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The proposed Laser Interferometer Space Antenna (LISA) mission is tasked with the detection and
characterization of gravitational waves from various sources in the Universe. This endeavor is challenged
by transient displacement and acceleration noise artifacts, commonly called glitches. Uncalibrated glitches
impact the interferometric measurements and decrease the signal quality of LISA’s time-delay interfer-
ometry (TDI) data used for astrophysical data analysis. The paper introduces a novel calibration pipeline
that employs a neural network ensemble to detect, characterize, and mitigate transient glitches of diverse
morphologies. A convolutional neural network is designed for anomaly detection, accurately identifying
and temporally pinpointing anomalies within the TDI time series. Then, a hybrid neural network is
developed to differentiate between gravitational wave bursts and glitches, while a long short-term memory
(LSTM) network architecture is deployed for glitch estimation. The LSTM network acts as a TDI inverter
by processing noisy TDI data to obtain the underlying glitch dynamics. Finally, the inferred noise transient
is subtracted from the interferometric measurements, enhancing data integrity and reducing biases in the
parameter estimation of astronomical targets. We propose a low-latency solution featuring generalized
LSTM networks primed for rapid response data processing and alert service in high-demand scenarios like
predicting binary black hole mergers. The research highlights the critical role of machine learning in
advancing methodologies for data calibration and astrophysical analysis in LISA.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is an
ambitious space mission scheduled for launch in the late
2030s, with the objective of detecting gravitational waves
in the millihertz band. LISA aims to extend gravitational
wave astronomy beyond the capabilities of ground-based
detectors like the Laser Interferometer Gravitational Wave
Observatory and Virgo [1]. Its measurement strategy
involves monitoring the relative motion of free-falling test
masses across the spacecraft constellation caused by the
time-varying curvature of spacetime [2,3].
LISA is expected to encounter several intrinsic noise

sources that challenge its scientific efficacy. One significant
disturbance in LISA’s measurement system is laser noise,
primarily arising from the unequal lengths of the interfer-
ometer arms and intrinsic laser frequency instabilities [4].
Ideally, the arms of LISA’s interspacecraft interferometers
would be equal in length, allowing for the inherent cancel-
lation of laser noise. However, these arms are unequal in
practice due to the optical configuration and the orbital
dynamics of the constellation [5]. This leads to residual
laser noise spoiling the gravitational wave measurements

by 7 to 8 orders of magnitude [6,7]. To mitigate the effect, a
postprocessing technique called time-delay interferometry
(TDI) is applied [8,9]. TDI works by combining time-
shifted measurements from multiple spacecraft in a manner
that effectively cancels out noise, thereby synthesizing
virtual interferometers with equal arm lengths.
Another prevalent disturbance in LISA denotes tilt-

to-length (TTL) coupling, where spacecraft angular
jitter translates into longitudinal displacement measure-
ments [10,11]. The coupling occurs when the angular
motion of the spacecraft and optomechanical components
induce path length variations due to instrument imperfec-
tions, misalignments, and laser wavefront errors, adding
another layer of complexity to the noise profile.
Amidst these quasistationary perturbations, LISA con-

tends with transient artifacts, known as glitches. These
glitches, first observed in the LISA Pathfinder (LPF)
mission, are expected to appear in LISA’s TDI data, as
well [12,13]. Glitches can vary in form, intensity, and
duration, and their presence will interfere with accurately
characterizing gravitational wave sources. Given a good
understanding of suppressing and removing perpetual noise
sources like laser noise [14,15] and TTL coupling [16–18],
understanding and mitigating glitch artifacts becomes
the next challenge in data calibration. The transition to*niklas.houba@erdw.ethz.ch
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handling unpredictable transient glitches during LISA data
analysis requires novel methodologies outlined in the
paper.

A. Glitches in LISA Pathfinder

The LPF mission, launched in December 2015, marked a
milestone in the demonstration of technology critical for
LISA [19]. LPF consisted of one spacecraft, and its primary
goal was to measure the relative acceleration between
two test masses in free fall [20]. The mission surpassed
expectations by achieving remarkably high measurement
sensitivity, marking a major technological breakthrough
and providing validation for the foundational concepts of
LISA’s design [21,22].
Alongside these successes, LPF faced challenges in the

form of transient signals, i.e., glitches, in its interferometric
measurements [23]. The glitches, varying significantly in
intensity and duration, presented themselves as nonperiodic
events uncorrelated with the regular operations of the
mission. The glitches’ enigmatic nature poses a consid-
erable challenge in data analysis and system understanding,
as their origins remain unknown [24]. Extensive research
involving simulation studies and on-ground testing has
been undertaken, focusing on comprehending the physical
processes behind these transient events. LPF’s data analysis
revealed two predominant types of glitches [24]:
(1) Fast rise and exponential decay (FRED) events:

These glitches were characterized by a sudden,
sharp increase in acceleration, followed by a gradual
exponential decline back to the baseline. This
pattern suggests a rapid energy release followed by
a slower dissipation process.

(2) Sine-Gaussian glitches: These glitches were identi-
fied by their distinctive pattern of sequential move-
ments in opposite directions, resembling the shape
of a sine wave modulated by a Gaussian envelope.
Sine-Gaussian glitches were less frequent than
FRED events and appeared to be stochastic in
nature, with a notably higher incidence during
phases when the system was cooled down. This
observation hinted at a potential correlation between
environmental conditions and the emergence of
glitches, suggesting that external factors might
influence their manifestation.

B. Projection to LISA

In the context of the LISA mission, addressing glitches is
paramount. Unmitigated glitches in TDI data pose a risk to
the mission’s primary objective of accurate gravitational
wave detection and source parameter estimation [25]. The
interference caused by these glitches could potentially lead
to estimation biases, misinterpretations of gravitational
wave signals, or even mask transient astrophysical signals
entirely.

The experience gained from handling glitches in the LPF
mission plays a crucial role in shaping the strategies for
dealing with similar issues in LISA. A significant part of
this strategy involves utilizing shapelet models to character-
ize glitches mathematically [26]. These models are adept at
capturing a range of glitch behaviors, including sharp rises,
exponential decay, and oscillatory patterns, which align
with the characteristics observed in LPF’s glitch events.
To effectively identify these glitches, the authors of [24]

implemented a matching pursuit algorithm. This iterative
method employs matched filtering alongside a para-
metric model, allowing for a systematic approach to glitch
detection. The algorithm’s effectiveness was demonstrated
through its application to LPF’s Δg noise-only measure-
ments recorded from March 2016 to July 2017. The analy-
sis of this data uncovered a variety of glitch events, thereby
validating the utility of the approach in deriving statistics
about the physical features of the glitch population.
The complexity and unpredictability of glitch morphol-

ogies suggest that standard models like first-order shapelets
might not be sufficient to capture the entire spectrum of
potential glitches [27]. The limitations of first-order models
become apparent when confronted with more complex or
atypical glitch patterns that may not conform to the shapes
seen in LPF measurements. Therefore, while shapelet
models and current calibration algorithms offer a solid
foundation, they might need to be supplemented with more
flexible modeling and mitigation techniques to cover a
broader range of glitch morphologies.

C. Overview of the paper

The paper introduces a machine-learning approach to
address artifacts in LISA data, proposing a three-step pipe-
line of connected neural networks for detecting, character-
izing, and mitigating transient glitches. Section II deals
with the mathematical modeling of glitches and their
propagation through TDI. This section forms the theoretical
backbone for understanding the nature and impact of
glitches in the LISA context. Section III outlines the
methodology for detecting anomalies in LISA data. It
starts with the fundamentals of convolutional neural net-
works (CNNs), which form the first step of the proposed
pipeline. The section further discusses data preprocessing
for robust anomaly detection, simulation procedures, and
evaluates the detection performance. Section IV focuses on
the characterization of anomalies detected in the previous
step. It discusses template matching for glitch characteri-
zation and hybrid neural networks to differentiate between
glitches and gravitational wave bursts while locating glitch
injection points. Section V explores a novel technique for
mitigating the effects of glitches. It highlights the appli-
cation of a long short-term memory (LSTM) network for
glitch estimation, which forms the final step of the
proposed pipeline before glitch removal. Additionally,
the section discusses a low-latency solution. Section VI
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summarizes the findings of the study and highlights future
directions of research.

II. MATHEMATICAL MODELING

The section lays the groundwork for comprehending the
glitches LISA’s interferometric measurements and TDI data
are expected to encounter. We start with a parametric model
that encapsulates the transient nature of FRED events,
using insights drawn from the LPF mission. The model is
further augmented with a stochastic component designed to
account for more diverse and unforeseen morphologies of
glitches in the context of LISA.

A. Time-domain FRED glitch model

The observations of glitches in LPF measurements have
catalyzed the advancement of multiple glitch models. These
models have been systematically integrated into the Python

package lisaglitch [28] tailored for application within
the context of LISA. The paper primarily concentrates
on a FRED-like model embodied in lisaglitch,
distinguished by a rapid onset and subsequent gradual
decay. Mathematically, the model is defined as a one-sided
double-exponential function that starts at a specified
injection time tinj ≥ 0 and ramps up to a maximum of
A=ðtrise − tfallÞ during trise > 0 before flattening off to
zero during tfall > 0. The glitch signal for t ≥ tinj and
trise ≠ tfall is

gFREDðtÞ ¼ A ·
e−

t−tinj
trise − e−

t−tinj
tfall

trise − tfall
: ð1Þ

The model captures the essential features of a FRED-like
glitch, including its rise, peak, and decay phases. When
trise ¼ tfall, the model uses a continuous extension to avoid
singularity:

gFREDðtÞ ¼ A ·
t − tinj
t2fall

· e−
t−tinj
tfall : ð2Þ

This extension is valid for t ≥ tinj and ensures a smooth
transition between the rise and fall phases of the glitch.
Figure 1 presents the model evaluated for three sets of
parameters. As the glitch maximum is a function of the
amplitude A, as well as the rising and falling time para-
meters, the curves are normalized to facilitate visual
comparison.
To account for more complex glitch shapes the FRED

model will be modified by stochastic fluctuations.

B. Stochastic model extension

To comprehensively capture the diverse morphological
characteristics of glitches, we have expanded the FRED
model by incorporating a stochastic component. This
extension reflects the random-walk nature of noise

transients, characterized by random fluctuations occurring
on time scales shorter than trise þ tfall. The stochastic
element within the model is described as a standard
Wiener processWðtÞ, which is a continuous-time stochastic
process representing cumulative random fluctuations [29]:

nðtÞ ¼ WðtÞ: ð3Þ

To model temporal correlations and prevent unrealistic
high-frequency variations, we apply a moving average
smoothing to Eq. (3), represented as an integration over
a continuous window:

nfilteredðtÞ ¼
1

w

Z
t

t−w
nðτÞdτ: ð4Þ

Here, w is the window size of the moving average,
determining the extent of smoothing.
The FRED model with stochastic shaping denoted as

FREDS2 combines both the deterministic rise and fall
pattern of the FRED model with the smoothed stochastic
extension, resulting in a glitch signal that represents both
LPF-inspired and unforeseen glitch characteristics:

gFREDS2ðtÞ ¼ gFREDðtÞ · nfilteredðtÞ: ð5Þ

Figure 2 provides a normalized illustration of the extended
glitch model for the three sets of parameters from Fig. 1.
The figure demonstrates the impact of stochastic variations
on the glitch morphology. Equal colors represent glitch
pairs with identical FRED model parameters, illustrating
that while their general behavior aligns, the introduction
of stochastic elements can lead to significant short-term
variations.
In this paper, we treat the moving average smoothing

window size w as independent of the glitch duration. If it is

FIG. 1. Normalized illustration of gFREDðtÞ for three different
sets of parameters. The model will be modified by integrating
stochastic fluctuations to accommodate more complex glitch
shapes.

DETECTION AND MITIGATION OF GLITCHES IN LISA … PHYS. REV. D 109, 083027 (2024)

083027-3



desired in future studies to align the stochastic smoothing
process with the inherent glitch timescale, it may be
beneficial to adjust the window size proportionately to
the sum of trise and tfall.
The stochastic model extension includes erratic and

complex exponential decay distortions and is employed
in the paper to simulate glitches in interferometric LISA
measurements. It is important to note that introducing the
stochastic extension complicates glitch mitigation during
TDI data calibration. The stochastic nature of the extended
model implies that mere estimation and subtraction of a
glitch signal obtained from FRED model matching will be
insufficient. The stochastic extension introduces random
variations that significantly modify the glitch morphology.
Consequently, even when applying FRED model-based
glitch correction with the true FRED model parameters,
residual glitch noise remains in the TDI data. This residual
impact can obscure or distort the gravitational wave signals
that LISA aims to detect, thereby reducing the accuracy and
reliability of the mission’s scientific return.
To address this challenge, a more sophisticated approach

is required to predict the stochastic variations in glitch time
series. Here, the use of neural networks for glitch time
series prediction emerges as a promising solution. Neural
networks, with their ability to learn complex patterns and
dependencies in data, are well suited for recognizing the
intricate and stochastic nature of these glitches. By training
a network on a diverse set of glitch time series encompass-
ing a range of stochastic behaviors, a powerful tool can be
developed capable of accurately estimating and mitigating
the impact of glitches in TDI data.
Before that, we will explore how the derived glitch

model can be integrated into LISA’s interferometer meas-
urement model. This investigation is essential to understand

their effect on the various TDI channels that need to be
handled by the neural network-driven glitch detection and
mitigation pipeline.

C. Acceleration and displacement transients

According to LISA’s optical design, there are three
distinct interferometers per optical bench: the interspace-
craft interferometer, the test mass interferometer, and the
reference interferometer. The configuration of the six opti-
cal benches of the LISA constellation is depicted in Fig 3.
Focusing on optical bench 12 as a representative case, the
corresponding measurement models are as follows:
(1) Interspacecraft interferometer:

isi12ðtÞ ¼ p21;2.1ðtÞ−p12ðtÞþH12ðtÞþNisi
12ðtÞ: ð6Þ

(2) Test mass interferometer:

tmi12ðtÞ ¼ p13ðtÞ−p12ðtÞþ
2

λ
n1.2 ·v12ðtÞþNtmi

12 ðtÞ:
ð7Þ

(3) Reference interferometer:

rfi12ðtÞ ¼ p13ðtÞ − p12ðtÞ þ Nrfi
12ðtÞ: ð8Þ

These measurements are quantified in units of frequency.
In Eq. (6), the term p12ðtÞ represents the laser noise from
optical bench 12, which interferes with the laser beam of
optical bench 21. The laser noise p21;2.1ðtÞ from optical
bench 21 undergoes a time delay, τ2.1ðtÞ, due to the photon

FIG. 2. Normalized illustration of gFREDS2ðtÞ for the three
parameter sets of Fig. 1 and w ¼ 5000 at 4 Hz. The same color
denotes glitches with identical FRED model parameters high-
lighting that, while their broader behavior aligns, short-term
variations can differ significantly due to the stochastic extension.

FIG. 3. Configuration of the LISA constellation, including the
index convention for this paper analog to [30]. MOSA, OB, and
TM acronyms stand for moving optical subassembly, optical
bench, and test mass. A MOSA mainly accommodates an optical
bench and a test mass.
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travel between optical bench 21 and 12. This delay is
incorporated in the model as p21;2.1ðtÞ≡ p21ðt − τ2.1ðtÞÞ.
For the test mass and reference interferometers, outlined
in Eqs. (7) and (8), the laser beams from optical bench 12
and the adjacent optical bench 13 on the same spacecraft
are combined. As a result, these equations include p13ðtÞ
instead of p21;2.1ðtÞ. No interspacecraft time delay is
required.
In Eq. (6), H12ðtÞ represents the gravitational wave

contribution and the terms Nisi
12ðtÞ, Ntmi

12 ðtÞ, and Nrfi
12ðtÞ

represent optical path length noise in the respective
interferometers.
The test mass interferometer is affected by displacements

of the test mass. When considering units of frequency,
the test mass velocity v12ðtÞ impacts the measurement, as
detailed in Eq. (7). Here, v12ðtÞ is projected onto the line of
sight using the laser link unit vector n1.2. Analog to [31], it
is presumed that the direction of the link remains constant
while laser light travels along the arm. The factor 2
accounts for the round-trip journey of the laser beam as
it hits and reflects off the test mass, and λ ¼ 1064.5 nm
denotes the nominal wavelength of the laser source.
A complete model of LISA’s measurement setup would

incorporate additional disturbances, such as clock noise,
TTL noise, and backlink fiber noise [32–34]. These com-
ponents need not be included in the modeling scope of this
paper. Nonetheless, they will be regarded as disturbances
in the simulation, affecting the performance of the glitch
mitigation pipeline. Note that the measurement equations for
the remaining five optical benches can be obtained from
Eqs. (6) to (8) through a cyclic permutation of the indices.
By establishing the measurement system containing the

three interferometers per optical bench in LISA, we can
now outline the specific glitch injection points considered
in this framework. Optical displacement glitches are taken
into account via Nisi

12ðtÞ, Ntmi
12 ðtÞ, and Nrfi

12ðtÞ while test
mass acceleration glitches are addressed through the test
mass velocity vector v12ðtÞ in Eq. (7). To represent these
acceleration glitches, the extended glitch model gFREDS2ðtÞ
is integrated over time, yielding

n1.2 · vFREDS2;12ðtÞ≡ vFREDS2;12ðtÞ

¼
Z

t

0

gFREDS2;12ðτÞdτ: ð9Þ

For optical displacement glitches within the various inter-
ferometers, we consider differentiating gFREDS2ðtÞ. The
relation between frequency shift and displacement is
given by

Nx
FREDS2;12ðtÞ ¼

1

2π

2π

λ

dgxFREDS2;12ðtÞ
dt

; ð10Þ

with x∈ fisi; tmi; rfig. The paper categorizes instrumental
glitches into two primary types: test mass acceleration

glitches and optical displacement glitches, also known as
phasemeter glitches. This classification aligns with the
glitches outlined in [25]. Future studies may consider test
mass velocity glitch profiles resulting from closed-loop
interactions of the drag-free and attitude control system.
The investigation is ongoing and represents an important
aspect of research.

D. TDI response to acceleration
and displacement transients

Test mass acceleration and displacement artifacts are
obscured in the raw interferometer measurements of LISA
due to the dominant presence of laser noise. These transient
anomalies become visible after TDI is applied. Therefore,
understanding the response of the TDI postprocessing
algorithm to glitches is crucial for mitigating their impact
during astrophysical data analysis.
The initial noise reduction pipeline processes raw

measurements of the LISA constellation to obtain noise-
calibrated TDI data streams. Before executing TDI,
intermediary variables ξijðtÞ, QijðtÞ, and ηijðtÞ with i; j ∈
f1; 2; 3g and i ≠ j are computed in this process. These
variables mitigate translational optical displacement noise
as well as clock noise and reduce the number of lasers from
six to three. The algorithms for calculating ξijðtÞ, QijðtÞ,
and ηijðtÞ are expounded upon in [35]. The ηijðtÞ variables
are used as input for TDI.
Note that there are several ways for linearly combining

ηijðtÞ variables to suppress laser noise. These linear combi-
nations, known as TDI channels, offer distinct benefits in
the context of gravitational wave analysis and instrument
diagnosis [36]. The second-generation TDI Michelson
variable, which is a four-link combination, is focused
on in this paper. TDI second generation (also known as
TDI 2.0) suppresses laser noise to the required level for a
rotating spacecraft configuration with time-variant arm
lengths. For the TDI Michelson channel XðtÞ associated
with spacecraft 1, measurements from the optical benches
12, 13, 21, and 31 are utilized. TDI Michelson XðtÞ is
formulated as follows:

XðtÞ ¼ η13 − η12 − η21;2.1 þ η31;3.1 þ η12;g − η13;i

þ η21;Y − η31;Z − η13;W þ η12;U þ η21;M

− η31;N − η12;I þ η13;K − η21;A þ η31;B: ð11Þ

The time argument is omitted in Eq. (11) for readability.
The equation incorporates multiple nested delays, essential
for laser noise cancellation, with delay arrangements
summarized using letter notations for clarity as given in
Table I. Similar combinations for YðtÞ and ZðtÞ of space-
craft 2 and 3 are obtained by cyclic permutation of
measurement and delay indices.
We consider optical bench 12 as an example to assess the

impact of glitches on XðtÞ, YðtÞ, and ZðtÞ. The different
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types of glitches introduced in the previous section will
reveal distinctive patterns in those TDI channels.

1. Test mass acceleration glitches

For a test mass acceleration glitch in the test mass
interferometer of optical bench 12, all terms in Eqs. (6)–(8)
are set to zero except for 2

λ n1.2 · v12ðtÞ. The scenario is
represented as follows:

tmi12ðtÞ ¼
2

λ
n1.2 · vFREDS2;12ðtÞ

¼ 2

λ
vFREDS2;12ðtÞ; ð12Þ

with vFREDS2;12ðtÞ according to Eq. [9]. Following the noise
reduction procedure of [35], this leads to the following
expressions for ηijðtÞ:

η12ðtÞ ¼ −
1

λ
vFREDS2;12ðtÞ; ð13Þ

η21ðtÞ ¼ −
1

λ
D1.2vFREDS2;12ðtÞ; ð14Þ

with all other terms equal to zero andDi:jfðtÞ≡ fðt − τi:jÞ.
Using Eq. (11), we derive the impact of a test mass
acceleration glitch of optical bench 12 on the TDI
Michelson channel XðtÞ:

XðtÞ ¼ ðDg − 1ÞðDi þ 1ÞðDW − 1Þ vFREDS2;12ðtÞ
λ

: ð15Þ

The TDI Michelson channels YðtÞ and ZðtÞ are obtained
through a cyclic permutation of indices:

YðtÞ ¼ −2D1.2ðDf − 1ÞðDX − 1Þ vFREDS2;12ðtÞ
λ

; ð16Þ

ZðtÞ ¼ 0: ð17Þ

For the analytical investigation presented in this study,
we adopt the commonly used assumption that the delay

operator is commutative. This assumption is equivalent to
treating the arm lengths in the LISA constellation as time
invariant.

2. Optical displacement glitches

Next, we will proceed to derive the TDI response to
optical displacement glitches. For the interspacecraft inter-
ferometer of optical bench 12, all terms in Eqs. (6)–(8) are
set to zero except for Nisi

12ðtÞ. The scenario is represented as
follows:

isi12ðtÞ ¼ Nisi
FREDS2;12ðtÞ; ð18Þ

with Nisi
FREDS2;12ðtÞ from Eq. (10). Applying the initial noise

reduction pipeline of [35], this translates to

η12ðtÞ ¼ Nisi
FREDS2;12ðtÞ; ð19Þ

with all other terms equal to zero. Using Eq. (11), the
impact on XðtÞ becomes

XðtÞ ¼ −ðDg − 1ÞðDW − 1ÞNisi
FREDS2;12ðtÞ: ð20Þ

For YðtÞ and ZðtÞ, we find

YðtÞ ¼ D1.2ðDf − 1ÞðDX − 1ÞNisi
FREDS2;12ðtÞ; ð21Þ

ZðtÞ ¼ 0: ð22Þ

In the case of an optical displacement glitch in the test mass
interferometer of optical bench 12, the measurement model
of Eqs. (6)–(8) reduces to

tmi12ðtÞ ¼ Ntmi
FREDS2;12ðtÞ: ð23Þ

This translates to changes in the intermediary variables:

η12ðtÞ ¼ −
1

2
Ntmi

FREDS2;12ðtÞ; ð24Þ

η21ðtÞ ¼ −
1

2
D1.2Ntmi

FREDS2;12ðtÞ: ð25Þ

With Eq. (11), the impact on XðtÞ can be obtained:

XðtÞ ¼ 1

2
ðDg − 1ÞðDi þ 1ÞðDW − 1Þ · Ntmi

FREDS2;12ðtÞ: ð26Þ

Similarly, for YðtÞ and ZðtÞ,

YðtÞ ¼ −D1.2ðDf − 1ÞðDX − 1ÞNtmi
FREDS2;12ðtÞ; ð27Þ

ZðtÞ ¼ 0: ð28Þ

TABLE I. Translation of delay index letters [17].

Index Delays Index Delays

A 2.1, 1.3, 3.1, 1.3, 3.1, 1.2, 2.1 W 1.3, 3.1, 1.2, 2.1
B 3.1, 1.2, 2.1, 1.2, 2.1, 1.3, 3.1 X 2.3, 3.2, 2.1, 1.2
I 1.3, 3.1, 1.3, 3.1, 1.2, 2.1 Y 2.1, 1.3, 3.1
K 1.2, 2.1, 1.2, 2.1, 1.3, 3.1 Z 3.1, 1.2, 2.1
M 2.1, 1.2, 2.1, 1.3, 3.1 f 3.2, 2.3
N 3.1, 1.3, 3.1, 1.2, 2.1 g 1.3, 3.1
U 1.2, 2.1, 1.3, 3.1 i 1.2, 2.1

HOUBA, FERRAIOLI, and GIARDINI PHYS. REV. D 109, 083027 (2024)

083027-6



For the reference interferometer of optical bench 12, it
holds:

rfi12ðtÞ ¼ Nrfi
FREDS2;12ðtÞ: ð29Þ

Following the approach as before, we obtain

η12ðtÞ ¼
1

2
Nrfi

FREDS2;12ðtÞ; ð30Þ

η31ðtÞ ¼ −
1

2
D1.3Nrfi

FREDS2;12ðtÞ; ð31Þ

η13ðtÞ ¼
1

2
Nrfi

FREDS2;12ðtÞ; ð32Þ

η21ðtÞ ¼
1

2
D1.2Nrfi

FREDS2;12ðtÞ: ð33Þ

Substituting into Eq. (11) leads to

XðtÞ ¼ −DiðDg − 1ÞðDW − 1ÞNrfi
FREDS2;12ðtÞ: ð34Þ

Finally, YðtÞ and ZðtÞ are

YðtÞ ¼ D1.2ðDf − 1ÞðDX − 1ÞNrfi
FREDS2;12ðtÞ; ð35Þ

ZðtÞ ¼ 0: ð36Þ

The TDI glitch responses for the remaining five optical
benches can be derived through a cyclic permutation of
indices from those detailed for optical bench 12.
From Eqs. (15) to (17) and (26) to (28), it becomes

apparent that distinguishing between test-mass velocity
glitches and optical displacement glitches within the test
mass interferometer of an optical bench is not possible
when solely analyzing TDI data. Both glitch types exhibit
identical echo patterns in the TDI Michelson set. This
agrees with the findings of [31]. Note that here, we assume
glitches in the test mass acceleration profile. Under this
assumption, a distinction will be attainable.
An interesting observation regarding the occurrence of

optical displacement glitches in the reference interferom-
eter is evident when examining Eqs. (30) and (32). The
variables η12ðtÞ and η13ðtÞ are affected identically. Conse-
quently, these two variables, being the only nondelayed

quantities in the definition of XðtÞ, cancel in Eq. (11).
Therefore, the effect of an optical displacement glitch in the
reference interferometer of optical bench 12 is not immedi-
ately measurable in XðtÞ at the moment of injection. This is
also evident from Table II summarizing the TDI responses
for optical bench 12. For each glitch category, there is one
TDI response, which, when expanded, includes a factor
of �1, except for the reference interferometer. Here, in
the case of optical bench 12 in XðtÞ, there is the delay
Di ¼ D1.2;2.1, and in YðtÞ, the delay D1.2 as a prefactor so
that a corresponding glitch is detectable in the TDI set at
the earliest by an amount τ1.2 after the actual injection
time in the interferometer. This fact will complicate the
precise determination of the glitch injection time in the first
step of the glitch mitigation pipeline, where the glitch
source and, thus, the associated TDI response model are
unknown.
From Table II, we see that one of the TDI Michelson

combinations remains unaffected by glitches originating
from a single optical bench, for example, ZðtÞ for glitches
caused within optical bench 12 (or 21). This characteristic
will be valuable for identifying the origin of the glitch in the
second step of the glitch mitigation pipeline. Additionally,
it aids in differentiating between glitches and transient
astrophysical phenomena. Unlike the selective effect
observed for glitches, the latter tends to impact all three
TDI combinations simultaneously.
In scenarios where noise is present, advanced concepts,

such as neural networks, become essential to accurately
distinguish between transient astrophysical sources and
glitches and determine the glitch source. This is particularly
true for noise artifacts masked by quasistationary noise yet
still impacting the accuracy of source parameter estimation.
These faint glitches will be analyzed in the sections that
follow.

E. TDI response to gravitational wave bursts

Gravitational wave bursts represent key astrophysical
signals in LISA [37]. It is essential to differentiate and
preserve these signals in the data during calibration rather
than erroneously removing them as noise artifacts. There-
fore, the glitch detection and mitigation pipeline aims to
identify and discern gravitational wave bursts accurately.
Achieving this requires modeling the influence of gravi-
tational wave bursts on LISA’s TDI data.

TABLE II. TDI responses to different types of glitches injected on the optical bench 12.

Optical glitch

Test mass glitch Interspacecraft interferometer Test mass interferometer Reference interferometer

XðtÞ ðDg − 1ÞðDi þ 1ÞðDW − 1Þ −ðDg − 1ÞðDW − 1Þ 1
2
ðDg − 1ÞðDi þ 1ÞðDW − 1Þ −DiðDg − 1ÞðDW − 1Þ

YðtÞ −2D1.2ðDf − 1ÞðDX − 1Þ D1.2ðDf − 1ÞðDX − 1Þ −D1.2ðDf − 1ÞðDX − 1Þ D1.2ðDf − 1ÞðDX − 1Þ
ZðtÞ 0 0 0 0
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The impact of gravitational wave bursts on the change in
interferometric path length was presented in [13] and is
briefly summarized below. The observed path length
change, denoted as δli:jðtÞ, in the link between spacecraft
i and j is as follows:

δli:jðtÞ ¼ Di:j∶
Z

ξj

ξi

hðtÞdt; ð37Þ

where the colon indicates full contraction between tensors,
with t being the Solar System barycenter time. The wave
variable ξi ¼ ti − k · xi defines surfaces of constant
phase for the gravitational wave. The detector tensor Di:j

is given by

Di:j ¼
1

2
ðri:j ⊗ ri:jÞ=ð1 − k · ri:jÞ; ð38Þ

where k is the gravitational wave propagation direction, and
ri:j is the unit-separation vector between the spacecraft
pointing from i to j. The gravitational wave tensor hðtÞ
comprises two polarization states, hþðtÞ and h×ðtÞ:

hðtÞ ¼ hþðtÞe0þðψ ; θ;ϕÞ þ h×ðtÞe0×ðψ ; θ;ϕÞ; ð39Þ

where e0þ and e0× are polarization tensors rotated by the
polarization angle ψ ∈ ½0; π�, while θ and ϕ denote the
source position in spherical polar coordinates stated in
the Solar System barycentric frame [13].
The FREDS2 model is employed for modeling the

gravitational wave polarizations. To simulate the instru-
ment measurement, we make use of the Python packages
lisagwresponse and lisainstrument [38,39].
The packages enable simulating the response of the six
interspacecraft interferometers to the gravitational wave
signal of interest. The resulting data is then processed by
the PyTDI software [40] to obtain the manifestation of the
gravitational wave burst in the TDI Michelson channels.

III. ANOMALY DETECTION

This section is dedicated to robust anomaly detection,
representing the initial step of the glitch mitigation pipeline
developed for LISA. Classical anomaly detection employs
diverse methods, including statistical techniques, cluster-
ing-based approaches, and dimensionality reduction strat-
egies, each with its own strengths tailored for specific
scenarios [41,42].

Within the scope of this paper, we define an anomaly as a
transient signal that can signify either a gravitational wave
source or an instrument glitch. Such an anomaly may
exhibit complicated features and be obscured by quasista-
tionary noise. In this context, the capabilities of CNNs
appear highly promising. The adeptness in managing
anomalies with unforeseen morphologies and noisy envi-
ronments positions CNNs as a compelling choice for the
anomaly detection step of the glitch mitigation pipeline.
The applicability for LISA is studied in the following.

A. Convolutional neural networks

CNNs are specialized feed-forward neural networks that
significantly impacted the evolution of machine learning
with applications ranging from image and video recogni-
tion to natural language processing and financial time series
analysis [43]. A notable advantage of CNNs is their ability
to counteract issues such as vanishing and exploding
gradients, commonly encountered in traditional neural
networks, by applying weight regularization across reduced
connections. One of the hallmarks of CNNs is their reduced
need for data preprocessing compared to other image
analysis techniques. CNNs learn to optimize their filters
autonomously, a significant advantage in fields where
feature extraction is complex [44].
In traditional neural networks, particularly those fully

connected, each neuron in a layer is linked to all neurons in
the subsequent layer. This can lead to a tremendous number
of weights, especially for larger inputs like high-resolution
images. CNNs drastically reduce this number by employ-
ing convolutional layers. These layers use cascaded con-
volution kernels to process the input in small segments,
significantly scaling down the number of required neurons
and, consequently, the number of free parameters [45].
Figure 4 illustrates the CNN architecture with TensorFlow

attributes [46] applied in the research presented. The
architecture is tailored to enable the precise detection of
anomalies within LISA’s TDI data. The network processes
TDI data streams as images, thus capitalizing on the pattern
recognition capabilities of CNNs.
The CNN structure presented in Fig. 4 initiates with

two convolutional layers, each containing 32 filters of size
3 × 3. This is followed by four convolutional layers, each
with 64 filters. All convolutional layers employ the rectified
linear unit (ReLU) activation function defined as fðxÞ ¼
maxð0; xÞ. Utilizing a nonlinear activation function allows
the network to learn and represent nonlinear relations

FIG. 4. CNN architecture and attributes employed for anomaly detection and anomaly injection time estimation. The architecture and
subsequent network architectures are visualized using the open-source tool Netron [47].
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between the network’s inputs and outputs. The nonlinearity
is important as the TDI data streams will contain complex
patterns with nonlinear characteristics.
Each pair of convolutional layers is followed by a 2 × 2

maximum pooling layer. In CNNs, maximum pooling
layers are used for reducing the spatial dimensions of
the input data, which in turn diminishes the computational
load and the number of parameters. Maximum pooling
layers operate on the output of the convolutional layers,
known as feature maps, with the primary goal of down-
sampling these maps while retaining relevant information.
The process involves a specific-sized window that slides
over the feature map. As it moves, typically in strides of
two pixels, the pooling layer performs a maximum oper-
ation. This operation selects the maximum value from the
pixels under the window, representing the entire region on
the output feature map. As a result, the spatial dimensions
of the feature map, both height and width, can be reduced.
The reduction process is vital for preserving the most
important features in the data. Features with higher
numerical values in the feature maps, indicative of critical
information like edges or specific textures, are prioritized.
By focusing on these maximum values, the pooling layer
ensures the retention of salient parts of the information.
Note that pooling layers contribute to the model’s general-
izability and robustness. By abstracting the features learned
and lowering the resolution of the feature maps, maximum
pooling layers help in reducing the risk of overfitting.
Consequently, the network is expected to perform better on
unseen data [48,49].
The network of Fig. 4 then proceeds to a flattening step,

where the two-dimensional feature maps are converted into
a one-dimensional vector compatible with fully connected
layers. The flattened data is fed into three successive fully
connected dense layers with 64, 64, and 32 nodes,
respectively. The function of these layers is to refine the
feature representation further, focusing on subtle aspects
that might indicate anomalies.

B. Time series to image conversion

The preprocessing of TDI time series data into an image
format is critical in enabling its analysis with CNNs. The
inherent structure and patterns of instrumental artifacts
expected in TDI lend themselves well to image-based
analysis.
The conversion process begins with segmenting TDI

data streams into intervals of 7.5 min each. The duration
strikes a pragmatic balance, being sufficiently brief to
ensure that, ideally, each segment encapsulates no more
than one anomaly while also being long enough to include
a mix of anomalous and nonanomalous data. This approach
enables the network to be trained on transient artifacts
embedded in quasistationary noise.
Considering a sampling rate of 4 Hz, the 7.5-min

segment translates to an initial image width of 1800 pixels,

calculated as 7.5 min× 60 sec× 4 samples= sec. To
accommodate a subsequent resizing of the image to a
targeted value of 256 pixels, we opt for a slightly reduced
initial image width of 1792 pixels. This adjustment ensures
that the resizing process can be executed with an integer
factor, thereby reducing interpolation errors.
Following the segmentation process, the data stream is

subjected to a moving average filter with a window size
of 20. The window size is chosen to smooth short-term
fluctuations while preserving the data’s longer-term trends,
which are important for anomaly detection. Subsequently,
the values are normalized, ensuring their range is confined
within the interval [0, 1]. This is achieved by subtracting
the minimum value from each element and dividing by the
range of values, i.e., the difference between the maximum
and minimum values.
For graphical representation, the normalized and filtered

data is mapped onto an image matrix. We select an image
height of 16 pixels and perform the time series to image
(TTI) conversion for the quasi-orthogonal TDI combination:

EðtÞ ¼ XðtÞ − 2YðtÞ þ ZðtÞffiffiffi
6

p ≡ EYðtÞ; ð40Þ

as derived in [50] and its variant:

EZðtÞ ¼
YðtÞ − 2ZðtÞ þ XðtÞffiffiffi

6
p : ð41Þ

Each of these combinations is represented as an image of size
16×1792 pixels, is obtained by stacking the two images.
Note that EYðtÞ and EZðtÞ represent six link combina-

tions containing all three TDI Michelson variables in
parallel. This ensures that glitches are captured in both
EYðtÞ and EZðtÞ regardless of their injection point through-
out the LISA constellation. This applies to gravitational
wave bursts as well and proves particularly valuable in the
detection step, where no differentiation is made between
bursts and glitches.
Note that the quasiorthogonal TDI variable AðtÞ ¼

ðXðtÞ − ZðtÞÞ= ffiffiffi
2

p
[50] also involves six laser links but

only two TDI Michelson variables. It is, thus, less prefer-
able in the process of obtaining consistent features for
image generation. To illustrate, in the event of a test mass
acceleration glitch of optical bench 21, AðtÞ does not
immediately reflect the impact since it lacks the inclusion
of the associated TDI Michelson variable YðtÞ. This leads
to a delayed response in AðtÞ due to the time it takes for
photons to travel between spacecraft 2 and 3 or spacecraft
2 and 1. In contrast, EYðtÞ and EZðtÞ both immediately
capture the effect of the glitch as they include YðtÞ in their
formulation. Using AðtÞ and EYðtÞ or AðtÞ and EZðtÞ
together can lead to glitches not consistently mapping to
the same pixel position in the TTI conversion, depending
on their source. This justifies the choice of EYðtÞ and EZðtÞ.
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The quasiorthogonal TDI variable TðtÞ, expressed as
ðXðtÞ þ YðtÞ þ ZðtÞÞ= ffiffiffi

3
p

[50], was initially considered as
an alternative to either EYðtÞ or EZðtÞ. However, it is
observed that test mass acceleration glitches are less
pronounced in TðtÞ. A more detailed examination of this
observation based on analytical TDI response models is
omitted here.
Following the TTI conversion, the image width under-

goes resizing for reasons primarily related to computational
efficiency. The width is reduced to 256 pixels. The
reduction to 256 pixels facilitates faster training times
for the CNN but also tends to boost the detection perfor-
mance by making artifacts more evident in the resized
images with unchanged height. The resizing step makes use
of the Python imaging library.
Examples of the stacked and resized images of TDI

EYðtÞ and EZðtÞ time segments are given in Fig 5, where
the ground truth label highlights the anomaly injection
time across varying anomaly dynamics. Each subfigure
displays dual-channel information from EYðtÞ and EZðtÞ, as
explained earlier, with the upper and lower half corre-
sponding to EYðtÞ and EZðtÞ, respectively. Figure 5(a)
shows an anomaly that eludes visual detection in the pre-
sence of noise despite its several-minute span. In Fig. 5(b),
EYðtÞ reveals a slow-dynamic transient that stands
out against the background. The same holds for EZðtÞ in
Fig. 5(c). Figure 5(d) marks an example of an anomaly

being readily apparent against the background noise in both
the EYðtÞ andEZðtÞ combinations. The CNNwill be trained
with these images across a spectrum of different anomaly
dynamics and anomaly-to-noise ratios, a process whose
efficacy will be evaluated in the following section.

C. Detection performance

The training and testing TDI data sets of the CNN model
are generated using a suite of Python packages developed by
the LISA consortium, including lisaglitch, lisain-
strument, lisagwresponse, and PyTDI [28,38–40].
Here, the FREDS2 model is locally integrated into lisa-
glitch to simulate glitches with stochastic fluctuations,
as described in Sec. II B. The instrument response is
acquired with lisainstrument, which is then fed into
PyTDI to obtain the TDI variables at 4 Hz in units of
frequency. The simulation assumes static yet unequal
distances between the spacecraft to streamline computa-
tion, an important aspect to be considered when generating
large data sets. The noise profile in the TDI variables
adheres to the SciRDv1 model outlined in [37]. Glitch
characteristics are varied, with durations extending from a
few seconds to 15 min and strengths ranging from 5% to
200% of the maximum quasistationary noise amplitude.
The rising time of these glitches is set to fluctuate between
1 sec and 200 sec. Note that the window size of the moving
average filter equals the one used in Fig. 2.
The CNN of Fig. 4 is applied in two stages. The initial

stage classifies time segments as anomalous or nonanom-
alous, while the second stage focuses on predicting the
injection times of anomalies. This dual-stage process
improves the accuracy in predicting glitch injection times
but requires training the network on two distinct data sets:
one with a mixture of anomalous and nonanomalous
segments and another exclusively containing anomalous
data. Nonanomalous data are uniquely labeled with neg-
ative injection times. Consequently, a predicted negative
injection time is evaluated as a nonanomalous data
segment.
For the classification task, the training set comprises

250,000 samples, containing a randomly generated mix of
quasistationary and transient noise time series. This data set
includes both anomalous data (such as gravitational wave
bursts and instrumental glitches from all test masses and
interferometers) and nonanomalous data. The testing set,
containing 20,000 samples, follows a similar composition.
In the second stage, focusing on anomaly injection time
prediction, the training and testing sets contain 250,000 and
20,000 samples, as well, consisting solely of anomalous
events, as the first stage is tasked to filter out nonanomalous
TDI segments.
The training sets for our pipeline were constructed

without relying on prior knowledge or assumptions about
the distributions and characteristics of astrophysical signals
and instrumental glitches, although theoretical models and

FIG. 5. Example outputs of the dual-channel TTI conversion
process, including ground truth labels that highlight the anomaly
injection time. The subfigures illustrate the diverse ways in which
an anomaly may manifest. Note that in (a), the anomaly is
scarcely discernible to the human observer. This prompts the
exploration of CNN capabilities in detecting such subtle artifacts
in LISA’s TDI data.
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simulations could inform our understanding of their dis-
tribution and variability. In this initial stage of developing a
machine-learning-based glitch detection and mitigation
pipeline, we opted not to incorporate such priors into the
training set generation process. Instead, a balanced training
set is applied, ensuring equal representation across the
various identified classes. This balanced representation
minimizes the risk of bias towards more frequently occur-
ring signals or glitches, thereby supporting the model’s
generalizability. Although leveraging realistic knowledge
about the glitch and gravitational wave burst distribu-
tions in the training dataset could amplify the model’s
performance in practice, this approach requires a thorough
examination to understand its performance impact,
demanding rigorous scrutiny. It will be considered at a
later stage.
The determination of training set sizes in this paper is

based on comprehensive evaluations. We assessed the im-
pact of varying training sizes on testing performance,
focusing on identifying a threshold beyond which no
significant improvements were observed. The selected
training set sizes represent these thresholds, that is, the
minimum necessary training set size to achieve robust
model performance without yielding increasing returns
from further data augmentation. This approach reflects a
pragmatic strategy, aiming to balance computational
demands and the performance of the machine learning
pipeline.
During both training phases, we employ the Adam

optimizer, setting the learning rate at a constant 0.0005.
The loss function is the mean squared error (MSE), and the
network undergoes training over 50 epochs with a batch
size of 16. The MSE serves as a commonly used metric in
assessing the performance of models, particularly within
regression analysis. The MSE can be derived from the
square of the Euclidean distance between two vectors in a
multidimensional space. These vectors represent the true
anomaly injection times converted to horizontal pixel
positions along the width axis of the respective input
image, xi, and the predicted horizontal pixel positions,
x̂i, across the instances of the dataset. The MSE, denoted by
L, for a dataset with n samples is defined as follows:

L ¼ 1

n

Xn
i¼1

ðx̂i − xiÞ2: ð42Þ

Here, ðx̂i − xiÞ2 represents the squared Euclidean distance
for each prediction. The overarching objective of minimiz-
ing the MSE during model training translates into reducing
the Euclidean distance between the model’s predictions and
the actual anomaly injections.

1. True negative and true positive detections

Considering the testing data set of 20,000 TTI-
converted TDI samples, the CNN exhibits a 100% rate for

correctly detecting nonanomalous data as nonanomalous;
99.99915% of anomalous events are detected as such,
while 0.00085% of anomalous data are misclassified as
nonanomalous.

2. Estimation of anomaly injection times

The proficiency of the CNN in estimating anomaly
injection times is presented in Fig. 6 for the examples of
Fig. 5. The estimation accuracy for Fig. 6(a) is remarkable.
To validate this performance, comparable scenarios were
tested. Three of them are depicted in the Appendix. Overall,
the estimation error maintains a zero mean with a standard
deviation of 3.995 sec, considering the testing data set of
the second stage, which comprises 20,000 samples.
Figure 7 presents two scenarios for cases with larger

estimation errors. The primary challenge in injection time
estimation arises with slow-rising anomalies, which are less
distinct in their initial phases due to the differentiating
behavior of TDI 2.0. It turns out that pinpointing the onset
of such anomalies becomes difficult if the glitch peak
is reached more than 20 sec postinjection. Conversely,
anomalies with less than 20 sec rising time show estimation
errors of less than 1 sec owing to more substantial changes
in the statistical properties of EYðtÞ and EZðtÞ around the
anomaly injection. This also holds for artifacts embedded
in quasistationary noise that remain undetectable through
visual inspection.
Besides slow-rising artifacts, the network’s estimation

accuracy is impacted by optical displacement glitches from
LISA’s reference interferometers. These glitches are labeled

FIG. 6. Estimated anomaly injection times for the four scenar-
ios presented in Fig. 5, contrasted with the corresponding ground
truth data.
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in the training data according to their injection time in the
interferometer, but they manifest in the TDI data with an
8.3-sec delay, increasing network confusion when handling
various types of artifacts simultaneously.
In conclusion, while the CNN effectively detects anoma-

lies and estimates injection times, determining the onset of
faint and slow-rising artifacts with subsecond accuracy is
challenging for the current CNN design. Note that the sub-
sequent steps of the glitch mitigation pipeline will operate
based on the estimation performance presented here.

IV. ANOMALY CHARACTERIZATION

In the previous section, we detected anomalies in LISA’s
TDI data. Building upon this, the focus shifts to the task
of anomaly characterization. This involves differentiating
between astrophysical sources and instrumental glitches
and accurately identifying the source of these glitches.
Such a source could be either a test mass glitch (with the
need to specify the particular test mass involved) or an
optical displacement glitch (pinpointing the exact interfer-
ometer and optical bench). We integrate a neural network
with a glitch template matching methodology to address
this challenge, leveraging the glitch TDI response models
derived in Sec. II D.

A. Glitch template matching

In gravitational wave astrophysics, template matching is
a systematic approach for contrasting observed data with
a predefined set of waveforms, either theoretical or empiri-
cal [51,52]. This process is instrumental in recognizing
and characterizing potential gravitational wave events.
We adapt this method to the context of glitch localization
within LISA’s TDI data. Therefore, we introduce the glitch-
to-noise ratio (GNR) ρ in Eq. (43) analogously to the LISA
signal-to-noise ratio provided by [53]:

ρ ¼ hdðtÞjgðt; θÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihgðt; θÞjgðt; θÞip : ð43Þ

Here, the scalar product hxðtÞjyðtÞi between two time-
domain signals xðtÞ and yðtÞ is defined by

hxðtÞjyðtÞi ¼ 4R
�Z

∞

0

x̃ðfÞỹ�ðfÞ
SðfÞ df

�
; ð44Þ

with x̃ðfÞ representing the Fourier transform of xðtÞ, x̃�ðfÞ
as the complex-conjugate of x̃ðfÞ, and SðfÞ signifying the
one-sided noise power spectral density. In this context, the
data dðtÞ refers to the TDI variable of interest, while gðt; θÞ
denotes the glitch response in dðtÞ characterized by a set of
parameters θ.
In the case of a deterministic FRED glitch, it would be

possible to infer the intrinsic FRED model parameters θ ¼
ftinj; trise; tfallg of Eq. (1) from dðtÞwhen knowing the glitch
injection point. For example, the parameter inference could
be performed through maximum likelihood estimation
utilizing Eq. (43) as proposed in [54] for astrophysical
targets.
When dealing with the FREDS2 model and an unknown

glitch source, we confront a more intricate challenge.
To determine the glitch source, we first approximate the
FREDS2 glitch of Eq. (5) by the FRED model of Eq. (1)
adopting the average of the expected minimum and
maximum values for the rising and falling time parameters,
along with the injection time estimate derived from the
preceding section. This results in a very rough approxi-
mation of the actual glitch transient. Then, the approach
involves evaluating Eq. (43) for all 24 feasible glitch
sources across the TDI variables XðtÞ, YðtÞ, and ZðtÞ
knowing that the Fourier transform of gðt; θÞ is given by the
Fourier transform of the glitch approximation and the TDI
response models derived in Sec. II D. This computation
yields a GNR triplet fρX; ρY; ρZg for each glitch injec-
tion point.
Selecting the triplet with the highest aggregate GNR

could serve as a starting point for predicting the glitch
origin. This method will prove insufficient given the
stochastic nature of glitch shapes, substantial uncertainties
in the model parameters and the model itself, as well as
quasistationary noise. Therefore, we feed the 24 GNR
triplets into a hybrid classification neural network, which
maps the inputs to specific interferometers or test masses or
identifies them as gravitational wave bursts.

B. Hybrid neural network model

The neural network employed for anomaly characteri-
zation is hybrid in two key respects. Firstly, it incorporates
model information by utilizing frequency-domain TDI
glitch responses from Sec. II D while avoiding explicit
waveform models for classifying gravitational wave bursts.
This design enables the network to accommodate unex-
pected burst morphologies without relying on assumptions
for waveform parameters. Secondly, the network combines
wide and deep learning components, forming a so-called
wide and deep neural network (WDNN). The WDNN
architecture merges the strengths of both wide and deep

FIG. 7. Estimated anomaly injection times compared to ground
truth data in scenarios with larger estimation errors.
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components: the wide part consists of a linear model that
directly connects input features to the output, excelling in
memorizing feature interactions, while the deep component
comprises multiple layers of nonlinear transformations,
adept at capturing complex feature interactions [55]. The
architecture of the WDNN is illustrated in Fig. 8.
The neural network model comprises a wide and deep

component. The wide component has two layers with 64
and 32 neurons: ReLU activation, L2 regularization, and
batch normalization. The deep component consists of three
layers with 64, 64, and 32 neurons, using ReLU activation,
L2 regularization, and batch normalization, as well. L2
regularization mitigates overfitting by adding a penalty
term to the loss function, encouraging smaller weight
magnitudes. Batch normalization improves training stabil-
ity and accelerates convergence by normalizing the acti-
vations within each sub-batch, reducing internal covariate
shift and enabling higher learning rates during training. The
final layer employs the softmax activation function. The
softmax activation function is given by

fðxiÞ ¼
expðxiÞP
n
j¼1 expðxjÞ

; ð45Þ

for xi ∈X, where X∈Rn denotes an input vector with
n ≥ 1. Equation (45) is commonly used in the context of
classification tasks [56,57]. It takes the raw output scores
from the previous network layers and converts them into a
probability distribution over multiple classes, justifying its
application for the glitch characterization network.

C. Characterization performance

To train and test the WDNN, TDI data sets are generated,
simulating both glitch and gravitational wave events with
properties described in the previous section. The GNR
triplets calculated for each TDI glitch model of each
simulation run are normalized and labeled using one-hot
encoding according to Table III in the Appendix. One-hot
encoding categorizes each sample into one of 25 classes,
encompassing 24 possible glitch injection points and a
class for gravitational wave bursts. We apply a data set

comprising 150,000 training samples and 20,000 testing
samples for the network’s training and evaluation.
The performance of the network is gauged using a

confusion matrix, which offers a detailed view of the
model’s classification accuracy across the existing classes.
The matrix is presented in Fig. 9. We find gravitational
wave bursts correctly classified in 98.187% of all cases,
while 0.065% of FREDS2 glitches are misclassified as
gravitational wave bursts. Overall, the glitch injection
points are correctly characterized with a 92.085% rate. The
hybrid network model demonstrates a remarkable increase
in classification correctness for stochastic glitch morphol-
ogies compared to when selecting the injection point
without machine learning solely based on the highest
GNR triplet sum. In this case, only 68.613% of the glitch
origins would be correctly identified.
The distinctive pattern observed in the three off diago-

nals in Fig. 9 reveals misclassifications of optical displace-
ment glitches between the interspacecraft interferometer ij
and the reference interferometer ji of two opposite space-
craft. Optical benches of opposite spacecraft inject their
glitches into the same bidirectional laser link. Conse-
quently, they share the same glitch-unaffected TDI variable,
such as TDI 2.0 Michelson ZðtÞ for glitches originating
from optical benches 12 and 21, see Table II. Assuming
equal arm lengths, the response to a glitch of the interspace-
craft interferometer 12 in XðtÞ is given by −ðD2 − 1Þ×
ðD4 − 1Þ, while the response to a glitch of the reference
interferometer 21 in XðtÞ would be DðD2 − 1ÞðD4 − 1Þ.
Here, the primary distinction lies in the additional delay D
in the response related to the reference interferometer 21.
Considering that the standard deviation of the estimated
injection times is 3.995 sec, and by that approximately half
the order of the light travel times between two spacecraft,
there are instances in which an optical glitch of the
interspacecraft interferometer ij may resemble an optical
glitch of the reference interferometer ji for the network.
This occurs when the injection time has been overesti-
mated. Similarly, an optical glitch of the reference inter-
ferometer ji can be mistaken for an optical glitch of the
interspacecraft interferometer ij when the injection time
has been underestimated.

FIG. 8. WDNN architecture and attributes employed for anomaly characterization.
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Note that confusion between, for instance, optical
glitches of the interspacecraft interferometer 12 and refer-
ence interferometer 12 are generally avoided due to their
TDI response difference characterized by two delays Di ¼
D1.2;2.1 ¼ D2 (where the latter notation applies for the equal
arm length assumption), as outlined in Tables I and II.
Such confusion would only arise if the injection time
estimation error were to increase to the order of two times
the light travel time, which, fortunately, is not the case.
On the contrary, the misclassification of optical glitches
between the interspacecraft and reference interferometer
of opposite optical benches would diminish with further
enhancements of the CNN’s performance. For illustration,
another confusion matrix is provided in Fig. 10, with the
difference to Fig. 9 being a reduction in the standard devia-
tion of the injection time estimation error from 3.995 sec
(the performance of the previous section) to 3.0 sec.
Finally, in Fig. 11, we utilize a semilogarithmic repre-

sentation of the receiver operating characteristic (ROC)
curve, adapted for multiclass classification using the one-
vs-rest approach. Similar to confusion matrices, ROC
curves are a commonly employed metric for evaluating the
performance of classification networks and are conse-
quently presented here for reference. They visually re-
present the model’s proficiency for binary classification in
distinguishing between positive and negative classes across

a spectrum of thresholds, plotting the true positive rate
against the false positive rate. The area under the curve
(AUC) measures the classifier’s overall efficacy. An AUC
value of 0.5 represents random guessing, while an AUC of
1.0 indicates perfect classification. In the one-vs-rest
method, described, for example, in [58], each class is
treated as positive, with the rest as negative, facilitating an
assessment of the model’s ability to differentiate between
various anomaly types.
The ROC curves of Fig. 11 are categorized into three

groups. Group I specifically relates to the misclassifications
represented by the off-diagonal elements in Fig. 9, occur-
ring at a false positive rate of less than 0.04.

V. GLITCH MITIGATION

After determining the glitch characteristics, including the
identification of the injection point and timing through
machine learning, we move to the final step, that is, glitch
mitigation. The section focuses on estimating and removing
the glitch from the TDI data. A LSTM network plays the
key role in this process.

A. Long short-term memory neural networks

LSTM networks are a subset of recurrent neural net-
works (RNNs), distinguishing themselves from traditional
feed-forward neural networks. In contrast to the one-
directional flow of information from input to output in

FIG. 9. Confusion matrix demonstrating the classification
accuracy of the hybrid network for the classes outlined in
Table III. The matrix differentiates between the true classes,
represented by rows, and the predicted classes, indicated by
columns, offering a detailed assessment of the model’s ability to
classify anomalous TDI data segments.

FIG. 10. Confusion matrix for a standard deviation error in the
injection times reduced from 3.995 sec of Fig. 9 to 3.0 sec. This
reduction results in a decrease of misclassifications within the off
diagonals.
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feed-forward networks, RNNs, including LSTMs, incor-
porate looping connections that preserve a hidden state or
memory of prior inputs [59,60]. In contrast to CNNs, which
are proficient in spatial recognition within images, LSTMs
can make continuous predictions of time series. LSTMs are
distinct from standard RNNs in their ability to circumvent
long-term dependency. The core of their architecture lies
in a system of gates—specifically, the input, forget, and
output gates. These gates function as regulators of data flow
within the network, enabling LSTMs to make informed
decisions about what information to store, update, or
discard at each step in the sequence [61]. This selective
memory process could make LSTMs adept at handling
time-dependent and stochastic glitch patterns in TDI data.
The input gate controls the extent to which new infor-
mation flows into the cell state, the internal memory of the
network. The forget gate decides which information is no
longer relevant and should be removed from the cell state.
Finally, the output gate determines what part of the cell
state should be used to compute the output at each time
step. This layered approach to information processing
allows LSTMs to preserve relevant historical data.
The LSTM network applied in this paper for glitch time

series prediction is detailed in Fig. 12. It consists of
multiple stacked LSTM layers, each with 50 neurons
and tanh activation functions. The network culminates in
a dense layer with a single neuron for continuous value
prediction. It takes as input the two TDI variables affected
by the glitch and produces the glitch dynamics responsible
for the observed TDI data, essentially functioning as a TDI
inverter from the perspective of glitches.

B. Differential evolution of FRED model parameters

The FREDS2 model of Eq. (5), blending deterministic
FRED characteristics with stochastic fluctuations, presents
considerable complexity. Therefore, the LSTM network
shall primarily focus on the stochastic elements while
incorporating as much a priori knowledge of the deter-
ministic glitch properties as possible. Since the glitch origin
is determined by the probability presented in the previous
section, we can now refine our understanding of the
deterministic glitch components. Therefore, differential
evolution is employed for optimizing the intrinsic FRED

 

 Group II) Gravitational wave
bursts

Group III) Test mass
interferometers and test masses

Group I) Interspacecraft
and reference interferometers

FIG. 11. Semilogarithmic ROC curves representing the model’s
proficiency for binary classification using the one-vs-rest ap-
proach. Translations of class labels are provided in Table III.
Group I corresponds to the off-diagonal elements in Fig. 9.

FIG. 12. LSTM architecture and attributes employed for glitch time series prediction. The parameter c represents the length of the TDI
inputs, which depends on the FRED model parameters acquired pretraining via differential evolution optimization.
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model parameters trise and tfall of Eq. (1). This step is vital
for providing a more accurate description of the glitch’s
deterministic nature, which the LSTM network will incor-
porate into its training process.
The optimization is performed by maximizing the GNR,

as defined in Eq. (43). Remember, gðt; θÞ denotes the TDI
response to the glitch. Therefore, the glitch injection point
is essential for this computation. By integrating all the
information from the previous steps of the pipeline, we gain
a comprehensive understanding of the glitch characteristics,
which are to be made available to the LSTM. This includes
selecting TDI variables based on the injection point and
guiding the training with tailored data sets. The intrinsic
FRED model parameters trise and tfall are estimated sim-
ilarly to the approach presented in [53] for estimating
parameters of galactic binaries via differential evolution.
For that, we make use of the implementation provided
by SciPy [62].

C. Mitigation performance

Due to the complexity of the glitch shapes focused on in
this paper, the LSTM network of Fig. 12 is retrained
whenever there is a change in the glitch’s injection point or
FRED parameters. This process is computationally inten-
sive but leads to accurate predictions. We suggest a secon-
dary strategy to enable a quicker response for high-demand
scenarios in a low-latency sense: training the LSTM with a
data set encompassing a range of FRED model parameters.
This approach offers ready-to-deploy generalized networks
with a compromise in accuracy, as presented later.
The network is trained using the Adam optimizer with a

learning rate of 0.001 and the MSE as the loss function.
Model checkpoints save the weights with the lowest loss

on a validation set, ensuring peak performance. This
approach is consistent with those followed for the first
two neural networks in our pipeline.
A first example showcasing the glitch prediction per-

formance is presented in Fig. 13. The figure depicts the
glitch time series prediction and the TDI inputs applying
the high-accuracy LSTM model. The model was trained
using a data set comprising 100,000 samples. The TDI
training data set exclusively incorporates quasistationary
noise and FREDS2 glitches, with trise and tfall estimates
derived from the previously explained differential evolution
process as well as the tinj estimate obtained from the CNN.
The trise and tfall model parameters correspond to the glitch
depicted in Fig. 6(a). Note that the preceding step in the
pipeline successfully identified this anomaly as a glitch
within the interspacecraft interferometer of optical bench 12.
The spectrograms of XðtÞ for the scenario of Fig. 13

are presented in Fig. 14. Spectrograms serve as a visual
representation of the temporal evolution of frequency
content in a nonstationary signal. The figure illustrates the
spectrogram before and after calibration for the achieved
estimation performance. It also includes the spectrogram of

FIG. 13. LSTM neural network prediction for an optical
displacement glitch injected in the interspacecraft interferometer
of optical bench 12, alongside the true glitch and the LSTM
inputs.

FIG. 14. Semilogarithmic time-frequency spectrograms for the
scenario depicted in Fig. 13, showcasing the glitch-free, glitch-
uncalibrated, and glitch-calibrated data using the glitch-affected
TDI Michelson XðtÞ channel as an illustrative example. Brighter
colors indicate increased noise levels. The vertical red line
denotes the moment of glitch injection.
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the glitch-free case, representing an ideal scenario with
perfect glitch mitigation. The glitch appears prominently as
a bright yellow vertical stripe before calibration. It is worth
noting that for frequencies greater than 1 Hz, the TDI 2.0
zero locations appear as faint horizontal blue lines. These
zeros are not discernible for frequencies below 1 Hz due to
the semilogarithmic plotting and particular spectrogram
calculation. To make these zero locations visible in the
lower frequency range, one needs to increase the segment
length of the Fourier calculation. Nonetheless, such an
adjustment would further blur the contribution of the glitch.
The selected segment length was carefully chosen to
optimize the appearance of the glitch.
Figure 15 presents additional realizations of this glitch

with amplified levels of stochastic fluctuations. The cor-
responding spectrograms can be found in the Appendix.
Figure 16 provides a comparison with predictions

obtained from the low-latency LSTM neural network.
Although the quick-response variant may not attain the
same level of precision as the high-accuracy alternative, it

stands as a practical option for TDI glitch calibration in
real-time situations requiring swift action and alert services.
Additionally, it may offer benefits in Athena-LISA inter-
actions, as suggested in [63].
In the final step of the calibration pipeline, the prediction

for the specific glitch under consideration is subtracted
from the affected interferometer measurement. Subse-
quently, the glitch-calibrated TDI data streams are calcu-
lated. To evaluate the effectiveness of the mitigation
process, we subject the glitch-calibrated TDI data to a
reanalysis by the anomaly detection step. In 93.93% of
cases, the network classifies the calibrated data set as
anomaly free. One could explore the potential of iterating
through the pipeline to increase this value further. In each
iteration, a prediction of the (residual) glitch in the under-
lying TDI channels would be generated. The final step
would involve subtracting the sum of these predictions
from the original data.
Training the LSTM network requires significantly more

time than training the other two network architectures. As a
result, we have yet to perform tests for all glitch injection
points and the entire parameter space. So far, we have
run two additional tests, one involving a test mass accel-
eration glitch associated with optical bench 32 and another
focusing on an optical displacement glitch related to the
reference interferometer of optical bench 13. We conducted
a thorough analysis of all three scenarios using two diffe-
rent glitch parameter sets for each, one with a 20-sec
duration and the other lasting 13 min. All three scenarios
exhibited comparable glitch residuals, with the 13-min
glitch predictions slightly less accurate. To assess the
overall mitigation performance, further simulations must
be conducted, encompassing various glitch types and a
broader range of deterministic FRED model parameters.
Additionally, it would be advantageous to compare the
residual glitch noise against a specific requirement to
ascertain the pipeline’s global performance.

VI. CONCLUSION

The study introduced a data calibration pipeline designed
to detect, characterize, and mitigate glitches for the LISA
mission. The pipeline is structured around an ensemble of
three neural networks. An overview of the glitch detection
and mitigation process is given in Fig. 17.
The first component of our approach employs a CNN

with the capability to identify anomalies within LISA’s TDI
time series data. The CNN correctly identified nonanom-
alous data 100% of the time and achieved a 99.99915%
accuracy in detecting anomalous events. It faced challenges
in precisely pinpointing the onset of faint and slow-rising
anomalies.
In the second phase, we employed a hybrid neural

network, which distinguishes between gravitational wave
bursts and glitches while accurately identifying the loca-
tions where glitches have been injected. The hybrid neural

FIG. 16. Performance evaluation of the LSTM neural network
in the quick response mode considerable for low-latency pipeline
applications with reduced emphasis on accuracy. The spectro-
grams for (e)–(g) can be found in the Appendix.

FIG. 15. Performance comparison of the LSTM neural network
in predicting the glitch of Fig. 13 under conditions of amplified
stochastic fluctuations. The TDI inputs for the LSTM predictions
are not depicted. The spectrograms for (a)–(d) can be found in the
Appendix.
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network correctly classified gravitational wave bursts in
98.187% of cases and characterized glitch injection points
with a 92.085% success rate, surpassing a conventional
reference method by roughly 20%.
Then, the calibration pipeline incorporates a LSTM

neural network to estimate glitch time series based on
noisy TDI input data and information obtained by the
preceding networks. The LSTM network is designed to
operate in a high accuracy or quick response mode,
depending on the configuration of the training data sets.
The final step involves subtracting the estimated sto-

chastic glitch transient from the affected interferometric
measurement to obtain glitch-calibrated TDI variables. A
reanalysis of the calibrated TDI data set was performed
to verify the overall performance of our approach. The
calibrated TDI data streams were classified as anomaly free
at 93.93%. Iteratively executing the pipeline could further
increase this value and is under investigation.
Future efforts will focus on tackling the challenge of

overlapping gravitational wave signals and glitches, as this
is another area that demands careful attention. Moreover,
the exploration of tensor processing units (TPUs) is under-
way. TPUs are specialized hardware accelerators designed
for machine learning applications. Renowned for their
processing power and efficiency in managing computa-
tional workloads, they are expected to further enhance the
performance of the calibration pipeline, primarily by
enabling the handling of larger training data sets and
expediting the evaluation of diverse network architectures.
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APPENDIX

We conducted additional evaluations to validate the
performance of anomaly injection time estimation under

conditions similar to those in Fig. 6(a). Figure 18 displays
three such comparable scenarios where visual detection
of the exact injection time is challenging but managed
by the CNN of Fig. 4. The spectrograms for the TDI 2.0
Michelson XðtÞ data sets of Figs. 15 and 16 are given by
Figs. 19–25. The translation of neural network labels is
given by Table III.

FIG. 18. Examples of estimated anomaly injection times for
glitch characteristics comparable to Fig. 6(a).

TTI conversion

 of segmented TDI 

data

TDI data

Anomaly detection 

and injection time 

estimation 

with CNN

(Fig. 4)

Anomaly 

characterization 

with WDNN

(Fig. 8)

Differential evolution 

estimation of FRED 

model parameters

Glitch estimation 

with LSTM neural 

network

(Fig. 12)

Glitch subtraction
Glitch-calibrated

TDI data

FIG. 17. Outline of the glitch detection and mitigation process as detailed in this paper, with the steps involving machine learning
highlighted in dark blue.

FIG. 19. Spectrograms of XðtÞ for case (a) of Fig. 15.
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FIG. 20. Spectrograms of XðtÞ for case (b) of Fig. 15.

FIG. 21. Spectrograms of XðtÞ for case (e) of Fig. 16.

FIG. 22. Spectrograms of XðtÞ for case (c) of Fig. 15.

FIG. 23. Spectrograms of XðtÞ for case (f) of Fig. 16.

FIG. 24. Spectrograms of XðtÞ for case (d) of Fig. 15.

FIG. 25. Spectrograms of XðtÞ for case (g) of Fig. 16.
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