration that
continuously evolves in geometry over time. The closer the
configuration change approaches an equilateral triangle, the
more it aids in alleviating design constraints on measure-
ment system instruments. Therefore, it is essential to find a
constellation design with minimal variations.

The constellation is considered more stable if it is closer
to an equilateral triangle. There are three main kinematic
indicators to characterize the stability, namely, the arm’s
length L;;, relative line-of-sight velocity between satellites
Vij, and breathing angle oy,

Lij = |I‘i - I'j 5 (12)
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’Uij = Lij? (13)
12+ 12, — L2
a;, = arccos MU (14)
2L Ly

where i, j, and k take values 1, 2, or 3 and i # j # k.
Substituting Eq. (8) into Eqs. (12)—(14), one can obtain
the explicit expressions, for these three kinematic indica-
tors, with forms L;;(0,(1).0;(1)), v;;(0:(t).0;()), and
ar(ox(1),0,(t),0(t)), respectively.

To maintain the constellation as an equilateral triangle,
i.e., Lio(t) = L3(t) = Ly3(z), the orbits of the three
satellites need to be purposefully designed. One intuitive
orbit design involves circular orbits for the satellites in the
point-mass gravitational field of the Earth,

ei(t) = ey(t) = e3(t) =0, (15)

while ensuring that they share the same orbit size, lie in the
same orbital plane, and are phased 120 degrees apart from
each other:

(16)

The above requirements on the intersatellite parameters can
be achieved in the two-body problem, if the initial orbital
elements oy, in Eq. (10) are set to

2
60k260+51?ﬂ(k_1)7 (17)

where the parameters with subscript “o” are the nominal ones
of the TianQin constellation. For instance, these values can be
chosen as a,=10° km, e, =0, and i, =94.7°, Q, = 210.4°,
respectively, establishing the orbit size and orienting the
orbital plane perpendicular to JO806 [7,24]. The initial value
A, associated with the orbit phase is typically selected to be
any value within the range of 0° to 120° or it may be
specifically designated to avoid Moon eclipses [37].

To analyze additional nominal orbit designs allowing for
e # 0 and quantify the impact of eccentricity on the three
indicators, the constraint specified by Eq. (15) is relaxed.
Subsequently, employing only Eq. (16) or Eq. (17) (for
oc€{a,i,Q,1}), the variations of these indicators in the
two-body problem, up to the first order of e, can be
expressed as

kepl ( )

V3a, + ——ay[—e; sin (M; + f)
+ejsm(Mj—ﬂ)], (18)

(1) = 0+~ aony[—e; cos (M; + )
+ e;cos (M; — f)]. (19)
al]:epl(t) _g+g e, cos M sinf
g i[sin (M; — ) + 2sin (M; + p)]
+ g i[2sin (M — p) +sin (M; + B)],  (20)

where M;(1) =% (i —1) + 4(z)
with the indices i, j, and k using cyclic indexing
(i, jyk=1—-2—->3—1). If we further set e; = e, =
es=e¢, #0 and w; = w, = w3, then it follows that

— w; and f = arccos %,

3
—\/T_aoeocosMk, (21)

LA (1) = V3a,

1y

3
WA (1) = 0 % donoeosinMy. (22)
3
oA (1) —%——feo cos My, (23)

where M (1) =% (k — 1) + M,(r). Equations (21)~(23)
indicate that, at the zeroth order of e, the three TianQin
satellites can form a constant equilateral triangle. However,
when accounting for eccentricity, as observed in perturbed
orbits, the constellation’s evolution deviates from the ideal
equilateral triangle, exhibiting periodic variations.

The close-to-circular orbits, as inspired by Eqgs. (15) and
(16) for Keplerian orbits, are currently employed in
TianQin orbit studies (see, e.g., [13,21,24,38-42]). It is
worth noting that, to obtain the nominal equilateral triangle
configuration, there is another option: elliptical frozen
orbits. From Egs. (18)—(20), if e = e, =e3=¢, #0,
and M, = M, = M5, namely w; = o, —l—%(k— 1), then

kepl (1) = V3a, — V3aye, cos E; (1), representing an
equ11ateral triangle constellation with three arm’s lengths
that vary synchronously. Preliminary numerical simulation
results show that the long-term stability of the constellation,
based on this design, is not as favorable as that of the close-
to-circular orbits. Furthermore, the impact of this design on
other aspects of the mission, such as point-ahead angle
variations associated with the finite speed of light, requires
further assessment. In this paper, we focus on the study of a
three-satellite constellation with close-to-circular orbits.

III. EFFECTS OF LUNISOLAR PERTURBATIONS
ON TIANQIN CONSTELLATION

The TianQin constellation is subject not only to the
central gravitational attraction but also to gravitational
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perturbations. These perturbations can distort the carefully
designed equilateral-triangle configuration. To gain a more
accurate understanding of the TianQin constellation’s
variations, it is crucial to account for these gravitational
perturbations.

The primary perturbations originate from the Moon and
the Sun, with magnitudes of approximately 4 x 10~* and
2 x 1074, respectively [33]. In this section, we collectively
address the point-mass effects of these two perturbing
bodies. Furthermore, we also incorporate the secular
perturbation arising from the third most significant pertur-
bation, Earth’s J, perturbation, which has a magnitude of
6 x 107, Other perturbations, e.g., the higher-degree
nonspherical gravity fields of the Earth, have a minor
impact on satellite positions and constellation stability. As
illustrated in Fig. 2, these perturbations lead to deviations of
approximately 3.3 km in satellite positions, £2.2 km in
arm’s lengths, +0.0020 m/s in relative velocities, and
4+0.0012° in breathing angles over a 5-year period.
In contrast to Refs. [16,21-23,32,36], the perturbation
solutions developed in this study offer explicit expres-
sions with improved precision, enabling a more precise
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description of the distinctive 10° km-radius orbits relevant
to space-based GW detection.

A. Dynamic model

The gravitational potential U acting on a satellite can be
expressed as
U=U,+ R,

Uo=". (24)

where U is the gravitational potential of a pointlike Earth
and R represents a perturbative potential describing the
satellite’s perturbed motion. Under the influence of R, the
evolution of the satellite’s orbital elements is governed by
Lagrange’s planetary equations [43]

da 2 0R

— = (25)

dt  na oA
di 1 oR O0R OR oR
—=———cosi|E——-n—+—) ——|, (26
dt nazésmz{ (5 on ”05 04 0Q (26)
_ 0.002 T T T T
£
§ 0001
S
=
[}
o
2 0.000
R3)
=t
g
5 -0.001
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=
[0}
" _0.002}, .
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£ 0.0005] ]
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2 0.0000
on ——
8
£ _0.0005[ ]
k=
<
=
A -0.0010} —
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Time [day]

FIG. 2. Time evolution of deviations between the simplified (SNM) and high-precision (HPNM) numerical models for satellite
positions and three indicators. SNM incorporates the point-mass gravity fields of the Earth, Moon, and Sun, as well as the Earth’s J,.
HPNM additionally considers the higher-degree nonspherical gravity fields of the Earth and the point-mass gravity fields of other
planets (for further details, see Appendix B 3). In these plots, red corresponds to SC1, v,3, L3, or a;; green represents SC2, vsy, L3, or
a,; and blue indicates SC3, v,, L}y, or az. The initial orbital elements used are the same as those presented in Table VI.
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) 1 oR
e 27
dt  na*¢sini 0i’ (27)
dé ¢ R ¢ R o)
T e T* (28
i o wd(re o TG (28)
dy ¢ OR ¢ R
ar_ eI, v . (29
it ok T@re % @)
di 2 9R ¢ R, IR
aa_ 2R & (R IR
dr nada  na’(1+e)\" o " on
o)
—cosiZn 30
cosi— - (30)

where ¢ := V1 — ¢? and new variables £ and 7 are intro-
duced,

E:=ecosw, n = esinw, (31)
to avoid the singularity at e =0. When R =0, the
solutions to Egs. (25)-(30) revert to the Keplerian case
discussed in Sec. IT A.

For TianQin orbits with an orbital radius of 10° km, the
perturbative potential R predominantly encompasses the
perturbation effects arising from the Sun, Moon, and
Earth’s J, term, as expressed in the following expressions:

R =Rs+Rn+ Ry, (32)
with [33]
2 2
Hrr-3cos y, — 1

R, = , 33
* r% 2 (33)

N N
Rm = a <L> Py(cosys), (34)

3 =5 \I'3
uRZ  3sin’p —1

R, =- r3e Js — (35)

where p, = GM, and p3 = GM,, are the gravitational
constants of the Sun and the Moon, respectively. r, and
r3 denote the geocentric distances of the Sun and the Moon.
Moreover, Py(x) is the Legendre polynomial of degree N,
with A/ = 6 signifying the truncation degree. The deriva-
tion of Eq. (34) is presented in Appendix B 1, suggesting
that employing Legendre polynomial expansions is more
advantageous than the original square root form [Eq. (B2)]
for solving Lagrange’s equations. Additionally, R, stands
for the equatorial radius of the Earth, and J, represents the
second zonal harmonic coefficient. Furthermore, y, is the
angular separation of the Sun and the satellite as observed
from the Earth’s center,

cosy, =1, - T, (36)

where £, and t denote the unit position vectors of the Sun
and the satellite, respectively,

CoSs U,
= |sinu, |,
0
cos v
F=R.(-Q)R (—i)R.(—w) | sinv |, (37)
0

with w, := Q, + w, + v, representing the Sun’s ecliptic
longitude. Similarly, w5 is given by

cosyy =y - I, (38)

with £; being the Moon’s unit position vector,
1
B3 = R (—Q3)R,(—i3)R(-u3) [ O |, (39)
0

where Qs, i3, and u3 := w3 + v3 correspond to the Moon’s
longitude of ascending node, inclination, and latitude
argument, respectively. ¢ of Eq. (35) signifies the satellite’s
geocentric latitude in the Earth-fixed coordinate system,

sing = sinisin(w +v). (40)

Substituting Egs. (36)—(40) into (33)-(35), R is formulated
as a function of the satellite’s orbital elements and those of
the Sun and the Moon, R(a,e,i,Q, »,v;0,3), where
623 = {r), Uy, i3,Q3, r3,u3}. Consequently, the singular-
ity-free form of the potential, R(a, £, 1, i, Q, A; 653), can be
obtained. Moreover, it is important to note that Eq. (40) is
formulated in the equatorial coordinate system. For a
unified description of the influence of all three perturba-
tions on satellite orbits, including both solar and lunar
perturbations, the transformation to the ecliptic coordinate
system must be taken into account (see Appendix C 3 for
more details).

B. Motion of the Sun and Moon

To solve the Lagrange equations, the coordinates of the
Sun and the Moon, relative to r,, u,, i3, 3, 3, and us, are
required. While high-precision coordinates are available
through numerical integration, such as the Jet Propulsion
Laboratory (JPL) ephemerides DE430 [44], they are less
suitable for analytical purposes. References such as [35,45]
offer analytical formulas with reduced precision, providing
geocentric solar coordinates based on a simplified, unper-
turbed motion of the Earth around the Sun and expressed
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using appropriate mean orbital elements. In contrast, the
Moon’s motion, influenced by strong solar and terrestrial
perturbations, is described through linear terms correspond-
ing to its long-term precessing elliptical orbit and numerous
trigonometric terms capturing periodic variations.

Generally, higher precision in these analytical coordi-
nates results in more complex expressions, rendering the
analytical solutions of the Lagrange equations challenging.
In this study, for a balance between solvability and
precision, essential components of these coordinates are
retained, and fitting is applied using JPL ephemerides data
[46] from around 2035 to reduce discrepancies in the
positions of the Sun and the Moon.

The apparent motion of the Sun around the Earth is
approximated as a circular orbit on the ecliptic plane with a
one-sidereal-year period,

ry(1) = 7y, (41)
Uy (1) 2 uy(t) = not + uy,, (42)

where 7, is the mean Sun-Earth distance and u, represents
the mean longitude of the Sun. Moreover, n, =
27/ (one sidereal year) is the mean motion, and u,  denotes
the initial phase of the Sun’s orbit. The specific parameter
values can be found in Table I. The Moon’s orbit is
considered as an inclined and elliptical precessing orbit,

i3(1) = i3, (43)

Qs (1) = Q3(1), (44)

r3(t) = 3 + rf cos M(1). (45)
us (1) > us(1) + ufy sin M (1), (46)

with
Q1) = no,t + Qs , (47)
M;(1) = ny,t + Ms,, (48)
us(t) = nat + us,, (49)

where i; is the mean inclination of the Moon’s orbit, Q,
represents the secular variation in the Moon’s longitude of
ascending node, 73 denotes the mean Earth-Moon distance,
and u; signifies the secular variation in the argument of
latitude. Equations (45) and (46) include trigonometric
corrections, related to the Moon’s mean anomaly M, aimed
at more accurately describing the Moon’s motion in the radial
and transverse directions. The periods of variation for Q;, M,
and us are approximately 18.6 years, 27.55 days (anomalistic
month), and 27.21 days (draconic month), respectively.

C. Lunisolar perturbations on the TianQin satellites

Let 6=[a i Q ¢ n A]"; then, the Lagrange
perturbation equations (25)—(30) can be reformulated as

do

E:fo(a)+fl<o'vt78)’ (50)

where the functions f, and f| are both six-dimensional
vector functions,

fola) = én, 5,:[0 0000 1}T, (51)

(f1);=0(), {=12,...6, (52)

and e <1 is a small parameter. Since the perturbing
forces are significantly weaker than the Earth’s central

TABLE 1. Parameter settings for the motion of the Sun and Moon. The subscript “0” indicates values taken at the

epoch 1 January 2034, 00:00:00 UTC.

Symbols Parameters Values

7 Mean Sun-Earth distance 1.496191 x 108 km
n, Mean motion of the Earth 27/365.2564 days
Uy, Sun initial phase 280.251°

i3 Mean lunar orbit inclination 5.162°

ng, Rate of change of Q, 27/18.6 years
Q3 Initial phase of Q, 186.988°

73 Mean Earth-Moon distance 384151 km

4 Amplitude of correction term —20905 km
Ny, Rate of change of M5 27/27.55 days
M, Initial phase of M, 22.578°

n3 Rate of change of u; 27/27.21 days
us, Initial phase of u; 221.970°

uf Amplitude of correction term 6.289°
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gravitational attraction, the solution of Eq. (50) is assumed
to be

o(t) = 6 0(t) + o(1). (53)

Here, 6(°)(¢) represents the unperturbed Keplerian orbit [as
shown in Eq. (10)],

(1) = 6o + d,n(t — 1), (54)
and 6(!)(¢) is the perturbation solution,
o(1) = (0c(1) + oy (1) + oy (1) + o, (D), (55)

In Eq. (55), 6())(¢) is decomposed into four parts, distin-
guished by the unique timescales of orbital variations
induced by perturbations: the secular term o, special
long-period term oy}, general long-period term oy, and
short-period term o,. o, signifies the linear change over time,
while 6, o, and o, are associated with periodic varia-
tions. These variations are linked to, for instance, 2; with an
18.6-year period, u; with a 27.21-day period, and A with a
3.64-day period. The explicit expression for ¢(!)(¢) can be
derived using perturbation methods to solve Eq. (50).

To enhance the precision of the analytical solution, we
employ a perturbation method known as the mean element
method [34,35], which uses the mean orbital elements &()
as a reference solution [defined in Eq. (B7)], rather than the
Keplerian orbit ¢(¥)(¢). Additionally, for simplicity, only
terms up to the first order of eccentricity in the solution are
considered. For more derivation details, one can refer to
Appendix B. The components of the perturbation solution

are outlined in Table II, with the average value 71 = \/;:3

replacing n in (¥ (1). Detailed expressions for the terms in
Table II can be found in Appendix C. Moreover, the
effectiveness of the analytical solution o(¢) is evaluated
through a comparison with high-fidelity numerical orbit

TABLE II.

simulations (see Appendix B 3). For the TianQin orbit, the
S5-year average deviation in position is approximately
87 km.

Table II illustrates the effects of gravitational perturba-
tions on the orbital elements of the TianQin satellite.
Variations in a are solely induced by short-period pertur-
bation. However, the other five orbital elements are also
influenced by both secular and long-period perturbations,
particularly the secular one, leading to cumulative change.
In the case of i, its secular variations are not due to lunisolar
perturbations (which would occur when considering sec-
ond-order eccentricity [47]), but instead result from J,
perturbation, tied to a coordinate transformation involving
the obliquity € [see Eq. (C47)]. As for Q, 4, &, and #, their
secular variations are predominantly driven by lunar and
solar perturbations.

The two elements, Q and i, determine the orientation of
the orbital plane. As indicated in Eqs. (C2) and (C21), the
secular variation of Q is dependent on the satellite’s mean
semimajor axis @ and mean inclination i, which implies that
Q experiences negligible precession when i~ 90°
Similarly, the secular variation of 7 for the TianQin satellite
is also minimal (<0.1° in five years). As a result, the
orientation of the TianQin detector plane remains nearly
constant, changing by less than 2.6° over five years. This is
in stark contrast to LISA orbits [4], where the plane
undergoes a full 360-degree rotation annually.

For the periodic variations, their periods are linked to the
motions of the satellite, the Moon, and the Sun. Especially,
for the short-period variation o,(¢), the arguments of
trigonometric terms take the form of x4 + pus + g5 or
kA + pU, [see, e.g., Egs. (C11) and (C39)], which indicates
that orbital variations occur at multiples of the satellite’s
orbital frequency and are modulated by the motions of the
Moon and the Sun. This insight aids in understanding the
perturbing effects of the Moon’s and the Sun’s gravitational
fields on the TianQin intersatellite range acceleration noise
(cf. Fig. 3 in Ref. [38]).

The components of the analytical solution ¢(¢) for the TianQin orbit describing the perturbing effects from the Sun, Moon,

and Earth’s J,. The symbol “ - -” denotes that terms do not appear separately due to the joint effects of solar and lunar perturbations. “~”
indicates neglected contributions, considering that the J, perturbation induces a negligible eccentricity variation of 1076. Terms like o7

. 11 !
are also ignored, and o J[z] =0 ][2

4 =o. Explicit expressions for each component are detailed in Appendix C.

o1 (1) oy (1) oy(1)

10 6o + 6,7t s m Js s m S m s m
a(t) ap 0 0 0 0 0 0 0 a a,
i(1) i 0 0 i5, 0 il U Py is i
(1) & e & ~ Sile) 0 gl : B
n(t) Mo e He ~ Mife] 0 g UM R
Q(1) Q Q QL Q5 0 ol olll Q! Qs Q.
A1) Ao + it ¢ 2 25, 0 A i Al a8 e
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Moreover, o,(t) is correlated with the orbit phase 4, () of
SCk, with a 120-degree phase difference among the
three satellites, indicating that short-period perturbation
will influence the relative motion between satellites.
However, it can be demonstrated that the other three
components of Eq. (55) may have little impact on the
relative motion. Furthermore, an ideal equilateral-triangle
constellation requires zero eccentricity, which is unlikely to

hold, as shown by the perturbation solutions 55{1)0) and

n,(cl)(t). Consequently, the presence of these components
underscores the potential to significantly disturb the nomi-

nal TianQin triangle constellation.

D. Perturbed motion of the TianQin constellation

Equations (53)—(55) describe the variations in orbital
elements for SCk (k =1, 2, 3) under the influence of
lunisolar perturbations and Earth’s J, perturbation in the
geocentric ecliptic coordinate system,

o (t) = oo + 6,71t — 1)

+(65(1) + () + 0" (1) + (D)L, (56)

with their explicit expressions detailed in Table II and
Appendix C. Substituting Eq. (56) into Eq. (8) and
using Eq. (31), the position vector r; and velocity vector
I, can be obtained. Then, employing the definitions in
Egs. (12)-(14), one can derive analytical expressions for
the constellation’s three kinematic indicators, L;;(t), v;;(1),
and a; (7). The time evolution of these three quantities is
illustrated in Fig. 3 for a set of simulated TianQin orbits,
comparing both analytical and numerical models (see
Appendix B 4 for more details).

Variations in the triangular constellation can be decom-
posed into two parts,

Lij(t) = Lo + 0L;(1), (57)
v;;(t) = v + 6v(1), (58)
(1) = a, + day (1), (59)

where L, = v/3x 10° km, v, =0 m/s, and a, =% re-
present the desired equilateral-triangle configuration.
Conversely, 6L;;(t), 6v;;(t), and day(t) signify distortions
from the ideal configuration. As previously mentioned, the
magnitude of these distortions significantly impacts GW
detection missions, including TDI data processing and the
design of instruments such as phase meters and telescopes.
It is crucial to minimize these distortions as much as
possible.

These distortions are all zero when the three satellites are
solely influenced by the Earth’s point mass and satisfy the
conditions (15) and (16). However, these conditions no

longer hold when accounting for gravitational perturba-
tions, which result in variations in e, (¢) and the inclusion of
nonsynchronous short-period terms o}(¢) in o;(t). To
achieve an equilateral triangle, o(¢) in Egs. (15) and
(16), instead, can be substituted with 6% (7):

a
iT(r) = i5(1) = i5(1) = i

where

i ={

o (1) — o}(1),

oc=ce,

61
c€{a,i,Q 1}, (61)
and o, (7) serves as the reference orbit for the synchronous
motion of the three satellites. Utilizing Egs. (56), (60), and
(61), the form of 6,(t) for c €{a,i,Q, 1} is

6o(1) = 6o + 6,714 (t — 1) + Ac§(1)

+ Ach(r) + ol (r), (62)

with o, 1= o0 = [00” (19) + 0} (19)] = 8,2 (k= 1) = const,
AcS(1):=05(1) =S (1o), and Aot (1) = 6l (1) = 61 (1,).
In other words, the three satellites move along the same
virtual circular orbit o,(#) with secular and long-period
variations, while maintaining a 120-degree phase differ-
ence, forming a rotating, precessing equilateral-triangle
constellation.

Correspondingly, 6L;;(t), 6v;;(t), and ey (¢) result from
discrepancies 8o y(1):

501 (1) = oy (1) — oo (1), (63)

between the real orbits o;(7) and the reference orbits
oo (t) =0,(1)+8,%(k—1). By expanding L;;(t), v;;(1),
and a;(¢) into a Taylor series along o.,(f), the triangle
distortions caused by o;(#) can be obtained. For the arm’s
length distortion, we have

SL;j(1) = Lj(1) — V3a,
V3 1
=7 [6a;(t) + ba;(1)] + 5005/1]-,-(0

1
+ 5 do COS io(1)09;(1)

+ \fao [sin M ;(1)6e;(t) — sin M;(1)6e;(1)]

+ O(60(1)?), (64)
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Time evolution of three kinematic indicators for the analytical model compared to the numerical model. The left panel displays

subplots illustrating variations in arm’s lengths (L;;), relative velocities (v;;), and breathing angles (a;), respectively. Colors in each
subplot represent the numerical model (blue for L, v1,, or a3; red for L3, v,3, or ay; green for Ls;, v31, or a,), while black denotes the
analytical model (only v, is plotted for clarity in relative velocities). The right panel illustrates the temporal evolution of discrepancies
between the analytical and numerical models for these three indicators.

where

86 (t) = 60;(t) — do,(1), (65)

MG (1) = Mo (t) £ 5. My(t) = doi(t) — (1), (66)
and the indices i, j, and k follow a cyclic permutation
(i,j,k=1->2—->3—>1). It can be seen from Eq. (64)
that, up to (66)" order, 6L,;(1) is unaffected by inclination
deviations 6i; and 5i;. Additionally, deviations in € have

minimal influence on 6L;;(¢) due to the approximately 90°
inclinations of TianQin orbits, which render the constella-
tion stability insensitive to orbital plane deviations.
Combining Egs. (56), (62), (63), and (65), and defining
io(t) = i, + i5(t), where i, is the average, the right-hand
side of Eq. (64) can be categorized into distinct types:

SLi;(1) = SLIE (1) + SLY® + SLI (1) 4 O(i5 (1)!)0Q(1)
+ O®50(1)?), (67)
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with
drift 1 = 1 I[c]
SLSM (1) = 5%5”]'1'(1‘ —1y) + 5%[%4‘ (1) +6adj; (1)]
1 - ¢
50 €08 T [55.25(1) + 5,0 (1)), (68)
A V3, B 1 - 1 o
5Llljjlag = 7 (5a0i + 5610]) + anéﬂﬂji + iao Ccos 105Q0ji7

(69)

5L?j“°(t) = gao[sinng(t) e;(t) —sin MJ;(1)e; ()]

Y3 L)+ (o) + a2 + 1)
+ ;ao cos 7,601 (1) + 302,(1)]. (70)

where (Sﬁjl = nj —n;,

8p0,;(t) = 80,;(t) = 66;(tp). (71)
56_101' = a()i —d,, 510]‘[ = j'Oj - ZOi - 27” (_] - l), and so on.
Equation (67) illustrates that arm’s length distortion man-
ifests in three possible types: linear drift SL{7"(¢), constant

bias 5L}, and periodic fluctuation SL{*“(r). Specifically,

(1) 5Lf]"ﬂ(t) consists of five components of intersatellite
deviations, including 67 ;, 6525, 5o, 542, and 5,0 ;

2) 5LE’}“ comprises initial mean deviations, éag;, 6ay;,
S40ji» and 6Q;; and (3) SLI (1) is linked to eccentricity
variations e;() and e;(¢) and short-period variations in
semimajor axes a;(¢) and ai(), along with intersatellite
periodic deviations in A and Q. Among these types, the
drift, which progressively increases over time, emerges as
the predominant factor affecting the stability of the
constellation.
Regarding the relative velocity, one has

6v;;(t) = v;;(t) =0
3,
= =5, 16a;(1) -

ao

da;(1)]

+ \27 vo[cos My (1)6e;(1) — cos M (1)de;(1)]

+ O(b0(1)) (72)
= SV 4 Sv(1) + O(80(1)?), (73)

where v, = \/az and
0

. 3w _
51)5’}“:—161—2(500] 8ag; ) (74)
30
Sytlue (¢ Of 48 —as(t
() == 2l (1) =} (1)

—l—? olcos My (1)e;(t) —cos M (t)e;(1)]. (75)

Equation (73) illustrates that there is little long-term
variation in relative velocity, 511?}if‘(t) ~ 0, consistent with
numerical simulation results (cf. Fig. 10 in Ref. [41]).
Additionally, the breathing angle within the TianQin
triangle experiences three types of distortion akin to those

observed in arm’s length:

Sy (1) = ap (1) _g
— #3% [8a; (1) + 5aj(t) —28a,(1)] + %Mji(f)
+ %cos io(1)0Q;(1)
+ g[ k(t)der(t) + fL(t)be(1) +f£(t)5€j(f)]
+ O(56(1)?) (76)
_ 5agrift(t) + 5a2ias + 5a£luc(t) + O(ig(t)l)égﬂ(t)
+ O(5e(1)?), (77)
with

) 1 1 ¢
8affi (1) = 360;,(1 = to) + 5 [8a25(1) + a2 (1)
1 - ¢
+ ECOS iy [5AjS(t) + 5AQ§E~ ] (1)], (78)
bias 1 = 7 oy 1 160
5ak = W (6a0ik + 6a0jk) —+ 5510” + ECOS loagoﬁ,
(8]
(79)
NG ' .
Sag(1) = L c(0)er(r) + fo(t)ei(r) + fe(t)e;(1)]
1
e [Bay (1) + a%y (1)
2\/§a0 k jk
1
5 1645 (1) + 6250
1 _
+ 508 i [59;&” (1) +6Q%(1)], (80)
where
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fe(t) = 2cos My (1) sin B,
fi(t) = —sinM;(t) — 2sin M (1),
F(t) = 2sin My (1) + sin M, (1). (81)

Equations (79) and (80) show that bias and fluctuation in
the breathing angle, as observed from SCk, are associated
with deviations in a and e of all three satellites. However,
concerning A and Q, they are exclusively linked to the
relative differences between the other two satellites.

The variations in the three types, drift, bias, and fluc-
tuation, all impact the constellation’s stability, necess1tat1ng
optimization. The drift, associated with 67 j; Sto oa ji> can
be significantly mitigated by aligning the mean semlmajor

—optim —optim
axes a;’ " =a;"". More generally, one can see from, e.g.,

Eqgs. (78)—(80), that terms within the drift, bias, and long-
period fluctuation are contingent on the mean or initial mean
values of parameters a, i, Q, and A. Additionally, the
fluctuation is also correlated with eccentricities, which
exhibit secular variations and serve as the primary factor
influencing the amplitude of the fluctuation. Thus, the
optimization of constellation variations can be achieved by
imposing the following conditions:

—optim __ _optim __ —optim
a =dy =dz
foptim _ —optlm _ ;optim

1 =h -3 ’

Aoptim __ Aoptim __ Aoptim
QP = Q5P = QPP (82)
Joptim __ 2x opnm
AP = 2 (ke — 1) 4 7

optim
e (1) =0.

Further, the optimized indicators, up to the leading order, are

SLIP™ (1) = g ao[sin M;(1)e; (1) — sin M3 (1)e;(1)]
V3

+7 [df(l‘) +

1 .
+§a° €08 1,097 (1), (83)

1
a3(1)) + 5 a2 (1)

; 7
suiP (1) = g vy

[cos MG;(t)e; (1) — cos M, (1)e;(1)]

3,

e [a3(r) — a} (1)), (84)

V7

5ai™™ (1) = < [Feent) + fe(n)ei(r) + feltye;(1)]

1 N s 1 s
+ 3 [0}y (1) + dasy (1)] + 55/1]7(1‘)

| R
+ 5 €08 1,0Q%(1), (85)

with right-hand functions adopting the conditions given by
Eq. (82),1e., a, = c‘zzp"m, i, = zzp"m and e, (1) = eom'm(t).
Equations (83)—(85) reveal the optimized TianQin triangle as
intrinsic fluctuation variations induced by perturbations, with
the amplitude dependent on eccentricities and short-period
variations in other elements. Notably, conditions in Eq. (82)
correspond to the optimal stable configuration, and therefore
can provide useful guidelines for numerical optimization and
orbit control.

IV. CONCLUDING REMARKS

Detecting GWs with TianQin requires a stable three-
satellite constellation, configured as closely to an
equilateral triangle as possible. In high Earth orbits,
gravitational perturbations, especially from lunar and solar
influences, can distort this configuration. To quantify
the impact, we have developed an analytical model delin-
eating the effects of lunar and solar point masses on the
TianQin constellation. This model provides expressions
for three kinematic indicators, including arm’s lengths,
relative velocities, and breathing angles, derived from
the first-order perturbation solution for satellite orbital
elements.

The analysis of these indicators has revealed that
gravitational perturbations induce secular, long-period,
and short-period variations in satellite orbital elements,
leading to relative motion between satellites and distortions
in the constellation. These distortions appear as three
distinct types, i.e., linear drift, bias, and fluctuation. The
drift, progressively increasing over time, is a primary
destabilizing factor affecting arm’s lengths and breathing
angles but has almost no impact on relative velocities. To
alleviate design constraints on onboard scientific payloads,
these three distortions have been further optimized. It is
demonstrated that both drift and bias can be eliminated, and
fluctuation amplitude reduced, if the three orbits adhere to
the following constraints on average: synchronized orbital
periods, aligned orbital planes, equally spaced phases, and
minimized eccentricities. The expressions for the optimized
indicators are presented, revealing that the optimized
TianQin constellation displays only fluctuation with ampli-
tude dependent on eccentricities and short-period variations
in other elements.

These results can provide valuable insights and guide-
lines for enhancing the stability of the GW observatory
constellation, such as in numerical optimization and orbit
control. For future works, this model will be extended to
incorporate the influence of initial orbit errors [22,48-50].
The perturbation solution can be applied to explore the
dynamics of TianQin satellite eccentricity, closely linked to
the constellation stability. Potential applications in celestial
mechanics, especially for high-inclination TianQin-like
orbits subject to the Kozai-Lidov effect [51,52], may arise.
Further discussions are deferred to future work.
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APPENDIX A: TABLE OF SYMBOLS

Table III below lists the main symbols used in the paper
and their meanings for quick lookups.

TABLE III.  List of symbols and their meanings.

Symbols Meanings

t Time

1o Reference epoch

UTC Coordinated Universal Time

a Semimajor axis

e Orbital eccentricity

i Orbital inclination

Q Longitude of ascending node

10} Argument of perigee

v True anomaly

M Mean anomaly

E Eccentric anomaly

u(=w+v) Argument of latitude

A Defined as (w + M)

E(= ecosw) Singularity-free variable for eccentricity
n(= esinw) Singularity-free variable for eccentricity
c General representation of orbital elements

0 Initial orbital elements

Subscript e Refers to the Earth

Subscript s Refers to the Sun

Subscript m Refers to the Moon

Subscript J, Refers to the Earth’s oblateness J,
Subscript 0 Denoting initial values or zeroth order
Subscript 1 Denoting SC1 or first order

Subscript 2 Denoting the Sun, SC2 or second order
Subscript 3 Denoting the Moon or SC3

Subscript o Denoting nominal values

Notation ¢ Denoting secular variation

Notation [ Denoting long-period variation
Notation [[c] Denoting special long-period variation
Notation [[/] Denoting general long-period variation

Notation s Denoting short-period variation

i, j, k Represent satellites and take values of 1, 2, 3

K, Py q Represent components of the perturbation
solution

v Time derivative of y

y Mean orbital elements or average values

(Table continued)

TABLE III. (Continued)

Symbols Meanings

Ay Difference [See Eq. (62)]

oy Change relative to the nominal value y,
[See Egs. (57), (63), and (65)]

OpY See Eq. (71)

u(=GM,) Gravitational constant of the Earth

U (=GM) Gravitational constant of the Sun

u3(=GMy,) Gravitational constant of the Moon

R, Equatorial radius of the Earth

Js Second zonal harmonic coefficient

€ Obliquity of the ecliptic

Gravitational potential

U, Central gravitational potential

R Perturbative potential

Py(x) Legendre polynomial of degree N

N Truncation degree

R.(7). R.(y) Rotation matrices about the x and z axes by
angle y

Zeroth and first order of the function f

0, Takes values 0 or 1 [See Egs. (11) and (51)]

r Geocentric satellite distance

r Geocentric satellite position vector

r Geocentric satellite velocity vector

r Unit vectors for satellite, the Sun, and the
Moon, respectively

Vo, W3 Geocentric angles between satellite and the
Sun, and the Moon

@ Geocentric latitude in Earth-fixed coordinate
system

r Sun-Earth distance

7 Mean Sun-Earth distance

u, Ecliptic longitude of the Sun

Uy Mean longitude of the Sun

U, Defined as (u, — Q)

3 Earth-Moon distance

73 Mean Earth-Moon distance

is Mean inclination of the Moon’s orbit

Q, Secular variation in the Moon’s longitude of
ascending node

M, Secular variation in the Moon’s mean
anomaly

U3 Latitude argument of the Moon

U3 Secular variation in the Moon’s latitude
argument

Aus Defined as (u3 — M3)

05 Defined as (Q — Q;)

n Mean motion of satellite with an orbit period
of 3.64 days

ng Rate of change of Q

n Rate of change of 1

ny Mean motion of the Earth with a period of
365.2564 days

n3 Rate of change of u3 with a period of
27.21 days (draconic month)

Ty, Rate of change of M5 with a period of

27.55 days (anomalistic month)

(Table continued)
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TABLE III. (Continued)

Symbols Meanings

ng, Rate of change of Q; with a period of
18.6 years

Ans(=n3 —ny,) Rate of change of Aus with a period of
6.0 years

ng,(=ng —ng,)  Rate of change of 6;

ny,(=ny — ng) Rate of change of U,

L;; Arm’s length formed by SCi and SCj

Relative line-of-sight velocity (rate of
change of L;;)

a Breathing angle at SCk

Nominal values of arm’s length, relative
velocity, and breathing angle

Inclination functions in the lunar
perturbation solution

APPENDIX B: MODEL DERIVATION
AND VERIFICATION

1. Derivation and motivation of Eq. (34)

For lunar point-mass perturbation, the perturbative
potential R, is represented as [35]

(BI)

( 1 r ) (B2)
=pu ——cosys |,
’ \r? = 2rr3cosys + 13 r 3

a(1-¢?) _ as(l-e3)
T+ecosy’ '3 — Tqescosus
described by Eq. (B2), exhibits a square root form,
introducing challenges in solving the Lagrange perturba-
tion equations. This complexity can be circumvented by

expressing \r——qu as an expansion of Legendre polynomials:

27-1/2
! = 1 [1 - 2<L> cosys + <L> ] (B3)
r—r3] s 3 13

IS () e

3 N=) \'3

where r = ,and cosyy = I3 - . Ry,

(B4)

Further substituting Eq. (B4) into Eq. (B2) and removing

the first term L [as 2 (1) =0 after substitution into
3 0 I3

Lagrange’s equaﬁons] yields

5 P\ N
R =" > (—) Py(cosys).
r3 N=2 r3

(B5)
This formulation proves more advantageous for solving the
Lagrange equations than Eq. (B2). Based on estimated
magnitudes and validation through numerical simulations,

we set the maximum degree of Legendre polynomials in
R, at N = 6. Additionally, the solar potential ‘R, resem-
bles Eq. (BS), with the maximum degree set at N = 2.

2. Derivation of Eqs. (53)-(55)

The analytical expressions for Egs. (53)—(55) can be
derived by applying perturbation methods to solve Eq. (50).
To enhance the accuracy of the analytical solution, it is
more advantageous to use the mean orbital elements ()
[34,35], corresponding to a long-term precessing elliptical
orbit, rather than the Keplerian orbit ¢(”)(¢) as the reference
solution. Consequently, the perturbation solution’s form
(53) is reformulated as

o(t) = 5(1) + [oy (1) + 0(7)] (B6)

with
5(1) = 50(1) + Ao (1) + Aoy (1), (B7)

and
0(t) = 6o + 6,a(t — 1), (B8)
&9 = o9 — [oyg (1) + o,(10)]. (B9)

where 5% represents the unperturbed secular variations, &,
is the initial mean elements, Ac,.(t) == 0.(t) — 6.(;), and
Acyi (1) = 0y (t) = 0y (to). Notably, oy (#) is incorpo-
rated into &(¢), considering its short-term behavior akin to
secular variation.

In relation to the left-side partitioning of Eq. (50)
concerning o(7), the function f, on the right is similarly
decomposed into

fr=rie+ fueg + fug + fis (B10)
f1. depends solely on @, &, 7, and i. Both Supe and fy
involve trigonometric functions with arguments related to
slow variables, such as €Qj; with an 18.6-year period
and u; with a 27.21-day period, while f|,; incorporates
the fast variable A, which has a 3.64-day period, as the
argument. The decomposition in Eq. (B10) is achieved
through averaging [16,47,53], where, for instance, f, is
obtained via

1 2r
fis=F1—={fi)a <f1>z’=EA frda.  (B11)

A similar averaging over slow variables is applied to derive
S1es fiie» and fy. Moreover, given that the TianQin orbits
are nearly circular with e ~ 0.0005 [24], the terms on the

right side of Eq. (B10) consider only the leading-order
effects of eccentricity for simplicity.

083033-14



EFFECTS OF LUNISOLAR PERTURBATIONS ON TIANQIN ...

PHYS. REV. D 109, 083033 (2024)

By inserting the formal solution (B6) into both sides of
Eq. (50) and conducting a Taylor expansion around &(7),
the comparison of coefficients for the same powers

(€2, !, & ...) yields [35]

700 = [ Ifoade =70+ 3= 1) (B12)
a(1) :/,[ 1elpdt (B13)
Ggfc)}(t) = / I 1))zt (B14)
o = [l (B15)
o) = [ %2al” 4 1] . (B16)

6
@n_ [[1fo; () Zafl DG
O¢ (t)_/ |:§—aa2 [ax ]c+ jZIT‘j[Gs +Gl[/]]j ) dt,---

[

(B17)

The superscript in parentheses denotes the order of the
perturbation solution; in this paper, we focus on the first-
order solution. Utilizing Eqgs. (B13)—~(B16), we derive
explicit expressions for the four components of &' (z),
presented in Appendix C. Particularly, for &, &, 7., and
Milc]> 1t 1s more reasonable to directly solve the oscillation
equations they satisfy [see Egs. (C56) and (C57)] [35];
detailed derivations are provided in Appendix C4.

Note that in Eqs. (B12)—-(B17), ¢ on the right-hand side
all take the form 6(¢) defined in Eq. (B7). For i, Q, and 1,
they are embedded in the trigonometric functions of f. To
enable integrable solutions, o (¢) in 5(t) is approximated
as a linear term with a rate of change 7i,,

(A1) L[ s s

ﬁo‘ = 7‘[’ f(t
T
where 7 denotes the duration, implying

6o+ nL(t—1ty), oc€{Q, 1},
I A L)
(i(1)).. o =1
with
n,=6n+n, + f,. (B20)

Here, n, represents the rate of change for o,.(f), given by
Ny = Ngg + Ny + Ny, Additionally, i(r) is approximated
as the mean value (i(7)),, due to its small secular variation.

3. Verification of Eqs. (53)-(55)

To validate the derived analytical solution for satellite
orbits, we conduct high-precision numerical orbit simula-
tions using the NASA General Mission Analysis Tool
(GMAT) [54]. The force models, consistent with those in
Ref. [24], include the point-mass gravity fields of the Moon,
Sun, and solar system planets (the ephemeris DE421),a 10 x
10 spherical-harmonic model of the Earth’s gravity field
(JGM-3), and the first-order relativistic correction.
Nongravitational perturbations, such as solar radiation pres-
sure, are omitted as the satellites are drag-free controlled.
Additionally, an adaptive step, ninth-order Runge-Kutta
integrator with eighth-order error control (RungeKutta89)
is employed, with the maximum integration step size set to
45 minutes. Initial orbital elements for the test orbits are
detailed in Table I'V. Orbit-1 corresponds to the nominal orbit
of the TianQin satellite. In addition, three cases with different
inclinations are considered to facilitate a more comprehen-
sive validation, considering that the inclination is a crucial
parameter in the analytical solution.

The comparison between analytical and numerical
orbits reveals the errors Ao (t) = 640.(f) — Opum(?)
(c€{a,e,i,Q,w,A}). Statistical results, shown in Table V,
demonstrate that analytical expressions for e, i, Q, and 4 are
in good agreement with numerical simulations, with the
relative mean deviation of e being less than 6%, and long-
term deviations for i, Q, and A being small. In addition,
there are relatively large errors in @ and w, with the latter
having a minor influence on the constellation stability [see,
e.g., Eq. (64)]. Table V also includes a comparison of
satellite positions, denoted as |Ar(?)| := |Fypa () — Tpum (7)]-
For the TianQin orbit, the average and maximum deviations
over a 5-year period are approximately 87 km and 210 km,
respectively.

For future improvements, potential dominant sources
causing the aforementioned errors are briefly outlined as
follows. First, simplified analytical coordinates for the Sun
and Moon (see Sec. III B) were utilized, instead of higher-
precision ones with multiple trigonometric corrections
[35,45]. Second, smaller perturbative effects, including
those from other planets in the solar system and the
nonspherical gravitational field of the Sun and Moon, were
omitted in Eq. (32). Last, the second-order solution was
lacking, and the next-leading-order eccentricity effect was
neglected in Eq. (B10), etc.

TABLE IV. Initial orbital elements of the test orbits in the
J2000-based Earth-centered ecliptic coordinate system at the
epoch 1 January, 2034, 00:00:00 UTC.

Test orbits ap [km] () io [0] QO [O] (O [0] 17 [O]
Orbit-1 100000 0 947 2104 0 60
Orbit-2 100000 O 65.0 2104 0 60
Orbit-3 100000 O 35.0 2104 0 60
Orbit-4 100000 0 05.0 2104 0 60
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TABLE V. Comparison of the analytical solution for satellite orbits with numerical simulations over 5 years, indicating mean errors

(and maximum errors). To address the secular variation of Q, the second-order solution €

>( t) obtained from Eq. (B17) has been

incorporated into the analytical solution. When propagating 4 and, consequently, r using Egs. (53)-(55), the mean semimajor axes of the

numerical orbits were employed.

Test orbits a [km] Ae/e [%) Ai [°] AQ [°] Aw [°] A [0 |Ar| [km]
Orbit-1 -14 (-16.1) +5.7 (+7.3) -0.00 (-0.02) —0.00 (-0.01) —1.1 (+29.9) —0.05 (=0.11) 087 (210)
Orbit-2 +0.4 (=155)  +12 (+3.0)  +0.01 (+0.06) 4+0.08 (+0.12)  —1.1 (+70.9)  +0.01 (=0.10) 126 (240)
Orbit-3 +19 (+162) —44 ( 5) 4004 (+0.14)  +0.08 (+0.14) —1.6 (—44.4) +0.08 (+0.18) 291 (502)
Orbit-4 120 (4182)  —1.0 (+4.9)  —002 (=0.05) —038 (=0.96) +7.3 (+19.9) +042 (+1.02) 161 (426)

4. Model verification for the three indicators trigonometric functions [see Eqgs. (37) and (39)].

Appendix B 3 verifies the analytical solution for satellite
orbits, focusing on individual satellites. Additionally, this
subsection presents the verification of the analytical expres-
sions for the kinematic indicators of the three-satellite
constellation: L;;(#), v;;(t), and a(t), derived from
Eq. (56) [or Egs. (53)—(55)].

The time evolution of these three indicators in both
analytical and numerical models is plotted in the left panel
of Fig. 3 for a representative set of initial orbital elements
provided in Table VI. In the numerical model, the consid-
ered perturbations, integrator, and step size align with those
detailed in Appendix B 3. The right panel illustrates the
time evolution of the deviations between the analytical and
numerical models for these three quantities. Figure 3
indicates that the analytical model can effectively capture
the long-term variations in the indicators, while noticeable
periodic deviations exist. Numerical simulation results
suggest that these deviations primarily arise from approx-
imations in the Sun and Moon analytical dynamical model.
By employing higher-precision models for solar and lunar
motion [35,45], incorporating numerous trigonometric
correction terms in the Sun’s ecliptic longitude u, and
the Moon’s latitude argument u;, these deviations can be
effectively reduced. On the other hand, this enhanced
complexity presents challenges in analytically solving
the Lagrange equations, as u, and u; themselves involve

TABLE VI. Initial orbital elements for simulated TianQin orbits
in the J2000-based Earth-centered ecliptic coordinate system at
the epoch of May 22, 2034, 12:00:00 UTC. These initial
elements deviate by approximately 1 km, 1073, 0.2°, 0.2°,
0.1°, and 0.1° in ay, eq, iy, Ly, Wy, and v, respectively, from
the optimized orbits (cf. Table 3 in [24]). The subsequent orbital
evolution is illustrated in Fig. 3.

ay [km] € iy [°]
SC1 99 996.572 323 0.000 440 94.897 997
SC2 100 010.400 095 0.000010 94.904 363
SC3 99992.041 899 0.000 296 94.509 747
Q [°] wy [°] v [°]
SC1 210.645 892 358.724 463 61.429 603
SC2 210.240 199 359.900 000 180.130 706
SC3 210.644 582 359.901 624 299.812 164

Additionally, beyond the orbits specified in Table VI,
the analytical model has been validated on two additional
sets: nominal orbits (with SC1’s initial elements matching
those of Orbit-1 in Table IV) and optimized orbits (refer to
Table 3 in [24]), yielding consistent results.

Furthermore, the expressions (64), (72), and (76),
derived from the series expansion of the three indica-
tors, have been verified. The results suggest that to
achieve a deviation magnitude similar to that before the
series expansion, the second-order term SL;;(64(1)%) =
34, 52;(1)62(1) = 2 ao[52;(1)? + 84;(1)?] in the arm’s
length, where §(1)? ~ 6n’* rapidly increases with time,
needs to be taken into account. Notably, for the relative

velocity and breathing angle, these second-order terms are
both zero, 5v;;(54(1)%) = Say (5A(1)?) = 0.

APPENDIX C: EXPLICIT EXPRESSIONS
FOR TERMS IN EQ. (55)

In this section, explicit expressions for each term of
0(1)(t), as listed in Table II, are presented. These expres-
sions, categorized by the perturbations of the Sun, Moon,
and Earth’s J,, are detailed in C1, C2, and C3.
Appendix C4 provides the perturbation solutions for
jointly solved & and n: &, 1., &, and 7y, considering
both solar and lunar perturbations. Note that in the
subsequent expressions, the orbital elements a, €, 4, and
i take the mean value a or the form defined by Eq. (B19).
Similarly, the Moon’s orbit inclination i; represents is.

1. Solar perturbation solution o (¢)

The secular variation ¢¢(¢), long-period variation o(t),

and short-period variation o3 () within o,() are presented
as follows:
(1) Secular terms with the form o (¢):

al =i =0, (C1)
Qf = nqgt, Mg #= = 4 €5 €08 I, (C2)
A = nyt, nys =< (1 = 3cos2i), (€3)

where ¢ := :7
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(2) Long-period terms with the form o’ (¢):

=gl =l <o, c3
3 c.
i =25 Ginicos20,, (C5)
I’le
m_ 3¢
Qq =25 cosisin 2U,, (Co)
8ny,
A0 = 3 G (o5~ 3)sin20,, (€7)
16 I’lU2
with
Us(1) = (1) = Q1) = ny, (1 = 10) + Uy, (C8)
ny, =ny — ng. Uy, = tty, = Q. (C9)

where n, is the rate of change of Q(f) as defined in
Eq. (B19). These expressions reveal that solar perturbation
induces general long-period variations in satellite orbital
elements with an annual period tied to the solar apparent
motion n,. The magnitudes of these variations are governed

by a and i. 51[1 =1 1 = 0 arises from considering only the
leading order N = 2 within Py(cosy,) [refer to Eq. (33)];
when N > 3, both £ and n will exhibit periodic variations,
as observed in the case of lunar perturbation [see
Egs. (C33) and (C34)].

There are no special long-period variations in a, i, €,
and 4,

oll=0, for ce{a.i,Q 1}. (C10)

For & and 7, they exhibit special long-period variations
coupled with lunar perturbation, as indicated in Egs. (C69)
and (C70).

(3) Short-period terms with the form o5 (7):

8
L7l
I
B
8

X hi, , €08(24+ pUy), (C11)
&2
302
&= Z Z h‘(iyp) cos(kd + pU,), (C12)
(AKK::Iz) (Z:;;i)
3.2
m=> > h. ) sin(kd + pUs), (C13)
(A’f:]z) (Z,:,;%)
2
i =Y i, cos(2d+ pU,) (C14)
p=-2
(Ap=2)

2
Q=Y K sin(2d+ pUy,), (C15)
&)
2
2= Z Iy sin(22+ pUy), (C16)
(Ap=2)
with
A— he (i) (C17)
(x.p) - Kn;L + an2 [x.p] !
for 6 €{a,& n,i,Q}, and
2la) W
3egn X h () cg X h (i)
B = ; N (e )
(o) (k) + anz)

!/
Kkn, + pny,

where n; denotes the rate of change of A(¢) as defined in
Eq. (B19). In the specific case of solar perturbation alone,
ny, =i+ ny. The terms on the right side of Eq. (C18)
correspond to the integrals of the two terms in Eq. (B16).
The explicit forms of hﬂ,p](i) are given by

3.5, ; 3 ) _
hflz_o] Zismzl, h[z’ﬂ] :§(3 F4cosi+cos2i),
i 3o i 3 C e A
h[m] =§sm21, h[z’ﬂ] :l—6(i251nl —sin2i),
0 _3 Q 3 .
s —40051 hs o) Zg(:l:l —cosi),
Ala 3 . . Ma 3 . .
h[z[,(])] = —Zsmzz, h[z[.iz] = _RB F4cosi+cos2i),
a3
hiyo = 8(3 cos2i),
3
hgf]ﬂ] = —1—6(5 F 6¢osi+cos2i),
1
¢
hy o= 16( —15c0s2i),
3
hﬂﬂ] 32(7:|:12cos1+500$2l)
I, :ésmzi he 3 —(3F 4cosi+cos2i),
[3.0] 8 ’ [3,i2] 32
! L(11—3(:0521')
[1, 0] 16 )
3
h?l_ﬂ] = _ﬁ(ll F 12cosi+cos2i),
U zisinzi n 3 —(3F4cosi+cos2i). (C19)
[3.0] 8 ’ [3.i2] 32

2. Lunar perturbation solution o, (¢)
The secular variation 6§,(7), special long-period variation

aﬁr[f](t), general long-period variation afr[ll](t), and short-
period variation ¢%,(¢) within o,,(¢) are shown as follows:
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(1) Secular terms with the form o§,(7):

(C20)

ag, =i, =0,

QS = ngpt, (C21)

(C22)

c
/1m - nﬁmt s
where

3¢ 45cly)
Nom = —f—6005i(1 +3cos2i3) — 32;68

X (9cos i+ 7cos3i)(9 4 20 cos 2i5 + 35 cos 4i3)

_ 525¢y)
16777216
x (50 + 105 cos 2i5 + 126 cos 4i3 + 231 cos 6i3),

(C23)

(50 cosi + 45 cos 3i + 33 cos 5i)

)

9¢m
65536
X (27 4 40 cos 2i — 35 cos 4i)(9 + 20 cos 2i;

75c1<1?)
oo
33554432
+ 294 cos4i — 231 cos 6i)(50 + 105 cos 2i3

+ 126 cos 4i3 + 231 cos 6i3),

1
Ny = ﬁcg)(l —3cos2i)(1 + 3cos2is) +

+ 35cos4i3) 250 + 455 cos 2i

(C24)

(N) M3 (a
and =3
Cm nr (r3

(2) Special long-period terms with the form afr[f](t):

)N—Z'

al!h = o0, (C25)
I NS i)
= gy cos 05, (C26)
(Al\z/vzzzz) g=1
N N
anl =33 £ sin g0, (C27)
(A]\I]\/::ZZ) =1
N N
I =3 1 sin g0, (C28)
N=2 g=]
(AN=2)
with
) o e
- o) (jy. €29
f‘((fq) an}} [q] (l) ( )
and

93(l) = Q(t) - Q:;(t) = Ny, (t — t()) + 930, (C30)

ng, =ng—ng,. 03, =Q—-Q. (C31)

For explicit forms of ffq(]m(i), see Appendix D 1.
(3) General long-period terms with the form ofr[,l](t):

an =0, (C32)
and
1 N N N N
=D D D ficoslpus +q63).  (C33)
(A%:jz) (AP,,>:02) g=—N
" N N N "
M= D Y fh sin(pus +q63),  (C34)
(aN=2) (4 Taso)
" N N N .
in = D DD g cos(pus +q03).  (C39)
(aN22) (4 Tgs0)
" N N N o)
Q' =D > > Sy sin(pus +q6s).  (C36)
(ANN::ZZ) () g=-N
1] S A(N)
Am’ = Z Z Z f(p.q) Sil’l(pu:; + ‘]93), (C37)
(AN ) =N
with
(N) ch (N)
7 = . -m X 0 i). C38
f(l’v‘]) phs + qn€3 [p,q]( ) ( )
For explicit forms of ff::;])(i), see Appendix D 2.
(4) Short-period terms with the form &3, (1):
N N N w
= 2> D afilycosh (C39)
N=2 K>£) P::N q=—N
(Ar=2) (Ap=2)
N N+1 N N )
‘frsn - Z Z Z f(K,p q) cos A, (C40)
N=2 x>0 p=-N q:—N
(Ak=2) (Ap=2)
N N+1 N N ™
=YD 2 > flpgsinA (C41)
N=2 (AK;<>:02) (pAT;[;) q=-N
N N N N )
T 5D 3 95 SE AT NETE
N=2 x>0 p=—N g=—N
(Ak=2) (Ap=2)
N N N N Q)
Q=D D > D fupysinA  (C43)
N=2 o Gy a=—N
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with A := kA + pusz + g6s,

fa(N) . CSIiV)

(k.pq) = kny + pnz + qng,

x f‘[’“; }q](i) (C45)

for 6 €{a, & n,i,Q}, and

(V)

i) 3cm n o FNa
Tr) ™= e+ pmy + g2~ Tl O
Can) AN)A]

x @), (c46)

+
kny + pns + qng,
For explicit forms of f‘[;(f:’)q](i), see Appendix D 3.

3. Earth’s J, perturbation solution o/, (f)

The Earth’s J, perturbation solution, 6,.q) in the
geocentric equatorial coordinate system, can be derived
straightforwardly from Egs. (35) and (B13)-(B16). For
consistency with the solar and Iunar perturbation solutions,
the ecliptic representation o, is essential. Given that the J,
perturbation is significantly smaller than lunisolar pertur-
bations, this study focuses on the secular components,
including i9,, Q,, and Aj,. Employing spherical trigo-
nometry [33,35] and variational method, we have

{5, = sinQsin eQ;'z<eq> =n;, 1t (C47)
Qj, = (cose +coticosQsine)Q) . = ng, 1, (C48)
) cosQ | ¢ _
/132 = lfz(“l) B sin i s egb("‘]) = My, t (C49)
with
3
ni, = =3 C, sin Q sin € cos iqg, (C50)
3 . . .
ng,, ==5¢, (cose + coticosQsine) cosieq, (C51)

3 . 3 . cosQ .
n,ljz ==§C12(1 +2C0$216q) +§C12 COSlquSIHG, (CSZ)

where € =23.439291° is the obliquity of the ecliptic,

. uR2
¢y, ="%¢, and

COS igq = cOsicose —sinicosQsine.  (C53)

4. Expressions for &, 7., &, and |

As pointed out in Appendix B, deriving the “secular”
perturbation solutions &5, (¢) and 75 (7),

ﬁew(t) = %gc(t) + fl[c](t)v (C54)
”ﬁew(t) = ’/Ic(t> + 771[6]<t)’ (CSS)
involves solving the oscillation equations:
d&hew( c ¢
Lionll) _ e+ £50. (€56)
dnfew (1 c c
=0+ F00. ()

Because of the minor eccentricity variations (~107°)
induced by the J, perturbation, only the effects of the
lunisolar perturbations are taken into account, resulting in
expressions for i and h, given by

he s hS + ha, Ry = Bl R, (C58)

with

hl = §cs,

5 (C59)

3
hE = gcs(l —5cos2i),
and

3ety) 45cty
32 65536
+12c0s2i+49co0s4i)(9+20co0s2i3 +35cos4is)

525¢1)
33554432
X (504 105c0s2i3+ 126cos4iz +231cos6is),

_3053)

ES

(1-5c0s2i)(1+3cos2i3)— (3

(30+71cos2i+ 114cos4i+297cos6i)

Him

(14 3cos2i3)

45¢ly
8192
525¢)
4194304
X (504 105c0s2i3 + 126cos4iz +231cos6i3). (C60)

+

(345¢0s2i)(9+20co0s2i3 +35cos4is)

(15+28cos2i+21cos4i)

Moreover, the expressions for fll[g](t) and fll[;](t) are

5

A =37 =f7, sin(Aus + q63),
g=-5

(C61)
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fil = Z f1, cos(Aus + q05). (C62)

q=
(1#0)

Fipy = e (4rs + ud) 150 (0) + i) (6r5 + ud) £ (i),

(C63)
Flyy = e (415 + a7 6) 4+ ) (675 + ) £, (),
(C64)
and
Aus(t) = u3(t) = M5(1) = Ans(t = 1o) + Auz,,  (C65)
An3 = nz — nM3, AM:;O = M3O - M30, (C66)

where 7§ := _ﬁ and f” = 0. Further, solving Egs. (C56)

and (C57) ylelds

£.(t) = ¢y cosh( \/_\/7 s1nh \/_\/7

(C67)
t) = ¢, cosh( \/_,/ )+ ¢ smh \/7,/
(C68)
5 ft,(Ans + qng,) = hef
(@\573 b3 ¢ (q)
S (1) = cos, (C69
1) qz—s (Ans + qng,)* + heh, (©%9)
5 £ 4
() = > TG ¥ avo) + lnliy o (C70)
¢ 4——5 (An3 + qn03)2 + ]’lé:h,7
where
=& - &) (to), ¢y = fig — i) (o) (C71)

and I' := Auy + g605. Equations (C69) and (C70) indicate
that solar perturbation alone induces no special long-period
and f'Zq) are
exclusively associated with lunar perturbation. Additionally,
it is worth noting that introducing al[c](t) in the reference
solution (B7), as well as in Egs. (C54) and (C55), is crucial.
Without this term, a significant increase in analytical

variations in £ and 7, since the terms ffq)

solution errors would occur, leading to the disappearance
of terms related to & (#9) and 77, (#o) in Eq. (C71), as well
as the terms associated with h: and &, in Egs. (C69)
and (C70).

APPENDIX D: EXPLICIT FORMS
OF INCLINATION FUNCTIONS

The explicit forms of inclination functions within the
lunar perturbatlon solution are shown below. These encom-
pass f )( /) in Egs. (C29) (C63), and (C64) for the special

long- perlod terms, f (1) in Eq. (C38) for the general

(i) in Egs. (C45) and (C46)
for the short-period terms. For brevity, only the leading-
order inclination functions with N =2 or N =3 are
presented (cf. Table VII). Inclination functions for other
orders can be derived using the methods outlined in
Appendix B. Note that / and i3 in these functions represent
mean values i and i, respectively.

long-pGHOdte““S’and-fkﬁzJ

1. Inclination functions for special
long-period terms

The inclination functions f'[’;]N)(i), associated with the

special long-period terms aﬂf](t) in Egs. (C26)—(C28),
(C69), and (C70), are listed below in terms of the orbital
elements &, 7, i, Q, and A:

(1) Inclination functions with the form ff (i):

225 (cosi—cos3i)(3 —4cos2iy + cosdiz)

5= 32768 1 — cos i ’
f¢(3)_45..5.... .

o] 7m(smz + 5sin3i)(sin i3 + 5sin 3i3),
ff(S) =- ! (cosi+ 15co0s3i)(+6 —cosi

=17 T 16384 ’

+ 10cos2i3 — 15cos 3i3),

f[ﬁ] 8103 ——(sini — 3sin3i)(sin i3 & 4 sin2i3 — 3 sin 3i3),
225
f%f) == Teaed (cosi—cos3i)(2 —cosiz —2cos2i;

+ cos 3i3). (D1)
TABLE VII. Relationship between the inclination functions
and the Legendre polynomial degree N.

. i () () frad)
a N =12,3,4,
£ N =35, N=35,.. N =234,
i, Q A N=2,4 N=2,4 N =2,3,4
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(2) Inclination functions with the form f'[;(f (i):

225 (1 —co0s2i)(3 —4cos2iz + cos4iz)

f’?(S) —
=31 16384 1 —cos i; ’ £3)
a) _ 15 ; : T~
<1 = 5193 —— (34 5¢0s2i)(6 F cosiz + 10cos 2i3
F 15cos3i3), f[3 +1)
f”(3) = 75 sin 2i(£ sin i3 + 4 sin 2i3 F 3 sin 3i3),
2172048 750
n(3) 225 . . . . [3.2]
5 = 3193 (I —cos2i)(2 —cosiz —2cos2i; + cos 3i3).
(DZ) f[3 :E3
(3) Inclination functions with the form f E;?(i):
i _ 3 .
f[l] = 8coszsm2l3,
fé]z) =16 (1 —cos2i3)sini. (D3) (3)
(4) Inclination functions with the form fﬁ ]2)(1)
3 f[1 +1] 7
fﬁ](z) =g o8 2icscisin2is,
3
ff;](z) = 1608 i(1 = cos2i3). (D4) 1(3)
(5) Inclination functions with the form fff >(i): n(3)
¢ fia=
f’[ll(]z) = ——(3cosi— cos3i)cscisin2is, 1(3)
16 B.+1]
f’l(2> __3 (3 —cos2i)(1 — cos 2i3) (D5)
) 7
7(3)
2. Inclination functions for general long-period terms
The inclination functions fﬁfl\;])(z) for the general long- ’[73(23]

qu

period terms oy, (1) in Egs. (C33)—(C37) are listed in the

f@( ,3—)2] =

(2) Inclination functions with the form f!

-3 =~

(1,42 — —

3,42~

75(3sin3i —sini)(10sin i3 — 5sin3i3 + sin5i3)
8192(3 — 4 cosiz + cos2i3) '

~ 5048 (sini + 5sin3i)(3sini; —sin3i3),

5
—8192(cosz+ 15c0s3i)(£2 —cosiz F 2cos2i3

+ cos3i3),
75 e . .. c o
=——(3sin3i —sini)(5siniz — 4sin2i3 4 sin 3i3),
Z0og (3sin3 )(5 4sin2i3 + sin3i3)

5
=519 —(cosi—cos3i)(+10—15cos i3 +6cos2i3

—cos3i3). (D6)

(3) .
[nql(l)‘

225 (1—cos2i)(3 —4cos2i;+cos4diy)
8192

El

1 —cosis

4096
F 15c0s3i3),

(345¢0s2i)(6 F cosiz + 10cos2i;

75 A .
1024sm2l(:|:smt3 +4sin2i; F 3sin3i3),

40956(00521—1)(2—cosi3—20052i3+cos3i3),
_—i(s+500521)(2:FCOSZ3—2008213
4096
=+ cos3i3),
75 . . . e A
1024s1n2l(j:551n13 —4sin2i;3 £ sin3i3),
:—i(l—coszi)(l()q:15COSi3+6COSZi3
4096

order of &, 5, i, Q, and 4, as follows: F cos3is). (D7)
(1) Inclination functions with the form f§ ( /): "
(3) Inclination functions with the form f E( )](i):
f§(3) 225 (cosi—cos3i)(3 —4cos2iz + cosdiz) P4
=3 16384 1 —cos i ’ ) 3
3) 5 oty = —Ecos1(2 sinis F sin2i3),
ffl,o] = 3018 (sini 4 5sin3¢)(sin i3 + 5sin3i3), o 3
‘) 5 S = ) (+3 — 4 cos i3 £ cos 2i3) sini. (D8)
iy = 192 ——(cosi+ 15¢0s3i)(+6 — cos iz = 10cos 2i3
—15c0s3i3), (4) Inclination functions with the form ff;i;(i):
3) _ 5 A 9
Jhiay = 1096 (sini —3sin3i)(sinizy +4sin2iy fg%]) =~ cos i(1 = cos 2i3),
—3sin3i3), ,
(3 225 fﬁgl] = 1608 2icsci(42 sin i3 — sin 2i3),
iy = @(com cos3i)(2 —cosi3 —2cos2i; 3
+ cos3is) f[é,@z] = 3508 i(3 F 4cos iz + cos2iz). (D9)
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(5) Inclination functions with the form fﬁg’z;](i):
@ :i(l —3c0s2i)(1—cos2is),
[2,0] 32 3

3
o = —3—2(3 cosi—cos3i)csci(+2siniz —sin2iz),

3
o = ~ o7 (3—c0s20)(3 Fdcosiz +-cos2iz).  (DI0)

3. Inclination functions for short-period terms

The inclination functions fﬁ;’)q](i) for the short-period

terms o3,(¢) in Egs. (C39)—(C44) are listed below in the
order of a, &, n, i, Q, and A:
(1) Inclination functions with the form f ik p d (z)

9 : .
ﬁ(l —c082i)(1 —cos2i3),
3

(2smz +5in2i)(2sinis £ sin2i3),

al2)
f[z,—z,o] =
f[z —2.41]

a 3
f[27_2’i2] < —(344cosi+cos2i)(3+t4cosiz+cos2is),

a(2 3 . ;
f[z(,o),o] :1—6(1 —c0s2i)(1+3cos2i3),
. 3
f[z(f)),il] = —g(:l:ZSIHi—F sin2i) sin2i,
a(2) 3 (344 2i)(1 2i
Foom = 32( cosi+cos2i)(1—cos2i3),
a(2)  _ ra(2)
Jo20 =20
4 3
f[2(,22),j:1] T — (2sini £sin2i)(2sini3 F sin2is),
u 3
iy~ Ot o0 s o,

64
(D11)

(2) Inclination functions with the form f [Kp d (z)

3
ffl(,z-)z.o] = @(7 — 15co0s2i)(1 — cos 2i3),
ff(z) 3 — (6sini & 5sin 2{)(2 sin i3 £ sin 2i3),
1241 = gz 3 }
f[l 242 = 5s¢ —— (74 12cosi+ 5cos2i)(3 t4cosis
+ cos 2i3),

1
2 . .
Fioo = 5 (7= 15005 20)(1 +3 cos 2is),
3

(i6 sini + 5 sin2i) sin 213,

3
128

flOi—l]

floﬁl —— (74 12cosi + 5cos2i)(1 — cos2i3),

f120]

&2
f[l.Z,il] =

f121-2]

f% —20] —

f[z 241 T

f [3.-2.42 =

fsom

f30iﬂ

f%OiZ]

f32q
f32iﬂ

f32¢2]

f1 —2.0)°

a(6siniﬂ: 5sin2i)(2sini; F sin2i3),

3
+12 2 4
256(7 cosi+5c0s2i)(3 F4cosis

+cos2i3),

9 . .
128(1 —c0s2i)(1 —cos2i3),

3
2sini £ sin2i)(2siniz +sin2is),
64

3
256(3 +4cosi+cos2i)(3+t4cosiy

+cos2i3),

63(1 —c0s2i)(1+3cos2i3),

§(i2sini +sin2i) sin2is,

3
128(3 +4cosi+cos2i)(l—cos2iz),

f3 2.0’

a(2sini +5sin2i)(2sini3 F sin2i3),

3
256(3 +4cosi+cos2i)(3 F4cosiz+cosiz).

(D12)

(3) Inclination functions with the form f”,fi,)_q](i):

f[1 —2.0]

@)
f?l,—z,il] -

(2)
f '[71,—2,i2]

)

f?l,0,0]

1(2)
[1.0.£1] —

)
f '[71 0,42 =

1(2)

(120 =

1(2)

1241 =

083033-22

128(11 —3co0s2i)(1 — cos2i3),

3
— (6 sini + sin 2i)(2 sin i3 + sin 2i3),

256(11 + 12cosi + cos2i)(3 +4cos i3

+ cos 2i3),

1
— —a(ll —3¢c0s2i)(1+ 3cos2i3),

3

7 (£65sini + sin 2i) sin 2i3,

3
128(11 + 12 cosi + cos 2i)(1 — cos 2i3),

1(2)
[1.-2.0]’

3
a (6sini + sin2i)(2sin i3 F sin2i3),

3
256(11 + 12cosi + cos2i)(3 F 4cos iz

+ cos 2i3),
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) 9 . .

’[73(._)20] = @ (1 = cos2i)(1 — cos 2i3),
’[73(72_)2&] 64 (2 sini + sin 2{)(2 sin i3 + sin 2i3),
?3(,2—)2,i2] 256 ——(3+4cosi+cos2i)(3t4cosis

+ cos 2i3),
5 3 . .
'[7;‘0)’0] =& (1 —cos2i)(1 + 3cos 2i3),
3

'{3(.20)¢1] — ‘ﬁ (2 sin i + sin 2i) sin 2is,
;[13(,20).i2] 128 ——(3+4cosi+ cos2i)(1—cos2iz),

n(2)  _ en(2)

;320 — J[3,-2,0

n(2 3 . . . . . . . ]
f[73(,2)¢1] =— & (2sini & sin2{)(2 sin i3 F sin 2i3),

1(2) 3 —— (3 £4cosi+ cos2i)

[3,2,i2] 256

X (3 F 4cosiz + cos2i3). (D13)

(4) Inclination functions with the form f E}E,z;’q](i):

ffa) ) — (1 —cos82i3)sin2i,

2,—2,0] 64
i _3 4 cos20) (Isin i + sin2i
f[2,_2’i11—3—2(cosz c0s2i)(2sinis £ sin2i3),
i 3
f[é 427 _1—28(:':3 +4cosiz £cos2iz)(2sini +sin2i),
i 3
f[ézg,o] = 32(1 +3co0s2i3)sin2i,
i 3 o . . .
f[;z&il] = —E(icosz +co0s2i)sin2is,
0 _ 3 osi) (2 sini 4 sin2i
f[z,o.iz]*—6_4( —€0s82i3)(£2sini +sin2i),
i(2) i(2)
To20 = 2220
i 3 _ )
f[fz)i,] = —ﬁ(cosii-cos%)(zsm i3 F sin2i3),
i2 3
f[é,z)iz] = —1—28(i3 4cosiz £cos2i3)
x (2sini+sin2i). (D14)

(5) Inclination functions with the form f{f ”. q

3 3i
f[z 2 -] = 86025111 ) (2 sin i3 — sin 2i3),

9
f?;(z)z 0] = 35 €08 i(1—cos2iz),
3i
ity = gpeogeseg (2eini + sin2iy)

oo = 634 (1 £ cos i)(£3 + 4 cos i3 + cos 2i3),
jo 36 ol 2 sin 35 sin 2is,
ffﬁ(?o] 36 cosi(1+ 3 cos2i3),
f%,)l] 16 3i — cse ; sin 23,
ffi.(é,lz] 332 (il +cosi)(1 —cos 2i3),
fﬁ(?_u 32 7% P 32 (2sin iy +sin 24y).

Q2
f220] f[z —2.0]°

3
fﬁg,)l] = _ﬁcoszlcsc% (2sinis — sin 2i3),
3
fgg,)ﬂ] S (£1 +cosi)(3 F 4cosiz + cos 2i3).

(D15)

(6) Inclination functions with the form fi>)  (i):

y 9
ffz(z_)[zg)] - _6—4(1 —c0s2i)(1 — cos 2i3),
=3
f[ [Z]i =3 (2sini + sin 2i)(2 sin i3 = sin 2i3),
f/[12(2—)[2a]j:2] = _%8 (3 £4cosi+cos2i)(3+4cosis
+ cos 2i3),
4 3
f/[l2(.20),[0]] = _ﬁ(l —c0s82i)(1 4 3cos2i3),
i@l 3 (£2sini + sin2i) sin 2i
2,041 — 16 >
f/[lZ(O)[:i]Z] = _6_4 (3+4cosi+ cos2i)(1 —cos2is),

22[(?] f[z 20

a 3 . .
fl[lz(z)[i]l] — 2 — (2sini £ sin2i)(2sin i3 F sin2i3),
f?z,z,[i]z] = _@ (3+4cosi+cos2i)(3 F4cosis

+ cos 2i3),
3 j 3i S5i
ffz(,z_)[zﬂ,]_l] = —ggsecs (5 sin— 2 +2 s1nEl — sin El) (2 sin i3
— sin2i3),

9
= ——(3=co0s2i)(1 —cos2i3),

A(2)[A)
f[2,—2,0] 64
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ffz(,z—)[zﬂl] — _acsc% <5 cos% - 200531 —cos é) (2sini;
+ sin2i3),
3
fﬁz(,z—)[zl,]ﬂ] =78 (5+6cosi+cos2i)(3Et4cosis
+ cos2i3),
f?z(,zo),[i]l] _ _ﬁsecé (5 Siné + 2sinEl - siné) sin 25,
3
f?z(’z&%]] — _3—2(3 —c0s2i)(1 4 3cos2i3),
aow _ 3 1 Lo~ cos2t) sin2i
f[2,0.1] = 320502 (5 cos2 2 cos > cos > sin2is,
3
ffz(,zo),i]z] — _a(S +6c0si+cos2i)(1 —cos2iy),

3 : . by si
ffz(’zz)’[f]l] — ~ sect (5 sin +2 siné — sin é) (2sin i3

64 2 2
+ sin 2i3),

Q)M _ Q)]

22,00 — f[Z,—2,0]’

f/l(zz)w _ —CSCi (5 COSi — 2(;0551 - cosé) (2 sin i3

221 6472 2
— sin 2i3),
on _ =3 . ,
Jooiy = 28 (5 £6cosi+ cos2i)

X (3 F 4cosis + cos2i3). (D16)
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