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Gravitational waves (GWs) can provide crucial information about the central engines of core-collapse
supernovae (CCSNe). In order to unveil the nature of GW emission in CCSNe, we apply perturbative
analyses with the same underlying equations as simulations to diagnose oscillations of the proto-neutron
star (PNS) during ∼1 s postbounce. In the pseudo-Newtonian case, we find that radial profiles of GW
emission match well between the perturbative analysis with l ¼ 2 and simulations inside the PNS at any
frequency and time. This confirms that the GWemission of CCSNe arises from the global PNS oscillations
in the perturbative regime. Based on this, we solve for the discrete eigenmodes with a free PNS surface and
tentatively identify a set of g modes and the f mode contributing to the peak GWemission. We also offer a
possible explanation for the power gap in the GW spectrum found in simulations that lies at the frequency
with vanishing cumulative emission of the PNS. Our results enhance the predictive power of perturbative
analyses in the GW signals of CCSNe.
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I. INTRODUCTION

Core-collapse supernovae (CCSNe), the explosive death
of massive stars with initial masses greater than ∼8M⊙, are
potential astrophysical sources of gravitational waves
(GWs) with frequencies from hundreds to thousands of
Hz (see [1,2] for recent reviews). Current [3–5] and next-
generation [6–8] ground-based GW detectors may detect
CCSNe taking place in the Milky Way and nearby galaxies
[9–12]. Unlike electromagnetic signals, GWs carry direct
information of the CCSN central engine without interven-
tion by the stellar envelope, so its detection will boost our
understanding of the CCSN physics, e.g., the core structure
of progenitors [13–15] and the explosion mechanism(s)
[15–18], as well as the nuclear physics inside CCSN cores,
in particular, the high-density finite-temperature equation
of state (EOS) [19–24].
In general, the detection of GWs requires some pre-

knowledge of the waveform emitted from a source [25].
The study of GW emission from CCSNe has evolved from
semianalytical calculations of collapsing ellipsoids [26]
to two-dimensional (2D) hydrodynamical simulations of
collapsing rotating polytropic stars [27,28] before the

year 2000. With the advance of high-performance comput-
ing in the new millennium, nowadays, one can simulate
CCSNe starting from realistic progenitor models while
using finite-temperature and composition-dependent EOSs
and capturing neutrino transport using sophisticated solv-
ers, all while in full 3D (e.g., [29–31]). 3D magneto-
hydrodynamic CCSN models are also available now to
provide GW waveforms for magnetorotational supernovae
[32–35], potentially associated with long gamma-ray
bursts. These theoretical investigations are forming an
invaluable knowledge base for the CCSN GW detection.
In CCSN models with nonrotating progenitors, GW

emission usually arises after the core bounce due to the
stiffening of EOS. The postbounce GWs have a typical
waveform after∼100 ms with stochastically varying ampli-
tudes, while the peak GW frequency exhibits a character-
istic ramp-up trend from 100s to 1000s of Hz with time.
Murphy et al. [36] and Müller et al. [37] showed that the
GW peak frequency is in close resemblance to the buoy-
ancy frequency near the proto-neutron star (PNS) surface in
Newtonian and relativistic simulations, respectively. Using
perturbative analysis, several groups [38–41] identified that
the peak GWemission corresponds to l ¼ 2 gravity (g) and
fundamental (f) mode oscillations of the PNS by matching
its frequency with those of perturbative eigenmodes. Such*zhashuai@ynao.ac.cn
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perturbation analyses complement the computationally
intensive multi-D CCSN simulations and provides a more
intuitive way to understand the complex numerical results.
Furthermore, with 25 1D simulations and a perturbative
analysis, Torres-Forné et al. [42] derived universal relations
between the frequencies of a few important eigenmodes
and the PNS surface gravity as well as the mean density
inside the shock. Sotani et al. [21] later provided an
alternative formula with dependence solely on the PNS
mean density. If these universal relations are reliable, they
will assist the search of CCSN GWs concealed within the
detector noises and eventually the inference of important
CCSN parameters [43,44].
However, discrepancy remains among these studies

[38–41,45] in the exact association between perturbative
eigenmodes (g1, g2, f, etc.) and the peak GW emission in
CCSN simulations, in part due to different approximations
(Cowling vs non-Cowling) and the choice of boundary
conditions. This hinders the predictive power of perturba-
tive analyses. Westernacher-Schneider [46] pointed out that
the mode functions match well between the perturbative
analysis and simulation that share the same underlying
hydrodynamic equations. They demonstrated this approach
using simulation data recorded with a high cadence during
t∈ ½30; 50� ms postbounce when the typical GW emission
has not emerged.
In this work, we follow the methodology of Ref. [46] to

analyze theGWemission in the later epochs, when the shock
has expanded to ∼100–200 km and neutrino-driven con-
vection develops in between the PNS and shock. We show
that the radial profiles of GWemission inside the PNSmatch
wellwith those from a consistent perturbative analysis at any
frequency and time, not only for the eigenmodes. This
suggests that the typical CCSNGWemission mainly comes
from the l ¼ 2 oscillations of the perturbed PNS. Based on
this fact, we obtain the eigenmodes using the usual boundary
condition, i.e., vanishing Lagrangian pressure perturbation
at the PNS surface. We tentatively associate the peak GW
emission with a set of g modes and the f mode below and
above a frequency gap as identified in Refs. [20,40]. We
further notice that the gap may be related to a zero point of
total GW emission inside the PNS with a small variation in
its frequency during the ∼1 s postbounce. This encourages
further attention on this gap to understand its origin as well
as its relation to the PNS properties.
Our paper is organized as follows. We describe the

adopted CCSN models for the GW signals and simulation
data in Sec. II. In Sec. III A, we present the method for the
perturbative analysis. Section III B shows the matching
between the radial profiles of GWemission from simulation
and perturbative analysis. Section III C presents the asso-
ciation of the peak GW frequency with the perturbative
eigenmodes. We discuss the possible origin of the GW
emission gap in Sec. III D. We conclude our findings
in Sec. IV.

II. CORE-COLLAPSE SUPERNOVA MODELS

Weuse the results of 2D axisymmetric CCSN simulations
performed in Ref. [20] for our analysis. They are simulated
with Newtonian hydrodynamics in FLASH (v.4) [47]
implemented with a multigroup and multispecies two-
moment neutrino transport scheme and an approximate
relativistic gravitational potential [48]. We focus on the five
nonrotating CCSN models using a 20M⊙ solar-metallicity
progenitor model [49] and a set of Skyrme-type EOSs
[50,51]. Three models vary the effective nucleon mass
(models m0.55, m0.75, m0.95), and two models fix the
effective nucleon mass as m0.75 but vary the isoscalar
incompressibility modulus (models m0.75_k200 and
m0.75_k260). We refer the readers interested in the details
about the numerical setups and EOSs to the original
paper [20].
The dimensionless GW strain is extracted from simu-

lations with the quadrupole formula [52],

hþðtÞ ¼
3

2

G
Dc4

d2

dt2
Izz; ð1Þ

where we assume an observer located at the equator and a
distance D away from the source. Izz is the only indepen-
dent component of the quadrupole moment in the axisym-
metric case,

Izz ¼
Z

dV

�
z2 −

1

3
r2
�
ρ; ð2Þ

where dV is the volume element, r is the spherical radius,
and ρ is the source density (rest-mass in our Newtonian
case). The integration in Eq. (2) is over the whole star to get
the overall GW strain. Figure 1 shows the postbounce GW
spectrogram derived from hþðtÞ in the model m0.75 by the
short-time Fourier transform. One can clearly see the
general trend of increasing peak GW frequency as men-
tioned in Sec. I. A power gap is also visible nearby
∼1250 Hz with slowly varying frequency throughout the
simulated postbounce time.
Snapshots recorded with a high cadence are necessary

for a direct comparison of the spatial contribution to the
GW emission between simulations and a perturbative
analysis [46]. Therefore, we resimulate the model m0.75
to get 1 snapshot every 2 × 10−5 s in four 40 ms intervals
centered at 0.4, 0.8, 0.9, and 1.0 s postbounce, as indicated
by the red shaded regions in Fig. 1. Then, we get the radial
profile of GW strain by

hþðt; rÞ ¼
3

2

G
Dc4

d2

dt2
IzzðrÞ;

IzzðrÞ ¼
Z

rþΔr=2

r−Δr=2
dV

�
z2 −

1

3
r2
�
ρ; ð3Þ
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where the integration is over a spherical shell with a
thickness of Δr ¼ 1 km to get IzzðrÞ. We warn that if
partial integration is applied to avoid the numerical differ-
entiation in time for hþðt; rÞ [52], one needs to take care of
the surface terms (see the Appendix in Ref. [20]).
We focus our analysis on the spatial contribution to GW

emission in frequency space, i.e., h̃þðf; rÞ derived by the
fast Fourier transform from hþðt; rÞ of the 40 ms intervals.
The 2D color map in Fig. 2 illustrates the normalized
jh̃þðf; rÞj of the resimulated interval centered at 0.4 s
postbounce. The PNS surface is marked with the white
vertical line, which is defined as where the spherically
averaged density equals 1011 g cm−3. Characteristic struc-
tures exist in jh̃þðf; rÞj inside the PNS above ∼600 Hz and
are compared to the perturbative functions in Sec. III B at
three selected frequencies marked by the horizontal dashed
lines. In the left panel, we plot the overall GW spectrum for
the regions inside 100 km (solid) and the PNS (dashed).
Above ∼600 Hz, the PNS region dominates the GW
emission, especially around the peak GW frequency
∼725 Hz. Note that sometimes the dashed line is above
the solid line because the contribution of outer regions may
increase or decrease the total power depending on the
relative sign of h̃þðfÞ inside and outside the PNS.

III. PERTURBATIVE ANALYSIS

A. Methodology

To be consistent with the pseudo-Newtonian simula-
tions, we follow the method of Ref. [46] to perform a
perturbative analysis with our background CCSN data.
Here, we only list the essential equations for completeness

and refer the interested readers to Ref. [46] for a more
thorough derivation. Note that we use geometric units G ¼
c ¼ 1 throughout this section.
In our adopted simulations, the gravitational potential Φ

is calculated from the Poisson’s equation,

∇2Φ ¼ 4πρ; ð4Þ

by a multipole expansion method with spherical harmonic
orders up to l ¼ 16 [53]. The monopole term of Φ is then
modified to approximate general-relativistic effects using
the Case A formula of Ref. [54]. As pointed out in
Ref. [46], this relativistic correction is irrelevant for the
perturbative analysis of GW emission because the lowest
order contribution arises from quadrupolar accelerations
(l ¼ 2). Therefore, the purely Newtonian perturbative
equations with l ¼ 2 [46,55] are consistent with the kind
of pseudo-Newtonian CCSN simulations considered here.
To linearize the hydrodynamic equations and the

Poisson’s equation, we use the ansatz that the Eulerian
perturbative value of each variable u can be written as

δu ¼ δûðrÞYle−iσt; ð5Þ

where u stands for the density ρ, the pressure P, the
gravitational potential Φ, and the Eulerian radial displace-
ment ξr. Thus, δû stands for the frequency-domain pertur-
bative variables, i.e., δρ̂, δP̂, δΦ̂, and ηr. Yl is the spherical
harmonic function, which for our axisymmetric case is the
Legendre polynomial with order l. σ ¼ 2πf is the angular

FIG. 1. Gravitational-wave spectrogram in the logarithmic
scale for the model m0.75. The power spectral density is
normalized to the maximum value after 0.1 s postbounce. The
red shaded regions indicate the resimulated interval with a high
cadence of data recording (2 × 10−5 s). These regions are
centered at 0.4, 0.8, 0.9, and 1.0 s postbounce with an interval
of 40 ms.

FIG. 2. The 2D color map plots the radial profile of gravita-
tional-wave power spectral density in the logarithmic scale for the
model m0.75 in the 40 ms interval centered at 0.4 s postbounce.
The vertical dotted line denotes the proto-neutron star (PNS)
surface with ρ ¼ 1011 g cm−3 and the horizontal black dashed
lines denote the frequencies (725, 1050, and 1500 Hz) chosen for
matching the perturbative functions. The lines plotted in the left
panel show the overall gravitational-wave spectrum for the
regions inside 100 km (solid) and the PNS (dashed).

UNVEILING THE NATURE OF GRAVITATIONAL-WAVE … PHYS. REV. D 109, 083023 (2024)

083023-3



frequency. The Eulerian tangential displacement ξθ is
written differently, as

δξθ ¼
η⊥ðrÞ
r2

∂θYle−iσt: ð6Þ

Hereafter, we omit the r dependence in δûðrÞ for concise-
ness. We set l ¼ 2 in our calculations due to the dominant
role of the quadrupolar perturbation in GW emission.
With the adiabatic condition ΔP=Δρ ¼ c2s (Δ stands for

Lagrangian perturbation) and substituting Eqs. (5) and (6)

into the hydrodynamic and Poisson’s equations, we can get
the perturbative equations as

∂rw⃗ ¼ Aw⃗; ð7Þ

with

w⃗ ¼ ðηr; η⊥; δΦ̂; FÞT; ð8Þ

and

A ¼

0
BBBBB@

−2=r − ∂r lnP=Γ1 −σ2=c2s þ lðlþ 1Þ=r2 1=c2s 0

1 − N2=σ2 −B B=σ2 0

0 0 0 1

−4πρB 4πρσ2=c2s −4πρ=c2s þ lðlþ 1Þ=r2 −2=r

1
CCCCCA
: ð9Þ

Here, F≡ ∂rδΦ̂, Γ1 is the adiabatic index, and
c2s ¼ Γ1P=ρ is the speed of sound in the Newtonian limit.
B≡ ∂r ln ρ − ð1=Γ1Þ∂r lnP is the Schwarzschild discrimi-
nant; N2 ¼ G̃B is the Brunt-Väisälä frequency squared
with G̃≡ ∂rP=ρ ¼ −∂rΦ. We note that the assumption of
hydrostatics (∂rP ¼ −ρ∂rΦ, see Fig. 3) is valid for the PNS
within ∼5% while it becomes much worse outside PNS, in
the neutrino-heating convective region. Also, vr becomes
markedly nonzero outside the PNS. These facts suggest that
the perturbative equations become invalid outside the PNS.
We emphasize again that Eq. (7) is only consistent with our
pseudo-Newtonian simulations for l ≠ 0.

We use a four-stage Runge-Kutta scheme to integrate
Eq. (7) from a small nonzero radius r0 ¼ dr=5, where
dr ¼ 0.5 km is the radial step for the numerical integration.
We linearly interpolate the spherically averaged back-
ground profiles from simulations to get hydrodynamic
variables at any given radius. We impose the following
regularity conditions at r0:

ηr ¼ A0rl−1; η⊥ ¼ A0

l
rl;

δΦ̂ ¼ C0rl; ∂rδΦ̂ ¼ lC0rl−1; ð10Þ

where we set A0 ¼ 10−5 and solve for C0 with the Newton-
Raphson method to fulfill the outer boundary condition,

�
∂rδΦ̂þ lþ 1

r
δΦ̂

�����
r¼R

¼ 0; ð11Þ

where a large enough R would not affect the perturbative
solution [46], and we set r ¼ 100 km. We have checked
that this is adequate for not affecting our conclusions.
Normally, another outer boundary condition is applied to

obtain a set of discrete eigenmodes. One common choice is
vanishing Lagrangian perturbation in pressure, i.e.,ΔP ¼ 0
at the PNS surface usually defined with a specific density
cut [38,40,41]. References [39,46] claim a more reasonable
boundary condition as vanishing Eulerian radial displace-
ment (ηr ¼ 0) at the shock radius. The choice of this
boundary condition affects the identification of the eigenm-
odes responsible for the GW emission, and we present the
results of eigenmodes in Sec. III C.

FIG. 3. Deviation from the hydrostatic condition ∂rP ¼ −ρ∂rΦ
at three postbounce times, 0.4, 0.8, and 1.0 s in the model m0.75.
The black stars mark the proto-neutron star surface defined as
where the spherically averaged density equals 1011 g cm−3.
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B. Matching perturbative solutions with simulations

In reality, one can solve the perturbative equation
[Eq. (7)] for a mode function at any frequency without
imposing the second boundary condition. We demonstrate
with the model m0.75 that the spatial profiles of GW
emission match well at any frequency between the simu-
lation (cf. Fig. 2) and the perturbative analysis, particularly
inside the PNS region.
The contribution of a mode to GW emission [h̃þðf; rÞ]

can be expressed as [56]

h̃þðf; rÞ ∝
Z

rþΔr=2

r−Δr=2
dVδQ̂ðf; rÞ; ð12Þ

where δQ̂ ¼ r2δρ̂ is the perturbed quadrupole moment. δρ̂
can be obtained from solutions of the perturbative equation
[Eq. (7)] by

δρ̂ ¼ ρ

�
σ2

c2s
η⊥ −

δΦ̂
c2s

− Bηr

�
: ð13Þ

We illustrate the comparison between the simulation and
perturbative analysis for the time interval centered at 0.4 s
in Fig. 4 and at 0.8, 0.9, and 1.0 s in Appendix A. We select
three frequencies for the comparison with one in the
vicinity of the peak GW emission and the other two
randomly picked. The frequencies from left to right in

Fig. 4 are denoted as horizontal dashed lines in Fig. 2 from
bottom to top, respectively.
As the Fourier component h̃þðf; rÞ in the simulation is

transformed from the GW waveform of a 40 ms interval, its
frequency resolution is at best ∼25 Hz. Instead of fixing at
the same frequency, we opt to search for the best-fit
perturbative mode in nearby frequencies. Therefore, we
solve for the perturbative modes in the �100 Hz window
centered at the simulated frequency with a step of 5 Hz.
Figure 4 shows that within the PNS surface (indicated by
gray dotted lines), both real and imaginary parts of h̃þðf; rÞ
from the simulation match almost perfectly with the per-
turbative δQðf; rÞ [Eq. (12)] multiplied by a constant.
Together with other intervals presented in Appendix A,
the discrepancy of frequency between the simulation and
perturbative analysis is always within 50 Hz and can be
better than 25 Hz when h̃þðf; rÞ has a large amplitude with
respect to numerical noise. However, mismatch appears
outside the PNS and becomes more prominent farther away.
The above results indicate that the GW emission of

CCSNe predicted by simulations mostly comes from the
PNS oscillations in the perturbative regime. This supports
the use of a consistent perturbative analysis for the
interpretation of the GW signals predicted from sophisti-
cated nonlinear simulations. It also implies that the per-
turbative equation is only valid within the PNS so that a
proper outer boundary condition should be chosen not too
far away from the PNS surface.

FIG. 4. Examples of matching radial profiles of gravitational-wave power spectral density between the simulation (black solid lines,
also see Fig. 2) and perturbative analysis (red dashed lines) for the model m0.75 in the 0.04 s interval centered at 0.4 s postbounce. The
frequencies in the simulation are 725, 1050, and 1500 Hz from left to right. Note that we have searched for the best-fit perturbative
function in a �100 Hz window centered at the simulated frequency. The blue dotted lines show the perturbative function with the same
frequency as the simulation when the best-fit frequency differs from that. Note that we multiply the perturbative function with a
frequency-dependent constant to match the simulated signals.
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C. Eigenmodes relevant for the peak
gravitational-wave emission

The ultimate goal of performing perturbative analysis is
to identify the true perturbative eigenmodes associated with
the peak GW emission. Based on this, pragmatic universal
relations can be built between the peak GW frequency and
important physical parameters [21,42]. Below we examine
the usual frequency matching routine to dig out the desired
eigenmodes.
We obtain the eigenmodes with the commonly used

outer boundary condition, i.e., a free surface [40,41],

ΔP ¼ ρðσ2η⊥ − δΦ̂Þ þ ηr∂rP ¼ 0: ð14Þ

Our default choice is applying this condition at the tentative
PNS surface where the spherically averaged density equals
1011 g cm−3. We only search for the eigenmodes in
between 250 and 2000 Hz which is most relevant to the
GW emission in our CCSN models.
In Fig. 5, we plot frequencies of the resulting eigen-

modes on top of the GW spectrogram for the model m0.75.
The digits denote the numbers of radial nodes (n) in ηr of
the corresponding eigenmodes. Reference [39] discussed
about difficulties in assigning the nature of a mode as
gravity (g), pressure (p), or hybrid (h). Here, we follow the
simplest Cowling method [57] to classify the eigenmodes.
From the upper end, the eigenmodes with decreasing n for a
lower frequency are classified as pn modes, while from the
lower end those with decreasing n for a higher frequency
are classified as gn modes. The eigenmodes in between p
and g modes are classified as h modes in Refs. [38,39], and
the eigenmode with n ¼ 0 is designated as the f mode. The
f mode emerges at ∼0.45 s postbounce and, after this time,
well separates the p and g modes with frequencies above

and below it. There are several crossings between eigenm-
odes with n differing by 1.
In the right panel of Fig. 5, we identify the eigenmodes

that are responsible for the peak GW emission by the
frequency matching method. The red dashed line shows a
quadratic fitting curve of the peak GW frequency as a
function of time after 0.1 s postbounce [20]. At every
10 ms, we plot the eigenmode whose frequency is closest to
this curve. Tentatively, the peak GWemission is associated
with a set of gn modes while n decreases consecutively by 1
at the crossing of modes. After ∼0.8 s postbounce, the f
mode is responsible for the peak GW emission whose
frequency is above the power gap near ∼1250 Hz.
In Appendix B, we present similar results for other two

models, m0.55 and m0.95. Here, our frequency matching is
based on a consistent perturbative analysis with the pseudo-
Newtonian simulation, and the credibility comes from the
excellent mode function matching within the PNS,
cf. Sec. III B. Yet uncertainty remains in the choice of the
outer boundary condition for solving the eigenvalue prob-
lem. As Refs. [40,58], we have checked that a lower density
cut of 1010 g cm−3 for the PNS surface does not alter the
eigenmode association, especially for the later times.
Reference [39] claimed that a more physical condition is
ηr ¼ 0 at the shock radius. However, this condition is not
pragmatic as in multi-D simulations the shock becomes
highly aspherical at a radius of 100s of km. A conclusive
association of eigenmodes with the peak GW emission
awaits for further creative and rigorous investigations.

D. The power gap

Another intriguing feature is the “power gap” in the GW
spectrum of CCSNe in the interval of [1000, 1300] Hz as
first noted by Morozova et al. [40] in 2D axisymmetric
simulations with FORNAX. This is also found in 3D

FIG. 5. Left panel: gravitational-wave (GW) spectrogram seen in Fig. 1 with the frequencies of perturbative eigenmodes overplotted as
digits denoting the corresponding numbers of radial nodes. Right panel: same as the left panel, but with the red dashed line denoting the
quadratic fitting curve of the GW peak frequency as a function of postbounce time. The digits denote the frequencies of perturbative
eigenmodes closest to the red line.
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simulations with FLASH [30] and with FORNAX [59] but
not in Refs. [31,60] with CHIMERA. References [40,59]
attribute this power gap to the avoided crossing of g and f
modes and to a trapped g mode in the inner PNS core
(within a radius of ∼10 km). Here, we offer an alternative
explanation for the power gap with our perturbative
analysis.
As shown in Sec. III B, the GW emission profiles in the

simulation well match with the perturbative functions at
any frequency inside the PNS. Based on the fact that the
PNS region generally dominates the GW emission (cf. the
left panel of Fig. 2), we compute the total power of GW
emission inside the PNS from the perturbative functions by

PðfÞ ¼ CðfÞ
Z

RPNS

0

dVδρ̂r2; ð15Þ

where CðfÞ is a frequency-dependent factor which relates
to the ability of excitation at f and cannot be determined by
the perturbative analysis. In the left panel of Fig. 6, we plot
the absolute value of this power (without the unknown
CðfÞ) as a function of frequency at 0.4, 0.8 and 1.0 s in the
model m0.75. A local minimum is found near the gap
frequency fgap ∼ 1250 Hz in the power spectrum as
marked by the vertical dotted lines. This local minimum
results from a zero point in the total power as its sign
changes. In the right panel of Fig. 6, we plot the frequency
of this local minimum in power (fmin) as a function of time
with the red dashed line on top of the corresponding GW
spectrogram. The white open circles show fgap determined
from the local minimum within [1000, 1300] Hz in the GW
spectrum derived from the waveform with a window of

200 ms. After ∼0.4 s postbounce, fmin and fgap have a
nearly constant offset of ∼30 Hz.
Note that there is a second local minimum at 600–750 Hz

in the left panel of Fig. 6, but this does not appear as a
power gap in the spectrogram. First, the spectral power is
Fourier transformed from the time-domain GW signal with
a window of 40 ms. During this window, the frequency of
the second local minimum shifts by >10 Hz, while the
change is below 1 Hz for the observed gap frequency at
∼1250 Hz. Therefore, this second local minimum cannot
form a power gap due to interference effects. Second, the
spectral power is overall low for frequencies below the peak
GW emission, where this second local minimum locates
after ∼0.3 s postbounce. So it is harder to be extracted due
to the low signal-to-noise ratio.
We further exemplify the similarity between fmin and fgap

with other models in Fig. 7. The different EOSs result in a
different trend for the evolution of fgap, most noticeable in
the model m0.95 where fgap decreases with time. With fmin

shifted lower by 30 Hz, a good agreement is found between
fmin and fgap for all models after ∼0.4 s postbounce. We
suspect that the 30 Hz offset results from the numeric
differences between the simulation and perturbative analy-
sis. Otherwise, this fmin offers a plausible explanation for the
power gap of GW emission found in simulations.
We leave a full investigation to future work, but a

preliminary investigation into the persistence and the
coincident frequency of the power gap between the simu-
lations and the perturbation theory suggests that the term
responsible for the overall decrease in the total power
surrounding the power gap frequency (between
∼1000 Hz and ∼1500 Hz) in Fig. 6 and therefore the term

FIG. 6. Left panel: total power (PðfÞ=CðfÞ in Eq. (15) of the perturbative mode functions inside the proto-neutron star (PNS) as a
function of frequency at 0.4, 0.8, and 1.0 s postbounce. The PNS surface is defined as the locus of 1011 g cm−3. The vertical dotted lines
denote the local minimum around the gap frequency in the simulation (∼1250 Hz). Right panel: same as Fig. 1, but with the gap
frequencies overplotted as white open circles. The red dashed line denotes the frequency for the local minimum power inside PNS as the
vertical dotted lines in the left panel.
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that enables the zero point in the total power is the 1 − N2=σ2

term in the differential equation for η⊥ [see the η⊥ − ηr term
in Eq. (9)]. In particular, the location of its zero point at
N2 ¼ σ2 in the inner core, immediately below the convec-
tion zone determines the strength of η⊥ further out and
therefore the overall magnitude of δρ̂. Based on the
frequency of the zero point in the total power of the
perturbative mode functions, Fig. 6, and preliminary inves-
tigations, we suspect that the region where the N2 ¼ σ2gap,
i.e. fBV ¼ fmin, is crucial for this suppression. This occurs
within ∼1 km of the base of the convection zone.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have applied perturbative analyses for
the interpretation of GW signals from CCSNe predicted by
2D pseudo-Newtonian simulations. Our perturbative analy-
ses share the same underlying equations as simulations
considered here. By matching the radial profiles of GW
emission from the simulation with perturbative functions at
any frequency and time, we confirmed that global PNS
oscillations are responsible for the emission of GWs in
CCSNe. Through frequency matching, we tentatively iden-
tified the relevant eigenmodes of the PNS oscillation for the
peak GW emission to be a set of g modes and the f mode.

The switching to the f mode occurs when the peak GW
frequency exceeds that of the power gap. Finally, we found
that the frequency of the GW power gap within [1000,
1300] Hz coincides with a local minimum in the total GW
power of the PNS calculated from perturbative functions.
This offers an alternative explanation of the power gap other
than the “trapped” g mode proposed in Ref. [40].
Here, we have focused on the emission mechanism of

GWs in CCSNe. A further important pending problem is
the mechanism of excitation, i.e., what excites the PNS
oscillations. Radice et al. [61] showed the proportional
correlation between the energy radiated in GWs and the
amount of turbulent energy accreted by the PNS, which
suggests the accretion coming from outside excites the PNS
oscillations. Other groups [29,31,60] proposed convection
inside the PNS as the main driver based on the location of
dominant GWemission. The global emission picture drawn
from our perturbative analyses may challenge the latter
proposal, i.e., the association of location between the
emission and excitation of GWs. Nevertheless, we remind
the readers that these studies are based on 3D simulations
for which one should perform similar analyses as ours to
have a conclusive answer.
Despite the challenge of detection due to the rarity of

nearby CCSNe, the boost in understanding CCSNe with a
potential detection motivates continuous and deeper inves-
tigations from the theoretical side. In return, the insights
gained from simulations and perturbative analyses can
facilitate the development of GW search algorithms that
ensure us not missing one of these grand events.
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FIG. 7. Comparison of gap frequencies in the simulation (open
circles) and perturbative analysis (solid lines) for all the super-
nova models considered in this paper. The gap frequencies from
the perturbative analysis are shifted lower by 30 Hz to better
match those from the simulations.
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APPENDIX A: MODE FUNCTION MATCHING AT OTHER POSTBOUNCE TIMES

In Fig. 8, we present the matching of radial profiles of GW emission between the simulation and perturbative mode
functions for the latter three postbounce times as indicated by the red shaded regions in Fig. 1. Note that the quality of
matching becomes worse with smaller GWamplitudes (e.g., the real part of 1100 Hz at 0.9 s postbounce), but this does not
alter our conclusions.

FIG. 8. Same as Fig. 4, but for the 0.04 s intervals centered at 0.8, 0.9, and 1.0 s postbounce in the model m0.75 from top to bottom. The
blue dotted lines show the perturbative function with the same frequency as the simulation when the best-fit frequency differs from that.
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APPENDIX B: FREQUENCY MATCHING OF EIGENMODES IN OTHER MODELS

In Fig. 9, we present the GW spectrograms overplotted with the frequencies of selected eigenmodes for two other models,
m0.55 (left panel) and m0.95 (right panel).
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