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Detecting stochastic gravitational wave backgrounds (SGWBs) with the Laser Interferometer Space
Antenna (LISA) is one of the mission’s scientific objectives. Disentangling SGWBs of astrophysical and
cosmological origin is a challenging task, further complicated by the noise level uncertainties. In this study,
we present a Bayesian methodology for inferring SGWBs, drawing inspiration from Gaussian stochastic
processes. We assess the effectiveness of this approach for signals with unknown spectral shapes by
systematically exploring the model hyperparameters—a preliminary step toward a more efficient trans-
dimensional exploration. To validate our method, we apply it to a representative astrophysical scenario: the
inference of the astrophysical background of extreme mass ratio inspirals, as recently estimated [F. Pozzoli
et al., Phys. Rev. D 108, 103039 (2023)]. Our findings indicate that the algorithm is capable of recovering
the injected signal even with uninformative priors, simultaneously providing an estimate of the noise level.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) [1] is a
groundbreaking mission for the detection of gravitational
waves (GWs) from space. Throughout the nominal 4 years
of duration of operations, an abundance of individually
resolvable sources will be available. A primary focus of
LISAwill be the detection of several tens of massive black-
hole (MBH) binary mergers [2,3], spanning masses from
approximately 104 to 107 times that of the Sun. These
mergers are anticipated to have high signal-to-noise ratios
(SNRs), reaching up to several thousands. Additionally,
LISA will identify several to a few hundred extreme mass
ratio inspirals (EMRIs) annually [4], along with tens of
thousands of Galactic white dwarf binaries [5].
Besides individual sources, the Universe is pervaded by a

stochastic gravitational wave background (SGWB), which
arises from an incoherent superposition of GWs originating
from numerous unresolved or weak sources. At nanohertz
frequencies, the first evidence for an unresolved GW signal
of astrophysical and/or cosmological origin [6,7] has been
recently been reported by the European pulsar timing
array [8], NANOGrav [9], the Parkes pulsar timing array
[10] and the Chinese pulsar timing array [11]. The SGWB in

LISA may come from both cosmological and astrophysical
sources. Cosmologically [12], these waves could stem from
primordial quantum fluctuations [13], potentially amplified
during cosmic inflation. Furthermore, processes such as
first-order phase transitions [14,15], interacting cosmic
strings [16], and primordial black holes [17] may also
contribute to stochastic GW emissions. Astrophysically,
the Galactic foreground [18] from double white dwarf
binaries (DWDs) is expected to dominate, particularly in
the 0.5–3 mHz range. Additionally, both stellar-origin black-
hole binaries (SOBHBs) [19] and EMRIs have the potential
to generate non-negligible backgrounds [20,21].
The persistence of the SGWB in the collected data ties

inextricably to the estimation of instrumental noise. Various
efforts have been made to construct a null channel in LISA,
that is a data stream effectively insensitive to GWs: however,
in realistic instrumental setups, this will not be possible
across the whole sensitivity band [22]. Disentangling differ-
ent SGWB components and instrumental noise provides a
challenging data-analysis task. Existing approaches in liter-
ature can be broadly categorized into three main classes:
(i) template-based for signal and noise [15,23], (ii) template-
based for signal and template-free for noise [24,25],
and (iii) template-based for noise and template-free for
signal [26,27]. The above algorithms may be suitable for
different scenarios. While the first class of algorithms is*fpozzoli@uninsubria.it
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expected to have better resolving power—and subsequently
shorter run-time—the second and third ones are important to
assess the significance of results: by relaxing astrophysical
and cosmological prior knowledge to less informative ones,
they serve as competing models for Bayesian model
selection. In this study, we introduce a weakly parametric
approach by implementing an inference based on stochastic
Gaussian processes, which can be applied in various con-
texts with great flexibility in the SGWB spectral shape.
The paper is organized as follows. In Sec. II we provide a

brief overview of the putative astrophysical SGWBs poten-
tially observable with LISA. In Sec. III we describe the
underlying assumptions of our analysis. In Sec. IVa detailed
exposition of the core statistical model is presented. In
Sec. V, we report our parameter estimation results on a set of
simulated SGWB signals. Finally, in Sec. VI, we summarize
our findings and outline the prospects for future develop-
ments toward a highly flexible inference on SGWBs. Unless
otherwise specified, summation over repeated indices is
assumed throughout.

II. ASTROPHYSICAL BACKGROUNDS

Astrophysical SGWBs are expected to form from the
superposition of GWs from compact binary systems.
However, other putative astrophysical SGWBs are expected
to arise, e.g. from asymmetric supernova explosions [28] or
rapidly rotating neutron stars [29].
Signals typically manifest as either isolated and faint,

falling below the detection threshold, or as overlapping
ones. They pile up incoherently, hence resulting in a
“confused” time series, whose morphology is too complex
to tell individual signals apart. Moreover, the different
astrophysical (and cosmological) SGWBs will overlap in
the LISA data making it difficult to study them, individu-
ally [30]. However, the different spectral shapes of each
background component and the different sky distributions
of Galactic (localized near the plane or bulge of the
Milky Way) versus extragalactic (more isotropic) back-
grounds can be used to separate them. The dominant
contributors to astrophysical SGWBs in the LISA sensi-
tivity band are expected to originate mainly from three
populations. We summarize briefly their properties below.
Galactic DWDs. The white dwarf binary Galactic

population is expected to be formed by around ×̃107

systems [31]. A significant fraction (up to ∼10%) contrib-
utes with GW signals in the LISA band, i.e. at GW
frequencies above 0.1 mHz [5]. Thousands of such highly
monochromatic systems will be resolved individually,
some of which are already observed through their electro-
magnetic counterparts; these are known as verification
binaries [32–34]. Ongoing and future missions such as
GAIA [35] and the Vera Rubin Observatory [36] have the
potential to unveil up to a few thousand more DWD
systems. The largest fraction of the DWDs will remain
unresolved by LISA—only ∼0.1% of DWDs are going to

be resolved individually [37]—and form a stochastic signal,
commonly referred to as confusion noise. This is expected
to be larger than LISA instrumental noise in the frequency
range of 0.5–3 mHz. The bulk of such foreground arises
from systems located toward the Galactic Center; hence, the
confusion noise is expected to be highly anisotropic.
Leveraging the SGWB sky distribution and the induced
signal modulation due to LISA motion may help in
characterizing the Galactic morphology [38], i.e. its disk,
bulge, halo, and streams.
SOBHBs. SOBHBs will be detected by LISA during

their early inspiral phase [39]. A portion of these binaries
will enter the final years of their inspiral and eventually
transition into the frequency range detectable by LIGO,
Virgo, and KAGRA (LVK), thereby allowing for multi-
band gravitational-wave astronomy [40,41]. Based on
current LVK constraints, it is anticipated that at least a
few of these binaries will be individually detected and
characterized [42–44], while the majority will contribute
to the formation of a SGWB. The background is expected
to be isotropic and power-law shaped with spectral index 2/
3 for the energy density power spectrum (or, equivalently,
−7=3 for the power spectral density), for quasicircular
binaries at leading-order post-Newtonian approximation
[45]. Recently, accurate detectability of the SOBHB back-
ground in LISA has been demonstrated [19], accounting for
instrumental noise uncertainties and coexistence of DWDs
foreground.
EMRIs. A stellar mass object orbiting around a MBH

constitutes an EMRI. These sources have not been observed
through either electromagnetic or GW radiation, yet.
Nonetheless, GWs emitted by EMRIs are primary targets
for LISA, due to their potential association with fast radio
bursts in the electromagnetic spectrum [46]. Because of
their very small mass ratios ∼10−6 − 10−4, EMRIs evolve
slowly: a considerable number of these systems will persist
in the LISA band throughout the entire mission. A large
number of orbital cycles∼104–105 provides the opportunity
to probe, in the test-particle limit, highly curved spacetime
close to supermassive black holes. More recently, EMRIs
have been proposed as potential targets for strong gravita-
tional lensing [47]. As most of the population will remain
unresolved, a SGWB is expected to form from these GW
sources. Unlike the SOBHB population, the EMRI back-
ground spectral shape prediction is uncertain due to (i) the
spread of each gravitational-wave signal over multiple
harmonics of the orbital frequency and (ii) the uncertainty
related to the populations. A systematic characterization of
EMRI background from astrophysically motivated model
populations developed in [4] was recently presented in [20]:
the majority of models yield a bright SGWB with SNRs
ranging between tens to thousands, contributing mostly to
higher frequencies than the DWD background, namely
1–10 mHz.
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III. STOCHASTIC SIGNALS IN LISA

The LISA constellation is composed of three spacecrafts
arranged in a nearly equilateral configuration, respectively
separated by 2.5 × 106 km. Spacecrafts will trail Earth
motion by an angle of about 20°, lying on a plane inclined
by 60° with respect to the orbital plane. Distances between
spacecrafts will be modulated by incident GWs, inducing
variations at the picometer level. Such variations will be
detected by monitoring the frequency (or phase, equiv-
alently) of laser beams exchanged between spacecrafts and
comparing them to local reference lasers. The primary
source of noise will come from laser frequency fluctua-
tions, many orders of magnitude higher than the target
sensitivity. To suppress it, six raw Doppler measurements
are suitably delayed and linearly combined in a set of time-
delay interferometric (TDI) variables [48]. Various TDI
scheme exist in literature, associated to different approx-
imations of the LISA constellation orbits; in this work we
use TDI 1.5 combinations [49], assuming constant and
unequal-length LISA arms. In principle, this configuration
provides nonzero correlation between TDI channels [22].
However, due to computational reasons, we decided to
neglect these terms.
We perform inference on such data, d̃ ¼ ðÃ; Ẽ; T̃Þ, the

Fourier transforms of TDI channels. We model the data
streams as the superposition of two independent stochastic
processes: the SGWB and the instrumental noise. In this
work we do not consider the contribution from the non-
stationary Galactic foreground, whose addition we leave for
future study. At each frequency f the correlation between
data reads

hd̃αðfÞd̃�βðfÞi ¼ Sh;αβðfÞ þ Sn;αβðfÞ; ð1Þ

where α and β denote each TDI channel. We assume
throughout isotropic, Gaussian, stationary SGWBs with
equal-weighted and uncorrelated polarizations.
The first component in the previous equation reads

Sh;αβðfÞ ¼ RαβðfÞShðfÞ: ð2Þ

ShðfÞ represents the one-sided SGWB strain power spectral
density (PSD) [50], defined as

hhpðf;ΩÞh�p0 ðf0;Ω0Þi ¼ 1

2
ShðfÞδðf − f0ÞδðΩ;Ω0Þδpp0 ð3Þ

and Rαβ is a 3 × 3 matrix obtained by combining the TDI
transfer matrix MTDIðfÞ (3 × 6) and the single-link
response matrix Gðf; t0Þ (6 × 6) as follows:

RαβðfÞ ¼ Mαi;TDIðfÞGijðf; t0ÞM�
jβ;TDIðfÞ: ð4Þ

For completeness, we provide full derivation of Gðf; t0Þ in
Appendix A, whileMTDI matches exactly the one available
in literature for the chosen set of TDI variables [24].
The spectrum Sn;αβ represents the single-sided noise

power spectra in a single laser link. Following [24], we
further assume no correlations between individual links
and the same PSD in each of them. Hence, PSDs in each
channel depend uniquely on MTDI and on a common
spectral model SnðfÞ:

Sn;αβðfÞ ¼
1

2
SnðfÞMαi;TDIðfÞM�

iβ;TDIðfÞ: ð5Þ

Specifically, we include in Sn secondary noise sources,
namely the test mass (TM) and the optical metrology
system (OMS) noise. The overall PSD is Sn ¼ 2STMn þ
SOMS
n [22], where

STMn ðfÞ ¼ A2

�
1þ

�
0.4 mHz

f

�
2
��

1þ
�

f
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�
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�

×
�
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2πfc

�
2

ð10−30 m2=s3Þ ð6Þ

and

SOMS
n ðfÞ ¼P2

�
1þ

�
2mHz

f

�
4
��

2πf
c

�
2

ð10−24 m2 sÞ ð7Þ

with A ¼ 3 and P ¼ 15 [51].
Through TDI channels signal and noise PSDs, the SNR

for an SGWB is readily defined as

SNR2 ¼ T
Z

∞

0

df
S2h;αα
S2n;αα

ð8Þ

with T the LISA observation time [52].

IV. INFERENCE MODEL

In the present study we only focus on the parameter
estimation of SGWB and noise; thus, we assume that all
nonstochastic GW sources have been perfectly subtracted
from the data. We choose to model both spectra—introduced
in Eqs. (2) and (5)—with a weakly parametric model, which
allows us to explore a large family of spectral shapes. We do
so by using expectation values of Gaussian processes. A
Gaussian process (GP) is a stochastic model, formally
describing distributions over functions gðxÞ. It is parame-
trized by a mean function mðxÞ and positive definite
covariance function kðx; x0Þ. Realizations from such process
are denoted as follows:

gðxÞ ∼ GPðmðxÞ; kðx; x0ÞÞ: ð9Þ
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The defining property of GPs is that for any finite subset
X ¼ fx1…xng of the domain for x, the marginal distribution
is a multivariate Gaussian

gðXÞ ∼N ðμ;ΣÞ; ð10Þ

with mean vector and covariance matrix defined by
μ ¼ mðxiÞ and Σij ¼ kðxi; xjÞ, respectively. Typically,
GPs are used to flexibly incorporate some observed data
in the distribution over gðXÞ and make predictions on new
domain points X� as gðX�Þ. The joint probability distribu-
tion pðgðX�Þ; gðXÞÞ is a multivariate normal distribution. In
order to employ this formalism as a regression model, one
needs the conditional probability pðgðX�ÞjgðXÞÞ. Upon
suitable marginalization, the conditional distribution is also
a multivariate normal distribution:

pðgðX�ÞjgðXÞÞ ¼ N ðμðX�jXÞ;ΣðX�jXÞÞ; ð11Þ

where

μðX�jXÞ¼ μðX�ÞþΣðX�jXÞΣðX;XÞ−1ðgðXÞ−μðXÞÞ ð12Þ

and

ΣðX�jXÞ ¼ΣðX�;X�ÞþΣðX�;XÞΣ−1ðX;XÞΣðX;X�Þ ð13Þ

are specified by the single kernel function kðx; x0Þ. The
matrix Σ is also referred to as kernel matrix, and it models
the covariance between each pair of its two arguments
through the definition of the bivariate function k. In order to
be a valid covariance for the multivariate Gaussian in
Eq. (11), the kernel matrix must be symmetric and positive
definite. A variety of kernels are available in literature, to
capture different processes peculiarities. In this work, we
consider the radial basis kernel function (RBF) defined by

ΣRBF
ij ðX; YÞ ¼ kRBFðxi; yjÞ ¼ exp

�
−
jxi − yjj2

2σ2

�
; ð14Þ

where σ is a model positive hyperparameter.
In the present study, we exploit GPs in an unconventional

way: we use each GP expectation value from Eq. (12)
(hereinafter EGP) as a proposed spectrum and set gðXÞ as
free parameters. The GP covariance is not used in the
inference model. The dimensionality and domain location
of X are to be considered hyperparameters.
Henceforth, we model the logarithm of noise and signal

PSDs as two independent EGPs over the logarithmic
frequencies, i.e. X ¼ flog10 f1;…; log10 fng. We illustrate
both in Secs. IVA and IV B, respectively. We will refer to
the parameters X and to the mean function mðXÞ as knots
and baseline, respectively.

A. Signal

We assume the response matrix RαβðfÞ to be exactly
known. Thus, we need to specify ShðfÞ only. We use an
EGP, with baseline and knots left free to vary simulta-
neously. We do so to be able to capture both global spectral
shapes and fine structure in specific frequency regions: the
choice of baseline influences globally the spectral-shape
proposals, while knots control the fine-local structure. In
Fig. 1, we show the proposed EGP models for two baseline
families, i.e. power-law and bump spectra. The knot
variability can compensate easily for misidentification of
the truth baseline family. In our inference, we use a power-
law baseline family for log10 ShðfÞ, parametrized by
logarithmic amplitude log10 A at a reference frequency
f⋆ ¼ 10−2.5 Hz and slope γ. Thus, μðX�Þ in Eq. (12) reads
log10 Aþ γ log10ðf=f⋆Þ. Fine-structure deviations with
respect to the baseline are parametrized through knots
δh, defined by

gðXÞk − μðXÞk ¼ log10ðShðfkÞ · δhkÞ − log10 ShðfkÞ
¼ log10 δhk: ð15Þ

The number of knots is fixed in each inference, and we
choose the associated frequencies fk equally log-spaced
within the data frequency range. Overall the model is
summarized by functions from the parametric family

log10 Shðf; log10 A; γ; δhÞ
¼ log10 Aþ γ log10 ðf=f⋆Þ
þ kðf; fjÞkðfj; fkÞ−1 log10 δhk: ð16Þ

FIG. 1. Realizations from two EGP models, with fixed baseline
and knots amplitudes sampled from their respective parameter
space. Dashed gray lines represent the knot locations. EGP
realizations are shown with solid lines, while dashed red (blue)
lines correspond to the fixed power-law (bump) baseline.
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B. Noise

We follow a similar approach to parametrize and infer
upon the noise uncertainties. Again, we assume a well-
known TDI transfer matrixMTDI, so the modeling freedom
is left for the single-link noise PSD. Specifically, we
introduce a set of parameter log10 δn. Contrary to the signal
case discussed in Sec. IVA, the baseline is fixed to the
nominal PSD level from ESA’s science requirement docu-
ment [51]. Thus, the final noise model reads

log10 Snðf; δnÞ ¼ log10 SSciRDn

þ kðf; fjÞkðfj; fkÞ−1 log10 δnk: ð17Þ

With this parametrization, we augment the noise refer-
ence model with considerable flexibility to vary across a
large functional space. In all our inference the injected
noise in the data is generated according to the fixed
baseline, so we anticipate recovering zero values for
log10 δn. In Fig. 2, we show a comparison between GP-
and EGP-like instrumental noise modeling, illustrating the
different degree of flexibility each one exhibits.

C. Likelihood

Inference is performed simultaneously on SGWB and
instrumental noise. We construct joint posteriors on param-
eters θ:

pðθjd̃Þ ∝ Lðd̃jθÞπðθÞ ð18Þ

through stochastic sampling of the likelihood Lðd̃jθÞ under
chosen priors πðθÞ. To do so, we use Balrog, a large codebase
for simulation and inference on LISA signals. In this study,
we use it alongside a nested sampling algorithm as
implemented in Nessai [53] to obtain each posterior and
evidence. Data are distributed according to the Gaussian
likelihood [54]

logLðd̃jθÞ ¼ −
1

2

X
α;β

Xfmax

f¼fmin

×
d̃αðfÞd̃�βðfÞ

Sn;αβðf; δnÞ þ Sh;αβðf; logA; γ; δhÞ
Δf;

ð19Þ
with θ ¼ ðlog10 A; γ; log10 δh; log10 δnÞ. We choose uni-
form priors for each parameter in θ, and the following
prior ranges:

(i) power-law amplitude log10 A: ½−70;−35�;
(ii) power-law slope γ: ½−5; 5�;
(iii) signal knot amplitudes log10 δh: ½−2; 2�;
(iv) noise knot amplitudes log10 δn: ½−0.5; 0.5�.

Additionally, we will consider a prior uniform in ½−5; 5� for
log10 δh, instrumental to the results discussion in Sec. V.
We highlight once again that the number of knots δh and

δn can be further optimized, as much as the remaining
hyperparameters (i.e. the kernel length scale, its functional
form, and the knot locations). This represent a potential
high degree of flexibility to our algorithm, which can be
leveraged to find unexpected spectral features upon infer-
ence. In this study, we focus on a finite set of kernel lengths
σ and number of knots. Noise parameter estimation is
instead fixed to three knots, given the baseline choice
matching the noise model used for injection in the data.
In absence of a transdimensional sampling framework

[55] in our codebase, our study is constrained to perform
inference for each choice of hyperparameters and select the
most suitable via Bayesian model selection. In order to
compare the different choices, we use the log-Bayes factor

log10 B
σ;n
σ0;n0 ¼ log10Zσ;n − log10Zσ0;n0 ; ð20Þ

where ðσ; nÞ and ðσ0; n0Þ are labels identifying competing
models with different kernel length scale and number of
knots, respectively, and

Z ¼
Z

dθLðd̃jθÞπðθÞ ð21Þ

is the Bayesian evidence. In Sec. V we present our
results, together with a map of evidence: they are to be
interpreted as the model marginal likelihoods, conditioned
on hyperparameters, only. This is a core building block
toward a transdimensional exploration of the full EGP

FIG. 2. Noise realizations from GP and EGP model. Top panel:
realizations from GP. The gray shaded region represents the 90%
credible interval. Bottom panel: realizations from EGP. The gray
area represents the prior 90% credible interval. While GP allows
for straightforward inclusion of observed data, EGP smoothly
explores a large set of spectral shapes, with the data (i.e. knot
amplitudes at chosen locations shown as gray dashed vertical
lines) effectively proposed as inference parameters.
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model for SGWB inference and its inclusion in a larger
global fit scheme [56,57].

V. INFERENCE RESULTS

In this section, we present parameter estimation results
performed using the model introduced in Sec. IV. First, we
use a simple toy model to control the correct recovery of a
SGWB with known spectral shape (Sec. VA). Then, we
apply our formalism to the parameter estimation of an
SGWB from a population of unresolved EMRIs (Sec. V B).
Throughout the analysis, LISA data are simulated for 4 years
of observation time. We proceed with the assumption that
nonstochastic GWs sources and glitches have been sub-
tracted perfectly. Additionally, we consider the absence of
data gaps, resulting in the generation of an idealized residual
dataset.

A. Toy model

We conduct a test retrieving an EGP model with a power-
law baseline and nonzero knot amplitudes.
Although the injected signals lack an astrophysical

interpretation, they serve as a compelling test for our
method’s capability of recovering complex spectral shapes.
We inject separately two SGWBs, with SNR of 209 and 5,
respectively. We choose the following parameters for each
signal:

(i) power-law baseline with log10A ¼ −43, γ ¼ −2
(SNR ¼ 209) and log10A ¼ −44.5, γ ¼ −1.5
(SNR ¼ 5);

(ii) knot amplitudes log10 δh ¼ ½0.6;−0.2;−0.3; 0.4�,
identical in both cases.

We choose the parameters as representative of two SGWBs,
above and below the nominal power-law sensitivity curve
[58] to an SGWB with SNR of 10 after 4 years of
observation, respectively. We emphasize once more that
the injected model is an EGP with local features arising with
respect to a simple power law. In this specific context, the
Power-law sensitivity is not a faithful indicator of a signal
detectability but should be interpreted as a rough refer-
ence level.
Spectral inference results and parameter posteriors are

shown in Figs. 3 and 8 in Appendix B, respectively. The
EGP model is able to capture the spectral shape of the high
SNR injected signal, and posterior distributions are con-
sistent with the injected values within their 90% credible
intervals. The posterior distributions for the noise param-
eters are consistent with zero, as expected. If the signal
SNR is too low, as for the second simulated SGWB
(SNR ¼ 5), the posterior distribution for its parameters
is effectively an upper limit, only.

B. Astrophysical case: EMRI SGWB

We further apply our method to the astrophysical case of
an SGWB from EMRIs. We inject a background signal

chosen from a set available in literature [20]: twelve
background signals from astrophysically motivated popu-
lations [4] were generated (therein referred to as M1–M12).
The stochastic signal is constructed through suitable
processing of whole population signals and subtraction of
resolvable sources via an iterative algorithm [59]. Each
source GW strain is computed using the state-of-the-art
EMRI waveforms [60] and the resulting LISA signal is
simulated through an accurate response model. Resulting
SGWBs exhibit a wide range of amplitudes, though the
majority of them provide an SGWB potentially detectable
with LISA over 4 years of observation time.
In this study, we use M1 as our fiducial model, as it

provides an intermediate SGWB amplitude across the
populations studied in [20]. Because of uncertainties on
spectral morphology and population distribution, our flex-
ible inference method is suitable to analyze such a signal. In
order to inject coherently the signal in the Balrog simulator,
we divide the A channel signal realization obtained by [20]
by the response function, following the formalism in
Eq. (2). Then, we smooth the resulting spectrum it to
obtain a reference model PSD. Subsequently, we regenerate
each TDI channel data and use it for inference.

1. Exploring hyperparameter space

We perform a set of Bayesian inferences, exploring two
hyperparameters for the signal model: the number of knots,

FIG. 3. Spectral reconstruction of two toy model SGWBs.
Injected SGWBs are denoted by black solid lines. They have
SNR of 209 and 5, respectively. This places them above and
below the nominal power-law sensitivity curve (solid blue line) to
an SGWB with SNR of 10 after 4 years of observation.
Noise injection and prior 90% confidence intervals are shown
as gray solid and purple dashed lines, respectively. Posterior
median and 90% confidence intervals on each signal—analyzed
independently—are denoted by red dashed lines and light-red
shared areas, respectively. The EGP flexibility captures features
in the PSD shape.
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n ¼ 3; 4;…; 8, and the kernel length scale, as integer mσ

multiples of σ ¼ 0.6, with mσ ¼ f1; 2; 4; 8; 16; 32g.
We evaluate each evidence through stochastic nested

sampling. Results are presented in Fig. 4 (top panel), as
Bayes factors log10 B with respect to the highest-evidence
model, i.e. ðn;mσÞ ¼ ð8; 32Þ. They reveal a prevailing
trend: as mσ increases, the number of knots become less
effective at influencing each model evidence, resulting in
Bayes factors increasingly close to each as function of mσ.
For completeness, in Fig. 4 (bottom panel) we also

provide the computational cost of each inference, mea-
sured in CPU core kilohours (kh). The observed trend is
the result of two competing factors: as the number of

parameters (i.e. the number of knots n) increases, the
inference process would take longer. However, if the
increased model complexity (e.g. shorter kernel length
scale) is not required by the simulated data, exploration of
parameter space is typically fast. As a result, we observe a
pattern in computational cost broadly similar to the log
Bayes factors: as the number of knots (mσ) increases
(decreases), the computational cost diminishes.
As a further check we perform inference for the null-

hypothesis H0, where we exclusively model the data as
instrumental noise. Results reveal decisive evidence, in
favour of any signal-including model ðn;mσÞ with respect
to the noise-only model H0, with log-Bayes factors largely
greater than 103. As expected, the spectral noise
reconstruction in Fig. 5 shows significant biases to com-
pensate for the unmodeled SGWB signal in the data.

2. Spectral reconstruction

We discuss here in greater detail the signal spectral
reconstruction of each model. Our findings are best

FIG. 4. Top panel: grid of logarithmic Bayes factor for different
pairs of number of signal knots (n) and integers of kernel length
scale σ. The numbers are computed in relation to the model that
has the highest evidence, specifically ðn;mσÞ ¼ ð8; 32Þ. We
observe a diagonal pattern: as mσ decreases and n increases,
the model becomes progressively less preferred. Bottom panel:
computational cost (i.e. sampling time as reported by Nessai) of
parameter estimations as function of integer multiple of σ, mσ

(with σ ¼ 0.6) and the number of knots of the signal model, n.
The numbers are in unit of kilohours. Each inference is run in
multithreading over 40 cores.

FIG. 5. Posterior distribution for the inference on EMRI
background, with a noise-only model. The noise estimation
employs three knots, with frequencies corresponding to vertical
dashed gray lines in the main panel. Bottom subpanels show
posteriors on individual knot amplitudes. The injected spectral
noise model corresponds to δn ¼ 0 and is denoted by solid blue
lines. The noise model can compensate with significant biases the
presence of an SGWB in the data. Nonetheless, its evidence is
significantly lower when compared to the noise and signal
models, as illustrated in Fig. 4.
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described by a comparison between the inferences with
ðn;mσÞ equal to (8,1) and (8,32), whose results are shown
in top and bottom panels of both Figs. 6 and 7, respectively.
We show the reconstruction of the fiducial EMRI back-
ground with and without T channel data in Figs. 6 and 7,
respectively. The T channel is known to be less sensitive to
GWs than the A and E channels at the frequencies of our
analyses, therefore acting as a potential noise estimator. We
observe however that the spectral reconstructions with and
without the T channel are broadly consistent, with broader
posteriors when the T channel is excluded, as expected.
This is due to the common noise modeling of the single-
link PSD spectrum, which is then propagated coherently to
each channel through MTDI Eq. (5). Relaxing the exact
knowledge of the transfer matrix is expected to signifi-
cantly broaden the noise PSD posterior.
A comparison between top and bottom panels reveals an

important result, originating from the competition in Bayes
factors between excess model complexity and the effective-
ness of our chosen parametrization. The inference pre-
sented in this study is inherently integrated across a large

frequency band: we annotate the injected SGWB with blue
values for cumulative SNRs with respect to the true noise
level on a set of representative frequencies. It is readily
apparent that 80% of the SNR is accumulated between 1
and 4 mHz: in this frequency range the reconstruction is
consistent with the injected spectrum. The dashed red lines
and red shaded area denote the posterior median and
90% confidence interval, respectively.
At the lowest frequencies, the preferred model (top

panel, n;mσ ¼ 8, 32) exhibits larger biases as compared
to the disfavored one (bottom panel, n;mσ ¼ 8, 1). This is
due to the narrow-band (mσ ¼ 1) fluctuations being highly
disfavored by the data in the high SNR region, where the
spectrum is close to a power-law model, a shape already
described by the baseline parameters. On the contrary
broadband (mσ ¼ 32) fluctuations can be absorbed by an
adjustment of the baseline parameters, while keeping an
accurate spectral reconstruction. However, the preference
for mσ ¼ 32 has an important side effect: mσ is fixed and
equal for every knot in each analysis, including the four at
the lowest frequencies. Therefore, the model with the
highest evidence is not capable of introducing local
fluctuations to capture significant tilts with respect to the
baseline power law. These are instead provided by the
disfavored model.

FIG. 6. Signal reconstruction of the M1 EMRI background
carried out using the EGP parametrization. In both figures, the
noise estimation employs three knots. Top panel: the model
features eight knots for the signal and a kernel length scale that is
32 times larger than σ. This configuration aligns with the model
exhibiting the highest evidence. Bottom panel: the model features
eight knots for the signal, and the kernel length scale is set equal
to σ. This configuration corresponds to the model with the lowest
evidence. Blue numbers denote the cumulative SNR integrated
from 10−4 Hz up to the frequency they are located at.

FIG. 7. Analog illustration of Fig. 6 where the inference has
been conducted without incorporating the T channel in the data.
Consequently, the resulting posterior regions exhibit greater
dispersion, signifying reduced informativeness. Blue numbers
denote the cumulative SGWB SNR integrated from 10−4 Hz up
to the frequency they are located at.
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Figures 9 and 10 further support our interpretation, where
we compare the posterior distributions for the two runs
shown in Fig. 6 (red contours) with two more differing only
by a broader prior for the knot amplitudes δh, uniform in
½−5; 5� (blue contours). The inference results for the noise
are largely unaffected and uncorrelated to the signal param-
eters (and hyperparameters). However, we find that relaxing
the knot priors affects the posterior on the baseline param-
eters: a sign of strong correlation. Moreover, posteriors on δh

for the preferred runs (Fig. 9) are prior dominated, while the
likelihood becomes informative in the disfavored models
ðn;mσÞ ¼ ð8; 1Þ (Fig. 10). In conclusion we argue that in a
realistic scenario models more flexible than EGP should
be developed, alongside astrophysically motivated priors
to avoid introducing—even in an evidence-based model
selection—unwanted biases.

3. T channel influence

Given its reduced sensitivity to the SGWB, we further
investigate the impact of the T channel on parameter
estimation. We anticipate that excluding the T channel
from data analysis will result in less informative posterior
distributions (as depicted in Fig. 7). To be more specific, we
seek to assess whether hyperparametrization modeling
remains influential, as depicted in Fig. 4.
To achieve this, we examine two models characterized by

the highest and lowest values of evidence (or hyperlikeli-
hood), denoted as ðn;mσÞ ¼ ð8; 32Þ and ðn;mσÞ ¼ ð8; 1Þ,
respectively. The calculated logarithmic Bayes factor stands
at−10.95, underscoring a substantial strength of evidence in
favor of one model over the other. In other words, the
outcome suggests that the trend observed in Fig. 4 is robust
and not significantly affected by variations in our ability to
estimate the noise level.

VI. CONCLUSION

In this study we present a novel method to estimate
parameters of an SGWB observed by LISA. We implement
our analysis in Balrog, a broader data analysis framework for
LISA. This is a building block toward the completion of a
full global fit of deterministic and stochastic GW signals,
alongside a flexible noise model. We employ a versatile
parametrization to infer the SGWB of uncertain spectral
shape using EGPs. Our method is able to capture unex-
pected features in the signal shape, while assessing their
significativity in a purely Bayesian formalism. We test our
algorithm using a simplified toy model, where the true
injected model is by construction within the parameter
space explored.
Following, we apply the analysis to the expected signal

from a population of unresolved EMRIs. We leverage the
model flexibility to explore the hyperparameter space and
optimize them based on evidence. We also investigate the
impact of T channel on the inference results. We find that

the EGP model has great flexibility at reconstructing the
SGWB spectral shape. However, while Bayesian evidence
might be suitable to select models in the high SNR region,
it may disfavor less biased models in the low SNR region,
at the price of excess complexity where it is not needed.
Therefore, the model inherent nonlocality should be treated
with caution when interpreting spectral results. We also
find that the T channel has a significant impact on the
inference results, and its exclusion leads to naturally less
constrained results.
Our findings suggest that parametric or weakly para-

metric models (as the EGP) should be considered a first
step toward even more agnostic and realistic approaches.
Including cross-correlation terms between TDI channels is
expected to provide a more coherent inference given the
orbits and TDI generation chosen, and it is a natural
extension of our work. Finally, for specific SGWBs a
parameter estimation modeling nonstationarities and non-
Gaussianities would extract valuable information from the
data. This is a crucial improvement, to allow one to reduce
biases and help disentangle superimposed SGWBs in real
LISA data.
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APPENDIX A: SGWB RESPONSE FUNCTION

For completeness and consistency of definitions, we
provide here a derivation of the one-arm LISA response—
induced by a GW propagating along k̂—as experienced
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along a single link identified by the sender and receiver
spacecraft s and r and the unit vector pointing from the
former to the latter, i.e. r̂sr. Henceforth, no summation over
repeated s and r is assumed. Each fractional arm length
variation reads

Wsrðt; k̂Þ ¼
δLsrðtÞ
Lsr

¼ 1

2
r̂asrr̂bsr

Z
∞

−∞
h̃abðfÞτsrðf; t; k̂Þe2πifðt−ΔtÞdf;

ðA1Þ

where

Δt ¼ 1

2

h
k̂ · ðx⃗s þ x⃗rÞ þ Lsr

i
ðA2Þ

and

τsrðf; t; k̂Þ ¼ sincðπLsrf½1 − k̂ · r̂srðtÞ�Þ; ðA3Þ

where x⃗s and x⃗r denote the sender and receiver spacecraft,
respectively. Due to the motion of the satellites, the arm
direction vector r̂ varies with time. The GW strain can be
written in TT gauge as

habðt; k̂Þ ¼ hþðtÞϵþabðk̂Þ þ h×ðtÞϵ×abðk̂Þ; ðA4Þ

where ϵþ;× denote a linear polarization-tensor basis. The
stochastic strain is the linear superposition of plane tensor
waves from each direction of the sky; therefore, we define
an integrated response to each polarization p ¼ þ;×, as
follows:

Wp
srðtÞ ¼

Z
k̂
Wp

srðt; k̂Þd2k̂; ðA5Þ

where

Wp
srðt; k̂Þ ¼ 1

2
r̂asrr̂bsr

Z
∞

−∞
h̃pðf; k̂Þϵpabðk̂Þτðf; t; k̂Þe2πifðt−δtÞdf

¼ 1

2

Z
∞

−∞
h̃pðf; k̂Þξpðk̂; r̂srÞτðf; t; k̂Þe2πifðt−δtÞdf:

ðA6Þ

In Eq. (A5) we introduced the antenna pattern functions
ξpðk̂; r̂srÞ. They read as

ξþðk̂; r̂srÞ ¼ ðûk · r̂srÞ2 − ðv̂k · r̂srÞ2;
ξ×ðk̂; r̂srÞ ¼ 2ðûk · r̂srÞðv̂k · r̂srÞ: ðA7Þ

We rewrite Eq. (A6) equivalently as

Wp
srðt; k̂Þ ¼

Z
∞

−∞
h̃pðf; k̂ÞḠp

srðf; t; k̂Þe2πiftdf; ðA8Þ

where Ḡp
srðf; t; k̂Þ reads

Ḡp
srðf;t; k̂Þ¼ 1

2
ξpðk̂; r̂srÞe−iπfðLsrþk̂·ðxsþxrÞÞτsrðf;t; k̂Þ: ðA9Þ

Noteworthy, Ḡp
srðf; t; k̂Þ is a complex quantity unlike

τðf; t; k̂Þ. Equivalently, we recast Eq. (A9) as a response
in fractional frequency domain:

Gp
srðf; t; k̂Þ ¼ 2πiLsrfḠ

p
srðf; t; k̂Þ: ðA10Þ

The Fourier transform of (A8) is then

Wp
srðf; k̂Þ¼

Z
∞

−∞
dte−2πiftWp

srðt; k̂Þ

¼
Z

∞

−∞
dte−2πift

Z
∞

−∞
h̃pðf0; k̂ÞḠp

srðf0; t; k̂Þe2πif0tdf0

¼
Z

∞

−∞
dt
Z

∞

−∞
h̃pðf0; k̂ÞḠp

srðf0; t; k̂Þe−2πitðf−f0Þdf0

¼
Z

∞

−∞
df0Ḡp

srðf0;f−f0; k̂Þh̃pðf0; k̂Þ; ðA11Þ

note that

Ḡp
srðf0; f; k̂Þ ¼

Z
∞

−∞
e−2πiftḠp

srðf0; t; k̂Þdt: ðA12Þ

As described in Eq. (3) an isotropic, stationary, zero-mean
background is characterized entirely by the strain covari-
ance which allows for the definition of a response matrix
for two given links sr and s0r0 reads

Σsr;s0r0 ðfÞ ¼ hWp
srðfÞW�p

s0r0 ðfÞi

¼
Z
k̂
d2k

Z
∞

−∞
df0Ḡp

srðf0; f − f0; k̂Þ

× Ḡ�p
s0r0 ðf0; f − f0; k̂ÞShðf0Þ: ðA13Þ

For an isotropic distribution of sources, integrating the
product of Ḡ’s and evaluating it at a reference time t0—
without loss of generality given the assumption of perfect
stationarity—we obtain, thus,

Σp
sr;s0r0 ðfÞ ¼ ShðfÞGp

sr;s0r0 ðfÞ; ðA14Þ

with

Gp
sr;s0r0 ðfÞ ¼

Z
k̂
d2kḠp

srðf; t0; k̂ÞḠ�p
s0r0 ðf; t0; k̂Þ; ðA15Þ

which corresponds to Gij in Eq. (4) upon remapping of the
indices sr; s0r0 to ij.
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APPENDIX B: POSTERIOR DISTRIBUTION FOR THE TOY MODEL

FIG. 8. Posterior parameter distribution for the toy-model SGWB with SNR ¼ 209 described in Sec. VA, obtained with an EGP
model inference. The signal injected parameters are flog10 δh; log10 A; γg ¼ f½0.6;−0.2;−0.3; 0.4�;−43;−2g. The injected noise level
matches the nominal LISA sensitivity curve [51]. Darker (lighter) shaded areas denote 90% (50%) credible regions, and solid orange
lines indicate the injected values. Posteriors are consistent with the injected values at the 90% credible level, and the noise parameters are
consistent with zero with accuracies between 10−3 and 10−2.
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APPENDIX C: POSTERIOR DISTRIBUTIONS FOR MODEL M1 SGWB

FIG. 9. Posterior parameter distribution for M1 EMRI SGWB for model ðn;mσÞ ¼ ð8; 32Þ using a larger and narrower prior on δh.
Posteriors shown in this plot correspond to the spectral reconstructions in top panels of Figs. 6 and 7, respectively. They support the
result interpretation provided in Sec. V B 2.
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FIG. 10. Posterior parameter distribution for M1 EMRI SGWB for model ðn;mσÞ ¼ ð8; 1Þ using a larger and narrower prior on δh.
Posteriors shown in this plot correspond to the spectral reconstructions in bottom panels of Figs. 6 and 7, respectively. They support the
result interpretation provided in Sec. V B 2.
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