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12228-900, São José dos Campos, São Paulo, Brazil
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The influence of the dark matter mass (Mχ) and the Fermi momentum (kDMF ) on the f0-mode oscillation
frequency, damping time parameter, and tidal deformability of hadronic stars are studied by employing a
numerical integration of hydrostatic equilibrium, nonradial oscillation, and tidal deformability equations.
The matter inside the hadronic stars follows the NL3* equation of state. We obtain that the influence ofMχ

and kDMF is observed in the f0-mode, damping tome parameter, and tidal deformability. Finally, the
correlation between the tidal deformability of the GW170817 event withMχ and kDMF are also investigated.
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I. INTRODUCTION

In astrophysics, it is estimated that dark matter (DM)
corresponds to approximately 27% of the matter in the
Universe today. The name coined for this matter refers to
the fact that it appears not to interact with light or
electromagnetic field, hence the difficulty in its direct
detection. However, this matter would interact gravitation-
ally, thus leaving unequivocal observational signals of its
existence [1].
The study of dark matter began in the 1930s when Fritz

Zwicky observed that the velocities dispersion of galaxies
within the Coma Cluster exceeded what could be accounted
for by the visible matter alone [2] (review also [3]).

He suggested that an additional, unseen mass—who coined
the name dark matter—must be exerting gravitational
influence to accelerate these orbital motions. Subsequent
investigations developed by Ford and Rubin in the 1970s
[4], would show a consistent presence of unexplained high-
speed orbits in every galaxy became apparent, solidifying
the consensus around the existence of an exotic matter.
In the search for the exact nature of dark matter, to date, a

large number of experiments have been carried out using a
variety of theoretical models. Among the theoretical
proposed candidates, we find weakly interacting massive
particles (WIMPs) [5] and feebly interacting massive
particles (FIMPS) [6,7], the neutralino [8–10], axions
[11], among others; however, no concrete conclusion has
been reached about the nature of dark matter. Within this set
of possibilities, in particular, WIMPs are those more
promising; review, for example, [12,13].
Motivated by the detections of gravitational waves

caused by the merger of a binary system recorded by
the LIGO-Virgo Collaboration (LVC) [14–25], in recent
years, numerous investigations have explored the integra-
tion of dark matter into hadronic matter [10,26–40], as well
as the effects of dark matter in relation to quarks and hybrid
stars [41,42] and on some properties of neutron stars,
namely, how this type of exotic matter would influence
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some parameters macroscopic observations such as in the
equilibrium configuration [26–32], radial stability [24,25],
tidal deformability [10,27,31,33–39], and f0-mode fre-
quency of oscillation into the Cowling approximation [40].
In the present work, we study the effect of dark matter on

the stellar structure configuration, f0-mode frequency of
oscillation from complete general relativity, and tidal
deformability. For the fluid inside the compact stars, we
employ the relativistic mean field model with the NL3*
parametrization [43]. The contribution of dark matter is
included through a kinetic term as done in [33,36], where
we vary the Fermi momentum by taking different values of
the neutralino mass, as detailed throughout the article. Once
the equation of state (EOS) is defined, the mass, radius,
tidal deformability, oscillation frequency, and damping
time are analyzed for both hadronic stars and for hadronic
stars in a binary system. These results are contrasted with
observational data reported by LVC in the articles afore-
mentioned. In addition, the f0-mode derived from the
complete general relativity is compared with the ones
derived from the nonradial oscillation equations through
the Cowling approximation.
The next sections are distributed as follows. In Sec. II the

structure of the hadronic model with dark matter content is
described and the main equations of state of the system are
obtained. In Sec. III the equilibrium equation, nonradial
oscillation equation, and tidal deformability equation are
presented. In Sec. IV we discuss the results and in Sec. V
we conclude the paper. Finally, throughout the text, we
adopt the metric signature ð−;þ;þ;þÞ and we employ in
geometrized units c ¼ 1 ¼ G.

II. HADRONIC MODEL WITH
DARK MATTER CONTENT

The impact of dark matter on the properties related to
nonradial oscillations in neutron stars is performed here by
considering the system, composed of hadronic matter
admixed with DM, described by the following Lagrangian
density:

L ¼ LHAD þ LDM; ð1Þ

in which

LHAD ¼ ψ̄ðiγμ∂μ −MnucÞψ þ gσσψ̄ψ − gωψ̄γμωμψ

−
gρ
2
ψ̄γμb⃗μτ⃗ψ þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − A

3
σ3

−
B
4
σ4 −

1

4
FμνFμν þ

1

2
m2

ωωμω
μ −

1

4
B⃗μνB⃗μν

þ 1

2
m2

ρb⃗μb⃗
μ; ð2Þ

with nucleon and mesons fields denoted by ψ, σ, ωμ, and b⃗μ,
respectively (masses given by Mnuc, mσ, mω, and mρ).

The tensors Fμν and B⃗μν are defined as Fμν ¼ ∂μων −
∂νωμ and B⃗μν ¼ ∂μb⃗ν − ∂νb⃗μ. More details of this kind of
relativistic mean-field (RMF) model applied to symmetric
and asymmetric nuclear matter can be found, for instance, in
Refs. [44,45]. The free parameters of the model are the
couplings gσ , gω, gρ,A,B, and the particular set used here for
these constants is the one given by the NL3* model [43].
Such parametrization was chosen due to its capability of
reproducing ground state binding energies, charge radii, and
giant monopole resonances of a set of spherical nuclei,
namely, 16O, 34Si, 40Ca, 48Ca, 52Ca, 54Ca, 48Ni, 56Ni, 78Ni, 90Zr,
100Sn, 132Sn, and 208Pb, as well as macroscopic properties of
neutron stars. The complete study performed with more than
400 other parametrizations of the RMF model is found in
Ref. [46]. The dark sector of the model is given by
[10,26,27,30–36,40,47,48]

LDM ¼ χ̄ðiγμ∂μ −MχÞχ þ ξhχ̄χ þ 1

2
ð∂μh∂μh −m2

hh
2Þ

þ f
Mnuc

v
hψ̄ψ ; ð3Þ

with the Dirac field χ representing the dark fermion of mass
Mχ . The scalar field h denotes the Higgs boson with mass
mh ¼ 125 GeV, and the strength of the Higgs-nucleon
interaction is controlled by fMnuc=v, with v ¼ 246 GeV
being the Higgs vacuum expectation value, and f ¼ 0.3
[49,50]. The constant ξ regulates the Higgs-dark particle
coupling.
The field equations of the system are calculated by using

the mean-field approximation [44,45], namely,

m2
σσ ¼ gσρs − Aσ2 − Bσ3; ð4Þ

m2
ωω0 ¼ gωρ; ð5Þ

m2
ρb0ð3Þ ¼

gρ
2
ρ3; ð6Þ

½γμði∂μ − gωω0 − gρb0ð3Þτ3=2Þ −M��ψ ¼ 0; ð7Þ

m2
hh ¼ ξρDMs þ f

Mnuc

v
ρs; ð8Þ

ðγμi∂μ −M�
χÞχ ¼ 0; ð9Þ

with τ3 ¼ 1 for protons and −1 for neutrons, and effective
dark particle and nucleon masses written as

M�
χ ¼ Mχ − ξh; ð10Þ

and

M� ¼ Mnuc − gσσ − f
Mnuc

v
h; ð11Þ
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respectively. The densities related to hadronic and dark
sectors are

ρs ¼ ρsp þ ρsn; ð12Þ

ρ ¼ ρp þ ρn; ð13Þ

ρ3 ¼ hψ̄γ0τ3ψi ¼ ρp − ρn ¼ ð2yp − 1Þρ; ð14Þ

ρsp;n ¼ hψ̄p;nψp;ni ¼
M�

π2

Z
kFp;n

0

k2dk

ðk2 þM�2Þ1=2 ; ð15Þ

ρDMs ¼ hχ̄χi ¼ M�
χ

π2

Z
kDMF

0

k2dk

ðk2 þM�2
χ Þ1=2 : ð16Þ

The proton fraction is yp ¼ ρp=ρ, and the vector densities
are related to the respective Fermi momenta through
ρp;n ¼ 2k3Fp;n=ð3π2Þ, and ρχ ¼ 2kDMF

3=ð3π2Þ. In our study,
we keep this last quantity as a free parameter, as well as
the dark fermion mass, for which the values are taken from
the range 50 GeV ≤ Mχ ≤ 500 GeV. Such interval for
Mχ , along with ξ ¼ 0.01, ensures that the spin-indepen-
dent scattering cross-section is compatible with data
provided by PandaX-II [51], LUX [52], and DarkSide
[53] Collaborations.
The energy density and pressure of the system is

calculated from the energy-momentum tensor, Tμν,
obtained through Eq. (1). Such expressions are given,
respectively, by

εðσ;ω0; b0ð3Þ; ρ; yp; h; ρχÞ

¼ m2
σσ

2

2
þ Aσ3

3
þ Bσ4

4
−
m2

ωω
2
0

2
−
m2

ρb20ð3Þ
2

þ gωω0ρ

þ gρ
2
b0ð3Þρ3 þ

m2
hh

2

2
þ εpkin þ εnkin þ εDMkin ; ð17Þ

and

Pðσ;ω0; b0ð3Þ; ρ; yp; h; ρχÞ

¼ −
m2

σσ
2

2
−
Aσ3

3
−
Bσ4

4

þm2
ωω

2
0

2
þ
m2

ρb20ð3Þ
2

−
m2

hh
2

2
þ Pp

kin þ Pn
kin þ PDM

kin ;

ð18Þ

with the kinetic terms written as

εDMkin ¼ 1

π2

Z
kDMF

0

k2ðk2 þM�2
χ Þ1=2dk; ð19Þ

PDM
kin ¼ 1

3π2

Z
kDMF

0

k4dk

ðk2 þM�2
χ Þ1=2 ; ð20Þ

ϵp;nkin ¼ 1

π2

Z
kFp;n

0

k2ðk2 þM�2Þ1=2dk; ð21Þ

Pp;n
kin ¼ 1

3π2

Z
kFn;p

0

k4dk

ðk2 þM�2Þ1=2 : ð22Þ

In these expressions, σ, ω0, b0ð3Þ, and h are the mean-field
values of the respective mesonic fields of the model.
We also include electrons and muons in the system in

order to correctly describe the core of neutron stars.
Therefore, energy density and pressure become

ϵcore ¼ εðσ;ω0; b0ð3Þ; ρ; yp; h; ρχÞ þ
μ4e
4π2

þ 1

π2

Z ffiffiffiffiffiffiffiffiffiffi
μ2μ−m2

μ

p

0

dkk2ðk2 þm2
μÞ1=2; ð23Þ

and

pcore ¼ Pðσ;ω0; b0ð3Þ; ρ; yp; h; ρχÞ þ
μ4e

12π2

þ 1

3π2

Z ffiffiffiffiffiffiffiffiffiffi
μ2μ−m2

μ

p

0

dkk4

ðk2 þm2
μÞ1=2

: ð24Þ

The last terms of the above equations represent the
thermodynamical quantities of massless electrons, and
muons with mass mμ ¼ 105.7 MeV. The chemical poten-
tials of these leptons, denoted by μe and μμ, are related to
their respective densities through ρe ¼ μ3e=ð3π2Þ, and
ρμ ¼ ½ðμ2μ −m2

μÞ3=2�=ð3π2Þ. For a beta-equilibrated system
submitted to charge neutrality, the following conditions
apply, namely, ρp − ρe ¼ ρμ and μn − μp ¼ μe ¼ μμ.
Finally, we consider two different regions for the descrip-
tion of the neutron star crust; the outer (OC) and the inner
crust (IC). For the former, we use the equations proposed
by Baym, Pethick, and Sutherland (BPS) [54] in a density
region of 6.3 × 10−12 fm−3 ≤ ρ ≤ 2.5 × 10−4 fm−3. For
the inner crust, we use a polytropic relation between energy
density and pressure, namely, pICðϵICÞ ¼ Aþ Bϵ4=3IC . We
match this form to the BPS and the core equations. The
latter is connected at the core-crust transition pressure and
energy density, calculated through the thermodynamical
method [55–57]. The total energy density and total pressure
of the stellar matter are then given by

ϵ ¼ ϵcore þ ϵOC þ ϵIC ð25Þ

and

p ¼ pcore þ pOC þ pIC; ð26Þ

respectively.
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It is worth emphasizing that the equation used to
determine the transition density is based on derivatives
with respect to density and proton fraction, see Eq. (21) of
Ref. [55] for instance. In our model, the major effect of
including dark matter is due to the kinetic terms in energy
density and pressure, i.e., the coupling strength is very
weak and dark matter particles are essentially free particles
(for a detailed discussion on this regard, we address the
reader to Ref. [30]). Because of that, since such terms are
taken as constants (we are fixing Mχ and kDMF ), the
aforementioned derivatives are not affected by dark matter.
Therefore, the calculation of the transition density is not
impacted either.

III. GENERAL RELATIVISTIC FORMALISM

A. The stellar equilibrium equations

The static equilibrium configurations of a compact star
composed of a perfect fluid are obtained through the
Tolman-Oppenheimer-Volkoff (TOV) equations,

dp
dr

¼ −
ϵm
r2

�
1þ p

ϵ

��
1þ 4πpr3

m

1 − 2m
r

�
; ð27Þ

dν
dr

¼ −
2

ϵ

dp
dr

�
1þ p

ϵ

�
−1
; ð28Þ

dm
dr

¼ 4πr2ϵ: ð29Þ

The variables mðrÞ and νðrÞ are respectively the gravita-
tional mass inside the radius r and a metric potential. The
pressure p and the mass-energy density ϵ are connected by
the equations of state. To integrate the system of Eqs. (27)–
(29) from the center (r ¼ 0) to the star’s surface (r ¼ R),
some conditions are required. At the center of the star
(r ¼ 0), we have

ϵð0Þ ¼ ϵc; pð0Þ ¼ pc; and mð0Þ ¼ 0: ð30Þ

The surface of the star is found when pðRÞ ¼ 0. At this
point

νðRÞ ¼ ln

�
1 −

2M
R

�
; ð31Þ

with M representing the total stellar mass.

B. The nonradial oscillation equations

To investigate the nonradial oscillation, both spacetime
and fluid variables are perturbed. The perturbations are
replaced in the Einstein field equation, in the energy-
momentum tensor, and in the baryon number conservation
maintaining only the first-order variables.

Following Refs. [58,59], we adopt the perturbed line
element of the form,

ds2 ¼ −eνð1þ rlH0Yl
meiωtÞdt2 − 2iωrlþ1H1Yl

meiωtdtdr

þ eλð1 − rlH0Yl
meiωtÞdr2

þ r2ð1 − rlKYl
meiωtÞðdθ2 þ sin2 θdϕ2Þ; ð32Þ

with H0 ¼ H0ðrÞ, H1 ¼ H1ðrÞ, and K ¼ KðrÞ being
functions of the radial coordinate r only, ω depicting the
eigenfrequency of oscillation, and Yl

m ¼ Yl
mðθ;ϕÞ repre-

senting the even-parity spherical harmonic functions. Since
the small perturbations are set by the Lagrangian fluid
displacement ξβ, we consider:

ξr ¼ rl−1e−λ=2WYl
meiωt; ð33Þ

ξθ ¼ −rl−2V∂θYl
meiωt; ð34Þ

ξϕ ¼ −rlðr sin θÞ−2V∂ϕYl
meiωt; ð35Þ

where ξ0 ¼ 0.
With this, nonradial oscillations are described by the

following set of first-order linear differential equations [59]:

H0
1 ¼ −r−1

�
lþ 1þ 2Meλ

r
þ 4πr2eλðp − ϵÞ

�
H1

þ eλr−1½H0 þ K − 16πðϵþ pÞV�; ð36Þ

K0 ¼ r−1H0 þ
lðlþ 1Þ

2r
H1 −

�ðlþ 1Þ
r

−
ν0

2

�
K

− 8πðϵþ pÞeλ=2r−1W; ð37Þ

W0 ¼ −ðlþ 1Þr−1W þ reλ=2
�
e−ν=2γ−1p−1X

− lðlþ 1Þr−2V þ 1

2
H0 þ K

�
; ð38Þ

X0 ¼ −lr−1X þ ðϵþ pÞeν=2
2

��
1

r
þ ν0

2

�
H0

þ
�
rω2e−ν þ lðlþ 1Þ

2r

�
H1 þ

�
3

2
ν0 −

1

r

�
K

− lðlþ 1Þr−2ν0V − 2r−1
�
4πðϵþ pÞeλ=2

þ ω2eλ=2−ν −
r2

2
ðe−λ=2r−2ν0Þ0

�
W

�
; ð39Þ

where the prime stands a derivative with respect to r and γ
depicts the adiabatic index. The function X is given by
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X ¼ ω2ðϵþ pÞe−ν=2V −
p0

r
eðν−λÞ=2W

þ 1

2
ðϵþ pÞeν=2H0; ð40Þ

with H0 fulfilling the algebraic relation

a1H0 ¼ a2X − a3H1 þ a4K; ð41Þ

where

a1 ¼ 3M þ 1

2
ðlþ 2Þðl − 1Þrþ 4πr3p; ð42Þ

a2 ¼ 8πr3e−ν=2; ð43Þ

a3 ¼
1

2
lðlþ 1ÞðM þ 4πr3pÞ − ω2r3e−ðλþνÞ; ð44Þ

a4 ¼
1

2
ðlþ 2Þðl − 1Þr − ω2r3e−ν

− r−1eλðM þ 4πr3pÞð3M − rþ 4πr3pÞ: ð45Þ

Outside the stellar structure configuration, the perturbation
functions that describe the motion of the fluid W and V
vanish, and the systemof differential equations reduces to the
Zerilli equation,

d2Z
dr�2

¼ ½VZðr�Þ − ω2�Z; ð46Þ

where Zðr�Þ and dZðr�Þ=dr� are related to the functions
H0ðrÞ and KðrÞ through the transformations given in
Refs. [58,59]. Zðr�Þ depends on the “tortoise” coordinate
which is given by

r� ¼ rþ 2M ln

�
r
2M

− 1

�
; ð47Þ

and the effective potential VZðr�Þ yields

VZðr�Þ ¼
ð1 − 2M=rÞ
r3ðnrþ 3MÞ2 ½2n

2ðnþ 1Þr3 þ 6n2Mr2

þ 18nM2rþ 18M3�; ð48Þ

with n ¼ ðl − 1Þðlþ 2Þ=2.
For given values of l and ω, the set of Eqs. (36)–(39) has

four linearly independent solutions. The physical solution
obtained must verify boundary conditions: (a) The pertur-
bation functions have to be regular throughout the entire
star; thus implying that in r ¼ 0must also be finite, since at
this point nonradial oscillation equations are singular. To
insert such condition, the solution near r ¼ 0 must be
expanded using a power series (for more detail about the
process, seeRef. [58]); (b) Since the Lagrangian perturbation

of pressure vanishes at the star’s surface r ¼ R. This
boundary condition is equivalent to XðRÞ ¼ 0. For a set
of values of l and ω, there is a solution that fulfills the above
boundary conditions inside the star.
In general, in the exterior of the star, the perturbed line

element depicts a mixture of outgoing and ingoing gravita-
tional waves. Since we focus on the purely outgoing
gravitational radiation at r ¼ ∞, the Zerilli equation is used.
The eigenfrequency of oscillation that satisfies this require-
ment represents the quasinormal modes of the stellar model.
The process to solve the above equations is detailed
in [58,59].
Different oscillation modes can be investigated using the

aforementioned equations. The purely gravitational modes
(w-modes) do not induce fluid motion and are highly
damped. The fluid pulsation modes (f0, g, and p-modes)
are usually grouped according to the origin of the restoring
force that prevails in bringing the perturbed element of fluid
back to the equilibrium position; e.g., the buoyancy in the
case of g-modes or a gradient of pressure for p-modes. It is
widely known that the frequencies of the g-modes are lower
than those of p-modes, and these two sets are separated by
the frequency of the f0-mode. The f0-mode frequency is
proportional to the square root of the mean density of the
star and tends to be independent of the details of the stellar
structure. In this work, we analyze only the f0-mode
because it is expected to be the most excited in astrophysi-
cal events and, therefore, the one that contributes the most
to the emission of gravitational waves coming from a star.

C. The tidal deformability equations

The analysis of tidal deformability is commonly inves-
tigated in binary compact object systems. The gravitational
effects caused by one star can bring out the deformation of its
partner. This deformation was investigated by Damour and
Nagar, Binnington and Poisson [60,61]. They found that the
tidal deformation of a neutron star is determined by the
gravitoelectricKel

2 and gravitomagneticKmag
2 Love numbers,

which are respectively connected with the mass quadrupole
and with the current quadrupole induced by the companion
star. Additional research carried out by Flanagan and
Hindeler found that a single detection should be sufficient
to impose upper limits on Kel

2 at 90% confidence level [62].
Since then, intensive research has been carried out on the
calculation of the Love numbers of neutron stars [63–67].
In a binary stellar system, the induced quadrupole

moment Qij in one neutron star because of the external
tidal field Eij induced by a partner compact object can be
expressed as [67]

Qij ¼ −λEij; ð49Þ

where λ is the tidal deformability parameter, which can be
written in terms of the quadrupole (l ¼ 2) tidal Love
number k2 as
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λ ¼ 2

3
k2R5: ð50Þ

To determine k2 we need to solve the first-order differential
equation,

r
dy
dr

þ y2 þ yFðrÞ þ r2QðrÞ ¼ 0; ð51Þ

with the functions FðrÞ and QðrÞ given by

FðrÞ ¼ ½1 − 4πr2ðε − pÞ�=E ð52Þ

QðrÞ ¼ 4π

�
5εþ 9pþ ðεþ pÞ

�
∂p
∂ε

�
−

6

4πr2

�.
E

− 4

�
mþ 4πr3p

r2E

�
2

; ð53Þ

with E ¼ 1–2m=r. Therefore the Love number k2 is
computed to be

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2C2Þ½2 − yR þ 2CðyR − 1Þ� lnð1 − 2CÞg−1;

ð54Þ

where the function yR ¼ yðr ¼ RÞ and C ¼ M=R is the
compactness parameter. Equation (51) has to be solved
coupled with the TOV equations.
The dimensionless tidal deformability Λ (i.e., the dimen-

sionless version of λ) is connected with the Love number
through the relation

Λ ¼ 2k2
3C5

: ð55Þ

IV. RESULTS

A. General remarks

In this work, the full general relativistic equations for the
oscillations of neutron stars (perturbations on fluid and
spacetime variables are coupled) are considered. In this
case, the oscillations (for l ¼ 2, i.e., quadrupole oscilla-
tions) are coupled with gravitational radiation. For a further
double-check of our results, we also consider the well-
known Cowling approximation, where it is considered that
the fluid perturbations are weakly coupled with the space-
time vibrations. In this case, we have only a set of
differential equations for the fluid variables.

For the results obtained by using the Cowling approxi-
mation, we employ a code that implements the shooting
method. In this procedure, there exist boundary conditions
to be considered in the center and on the surface of the star.
In the first stage, in the center of the star, we consider the
initial values of the functions W and V (which satisfy
regularity conditions), and we also introduce a trial value
for the f0-mode frequency, which is typically around
2.5 kHz (Of course, this shoot is suitable for a standard
neutron star). After setting the initial values for the fluid
variables and the initial value for the frequency, we proceed
with the numerical integration which starts in the center and
ends on the surface of the star; this numerical integration is
developed using the Runge Kutta method. After finishing
the integration process, we arrive at the surface of the star,
and at this point, we use the Newton-Raphson method to
see if the estimated frequency value (the value of the
eigenfunction) satisfies the boundary condition. If we do
not find a good precision, the test value for the frequency is
corrected and the integration process is initialized again,
until we have the desired precision for the oscillation mode.
This Cowling frequency will be used to obtain good
convergence in the numerical treatment of the full general
relativistic equations, and at the same time that frequency
works as a good double-check for our results. Also, this
numerical code allows us to obtain the f0-mode reported in
the literature, e.g., it reproduces the results of Ref. [68].
In a more rigorous treatment of neutron star seismology,

we have to consider the coupling between the fluid
movement and the metric perturbations. In this case, the
numerical procedure is a very elaborate and long process of
shooting method. The first step is to use as our best test
value for the gravitational wave frequency the one obtained
in the framework of the Cowling approximation, i.e., ωCow.
With such proof value, we begin the integration inside the
star, from the center towards the star’s surface. At first, it is
selected three linearly independent solutions compatible
with the regularity conditions in the center of the star, and
then we begin with the numerical integration from r ¼ 0 to
the point R=2 inside the star. After that, a second integration
is realized, where we select two linearly independent
solutions compatible with the boundary condition on the
star’s surface, this process is made from the surface R to the
pointR=2. To complete the procedure inside the star, the five
solutions are combined to obtain compatibility with the
boundary conditions at the center and on the surface of
the star. Thereafter, we continue with the integration outside
the star. The boundary values for the Zerilli function and its
derivative at the surface of the star can always be obtained
from the values of H0ðRÞ and KðRÞ obtained from the
integration inside the compact star. Then, Zðr�Þ can be
determined outside the star by integrating the Zerilli equa-
tion. At an asymptotically large radius (which represents the
infinity), the two linearly independent solutions of the Zerilli
equation may be expressed as power series
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Z−ðr�Þ ¼ e−iωr
� X∞
j¼0

βjr−j ð56Þ

and

Zþðr�Þ ¼ eiωr
� X∞
j¼0

β̄j; ð57Þ

where Z− depicts the radiated waves and Zþ the ingoing
waves. The general asymptotic solution is given by the linear
combination

Zðr�Þ ¼ AðωÞZ−ðr�Þ þ BðωÞZþðr�Þ; ð58Þ

with AðωÞ and BðωÞ being complex numbers. The integra-
tion of the Zerilli differential equation from the surface of the
star to the infinity (r∞ ≈ 55ω−1) allows findingZ anddZ=dr.
Then, by using Zðr�Þ at r� ¼ r�∞, we can obtain BðωÞ ¼ 0
against to Zðr�∞Þ and dZ=drðr�∞Þ for each value of ω. The
boundary condition at infinity requires that we only have
outgoing gravitational radiation, i.e., to find the frequencies
of quasinormalmodeswemust obtain the roots ofBðωÞ ¼ 0.
This is achieved by determining BðωÞ for three different
close trial values of the eigenfrequency ω. Then, we fit a
quadratic polynomial BðωÞ ¼ γ0 þ γ1ωþ γ2ω

2 to the com-
puted values ofω to obtain an approximate root ofBðωÞ ¼ 0.
Finally, we iterate this procedure using the real part of the
approximate root as an input for the next integration of
the oscillation equations. This interaction is repeated until the
real part value of the quasinormal mode changes from one
step to the next by less than one part in 108. The imaginary
part ofω is connected to thegravitational damping timeof the
oscillation τ. The numerical code implemented in this case
allows us to reproduce the results shown in Ref. [69].
In this work, we analyze the effects of dark matter inside

neutron stars. Since dark matter would interact very weakly
with normal matter, its possible effects just could be felt
only in a gravitational field.
For our purposes, the dark matter massMχ and the Fermi

momentum of dark matter particles kDMF values were
selected to satisfy the restrictions obtained of both stellar
mass and the tidal deformability of neutron stars observed;
namely, we use Mχ ¼ 50 MeV, 200 MeV, and 500 MeV
and kDMF ¼ 0 GeV, 0.02 GeV, 0.04 GeV, and 0.06 GeV. As
a consequence, by using the NL3* EOS, we reproduce the
mass, radius, f0-mode frequency, damping time of the
fundamental mode, and tidal deformability.

B. Tidal deformability, frequency of oscillations, and
damping time of fundamental mode for a hadronic star

From Fig. 1, the mass, normalized in solar masses, as a
function of the total radius is plotted for some values ofMχ

and kDMF . The observation data belong to the NICER
restrictions obtained from the pulsars PSR J0030þ 0451
[70,71] and PSR J0740þ 6620 [72,73]. There are also
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FIG. 1. Mass, normalized in Sun’s masses, versus radius for
some values ofMχ and kDMF . The curve in magenta represents the
case without dark matter. The curves of the same color represent
the results for a fixed value of kDMF and the curves of the same
type depict results for a fixed value of Mχ . The solid curves
correspond to Mχ ¼ 50 MeV, dashed curves correspond to
Mχ ¼ 200 MeV, and solid curves with circles correspond to
the case Mχ ¼ 500 MeV. Red and blue regions represent the
masses and radii intervals (95%) from PSR J0030þ 0451 and
PSR J0740þ 6620 measured by NICER [70–73]. The magenta
horizontal line includes all observed neutron stars over 2 solar
masses, which include the pulsars PSR J1614 − 2230, PSR
J0348þ 0432, and PSR J0740þ 6620 [74–76].
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FIG. 2. Tidal deformability versus mass different values of Mχ

and kDMF . The curve in magenta stands for the case without dark
matter. The curves with the same type of color represent results
obtained with the same value of kDMF and the curves of the same
type depict the results found with the same value Mχ . The solid
curves correspond to Mχ ¼ 50 MeV, dashed curves correspond
to Mχ ¼ 200 MeV, and solid curves with circles correspond to
the case Mχ ¼ 500 MeV. The vertical solid line depicts Λ1.4 ¼
190þ390

−120 published in Ref. [23].
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shown the bands of the pulsars PSR J0740þ 6620 [74], PSR
J0348þ 0432 [75], and PSR J1614þ 2230 [76]. In the
figure, we observe that there is a strong dependence of the
stellar mass on the parametersMχ and kDMF . For a fixedMχ ,
an increase of kDMF bring as a consequence a decrease of the
maximum mass. It means that the increase in the Fermi
momentum of dark matter produces a softness in the EOS,
therefore there is a lower pressure, thus obtaining an
equilibrium configuration with lower masses. In the same
figure, we also observe that an increase in Mχ induces a
decrease in the stellar mass; i.e., we have a softer EOS when
that parameter is increased. From these results, we observe
that the change ofMχ and kDMF allows us to find some results
more precise and closer to empirical evidence of neutron
stars PSR J0030þ 0451, PSR J0740þ 6620, PSR
J0740þ 6620, PSR J0348þ 0432, and PSR J1614þ 2230.

The deformation of a compact star within a binary system
is measured by the tidal deformability Λ. In this way, Fig. 2
shows the deformability parameter as a function of the mass.
These results are compared with the case Λ1.4 ¼ 190þ390

−120
reported by LVC in [23]. In all curves, we found amonotonic
decay of the deformability with the increment of themass. In
addition, we observe the effects of the quantitiesMχ and kDMF
on the tidal deformability. For an interval of total masses, we
note that lower values Λ are obtained when larger values of
bothMχ and kDMF are used. Note that there are curves that are
into the interval Λ1.4 described by LVC in [23].
Since our objective is to determine a relationship between

the mass stellar configuration, tidal deformability, and
frequency of the fundamental mode we plot the f0-mode
frequency and its respective damping time as a function of
the total mass on the top panel of Fig. 3 and against the tidal
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FIG. 3. Fundamental mode frequency f0 and damping time of fundamental mode τ against the total massM=M⊙ are shown on the top
panel and versus the tidal deformability Λ on the bottom panel. In all cases, different values ofMχ and kDMF are employed. The curves in
magenta depict the case without dark matter. The curves of the same color represent the results for a fixed value of kDMF and the curves of
the same type stand results for a fixed value of Mχ . The solid curves correspond to Mχ ¼ 50 MeV, dashed curves correspond to
Mχ ¼ 200 MeV, and solid curves with circles correspond to the case Mχ ¼ 500 MeV. In the bottom panels, the dashed vertical lines
represent the tidal deformability obtained from the event GW170817, i.e., Λ1.4 ¼ 190þ390

−120 , reported Ref. [23].
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deformability on the bottom panel of Fig. 3, where are
employed for different values ofMχ and kDMF . The results on
the bottom panels are compared with the tidal deformability
derived from the event GW170817, Λ1.4 ¼ 190þ390

−120 , com-
municated in [23]. These plots have justification in the
physics of the binary system because when both stars are
orbiting each other, there could exist resonance and, in
principle, the fundamental mode of both stars could be
excited. In this way, in this figure, we see the change inMχ

and kDMF produces a systematic shifting in the curves of
f0ðMÞ, τðMÞ, f0ðΛÞ, and τðΛÞ; review also Table I to see the
change of the maximum total masses with their respective
parametersR,f0, and τwithMχ and kDMF employed in Fig. 3.
Moreover, in the range placed by the observation,we see that
the f0-mode frequency has a nearly linear behavior. In
addition, the frequency of the f0 mode obtained in the full-
linearized equations of general relativity is compared with
the relativistic Cowling approximation in Fig. 4. We found
that the f0-mode with the approximation differs by less than
about 40%, in low-mass stars, and differs by less than about
20%, in high-mass stars.
The f0-mode frequency of oscillations, damping time

mode, and tidal deformability as a function of the Fermi
momentumof darkmatter are shown inFig. 5 for threevalues
of darkmattermassMχ ¼ 50 MeV, 200MeV, and500MeV.
The results presented correspond to the equilibrium con-
figuration with total massM ¼ 1.4M⊙. The curvesΛ × kDMF
are constrasted with the case Λ1.4 ¼ 190þ390

−120 reported by
LVC in Ref. [23]. From the figure, we see that equilibrium
solutions with 1.4 solar masses with larger f0-mode fre-
quency and lower tidal deformability are found when higher
values of kDMF and Mχ are considered.

C. Tidal deformability, frequency of oscillations, and
damping time of fundamental mode for a binary

hadronic star system

In Ref. [22], by using the data reported by LVC, authors
implement some constraints on the dimensionless tidal
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FIG. 4. The relative difference between the frequency of the
fundamental mode in the full linearized equations and the relativ-
isticCowling approximation, diff ¼ 100 × ðf0 − fcow0 Þ=f0, versus
the total mass for all Mχ and kDMF considered in Fig. 4.

TABLE I. Maximum mass values Mmax, and their correspond-
ing radius R, fundamental mode frequency f0, and damping time
of the fundamental mode τ, calculated for different values of
Fermi moment of dark matter kDMF and dark matter mass Mχ .

kDMF (GeV) Mχ (MeV) Mmax (M⊙) R (km) f0 (kHz) τ (s)

0.00 � � � 2.760 13.39 1.930 1.940

0.02 50 2.750 13.33 1.920 1.920
200 2.720 3.110 1.980 1.940
500 2.670 12.72 2.000 1.870

0.04 50 2.680 12.85 1.990 1.890
200 2.690 11.61 2.150 1.780
500 2.220 10.08 3.280 1.230

0.06 50 2.520 11.83 2.120 1.780
200 2.100 9.450 2.580 1.520
500 1.660 7.330 3.280 1.230
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FIG. 5. The f0-mode oscillation frequency, damping time parameter, and tidal deformability against the Fermi momentum of dark
matter are shown respectively on the left, middle, and right panels. The results connected on straight dashed lines on red, blue, and black
correspond to Mχ ¼ 50 MeV, 200 MeV, and 500 MeV. All values presented concern the equilibrium configurations with total masses
M ¼ 1.4M⊙. The horizontal straight line represent Λ1.4 ¼ 190þ390

−120 obtained by LVC in Ref. [23].
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deformability of a binary system Λ1 and Λ2, with Λ1

representing a star’s dimensionless tidal deformability in
the system and Λ2 depicting the same parameter but of its
companion. In this way, in Fig. 6, we present the relation
Λ2 × Λ1, where the numerical results are obtained by
choosing a value of M1 and finding M2 through the chirp
mass M ¼ 1.188M⊙ [22] which is determined by

M ¼ ðM1M2Þ3=5
ðM1 þM2Þ1=5

: ð59Þ

In addition, the value of M1 and M2 are respectively in the
interval 1.36M⊙ ≤ M1 ≤ 1.60M⊙ and 1.17M⊙ ≤ M2 ≤
1.36M⊙. In the figure are also placed the credibility levels
linked to the GW170817 event instituted by LVC in the
low-spin prior scenario. We note that the larger values of
kDMF and lower values of Mχ , and vice versa, allow us to
obtain values within the confidence lines extracted from
Ref. [22]. In Fig. 6 also appears the curves f0ð2Þ × f0ð1Þ
and τ2 × τ1 for the same binary system. In these two
relations, for all values of kDMF and Mχ considered, we see
the dependence of the frequency and the damping time of
one star concerning its partner. In the first one, we note that
f0ð2Þ decays with the increment of f0ð1Þ and in the second
one τ2 grows with the decline of τ1.

V. CONCLUSIONS

In the present article, we study the effects of the dark
matter mass Mχ and the Fermi momentum of dark matter
particles kDMF in the fluid pulsation mode, damping time
parameter, and tidal deformability of hadronic stars. These
studies are developed by the numerical integration of the
hydrostatic equilibrium, nonradial oscillation, and tidal
deformability equations. The matter within the stars is
considered the NL3* equation of state.
About the total mass, it is observed that it changes

notoriously with Mχ and kDMF . From an appropriate

combination of Mχ and kDMF , we can determine that some
solutions that are close to the empirical evidence of neutron
stars PSR J0030þ 0451, PSR J0740þ 6620, PSR
J0740þ 6620, PSR J0348þ 0432, and PSR J1614þ
2230.
Concerning the fluid pulsation mode, damping time

parameter, and tidal deformability, they are considerably
affected byMχ and kDMF . We found that the f0-mode grows
with Mχ and kDMF and the damping time and tidal deform-
ability decay with these parameters. We also contrast these
results with the observational reported by the LVC from
the GW170817 event. In this scheme, the numerical
results reported are in the range of the observational data
aforementioned.
We also calculated the frequencies of the fundamental

mode by using the Cowling approximation, as done in the
reference [40]; where the authors showed that dark matter
affects the f-mode frequency in the RMF model with and
without hyperons. In our model, it was derived the same
effect in the presence of dark matter in hadronic stars. We
showed that for larger mass values, the Cowling method
provides a good approximation compared to the solution of
the complete equation; the difference between these two
models is below 20% for stars with masses above 2M⊙
(see Fig. 4).
The influence of Mχ and kDMF on the tidal deformability,

f-mode frequency, and damping time parameter for a
binary hadronic star system with equal chirp mass as the
GW170817 event have been also studied. We found the
dependence of f0ð1Þ-mode, τ1, andΛ1 of one star with f0ð2Þ-
mode, τ2, and Λ2 of its partner and how these relations
change with the dark matter mass and the Fermi momentum
of dark matter particles.
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