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The speed of sound squared (SSS) s2 in massive neutron stars (NSs) characterizes not only the stiffness
of supradense neutron-rich matter within but also equivalently properties of the curved geometry due to the
strong-field gravity and matter-geometry coupling. A peaked density or radius profile of s2 has been
predicted for massive NSs using various NS equation of state (EOS) models. However, the nature, cause,
location and size of the peak in s2 profiles are still very EOS model dependent. In this work, we investigate
systematically s2 profiles in massive NSs in a new approach that is independent of the nuclear EOS model
and without any presumption about the NS structure and/or composition. In terms of the small quantities
(reduced radius, the energy density and pressure scaled by their central values), we perform double-element
perturbative expansions in solving perturbatively the scaled Tolman-Oppenheimer-Volkoff (TOV)
equations and analyzing s2 profiles from the Newtonian limit to the general relativistic (GR) case. The
GR term in the TOV equations plays a twofold role: it compresses NS matter and modifies the pressure/
energy density ratio from small values in Newtonian stars showing no s2 peak to large ones for massive NSs
possessing a peak in their s2 profiles, and eventually takes away the peak in extremely compact/massive
NSs approaching the causality limit. In particular, the peaked behavior in s2 is expected to emerge near the
center of massive NSs like PSR J0740þ 6620, while a sharp phase transition is unlikely to occur there.
These features revealed from our analyses are universal as they are intrinsic properties of the GR stellar
structure equations independent of the still very uncertain EOS of supradense neutron-rich matter in NSs.
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I. INTRODUCTION

The speed of sound squared (SSS) defined as s2 ≡
dP=dε characterizes effectively the stiffness of the equation
of state [EOS: PðεÞ] of dense nuclear matter [1]. Here P
and ε are the pressure and energy density of the system
under consideration, respectively. Great attention has been
paid recently to the density dependence of s2 in both
neutron stars (NSs) and heavy-ion collisions. In particular,
its possible peaked behavior which may reveal novel
structures/phases of superdense matter has stimulated much
interest and extensive investigations [2–31]. For example,
the approximate conformal symmetry of quark matter at
extremely high densities and its possible realization in
massive NS cores [32–36] may induce a peak in s2,
indicating possibly the occurrence of a sharp phase
transition or a continuous crossover. However, it has also
been shown recently that a purely nucleonic EOS model
may also generate such a peak in dense neutron-rich matter
accessible in massive NSs and/or relativistic heavy-ion
collisions within the current uncertainty ranges of its high-
density parameters [37]. It is also interesting to note that
the s2 in self-bound quark stars made purely of absolutely
stable deconfined quark matter, on the other hand, may not

show the peaked behavior [38]. Moreover, a very recent
Bayesian analysis [39] of x-ray measurements and gravi-
tational wave (GW) observations of NSs [40–42] incorpo-
rating the perturbative QCD (pQCD) predictions [36]
shows that the peaked behavior in s2 is consistent with
but not required by these astrophysical data and pQCD
predictions, see also Refs. [43–47] for more discussions on
the related issues. What is the nature or cause of SSS’s
peaked behavior in massive NSs? Given the fact that
essentially all previous studies on this question have been
done within some selected NS EOS models leading to the
various alternatives/possibilities mentioned above, here we
try to answer this question in an approach that is indepen-
dent of the nuclear EOS model and without any presump-
tion about the NS structure and/or composition.
First, an order-of-magnitude analysis for some special

cases can provide us useful clues and set the relevant scales
for understanding the behavior of s2. Because the s2 is
dimensionless (adopting c ¼ 1) and P and ε have the same
units, we can write generally s2 ¼ ϕfðϕÞ as s2 → 0 if no
matter exists (ϕ → 0), here ϕ≡ P=ε. The function f can be
expanded around ϕ ≈ 0 as f ≈ f0 þ f1ϕþ f2ϕ2 þ � � �with
f0 > 0 (required by the stability condition s2 ≥ 0).
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Considering stars as white dwarfs (WDs), we have
P≲ 1022–23 dynes=cm2 ≈ 10−ð11–10Þ MeV=fm3 and ε≲
108–9 kg=m3∼10−6 MeV=fm3, thus ϕ≲10−ð5–4Þ. Similarly,
for NS matter around nuclear saturation density ρsat ≈
0.16 fm−3, one estimates P≲ 3 MeV=fm3 and ε≈
150 MeV=fm3, and therefore ϕ≲ 0.02. For these systems
one can safely neglect the terms f1ϕþ f2ϕ2 þ � � � in f,
therefore s2 ≈ f0ϕ or equivalently P ∼ εf0 is obtained [48],
indicating s2 is probably an increasing function of ϕ (or
energy density ε). The absence of a peak in s2 in NSs
around ρsat was confirmed by the chiral effective field
theory (CEFT) [2,49], e.g., Ref. [49] predicted that s2 is
monotonic around ρsat and s2ðρsatÞ ≈ 0.03 ∼ ϕ. On the
other hand, ϕ could be sizable ≳Oð0.1Þ in massive NSs
especially in their cores and possible peaks in s2 may
emerge. In this sense, massive NSs like PSR J0740þ 6620
observed by Neutron Star Interior Composition Explorer
(NICER)/XMM Newton [50–53], PSR J1614-2230 via
Shapiro delay [54] and PSR J0348þ 0432 using its
spectroscopy [55] provide us excellent opportunities to
study the possible peaked structure in s2 profiles.
In this work, we demonstrate that the super-strong

gravity in massive NSs which makes P=ε≳Oð0.1Þ
unavoidably induces a peak in s2 in their cores under
some general conditions, and there would be no peak in s2

for Newtonian stars with small P=ε values. Our results are
obtained directly from solving perturbatively the scaled
general-relativistic (GR) stellar structure equations without
using any NS EOS model. We thus essentially removed the
elusiveness of superdense matter EOS in understanding
properties of s2 profiles in NSs. Figure 1 sketches the
evolution of the radial s2 profile in NSs (near their centers)
from the Newtonian limit (with small P=ε) to the GR case
(see the following two sections on the notations and
detailed analyses). Due to the perturbative nature of our
method (Sec. II), we primarily focus on the peaked
structure near the NS center, although other structures
(e.g., plateau, bump and spike, etc.) may emerge at various
locations or densities in NSs [16].
The rest of this paper is organized as follows: In Sec. II

our perturbative method is briefly reviewed and as an
application we derive the NS core EOS P-ε to positions
around one-fifth of the NS radius from the center.
Section III discusses the SSS as a connection between
the supradense matter and the compact space geometry, we
then use the general boundary conditions and requirement
for a peaked s2 to argue why there is probably no peaked
behavior in s2 at low P=ε values. We show in Sec. IV that
this is the case for Newtonian stars. Section V is devoted to
studying the emergence of a peak in s2 near massive NS
centers when the P=ε is sizable ≳Oð0.1Þ. In Sec. VI, we
connect our predictions for the peaked structure in s2 with
some other predictions in the literature. Section VII sum-
marizes our work. In Appendix A, we give a general proof

on the absence of odd terms in expanding ε̂ and P̂ over r̂, in
Appendix B we estimate the maximum size of the coef-
ficient a4 used in the radial-expansion of the reduced
energy density to the fourth power of the reduced radial
coordinate using a meta EOS model for NSs consisting of
neutrons, protons and electrons (npe) at β-equilibrium by
varying its parameters within their currently known uncer-
tainty ranges.

II. METHOD REVIEW AND EOS IN NS CORES

A. Perturbative approach for solving
the scaled TOV equations without using

any nuclear EOS model

The GR stellar equations for NSs, i.e., the celebrated
Tolman-Oppenheimer-Volkoff (TOV) equations [56–58],
effectively coupling geometry and matter are the very
basis for investigating properties of supradense matter in
NSs [59–72]. By anatomizing the intrinsic structures of the
TOV equations, nearly model-independent EOS properties
could be obtained. Specifically, wewrite the TOVequations
in the dimensionless form as [73,74],

dP̂
dr̂

¼−
ε̂M̂
r̂2

ð1þ P̂=ε̂Þð1þ r̂3P̂=M̂Þ
1−2M̂=r̂

;
dM̂
dr̂

¼ r̂2ε̂; ð1Þ

here the (reduced) pressure P̂ ¼ P=εc, energy density
ε̂ ¼ ε=εc and M̂ ¼ M=W are all functions of the
(reduced) radius r̂ ¼ r=Q with W ≡G−1ð4πGεcÞ−1=2
and Q≡ ð4πGεcÞ−1=2.

FIG. 1. A sketch of the evolution of s2 ’s radial profile in NSs.
At low densities characterized by small ϕ ¼ P=ε (Newtonian
limit), the s2 monotonically decreases from the center to the
surface (black line), and as the ϕ increases approaching the GR
case (orange line) a peak eventually emerges near the NS center.
The general expressions for s2 are also captioned near the curves,
see Sec. II and Sec. III for the notations and detail quantitative
discussions. We adopt c ¼ 1 in our discussion.
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Considering the fact that P̂ and ε̂ are even functions of r̂
while M̂ is an odd function of r̂ [73], one can expand them
according to [73]

P̂ ≈ P̂c þ b2r̂2 þ b4r̂4 þ � � � ; ð2Þ

ε̂ ≈ 1þ a2r̂2 þ a4r̂4 þ � � � ; ð3Þ

M̂ ≈ r̂3=3þ a2r̂5=5þ a4r̂7=7þ � � � : ð4Þ

An alternative and more general mathematical proof on
the evenness or oddness of these functions is given in
Appendix A, besides the original proof given in [73] where
the relevant expansion coefficients are evaluated individu-
ally. In fact, the structure of M̂ as a function of r̂ could be
seen immediately from the mass evolution part of TOV
equations, e.g. the evenness of ε̂ðr̂Þ implies that M̂ is an odd
function of r̂ and consequently M̂ð0Þ ¼ 0. Now, by putting
P̂, ε̂ and M̂ into the pressure evolution equation, one can
find that b2 ¼ −6−1ð1þ 3P̂2

c þ 4P̂cÞ, a2 ¼ b2=s2c and

b4 ¼ −
1

2
b2

�
P̂c þ

4þ 9P̂c

15s2c

�
; ð5Þ

etc., here s2c ≡ dPc=dεc is the central SSS [73]. By
truncating to order r̂2, the pressure is given as
P̂ ≈ P̂c þ b2r̂2, from which and the definition of NS radius
R̂ via P̂ðR̂Þ ¼ 0 we obtain [73]:

R ¼ R̂Q ∼
1ffiffiffiffi
εc

p
�

P̂c

1þ 3P̂2
c þ 4P̂c

�
1=2

≡ νc: ð6Þ

Then the mass could be found to scale as [73]

MNS ¼ M̂W ∼
1ffiffiffiffi
εc

p
�

P̂c

1þ 3P̂2
c þ 4P̂c

�
3=2

≡ Γc: ð7Þ

Here the νc and Γc factors are both in unit of
fm3=2=MeV1=2, namely the unit of their front term 1=

ffiffiffiffi
εc

p
since the P̂c is dimensionless.
As discussed in detail and demonstrated quantitatively

in [73], the above scalings relates directly the two most
general NS observables with the central energy and
pressure. Knowing either the mass or the radius, one can
obtain the NS central EOS PcðεcÞ, while knowing both
simultaneously one can get the individual values of the
central pressure Pc and energy density εc.
The maximum-mass configuration of NSs is uniquely

useful for investigating the EOS of the densest visible
matter [75–77] existing in our Universe. The scalings
R-νc and MNS-Γc at the maximum-mass configuration
Mmax

NS ≡MTOV on the mass-radius (M-R) curve were
verified by using 104 widely used microscopic as well

as phenomenological EOSs in solving the TOV equations
with the traditional integration approach. They can be
written as [73]

Mmax
NS =M⊙ ≈ 1.73× 103

�
Γc

fm3=2=MeV1=2

�
− 0.106; ð8Þ

Rmax=km ≈ 1.05 × 103
�

νc
fm3=2=MeV1=2

�
þ 0.64; ð9Þ

where Rmax is the NS radius at Mmax
NS . As a numerical

example, for a NS having Pc ¼ 200 MeV=fm3 and
εc ¼ 800 MeV=fm3, we have νc ≈ 0.012 fm3=2=MeV1=2

and Γc ≈ 0.0014 fm3=2=MeV1=2, respectively. The Eqs. (8)
and (9) then give MTOV ≡Mmax

NS ≈ 2.26M⊙ and Rmax ≈
13.2 km, respectively. In fact, the Mmax

NS from this example
is consistent with the MTOV ¼ 2.25þ0.08

−0.07M⊙ from a very
recent Bayesian analysis of currently available multi-
messenger astronomical data under knowing constraints
from nuclear physics [47]. The R-νc scaling for other NS
masses was also verified [74]. It is interesting to note that
very recently Lattimer verified independently the validity
of the scalings in Eqs. (6) and (7) by using a large and
diverse set of nuclear EOSs available in the literature [78].
He found that at Mmax

NS , the accuracies of Eqs. (6) and (7)
are 7% and 8%; and at 1.4M⊙, they are 2% and 6%,
respectively [79].
In addition, the s2c for the maximum-mass configuration

Mmax
NS could be obtained as [73],

s2c ¼ P̂c

�
1þ 1

3

1þ 3P̂2
c þ 4P̂c

1 − 3P̂2
c

�
; ð10Þ

via the condition dMNS=dεc ¼ 0 withMNS ∼ R̂3=
ffiffiffiffi
εc

p
[73].

We focus on results of the maximum-mass configuration
Mmax

NS in this work and give related results for NSs along
the M-R curve only in Sec. V E. It is also necessary to note
that the causality condition s2c ≤ 1 was found by us earlier
to give an upper limit for the reduced central pressure as
P̂c ≲ 0.374 [73].
To investigate the nature and source of the peaked s2

profiles in massive NSs, it is useful to note here that the
terms on the right side of the TOV pressure evolution
equation could be classified as follows [80,81],
(a) The front factor −ε̂ M̂ =r̂2 is from the classical equa-

tion for NSs in hydrostatic equilibrium under New-
tonian limit [82].

(b) The two terms in the numerator represent special
relativity (SR) corrections of order ðv=cÞ2 arising
from Einstein’s mass-energy relation and the fact that
the pressure goes like v2 at the nonrelativistic limit.
The ratio P̂=ε̂ ¼ ϕ is a matter effect (due to the
absence of r̂), and it should be zero if P̂ ¼ 0 is
taken. The r̂3P̂=M̂ is the coupling between matter
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(characterized by P̂) and geometry (by r̂3=M̂ ≈
3–9a2r̂2=5þ � � �, see Eq. (4). It also vanishes by
taking P̂ ¼ 0.

(c) The denominator 1 − 2M̂=r̂ is a pure GR effect. It
remains even if P̂ ¼ 0 is taken. Specifically, as
we shall show with Eq. (4) that 2M̂=r̂ ≈ 2r̂2=
3þ 2a2r̂4=5þ � � �, which involves only r̂ and is small
for Newtonian stars (e.g., r̂2 ≤ R̂2 ≲ 10−3, see Sec-
tion IV). The factor 2M̂=R̂ can be sizable for massive
and compact NSs, making the GR factor ð1−2M̂=r̂Þ−1
in the TOV equations large.

The presence of strong-gravity in NSs is a necessary
condition for making the P=ε sizable. For Newtonian stars
with relatively weak gravity, both the SR and GR correc-
tions are small, leading to the classic Newtonian evolution
equation for pressure as dP̂=dr̂ ¼ −ε̂ M̂ =r̂2.
To ease our following discussions and appreciate better

the benefits of analyzing perturbatively the dimensionless
TOV equations using polynomials of reduced variables
with respect to the traditional integration approach for
solving the TOV equation given a model nuclear EOS, we
notice here that:
(a) The TOV equations can be obtained from varying the

total action of NS matter and gravity according to the
Hamiltonian variational principle. As such, there is a
well-known competition/degeneracy between gravity/
geometry and NS matter in describing global proper-
ties of NSs. In the classical picture of Newtonian stars,
the repulsive nuclear pressure has to balance the
attractive gravity. Thus, given the mass and radius
observed for a NS, one should be able to extract the
same NS EOS from investigating either the NS
gravity/geometry or matter inside it. The EOSs ex-
tracted independently from both directions should
match/constrain each other.

(b) The TOVequations are blind about the composition of
NSs in the sense that regardless how/what the energy
density is made of, as long as the same EOS PðεÞ is
given, a unique mass-radius sequence is determined.
This feature is independent of the techniques (using
integral or polynomials) people may use to solve the
TOV equations. As well documented in the literature,
combinations of different mechanisms including for-
mations of various new particles, e.g., hyperons,
baryon resonances and possible phase transitions to
quarks and gluons with/without considering dark
matter, can lead to the same NS EOS. The resulting
mass-radius curve cannot distinguish the composition
of NSs with the same EOS unless one looks into
observables from microscopic processes happening
inside NSs.

(c) Solving the TOV equations requires an input nuclear
EOS which is presently model dependent. On the other
hand, our perturbative analysis starting from the NS

center using polynomials reveals directly scalings of
the NS mass and radius with combinations of the
central pressure and energy density through the Γc and
νc factors without using any input nuclear EOS.
Essentially, we expand the physical solution of the
TOV equations close to the NS center. The most
important outcome is that once the Γc or νc factor
is known via observations ofMmax

NS or Rmax, the central
EOS PcðεcÞ is determined, although theoretically
different nuclear physics mechanisms may lead to
the same PcðεcÞ. In this sense, the features of the
central EOS we extracted, i.e., the peaked radial/
density profile of SSS s2, are determined mostly by
the NS strong-field gravity or geometry instead of the
nuclear EOS models as we shall demonstrate. One of
our major findings is that a sharp phase transition (PT)
near the NS center is basically ruled out, while a
continuous crossover signaled by a reduction of s2 in
NS cores (or equivalently a peaked behavior at some
places near the center) and PTs occurring far from the
centers are not excluded. Similarly, our approach
cannot tell the microscopic mechanisms (e.g., forma-
tion of hyperons, a mixed phase or high-order tran-
sitions to purely quark matter) leading to the reduction
of s2. Consequently, PTs could not alter the conclu-
sions of our analyses using the perturbative ap-
proach here.

(d) Both the traditional approach for solving the TOV
equations and our perturbative analysis of its central
solutions have their own advantages and limitations.
Nevertheless, main features of the central EOSs from
the two approaches have to match. Thus, studies of
some NS properties using both approaches may be
beneficial. They may provide complementary infor-
mation leading to a deeper understanding of super-
dense matter in strong gravitational fields.

B. TOV prediction on the core EOS in NSs
without using any nuclear physics input

The expansion coefficients of P̂ and ε̂ over r̂ are heuristic
as they contain fundamentally the intrinsic information on
the NS structure starting from the center. For example, the
coefficients a2, b2 and b4 are all independent of the denser
matter EOS while a4 has some ambiguities due to the
uncertainties of the EOS especially at high densities
relevant to NSs, but as we shall show later our conclusions
are independent of the specific values of a4 within its
maximum uncertainty range. In fact, since all quantities are
made dimensionless and considering typical NSs with R ≈
10–15 km and εc ≈ 102–3 MeV=fm3, the length scale Q is
on the same order as R and so its reduced value is about
R̂ ∼Oð1Þ. The form of the energy density ε̂ ≈ 1þ a2r̂2 þ
a4r̂4 þ � � � together with 0 ≤ ε̂ ≤ 1 and 0 ≤ r̂ ≤ R̂ ∼Oð1Þ
then essentially indicate the magnitude of a2 and a4, etc.,
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is ∼Oð1Þ. In particular, combing the expressions for b2
and s2c [of Eq. (10)] gives −1.5≲ a2 ≲ −0.5 for
0.1≲ P̂c ≲ 0.374, with the latter being a typical range
for P̂c in NSs. Moreover, we give an example in the
appendix on how the coefficient a4 is related to the dense
matter EOS and its maximum size is found to be around 1
based on our current best knowledge about nuclear EOS.
Therefore, at places with small r̂ (i.e., near the NS center)
where higher-order coefficients have weak impact, the
resulted EOS are expected to be nearly model-independent.
Specifically, the contribution from the term a4r̂4 to ε̂, e.g.,
for r̂ ≈ 0.20 (about one-fifth of the reduced radius R̂), is
≲0.4% (compared with 1) using −2≲ a4 ≲ 2 (here and for
some other discussions we purposely use a rather large
magnitude for a4 compared to the best estimate of its value
given in the appendix for making more conservative
predictions). Nevertheless, we note that although a4 has
tiny impact on the ε̂, it may become relevant for forming the
peaked profiles of s2 in massive NSs. We shall thus study
carefully its effects. Similarly, the b4-term contributes
≲0.5% to P̂=P̂c for r̂ ≈ 0.20 and P̂c ≳ 0.1. See Fig. 2
for the radial dependence of ε̂ and P̂=P̂c to r̂ ≈ 0.20. The
b6- and a6-terms have even smaller contributions to P̂=P̂c
and ε̂, respectively.
In Fig. 3, we show the core EOS P̂-ε̂ near r̂ ¼ 0 by

expanding P̂ and ε̂ over r̂ to order r̂4 with 0.1≲ P̂c ≲ 0.374
and −2≲ a4 ≲ 2, an example with P̂c ≈ 0.24 and a4 ≈ −1
is given with the dashed purple curve. Notice that the plum
band (with light-plum background) of Fig. 3 marked by
“TOV (this work)” originates mainly from the band for P̂c,
and the “cone” would be shrunk if P̂c is further refined. The
ripples on the curve of P̂-ε̂ characterize the variation of s2,
as examplified by the light-blue instance (in which case
there is an increasing of s2). The dotted black line
represents configurations with s2 > 1 (which violate the

causality principle), while the black dashed line (marked by
P ¼ P̂cε) is the boundary given by s2=P̂c ¼ 1, which leads
to the conformal limit (γc ≡ ½d lnP=d ln ε�c ¼ s2c=P̂c ¼ 1).
A few empirical EOSs (solid gray lines) mostly based on
nuclear theory predictions under astrophysical and exper-
imental nuclear physics constraints in the literature are also
shown for comparisons. More specifically, they are the
APR EOS [63], the Dirac-Brueckner-Hartree-Fock EOS
(MPA1 [83] and ENG [84]), the Skryme [85] energy
density functional EOS SLy [86], the relativistic mean-
field model [87] with (GNH1 [88] and H4 [89]) and
without hyperons (NL3 [90] and FSU [91]), the quark
mean field model [92], the crossover EOS of Ref. [13]
and the hybrid ALF2 EOS [93] (the last two EOSs fall
outside the tan band). Here, the ðεc; PcÞ for each EOS is
taken as the one producing its Mmax

NS ¼ MTOV configura-
tion, and the curve is reduced with ðεc; PcÞ using the
correspondingly β-stable EOS. A recent constraint on the
NS EOS incorporating pQCD predictions [35] is shown by
the dash-dotted cyan band (εc ≈ 1000 MeV=fm3 and Pc ≈
250–400 MeV fm3 are taken). Because the pQCD theory
predicts an approximate conformal symmetry at very
high densities (≳40ρsat), the upper boundary of its con-
straining band is close to the line P ¼ P̂cε (conformal limit,
black dashed).
The core EOS shown by the plum band is directly

inferred from the gravity (geometry of compact NSs)
encapsulated in the TOV equations without any presump-
tion about it, unlike in the traditional approach. Indeed, the
EOSs from the two approaches match with each other as

FIG. 2. Radial dependence of ε̂ and P̂=P̂c to r̂ ≈ 0.20, here
0.1≲ P̂c ≲ 0.374 is adopted. The ε̂ with a4 ¼ �2 are showed by
the lavender and magenta bands, respectively.

FIG. 3. Core EOS ofNSs by expanding P̂ and ε̂ over r̂ to order r̂4

(plum band) where 0.1≲ P̂c ≲ 0.374 and −2≲ a4 ≲ 2 are
adopted. An instance with P̂c ≈ 0.24 and a4 ≈ −1 (dashed ma-
genta) and a few empirical EOSs are shown (solid gray). A recent
constraint on the dense matter EOS incorporating pQCD effects
[35] is also shown using the cyan dash-dotted band, P ¼ P̂cε
marks the conformal boundary, the solid blue line shows an
example of increasing of s2 occurring there. The overlapped region
of Ref. [35] and this work is indicated by the hatched tan band.
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demonstrated by the hatched tan band in Fig. 3.
Particularly, we have 0.925≲ ε̂≲ 0.945 (indicated by
two gray solid rectangles) for P̂=P̂c ≈ 0.9 by combining
these two EOSs. Moreover, we have s2c ≠ 0 according to
Eq. (10), therefore a sharp PT near the center or equiv-
alently a plateau on the P-ε curve occurring there is
basically excluded. However, a continuous crossover sig-
naled by a smooth reduction of s2 in NS cores (or
equivalently a peaked behavior at some places near the
center) and PTs occurring far from the centers are not
excluded. Analyzing circumstances under which the
peaked structure in s2 may emerge is the main task of
the present work, and we will present more details on it in
the following sections. Actually, our prediction on the core
EOS (plum band in Fig. 3) is consistent with several
empirical EOSs (gray lines) having a continuous crossover
near the centers. Moreover, the index γc ¼ s2c=P̂c should
not approach 1 due to the nonlinear feature of s2c shown in
Eq. (10) and in fact we have γc ≥ 4=3 ≈ 1.33. This implies
the matter in NS cores can hardly be conformal, and this is
very different from the predictions in Refs. [34,35].
Perturbatively, we have the core EOS as,

P̂=P̂c ≈ 1þ 4

3
μþ 16

15
μ2 þ

�
4

3
−
4

5
μ

�
μP̂c

þ
�
2þ 28 − 256a4

3
μ

�
μP̂2

c

þ
�
4þ 6400a4 − 262

15
μ

�
μP̂3

c þOðP̂4
c ; μ3Þ; ð11Þ

where μ≡ ε̂ − 1 < 0, and the last three terms are the finite-
P̂c corrections (which disappear if P̂c → 0 is taken).
Clearly, the a6-term has no effect on the core EOS at this
order, and as more higher-order terms like b6r̂6 and a6r̂6 are
included, the core EOS of the form like Eq. (11) could then
be extrapolated to even larger radii r̂.
Since the plum cone of P-ε in Fig. 3 is a straightforward

consequence of the TOV equations without using any
nuclear physics input, it is expected to hold universally.
Owing to the smallness of μ (near the center) and the
general smallness of P̂c, Eq. (11) provides a controllable
expansion which predicts the core EOS near r̂ ¼ 0.

III. SPEED OF SOUND CONNECTING
PROPERTIES OF SUPRADENSE MATTER

WITH CURVED GEOMETRY OF COMPACT
AND MASSIVE OBJECTS

Using the scaled TOVequations of (1), the SSS s2 can be
written as

GR∶ s2 ¼ dP̂
dε̂

¼ −
ε̂ M̂

r̂2dε̂=dr̂
ð1þ P̂=ε̂Þð1þ r̂3P̂=M̂Þ

1− 2M̂=r̂
: ð12Þ

It clearly shows that not only dense matter (characterized
by P̂, ε̂ as well as their ratio P̂=ε̂) but also the strong curved
geometry (characterized by the factor 1 − 2M̂=r̂) could
affect s2. In this sense, the speed of sound acts as a bridge
connecting properties of supradense matter with curved
geometry of compact/massive NSs. On the other hand, if
one starts directly from the Newtonian evolution equation
dP̂=dr̂ ¼ −ε̂ M̂ =r̂2 without incorporating the SR and GR
effects discussed earlier [82], then,

NEWTONIAN∶ s2 ¼ dP̂
dε̂

¼ −
ε̂ M̂

r̂2dε̂=dr̂
: ð13Þ

Because there is no factor of P̂ on the right side, i.e., the
pressure (matter effect) could not affect the s2 explicitly
(though ε̂ contains implicitly the effects of P̂). Moreover,
since 1þ P̂=ε̂ > 1, 1þ r̂3P̂=M̂ > 1 and 0 < 1–2M̂=r̂ < 1,
we have ð1þ P̂=ε̂Þð1þ r̂3P̂=M̂Þ=ð1 − 2M̂=r̂Þ > 1, i.e., s2

in NSs is enhanced compared with its Newtonian limit. In
addition, because s2 ≤ 1 due to the principle of causality, it
could not always increase (even if matter/geometry effects
are strong enough), implying under certain circumstances
s2 may decrease with decreasing r̂ (or increasing ε̂) when
going into the core.
After this general discussion on the evolutionary behav-

ior of s2, we now figure out under which circumstance a
possible peak may emerge in s2. By inserting the pertur-
bative expansions of P̂, ε̂ and M̂ into Eq. (12), one can
obtain an expression for s2 similar to Eq. (11) for the core
EOS. In particular, we have to order r̂2,

s2 ≈ s2c þ l2r̂2; ð14Þ

where

l2 ¼
2s2c
b2

ðb4 − s2ca4Þ: ð15Þ

Because s2c > 0 [see Eq. (10)] and in order for s2 to obtain a
peak near r̂ ¼ 0, it is necessary that l2 > 0 and therefore
s2 > s2c . Since b2 ¼ −6−1ð1þ 3P̂2

c þ 4P̂cÞ < 0, the con-
dition l2 > 0 is equivalent to b4 − s2ca4 < 0, or a4 > b4=s2c.
By using the expression of b4 given in Eq. (5) which
involves the coefficient b2, we then obtain an equivalent
condition of l2 > 0 as,

a4 >
1

12

1þ 3P̂2
c þ 4P̂c

s2c

�
P̂c þ

4þ 9P̂c

15s2c

�
: ð16Þ

Besides, a4 should fulfill some extra general constraints:
(a) Due to the decreasing feature of ε̂ ≈ 1þ a2r̂2 þ a4r̂4

with r̂ (i.e., dε̂=dr̂ < 0 or 2a2r̂þ 4a4r̂3 < 0), it is
necessary that a4 < −a2=2R̂2.
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(b) On the other hand, by considering the increase of M̂
with r̂ (i.e., dM̂=dr̂ ¼ r̂2ε̂ > 0), one has the criterion
a4R̂

4 > −1 − a2R̂
2.

Here, R̂ ≈ 1 is the reduced radius, and a2 ¼ b2=s2c is fixed
at a certain P̂c. Meeting the above three criteria, namely
inequality (16), a4 < −a2=2R̂2 and a4R̂

4 > −1 − a2R̂
2

guarantees a peak in s2 at some r̂ ≠ 0 with certain ranges
of P̂c. In this work, we primarily focus on the peaked
behavior of s2ðr̂Þ which could be mapped onto, e.g., the
peaked profile of s2ðε̂Þ or s2ðρÞ.
The resulted regions for a4 are shown in Fig. 4, here the

colored arrows indicate whether the corresponding curve is
a lower- or an upper-limit. The criterion dε̂=dr̂ < 0 [cri-
terion (a)] in the small-P̂c limit becomes a4 ≲OðP̂−1

c Þ
while the criterion l2 > 0 [inequality (16)] gives
a4 ≳OðP̂−2

c Þ, implying there would be no overlapped
region for a4 for such small P̂c. In fact, criteria (a) and
(b) above together lead to a4 ≲ R̂−4 ≈ 1, which certainly
becomes incompatible with the magenta bound for
P̂c ≲ 0.1 as it requires a4 ≳ 2 for P̂c ≲ 0.1. This discrep-
ancy becomes even larger as P̂c decreases even smaller. On
the other hand, the combined region for a4 for the onset of a
peak in s2 profile may eventually emerge (shown as the
cyan band) with increasing P̂c. We would like point out that
our analysis is consistent with many model calculations on
the s2 profile, in which the s2 is a monotonic function
(of energy density or radial distance), see, e.g., Ref. [29]
for some examples. The result shown in Fig. 4 is also
consistent with a recent study showing that the peaked
s2 is not necessary [39], even after considering several

recent observational as well as theoretical constraints.
In fact, although a2 is definitely negative, the coefficient
a4 could be either positive or negative, depending on the
dense matter EOS, e.g., see the appendix for an illustration
on how the nuclear parameters could affect the coeffi-
cient a4.
As a short summary of this section, we find that in order

to have a peaked behavior in s2, it is necessary that a4 > 0.
This is because a positive b4 [of Eq. (5)] slows down the
decrease of P̂ (due to b2 < 0) and for the s2 to be larger
than s2c , a positive a4 is necessary to slow down the
decrease of ε̂ (due to a2 < 0) too since approximately

s2 ≈ ΔP̂=Δε̂; ð17Þ

obtained by two nearby points on the EOS curve. In the
next two sections, we carry out detailed calculations on the
s2 to verify the qualitative analysis given in this section. In
particular, we may find that l2 < 0 holds [see Eq. (19) and
Eq. (20)] in the Newtonian limit even if a4 is positive, i.e.,
no peak would emerge in s2 for Newtonian stars. In this
sense, it is the GR effect that extrudes a peak in the s2

profile (see Sec. V for details).

IV. NEWTONIAN STARS: NO PEAK
IN s2 NEAR r̂= 0

In this section, we work out the detailed expression for
the s2 for Newtonian stars. Going away from the center by
expanding the right side of Eq. (13) we obtain the s2 to
order r̂4 as

s2 ≈ s2c þ lN2 r̂
2 þ lN4 r̂

4; ð18Þ

where a superscript “N” is added to specify the Newtonian
case. Explicitly, we have

s2 ≈ s2c þ
�
12a4s4c −

4

15

�
r̂2

þ
�
144a24s

6
c þ 18a6s4c −

62

35
a4s2c þ

1

60s2c

�
r̂4: ð19Þ

A main feature for the Newtonian s2 radial profile is that
it does not depend on P̂c explicitly, although s2c may
implicitly contain factors of P̂c.
For Newtonian stars, the reduced radius R̂ is generally

small. We estimate the order-of-magnitude of each terms
in Eq. (19). Taking WDs as a typical illustration and
using P≲ 1022-23 dynes=cm2 ≈ 10−ð11-10Þ MeV=fm3, ε≲
108-9 kg=m3≈10−6 MeV=fm3 together with R ≈ 104 km,
we obtain R̂ ¼ R=Q ≈ 0.05 and R̂2 ≈ 3 × 10−3 as well
as ϕ ¼ P=ε ≈ 10−4 ∼ 10−5. In fact, the ratio ϕ of pres-
sure over energy density could be even smaller for

FIG. 4. Combined region for a4 (cyan band) for the onset of a
peaked profile of s2 under the inequality (16) and the criteria (a)
and (b), here R̂ ≈ 0.9 is adopted for illustrations. The vertical
dashed line marks P̂c ≈ 0.374 by setting s2c of Eq. (10) ≤ 1, l2
appears in s2 ≈ s2c þ l2r̂2 þ � � �.
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main-sequence stars like the sun. Specifically, the pressure
and energy density in solar core are about 10−16 MeV=fm3

and 10−10 MeV=fm3 [94], respectively, and therefore
ϕ ≈ 10−6. It is reasonable/conservative in this sense to
use ϕ≲Oð10−kÞ with k≳ 4-5 for Newtonian stars.
Considering s2c ≈ 4P̂c=3 ∼ P̂c ∼Oð10−kÞ with k≳ 4-5,
we then have a2 ¼ b2=s2c ≈ −1=6s2c ∼Oð10k−1Þ and a4 ≲
a2=R̂

2 ∼Oð10kþ1Þ (via a2R̂2 ≳ a4R̂
4 from the perturbative

expansion of ε̂). Thus 12a4s4c scales asOð102−kÞ. Similarly,
we have the scalings 144a24s

6
c ∼ 18a6s4c ≲ Oð105−kÞ,

ð62=35Þa4s2c ≲Oð101Þ as well as 1=60s2c ≲Oð10k−2Þ.
Therefore, the −4=15 and 1=60s2c terms denominate over
others in Eq. (19). Consequently, Eq. (19) could be
approximated as

s2 ≈ s2c −
4

15
r̂2 þ 1

60s2c
r̂4: ð20Þ

Consequently, the s2 takes its minimum as s2min ¼ −s2c=15
at r̂2min ¼ 8s2c . The vanishing of s2 gives two special r̂2

values, namely 6s2c and 10s2c . Since the stability condition
requires s2 ≥ 0, we find s2 is a decreasing function of
r̂ ≤ R̂ with R̂2 ¼ 6s2c , see Fig. 5 for the sketch of s2

in the Newtonian limit. The decreasing feature of s2

under Newtonian limit could also be seen from
Eq. (11) since s2=P̂c ≈ 4=3þ 32μ=15 for P̂c ≈ 0, which
decreases with decreasing ε̂ ¼ μþ 1 (outward from the
center).
The coefficient lN4 ≈ 1=60s2c in Eq. (20) [originated

from b4 of Eq. (5)] is fundamental for explaining the
radial dependence of s2 in the Newtonian limit. This is
because even when the next high-order term lN6 r̂

6 is
included, the conclusion will not change qualitatively.
Specifically, we have under the Newtonian limit that
s2 ≈ s2c þ lN2 r̂

2 þ lN4 r̂
4 þ lN6 r̂

6:

s2 ≈ s2c þ
�
12a4s4c −

4

15

�
r̂2

þ
�
144a24s

6
c þ 18a6s4c −

62

35
a4s2c þ

1

60s2c

�
r̂4

þ
�
1728a34s

8
c þ 432a4a6s6c þ

�
24a8 −

744

35
a24

�
s4c

−
52

15
a6s2c þ

1

35
a4

�
r̂6

≈ s2c −
4

15
r̂2 þ 1

60s2c
r̂4 þ 1

35
a4r̂6; ð21Þ

which becomes exact as s2c → 0. Here the term a4r̂6=35
denominates at order r̂6 using the same order-of-magnitude
estimates given above. Notice that there are no terms
inversely proportional to s2c appear in the coefficient lN6
(which is different from lN4 in this aspect). Using the full
form of s2 in Eq. (21), we obtain the location r̂2min, the SSS
at this location and the radius square R̂2 as,

r̂2min ≈ 8s2cð1þ 285a4s4c=7þ 1416a6s6cÞ; ð22Þ

s2min ≈ −
s2c
15

ð1þ 288a4s4c=7þ 9344a6s6cÞ; ð23Þ

R̂2 ≈ 6s2cð1þ 144a4s4c=7þ 1620a6s6cÞ: ð24Þ

The corrections in the brackets are perturbations (compared
with the leading “1”), e.g., 285a4s4c=7≲Oð103−kÞ ≪ 1

and 1416a6s6c ≲Oð107−2kÞ ≪ 1 for k≳ 4-5, based on the
order-of-magnitude estimates given before Eq. (20). The
case of a4 > 0 is shown in Fig. 5 by the light-blue line,
from which we find that the overall shape (such as the
monotonicity) does not change. Furthermore, the contri-
bution lN8 r̂

8 and beyond all contain no term inversely
proportional to s2c . Therefore, the expansion of s2 converges
and our analysis of its behavior at the Newtonian limit is
stable.
Actually, the feature of s2 for Newtonian stars near ε̂ ≈ 1

could be extracted straightforwardly from their structure
equations. Starting directly from Eq. (13), we obtain,

�
ds2

dε̂

�
N
¼−

3ε̂

r̂3

�
dε̂
dr̂

�
2
�
r̂3ε̂
3

− M̂

�
; with M̂¼

Z
dr̂r̂2ε̂

þ ε̂M̂
r̂2

�
dε̂
dr̂

�
−3
�
d2ε̂
dr̂2

−
1

r̂
dε̂
dr̂

�
1þ r̂

ε̂

dε̂
dr̂

��
: ð25Þ

Since ½d=dr̂�ðr̂3ε̂=3 − M̂Þ ¼ 3−1r̂3dε̂=dr̂ < 0 (notice
dM̂=dr̂ ¼ r̂2ε̂ and dε̂=dr̂ < 0), i.e., r̂3ε̂=3 − M̂ decreases
with increasing of r̂ (starting from 0), therefore we have
r̂3ε̂=3 − M̂ < ½r̂3ε̂=3 − M̂�r̂¼0 ¼ 0. Moreover, the factor in
square bracket of Eq. (25) is negative:

FIG. 5. Sketch of s2 in the Newtonian limit when expanding s2

to order r̂4 (black), see Eq. (20). The correction from a positive a4
is also shown (light-blue), see Eq. (21).
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d2ε̂
dr̂2

−
1

r̂
dε̂
dr̂

�
1þ r̂

ε̂

dε̂
dr̂

�
≈ −4a22r̂2 < 0; ð26Þ

one then has ðds2=dε̂ÞN > 0 definitely (near r̂ ¼ 0), i.e., s2

is an increasing function of ε̂ near ε̂ ≈ 1. This is equivalent
to saying that l2 < 0 for Newtonian stars. In the next
section, we shall find under certain conditions the coef-
ficient l2 can become positive for NSs.

V. EMERGING PEAKS IN s2

PROFILES NEAR r̂= 0 WITH STRONG GR
EFFECTS IN MASSIVE NSs

In this section, we analyze in details the emergence
of a peak in s2 profile near r̂ ¼ 0 in the GR case. Some
quantitative features of the peaked s2 profiles are also given
and discussed. Then we give an example of the radial
profile of s2 by fixingMmax

NS ¼ 2M⊙ but allowing its radius
to vary. Finally, we discuss results for stable NSs along the
M-R curve instead of the maximum-mass configura-
tion Mmax

NS .

A. Geometry-matter corrections/couplings to s2

Compared to the Newtonian case discussed above, the
strong GR effects bring two modifications to s2: (a) P̂c can
be sizable ≳Oð0.1Þ in NSs; and (b) the expression for s2 is
changed via the GR structure equations [of Eq. (12)].
Parallel to Eq. (25), we obtain ds2=dε̂ with GR as,

ds2

dε̂
¼ Y

1− 2M̂=r̂

��
ds2

dε̂

�
N
−

ε̂M̂

1− 2M̂=r̂

2

r̂4

�
dr̂
dε̂

�
2

ðr̂3ε̂− M̂Þ

−
ε̂

M̂

dr̂
dε̂

�
1þ r̂3P̂

M̂

�
−1
�
r̂ M̂ s2 þ P̂

dr̂
dε̂

ð3M̂ − r̂3ε̂Þ
�

−
M̂
r̂2

dr̂
dε̂

�
1þ P̂

ε̂

�
−1
�
s2 −

P̂
ε̂

��
; ð27Þ

where Y ¼ ð1þ P̂=ε̂Þð1þ r̂3P̂=M̂Þ and ðds2=dε̂ÞN > 0 is
given by Eq. (25). In Eq. (27), besides 3M̂ − r̂3ε̂ > 0 and
s2 − P̂=ε̂ ¼ s2 − P=ε ¼ s2 − ϕ > 0 is the derivative part
of s2 [24], we also have (for small r̂),

r̂3ε̂ − M̂ ≈
2r̂3

3

�
1þ 6

5
a2r̂2

�
> 0: ð28Þ

This means they contribute to ds2=dε̂ with definite signs.
The two terms in Eq. (27) contributing negatively to the

derivative ds2=dε̂ can be combined as,

−
Y

1 − 2M̂=r̂

�
dr̂
dε̂

�
2
�

ε̂ M̂

1 − 2M̂=r̂

2

r̂4
ðr̂3ε̂ − M̂Þ

þ P̂ ε̂

M̂

�
1þ r̂3P̂

M̂

�−1
ð3M̂ − r̂3ε̂Þ

�
< 0: ð29Þ

The first term in (29) originated from “−2M̂=r̂” in Eq. (12)
survives even P̂ ¼ 0 is considered (as it is a geometric
correction), while the second term is the geometry-matter
coupling [from “r̂3P̂=M̂” in Eq. (12)], which disappears
if P̂ ≈ 0. This demonstrates clearly that GR geome-
trical effects, the special relativity corrections for dense
matter and/or the matter-geometry couplings can all
effectively modify the ε̂-dependence (or equivalently the
r̂-dependence) of s2 compared with its Newtonian counter-
part. Specifically, they all tend to make the s2 decrease with
increasing ε̂ (i.e. ds2=dε̂ < 0).
On the other hand, s2 > 0 itself contributes positively to

the derivative ds2=dε̂ in Eq. (27), namely

−
Y

1−2M̂=r̂

�
ε̂

M̂

dr̂
dε̂

�
1þ r̂3P̂

M̂

�−1
r̂M̂s2þM̂

r̂2
dr̂
dε̂

�
1þ P̂

ε̂

�−1
s2
�

¼−
ε̂ r̂s2

1−2M̂=r̂

�
dr̂
dε̂

��
1þ2P̂

ε̂
þ M̂
ε̂r̂3

�
>0: ð30Þ

This means s2 itself tends to remove the peak, i.e., it tends to
make ds2=dε̂ > 0 near r̂ ¼ 0. Only the first term in the curry
bracket of Eq. (27), namely ðds2=dε̂ÞN survives in the
Newtonian limit, and all the other terms (proportional to
ðdr̂=dε̂Þ2 and dr̂=dε̂) disappear. Therefore the correction (30)
also disappears in ds2=dε̂ for Newtonian stars. The final sign
of ds2=dε̂ is the result of a balance/competition between
Eqs. (29) and (30). It may depend on the EOS model,
and therefore not every dense matter EOS could induce a
peaked s2 profile.

B. Expressions for s2 profiles including GR effects

A formula for s2≈s2c þ l2r̂2þ l4r̂4 similar to the Eq. (19)
for Newtonian stars could be obtained for the GR case too:

s2 ≈ s2c þ
2s2c
b2

ðb4 − a4s2cÞr̂2

þ s2c
b22

½4a4s2cða4s2c − b4Þ − 3b2ða6s2c − b6Þ�r̂4; ð31Þ

and this is a general expression for s2 to order r̂4. By putting
the expressions for b2 ¼ −6−1ð1þ 3P̂2

c þ 4P̂cÞ, a2 ¼
b2=s2c , b4 [of Eq. (5)] as well as b6 [73],

b6 ¼ −
1

216
ð1þ 9P̂2

cÞð1þ 3P̂2
c þ 4P̂cÞ −

a22
30

þ
�
2

15
P̂2
c þ

1

45
P̂c −

1

54

�
a2 −

5þ 12P̂c

63
a4; ð32Þ

into the coefficients l2 and l4, and expanding terms to linear
order of P̂c (while the s2c is still kept without being
expanded over P̂c), we obtain,
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s2≈ s2c þ
��

12a4s4c −
4

15

�
−
�
48a4s4c þ s2c þ

3

5

�
P̂c

�
r̂2

þ
��

144a24s
6
c þ18a6s4c −

62

35
a4s2c þ

1

60s2c
þ 1

12
s2c −

1

18

�

þ
�

1

15s2c
þ 1

15
−12a4s4c −72a6s4c

−1152a24s
6
c þ

116

35
a4s2c

�
P̂c

�
r̂4: ð33Þ

Expanding s2c of Eq. (10) over P̂c as s2c ≈ 4P̂c=3þ 4P̂2
c=

3þ � � � further approximates (33) as,

s2 ≈
4

3
P̂c þ

4

3
P̂2
c þ

�
−

4

15
−
3

5
P̂c þ

�
64a4
3

−
4

3

�
P̂2
c

�
r̂2

þ
�

1

80P̂c
−

13

720
þ
�
229

1440
−
248a4
105

�
P̂c

þ
�
157

360
þ 72a4

35
þ 32a6

�
P̂2
c

�
r̂4: ð34Þ

We find that Eq. (33) with GR is very different from
Eq. (19) for Newtonian stars even if P̂c ≈ 0 is taken (this is
due to the geometrical correction “−2M̂=r̂”), e.g., the terms
“s2c=12” and “−1=18” at order r̂4P̂0

c ¼ r̂4 are new com-
pared with Eq. (19). Similarly, new terms may emerge at
other orders of P̂c. Considering Eq. (34), e.g., we find a4
starts to operate at order P̂2

c (in the form of 64a4P̂
2
c=3).

Then for finite P̂c ∼Oð0.1Þ, the coefficient l2 may take
positive values. For example, taking a4 ≈ 1 (a4 ≈ 0.5) and
requiring l2 > 0 leads to P̂c ≳ 0.15 (P̂c ≳ 0.23), which are
typical values of P̂c in massive NSs. Thus, a sizable P̂c is
necessary for inducing a peaked s2 profile, i.e.,

l2 > 0 needs a4 > 0 as well as P̂c ≳Oð0.1Þ: ð35Þ

However, a4 > 0 in the Newtonian limit could still not
generally make l2 > 0 [see Sec. IVand especially Eq. (21)],
we thus see clearly that P̂c ≳Oð0.1Þ is fundamental.
Figure 6 gives an illustration on the P̂c-dependence of l2
(adopting four different a4’s), where 0.15≲ P̂c ≲ 0.30 is
marked as the range for P̂c in typical massive NSs. The gray
line near each colored curve is for the approximated
l2≈−4=15−3P̂c=5þð64a4=3−4=3ÞP̂2

c . Obviously, lN2 ¼
−4=15 [see Eq. (20)].
Once the coefficient l2 becomes positive, there would

unavoidably be a peak in s2 profile at some finite distance
r̂ < R̂ regardless of the higher-order coefficients (since near
the surface the s2 → 0). One can demonstrate that the
coefficient a6 needs to be negative if l4 < 0 is required. The
resulted condition for a6 could be obtained from Eq. (31),
namely l4 < 0, or equivalently,

a6 <
b6
s2c

þ 4

3

a4
b2

ðs2ca4 − b4Þ≡ aðupÞ6 ; ð36Þ

where all the expressions (for b2, b4 and b6 as well as s2c)

are available. The a4-dependence of aðupÞ6 is shown in
Fig. 7, from which we find that a6 < 0 and notice that both
a4 and a6 are ∼Oð1Þ, e.g., for P̂c ≈ 0.2 and a4 ≈ 1, we then
have a6 ≲ −1. If the coefficient l4 is also positive, then an
analysis of the even higher-order terms becomes necessary,
e.g., the coefficient l6, etc. Nonetheless, the peak will
emerge at some finite r̂. In this work (see the next
subsection), we mainly focus on the situation in which
l2 > 0 and l4 < 0, and point out the extension if the l6-term
is included when necessary.

FIG. 6. The coefficient l2 as a function of P̂c adopting different
a4 values, the gray line near each colored curve is for the
approximated l2 ≈ −4=15 − 3P̂c=5þ ð64a4=3 − 4=3ÞP̂2

c to order
P̂2
c . The light-yellow background shows the necessary condition

for a peaked SSS profile, i.e., l2 > 0.

FIG. 7. The surface of the upper limit aðupÞ6 as a function of a4
and P̂c in order to make the coefficient l4 negative.
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When the b6- and a6-terms are included, the core EOS of
Eq. (11) should be improved. The leading-order contribu-
tion from a6 appears at the order μ3P̂3

c,

P̂=P̂c≈1þ4

3
μþ16

15
μ2þ 4

15
μ3þ

�
4

3
−
4

5
μ−

268

135
μ2
�
μP̂c

þ
�
2þ

�
28

3
−
256a4
3

�
μþ

�
370

27
−
30208

315
a4

�
μ2
�
μP̂2

c

þ
�
4þ

�
1280a4

3
−
262

15

�
μþ

�
68608

105
a4þ

2048

3
a6

−
1496

27

�
μ2
�
μP̂3

cþOðP̂4
c ;μ4Þ; ð37Þ

where a new term −30208a4μ3P̂2
c=315 proportional to a4 at

order μ3P̂2
c also emerges. We have μ3P̂3

c ∼ −10−5 for P̂c ∼
0.2 and μ ∼ −0.1, implying a6 has a small effect on the core
EOS near r̂ ¼ 0, namely j2048a6μ3P̂3

c=3j≲ 1% by con-
sidering a6 ∼Oð1Þ. Based on Eq. (37), we shall obtain the
SSS for finite μ straightforwardly as s2=P̂c ¼ dðP̂=P̂cÞ=dμ,
here the μ3-terms are new compared with Eq. (11). Then for
Newtonian stars (neglecting the finite-P̂c corrections), we
have P̂−1

c ds2=dμ ¼ d2ðP̂=P̂cÞ=dμ2 ¼ 32=15þ 8μ=5 > 0

for −1 ≤ μ ≤ 0, i.e., the s2 is a monotonically increasing
function of ε̂, as expected.
It is now useful to point out that one could directly work

out the dependence of s2 on ϕ ¼ P=ε. Starting from
P̂=P̂c ≈ 1þ 4μ=3þ 16μ2=15þ ð4=3 − 4μ=5ÞμP̂c to order
μ2P̂c [see Eq. (37)], for example, we obtain

ϕ ≈
P̂c

1þ μ

�
1þ 4μ

3
þ 16μ2

15
þ
�
4

3
−
4μ

5

�
μP̂c

�

≈ P̂c

�
1þ μ

3
ð4P̂c þ 1Þ þ μ2

15
ð11 − 32P̂cÞ

�
; ð38Þ

which gives inversely that

μ ≈
3

4P̂c þ 1

�
ϕ

P̂c
− 1

�
þ 9

5

32P̂c − 11

4P̂c þ 1

�
ϕ

P̂c
− 1

�
2

: ð39Þ

Putting this μ ¼ μðϕÞ back into s2=P̂c ≈ 4=3þ 32μ=15þ
4μ2=5þ ð4=3 − 8μ=5 − 268μ2=45ÞP̂c [via Eq. (37)] gives
the s2 profile near the center to order ðϕ=ϕc − 1Þ2 as (with
ϕ=ϕc ≲ 1),

s2=ϕc≈
4

3
þ32

5

�
1−

19

4
P̂c

��
ϕ

ϕc
−1

�

−
876

25

�
1−

3439

219
P̂c

��
ϕ

ϕc
−1

�
2

; ϕc≡ P̂c: ð40Þ

We then find ½ϕ−1
c ds2=dϕ�ϕ¼ϕc

¼ ð32=5Þð1 − 19P̂c=4Þ,
which may either be positive (Newtonian limit P̂c → 0)

or negative, depending on the magnitude of P̂c. In
fact, all the descriptions, namely the r̂-dependence, the
μ-dependence and the ϕ-dependence, are equivalent on the
peaked profile of s2. Thus, in the following we may adopt
these representations interchangeably.

C. Peak position r̂pk and enhancement Δs2 of s2c
We estimate here the occurring probability of a peak in

the s2 profile near r̂ ¼ 0 for l2 > 0 and l4 < 0, where the
peak is at

r̂pk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2=2l4

p
: ð41Þ

For each P̂c, we randomly sample the coefficients a4 ∼
Unif½0; 2� and a6 ∼ Unif½−2; 2� by m times, and count the
number mpk of samples where there is a peak in the s2

profile while satisfying the causality condition s2max ≤ 1,
here

s2max ≡ s2ðr̂pkÞ ¼ s2c − l22=4l4: ð42Þ

The probability is estimated as mpk=m, see Fig. 8 for the
simulated results. For a relatively small P̂c ≈ 0.1, the
probability is also small since the P̂c is not large enough
to make l2 positive (even if a4 is positive). The probability
eventually increases with increasing P̂c, but it becomes
small again when the P̂c is close to the causality limit about
0.374. This is because the matter is too stiff to be further
compressed by gravity, i.e., there is no space for s2ðr̂Þ > s2c
since s2c itself is → 1 [74]. Combining the above informa-
tion with what we learned from Fig. 4, we find that the

FIG. 8. Probability of the occurrence of a peak in s2 profile
(magenta line), the position of the peak r̂pk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2=2l4

p
of s2

(blue line), and (two times) the enhancement Δs2 ≡ s2max=s2c −
1 ¼ −l22=4l4s2c on s2c (green line). The background bands on r̂pk
(lavender) and 2Δs2 (orange) represent their 1σ uncertainties. The
P̂c-dependence of s2c is also shown (gray dash-dotted line).
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probability is relatively larger (compared with its surround-
ings) for 0.2≲ P̂c ≲ 0.35, where the strong gravitational
force effectively bends down the s2.
Interestingly, P̂c ≈ 0.24þ0.05

−0.07 [73] for PSR J0740þ 6620

extracted directly from its observedmass and radius [50–53]
is quite close to this region, indicating massive NSs with
radii≈12–14 kmare excellent objects to study the peaked s2

profile. The resulted a4 and a6 for P̂c ≈ 0.24 are found
respectively to be about a4 ≈ 0.71� 0.03 and a6 ≈
−1.37� 0.19, both are ∼Oð1Þ. See Fig. 9 for the general

P̂c-dependence of the coefficients a4,a6, l2 and l4, where the
coefficient l4 (compared with a4, a6 and l2) may take some
large values (for large P̂c). Furthermore, the coefficient l2
starting from about zero at P̂c ≈ 0.1 implies that for even
smaller P̂c values there would be no peaked feature in the s2

profile.
Also shown in Fig. 8 is the peak position r̂pk which is

located at about 0.35≲ r̂pk ≲ 0.4 for a wide range of P̂c.
Moreover, we show in Fig. 8 the (averaged) enhancement
of s2c , namely [see Eq. (42)],

Δs2 ≡ s2max=s2c − 1 ¼ −l22=4l4s2c ; ð43Þ

which is generally small about ≲5%.
Figure 10 shows the radial profiles of s2 adopting nine

different P̂c values specified in the plots. The s2 is probably
a monotonically decreasing function of r̂ for small P̂c ≲ 0.1
(panel (a) of Fig. 10), the peak eventually emerges/develops
as P̂c increases to about P̂c ≈ 0.30 [panels (b) to (e)] and
then tends to disappear for even large P̂c ≳ 0.35 [panels
(f)–(i)]. In Fig. 11, we show the dependence of the fraction
xðP̂cÞ on the enhancementΔs2. It is interesting to see that at
the two limiting sides of P̂c (i.e., small P̂c ≲Oð0.1Þ and
P̂c ≳ 0.35) the fraction xðP̂cÞ for large enhancement
Δs2ð≳15%Þ is extremely small, and most of the fraction
is accumulated at Δs2 ≲ 5%.
If the contribution l6r̂6 (which involves the coefficient a8)

is included as s2 ≈ s2c þ l2r̂2 þ l4r̂4 þ l6r̂6, then the

FIG. 9. Coefficients a4, a6, l2 and l4 as functions of P̂c. The
uncertainties on a4 and l2 are amplified by 5 times for a more
clear visualization due to their relative smallness.

FIG. 10. s2=s2c as a function of r̂ with increasing values of P̂c and with 1σ uncertainties, the gray dashed line is the one including
contribution of l6r̂6, namely s2 ≈ s2c þ l2r̂2 þ l4r̂4 þ l6r̂6.
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equation determining the peak position r̂pk becomes
(l2 > 0),

l2 þ 2l4r̂2 þ 3l6r̂4 ¼ 0: ð44Þ

The expression for l6 could be obtained straightforwardly
(we do not give it explicitly here due to its length). Using
Eq. (44), we immediately obtain the peak position r̂pk as
r̂2pk ¼ ½−l4 þ ðl24 − 3l2l6Þ1=2�=3l6 if l4 > 0 and r̂2pk ¼ ½−l4 −
ðl24 − 3l2l6Þ1=2�=3l6 for l4 < 0 (both can fulfill the
conditions l6 ≤ l24=3l2 and r̂2pk > 0). By sampling a8 ∼
Unif½−2; 2�, one can similarly analyze the peaked behavior
of s2, and the results are shown by the dashed gray lines in
Fig. 10. It is seen that the correction l6r̂6 slightly increases
the enhancement Δs2 while has almost no effect on the
location of the peak r̂pk.
Moreover, using ε̂ ≈ 1þ a2r̂2 þ a4r̂4 þ a6r̂6, one finds

that 85%≲ ε̂pk ≲ 95% for 0.15≲ P̂c ≲ 0.35. In Fig. 12, we
show the s2=s2c as a function of ε̂. The peak location ε̂pk in
energy density is consistent with our previous studies, i.e.,
ρ̂≡ ρ=ρc ≈ ε̂ − μð1þ 4μ=3ÞP̂cð1 − P̂cÞ, from which we
inferred that ρpk=ρc ≈ ε̂pk ≲ 95% [74]. This is also con-
sistent with findings in a few recent studies by others, see,
e.g., Ref. [39] predicted that the SSS peak if exists would be
very close to the NS center. Similarly, Ref. [38] predicted
that the peak in s2 profile for a 2M⊙ NS is at ρpk ≈
0.55 fm−3 while its central density is about ρc ≈ 0.56 fm−3

and thus ρpk=ρc ≈ 98%. Finally, we show in Fig. 13 the
radial profile of the energy density, i.e., the r̂-dependence of

ε̂ ≈ 1þ a2r̂2 þ a4r̂4 þ a6r̂6. It is seen that they have a
direct correspondence with little uncertainty especially for
r̂ ≈ 0, consistent with that shown in Fig. 2.

D. Example: The s2 profile of a NS
with Mmax

NS = 2M⊙

Consider a NS with mass Mmax
NS ¼ 2M⊙ fixed but its

radius R could vary. The central EOS Pc-εc is determined
by the correlation (8). Inversely, it gives,

PcðεcÞ≈u2=3ε4=3c ð1þ4u2=3ε1=3c þ19u4=3ε2=3c þ�� �Þ; ð45Þ

here u=½fm3=2=MeV1=2� ¼ ðMmax
NS =M⊙ þ 0.106Þ=1730 [73]

depends on Mmax
NS . See the light-blue line shown in Fig. 14.

The P̂c eventually decreases with increasing radius R (e.g.,
from 11 km to 17 km) since the NS becomes less compact.
The resulted P̂c’s are also shown in Fig. 14, e.g., for
R ≈ 13 km we have P̂c ≈ 0.20, using the correlation (9).
We now have the following coherent picture for the

peaked profile of s2 in massive NSs. There may exist a peak
in s2 near r̂ ¼ 0 when R is relatively small (e.g., 11 km)
and the peak becomes enhanced when R increases a little
further (e.g., to 13 km or 15 km). As a comparison, we have
P̂c ≈ 0.11–0.12 for a 12–13 km canonical NS of mass about
1.4M⊙. Our analysis indicates that there tends to be no peak
in the s2 profile near r̂ ¼ 0 for these canonical NSs. This is
consistent with the finding of a recent analysis [22] using
as input in solving the TOV equations in the traditional
approach the EOS from nuclear theory and pQCD and

FIG. 11. Same as Fig. 10 but for the fraction xðP̂cÞ for the enhancement Δs2.
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imposing observational constraints on NS masses, radii,
and tidal deformabilities. In essence, the profile of s2 is
analogous to the M-R curve where the GR leads to a
maximum-mass point beyond which the NSs are unstable
against collapsing into black holes (BHs), sketched in the

upper panel of Fig. 15. The strong-gravitational force
makes ϕ ¼ P=ε sizable ≳Oð0.1Þ and extrudes a peak in
the s2 profile, as sketched in the lower panel of Fig. 15
[and numerically demonstrated in Fig. 10). If R is extra-
ordinarily large (e.g., 17 km and correspondingly P̂c ≈ 0.12

FIG. 12. Same as Fig. 10 but for the s2=s2c as a function of ε̂ (near NS centers).

FIG. 13. Same as Fig. 10 but for ε̂ ≈ 1þ a2r̂2 þ a4r̂4 þ a6r̂6 as a function of r̂.
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from Eqs. (8) and (9)], the peak in s2 may reduce
and even disappear as illustrated in the right column
of Fig. 14.
We emphasize that not every EOS can induce a peaked

s2 profile. It is similar to the fact that not every EOS could
induce a maximum mass for NSs below the causality limit,
e.g., the ultrarelativistic Fermi gas predicts a linear M-R
relation MNS ¼ 3R=14 [95]. It should be pointed out
that the observed masses and radii of massive NSs as
well as properties of postmerger remnants of NSs from
future high-frequency GW observations are expected to be
useful for inferring features of the s2 profile especially
near r̂ ¼ 0.

E. Normally stable NSs along the M-R curve

For normally stable NSs (instead of the maximum-mass
configuration Mmax

NS ) on the M-R curve, the expression for
b2 and the relation a2 ¼ b2=s2c do not change. However, the
expression for s2c is modified from Eq. (10) to [74],

s2c ¼ P̂c

�
1þ 1þ Ψ

3

1þ 3P̂2
c þ 4P̂c

1 − 3P̂2
c

�
; ð46Þ

where Ψ¼ 2εcM−1
NSdMNS=dεc¼ 2dlnMNS=dlnεc> 0 [73].

Taking εc ≈ 900 MeV=fm3 and εc ≈ 400 MeV=fm3 for a
2M⊙ NS and a canonical NS, respectively, we find
approximately Ψ ≈ 0.88.
Adopting the same criteria of Eq. (16), a4 < −a2=2R̂2

and a4R̂
4 > −1 − a2R̂

2, we can analyze the allowed region
for a4 for the onset of a peak in s2 near r̂ ¼ 0. The result is
shown in Fig. 16 withΨ ¼ 0.88. We find that the combined
region for a4 is similar to the one shown in Fig. 4 forMmax

NS .
In this case, one has P̂c ≲ 0.31 by requiring s2c ≤ 1.
Similarly, we could analyze the probability for the s2

profile to have a peak near r̂ ¼ 0 as done for the Mmax
NS

configuration in Sec. V C, and the result is shown in
Fig. 17. We find that the probability is relatively large for
0.17≲ P̂c ≲ 0.25 (compared with its low-P̂c surroundings),
while on the other hand the location of the peak r̂pk
(lavender band) and the enhancement Δs2 (tan band) are
very similar to those of Fig. 8. Combining the results of
Fig. 16 and Fig. 17 and considering P̂c ≲ 0.14 [44] for a
canonical NS, we see that the probability of occurrence of a
peak in s2 for such NSs is probably very low. These features
are consistent with the findings of a recent analysis in
Ref. [22], which predicted that the s2 in canonical NSs is a
monotonically decreasing function of r̂.

FIG. 14. Central EOS of a Mmax
NS ¼ 2M⊙ NS and the sketch of

variation of the peaked behavior of s2 near r̂ ¼ 0, here
u=½fm3=2=MeV1=2� ¼ ðMmax

NS =M⊙ þ 0.106Þ=1730 [73].

FIG. 15. Sketch of the εc-dependence of NS mass MNS (upper
panel) and the energy density ε-, the density ρ- or the ϕ-
dependence of s2 (lower panel).

FIG. 16. Same as Fig. 4 but for NS configurations climbing the
M-R curve (instead of being at Mmax

NS ), here Ψ ¼ 0.88 is adopted.
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VI. CONNECTIONS WITH SOME OTHER
PREDICTIONS IN THE LITERATURE

We discuss here some possible relations with other
alternatives on the peaked s2 profiles predicted in the
literature. If the asymptotic pQCD constraint s2 ≤ 1=3 [24]
at extremely large densities ρpQCD ∼ 40ρsat [36,96–98] is
considered, then there would essentially be a peak in s2ðεÞ
if the s2 ≳ 1=3 [99] in the cores of massive NSs where
ρc ≈ ρmax ≈ ð4–8Þρsat, in order to extrapolate together the
two s2’s. Of course, this does not necessarily mean that the
s2ðr̂Þ profile may have a peaked structure in NSs [39]. Our
analysis above shows that even without considering the
pQCD prediction, there would be a possible intrinsic peak
in s2 in massive NS cores, fundamentally due to the strong
GR effects. Figure 18 illustrates a few possible ways to
extrapolate the s2 in NSs predicted by the TOVequations to
the asymptotic pQCD limit. The double circles indicate the
central s2 in NSs. Here the peaked behavior in s2 of case
(a) is due to the desire to meet the pQCD prediction (i.e., no
peak in s2 at densities within NSs), whiles in cases (b) and
(c) the peak is originated from the GR effects and is already
located somewhere within NSs. The actual outcome
depends on the EOS model. Case (d) may correspond to
a low-mass NS (and correspondingly P̂c is small) whose s2

is always smaller than 1=3. See Ref. [2] for a similar
discussion.
As we study the peaked structure in the s2 profile near

r̂ ¼ 0 or ε̂ ¼ 1 in this work, we would like to point out that
other types of structures such as plateau, bump and spike,
etc., may also exist in the s2ðρÞ profiles of NSs [16,17],
see the very recent Ref. [39] for relevant discussions.
Moreover, nontrivial features of s2 are predicted to emerge
in relativistic heavy-ion collision experiments [100,101]
where similarly high densities as in NSs are reached but at

high temperatures and with little gravity effect. Moreover, a
peaked profile of s2 was also predicted recently in isospin-
asymmetric strongly interacting matter simulated on a
lattice [102,103]. In this case, ε ∼Oð101−2Þ MeV=fm3 is
an order-of-magnitude smaller than that in NSs. Never-
theless, ϕ ¼ P=ε is sizable ≳Oð0.1Þ in these systems, e.g.,
P=ε≳ 0.2 at the peak position of s2 [102]. This means that
the “effective gravitational force” is made strong enough by
compressing the matter into a tiny volume.
These examples and our analysis above all point to the

same fundamental Hamilton’s variational principle at work
on the total action of any system under consideration [104].
It would thus be exciting to investigate whether and how
different ingredients with various forms of the system
including space, strong-field gravity (with possibly modi-
fied gravity besides Einstein’s GR) and matter (including
nuclear/hyper/quark matter, dark matter and energy) as well
as their couplings could influence the system’s s2 profile.
Supermassive NSs are among the possible sites for such
studies, see, e.g. Refs. [72,105,106] and references therein.

VII. SUMMARY AND CONCLUSIONS

In summary, we investigated systematically the s2 profile
especially the nature of its possible peak in massive NSs in
a new approach that is independent of the nuclear EOS
model and without any presumption about the NS structure
and/or composition. In terms of the small quantities r̂ (or
equivalently μ ¼ ε̂ − 1) near NS centers and P̂c ≡ Pc=εc,
we performed the double-element perturbative expansions
in solving perturbatively the scaled TOV equations and
analyzing the s2 profiles of NSs from the Newtonian limit
to the GR case. The results obtained are intrinsic properties
of the GR stellar structure equations. The relevant

FIG. 17. Same as Fig. 8 but with Ψ ¼ 0.88.

FIG. 18. Different patterns of extrapolating the s2 in the core of
NSs with ρc ≈ ρmax ≈ ð4–8Þρsat to high densities ∼40ρsat (pQCD),
and the double-circle on each line denotes its s2c . Here, the s2 in
patterns (a) and (d) shows a monotonic behavior and the differ-
ence lies in whether s2c is greater (smaller) than 1=3; the s2 in
patterns (b) and (c) shows a peak at densities smaller than the
central density of NSs where the s2c in pattern (b) [pattern (c)] is
larger (smaller) than 1=3. Both pattern (b) and (c) indicate a
continuous crossover behavior near the NS center. Other possible
nontrivial features in s2 (like plateau, spike or bump, etc.) are not
sketched in the figure.
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expansions developed in this work provide convergent and
universal predictions independent of the still very uncertain
EOS of supradense neutron-rich matter in massive NSs.
Among the many interesting findings, the GR term in the

TOV equations was found particularly to play a twofold
role: it compresses NS matter and modifies P̂c from small
≲Oð10−4Þ in Newtonian stars to ≳Oð0.1Þ in massive NSs
(R ≈ 12–14 km) and can generate a peak in s2 profile near
the centers of massive NSs, and eventually takes away
the peak in extremely compact/massive NSs (R≲ 11 km)
whose P̂c approaches the causality limit. In essence, the
strong-field gravity in massive NSs naturally extrudes
peaks in the s2 radial profiles. The nuclear EOSs are
required to match these profiles to satisfy the TOV
equations. Consequently, a continuous crossover charac-
terized by a smooth reduction of s2 is expected to occur in
cores of massive NSs like PSR J0740þ 6620 with their
radii being around 12–14 km. Moreover, due to the facts
that s2c ≠ 0 and γc ¼ s2cεc=Pc ≳ 1.33, a sharp phase tran-
sition signaled by an abruptly vanishing of s2 near the
center is basically excluded and the dense matter in NS
cores could hardly be conformal signaled by γc → 1.
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APPENDIX A: PROOF ON ABSENCE
OF ODD TERMS IN THE PERTURBATIVE

EXPANSIONS OF ε̂ AND P̂ OVER r̂

The evenness/oddness of reduced energy density, pres-
sure and mass as functions of the reduced radius were
proved in Ref. [73] by explicitly calculating individually
the relevant expansion coefficients in perturbatively solving
the dimensionless TOV equations using polynomials. Here
we provide an alternative and more general mathematical
proof by exploring properties of these functions under a
coordinate transformation satisfying physical requirements.
First consider Newtonian stars. The reduced mass M̂ as a

function of radial distance r̂ from the center could be
written as,

M̂ðr̂Þ ¼
Z

r̂

0

dxx2ε̂ðxÞ; ðA1Þ

here x is an integration variable. Let us make the coordinate
transformation as follows,

x → −x; ðA2Þ

then the M̂ðr̂Þ transforms as,

M̂ðr̂Þ¼
Z

−r̂

0

ð−dxÞð−xÞ2ε̂ð−xÞ¼−
Z

−r̂

0

dxx2ε̂ð−xÞ: ðA3Þ

On the other hand, we have straightforwardly from
Eq. (A1) that,

M̂ð−r̂Þ ¼
Z

−r̂

0

dxx2ε̂ðxÞ: ðA4Þ

Similarly, starting from the pressure equation, namely

P̂ðr̂Þ ¼ −
Z

r̂

0

dx
ε̂ðxÞM̂ðxÞ

x2
; ðA5Þ

we shall obtain

P̂ðr̂Þ ¼ þ
Z

−r̂

0

dx
ε̂ð−xÞM̂ð−xÞ

x2
; ðA6Þ

P̂ð−r̂Þ ¼ −
Z

−r̂

0

dx
ε̂ðxÞM̂ðxÞ

x2
: ðA7Þ

In order that both Eq. (A3) and Eq. (A4) hold, only two
possibilities exist:
(a) ε̂ð−xÞ ¼ ε̂ðxÞ and M̂ð−xÞ ¼ −M̂ðxÞ, we have in this

case P̂ð−xÞ ¼ P̂ðxÞ, or
(b) ε̂ð−xÞ ¼ −ε̂ðxÞ and M̂ð−xÞ ¼ M̂ðxÞ, now we still

have P̂ð−xÞ ¼ P̂ðxÞ.
We therefore know at once that P̂ðr̂Þ ¼ P̂ð−r̂Þ. In addition,
since we have the physical requirement that ε̂ð0Þ ¼ 1 at
r̂ ¼ 0, only the possibility (a) above is allowed as the
option (b) would lead to ε̂ð0Þ ¼ 0 that is unphysical. This
means that ε̂ðr̂Þ ¼ ε̂ð−r̂Þ and M̂ðr̂Þ ¼ −M̂ð−r̂Þ.
For NSs, the mass evolution equation remains the same

as Eq. (A1), therefore we can similarly infer that ε̂ðr̂Þ ¼
ε̂ð−r̂Þ and M̂ðr̂Þ ¼ −M̂ð−r̂Þ. Looking back into the pres-
sure evolution of Eqs. (1), we shall infer that P̂ðr̂Þ has the
same properties under the transformation r̂ → −r̂ as ε̂ðr̂Þ or
as r̂3=M̂ðr̂Þ, considering the factor 1þ P̂ðr̂Þ=ε̂ðr̂Þ or factor
1þ r̂3P̂ðr̂Þ=M̂ðr̂Þ, respectively. Specifically, we have

P̂ðr̂Þ ¼−
Z

−r̂

0

dx
ε̂ðxÞM̂ðxÞ

x2

×
½1þ P̂ð−xÞ=ε̂ðxÞ�½1þ x3P̂ð−xÞ=M̂ðxÞ�

1− 2M̂ðxÞ=x ; ðA8Þ

P̂ð−r̂Þ ¼ −
Z

−r̂

0

dx
ε̂ðxÞM̂ðxÞ

x2

×
½1þ P̂ðxÞ=ε̂ðxÞ�½1þ x3P̂ðxÞ=M̂ðxÞ�

1 − 2M̂ðxÞ=x ; ðA9Þ

where Eq. (A8) is obtained by transforming x → −x in the
integration of P̂ðr̂Þ while Eq. (A9) is the pressure at −r̂.
Thus P̂ðr̂Þ ¼ P̂ð−r̂Þ is inferred from Eqs. (A8) and (A9).
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These analyses show that ε̂ and P̂ are even functions of r̂
and M̂ is an odd function of r̂, though physically r̂ is non-
negative. Consequently, no odd (even) terms in r̂ could
appear in the expansions of ε̂ and P̂ (of M̂).

APPENDIX B: ESTIMATING THE MAXIMUM
SIZE OF a4 USING EMPIRICAL

PARAMETERS OF NUCLEAR EOS

We pointed out in the main text that the coefficient a4
appearing in ε̂ ≈ 1þ a2r̂2 þ a4r̂4 þ � � � encapsulates cer-
tain uncertainties of the dense matter EOS. Once the EOS
model is adopted (e.g., a nuclear matter model or a quark
matter model), the a4 could be worked out. There is no a
prior that a4 should be either positive or negative, though
a4 > 0 is a necessary condition for inducing a peaked s2

near the center, see the discussion given around Eq. (17).
Here we (approximately) express a4 using a meta EOS
model for NS matter and study under which circumstances
a4 shall become positive. Our illustration is qualitative with
the motivation to demonstrate how the nuclear parameters
may affect a4. Within the currently known uncertainty
ranges of these EOS parameters, we then estimate the
maximum size (absolute value) of a4.
We start by considering the EOS of asymmetric nuclear

matter (ANM) to order δ2 [66],

EðρÞ ≈ E0ðρÞ þ EsymðρÞδ2; ðB1Þ
where ρ ¼ ρn þ ρp is the total density, and

δ ¼ ðρn − ρpÞ=ðρn þ ρpÞ; ðB2Þ
is the isospin asymmetry between neutrons (ρn) and protons
(ρp). The EOS E0ðρÞ of symmetric nuclear matter (SNM)
and the symmetry energyEsymðρÞ could further be expanded
around the nuclear saturation density ρsat ≡ ρ0 as [37,66],

E0ðρÞ ≈ E0ðρ0Þ þ 2−1K0χ
2 þ 6−1J0χ3; ðB3Þ

EsymðρÞ ≈ Sþ Lχ þ 2−1Ksymχ
2 þ 6−1Jsymχ3: ðB4Þ

Here S≡ Esymðρ0Þ ≈ 30� 4 MeV is the magnitude of the
symmetry at ρsat, K0 ≈ 230� 20 MeV is the incompress-
ibility coefficient of SNM, J0 ≈ −300� 300 MeV is the

skewness parameter of SNM, L ≈ 60� 20 MeV, Ksym ≈
−100� 200 MeV and Jsym ≈ 0–800 MeV are the slope,
curvature and skewness of the symmetry energy [107].
Moreover, the dimensionless quantity χ is defined as,

χ ¼ ðρ − ρ0Þ=3ρ0 ¼ ðρ̂ − ρ̂0Þ=3ρ̂0: ðB5Þ

In the second relation, we introduce the reduced densities
ρ̂ ¼ ρ=ρc and ρ̂0 ¼ ρ0=ρc, with ρc the central density inNSs.
The reduced density ρ̂ is given by [74],

ρ̂ ≈ 1þ
�
b2=s2c
1þ P̂c

�
r̂2 þ 1

1þ P̂c

�
a4 −

b22=2s
2
c

1þ P̂c

�
r̂4

≡ 1þ ηr̂2 þ ðβa4 − ξÞr̂4; ðB6Þ

via the thermodynamic relation ρ∂ε=∂ρ ¼ Pþ ε. The sec-
ond line defines the coefficients η, β, and ξ.
Based on these relations, we can express the energy

density ε ¼ ½EðρÞ þMN�ρ, or its reduced form as

ε̂ ¼ ε=εc ¼ ½EðρÞ þMN�ðρc=εcÞρ̂: ðB7Þ

Putting the ρ̂ of Eq. (B6) into χ of Eq. (B5) and further
putting χ back into E0ðρÞ as well as EsymðρÞ gives the ε̂ of
Eq. (B7) as a function of r̂2, i.e.,

ε̂ ≈
�
ρc
εc

�
½MN þ E0ðρ0Þ þ 2−1K0χ

2 þ 6−1J0χ3

þ ðSþ Lχ þ 2−1Ksymχ
2 þ 6−1Jsymχ3Þδ2�: ðB8Þ

For our purpose, we need the expression of the r̂4-term in
Eq. (B8) which itself involves a4 due to the expression for ρ̂
of Eq. (B6). Equaling it with a4r̂4 gives a self-consistent
equation for a4 (both sides of which involve a4).
The expression for a4 is quite complicated and since

the magnitude of M̄N ≡MN þ E0ðρ0Þ ≈ 923 MeV (using
MN ≈ 939 MeV and E0ðρ0Þ ≈ −16 MeV) is generally
larger than K0≈230MeV, J0≈−300MeV, S ≈ 30 MeV,
L≈60MeV,Ksym≈−100MeV, andJsym≈300MeV[107],
one can introduce small quantities K0=M̄N, J0=M̄N, S=M̄N,
L=M̄N, Ksym=M̄N and Jsym=M̄N to expand a4 to dig out the
main features of its dependence on the empirical EOS
characteristics:

a4 ≈ −
Λ

54ðΛβ − 1Þ2ρ̂30

�
þ2

�
ðΛβ − 1Þη2 þ 2βξ

3

���
J0
M̄N

�
þ
�
Jsym
M̄N

�
δ2
�

− 3ððΛβ − 1Þη2 þ βξÞ
��

J0
M̄N

�
− 3

�
K0

M̄N

�
þ
��

Jsym
M̄N

�
− 3

�
Ksym

M̄N

��
δ2
�
ρ̂0

þ ððΛβ − 1Þη2 þ 2βξÞ
��

J0
M̄N

�
− 6

�
K0

M̄N

�
þ
��

Jsym
M̄N

�
− 6

�
Ksym

M̄N

�
þ 18

�
L
M̄N

��
δ2
�
ρ̂20

− 54βξ

�
ðΛβ − 1Þ þ 1

162

�
J0
M̄N

�
−

1

18

�
K0

M̄N

�
þ
�

1

162

�
Jsym
M̄N

�
−

1

18

�
Ksym

M̄N

�
þ 1

3

�
L
M̄N

�
−
�

S
M̄N

��
δ2
�
ρ̂30

�
; ðB9Þ
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here Λ ¼ M̄Nρc=εc. For a given set of nuclear EOS param-
eters ðK0; J0; S; L; Ksym; JsymÞ and a central energy density
εc (or a central density ρc), the NS mass as well as its radius
could be obtained. The isospin asymmetry δ in charge neutral
npe matter at β-equilibrium is determined by 4δEsymðρÞ≈
μe ≈ ½3π2ρð1 − δÞ=2�1=3, here μe is the electron chemical
potential.
A main feature of Eq. (B9) is that J0 and Jsym are the

leading-order contributions to a4, since they appear at ρ̂00
order in the curly brackets. Other characteristics such asK0,
L, Ksym, etc., appear at higher-orders of ρ̂0. We take ρc ≈
5ρ0 ≈ 0.8 fm−3 (equivalently ρ̂0≈1=5) and K0≈230MeV,
J0 ≈ −300 MeV, S ≈ 30 MeV, L ≈ 60 MeV, Ksym ≈
−100 MeV together with Jsym ≈ 300 MeV [107], then
δ ≈ 0.6 is obtained at ρc, the central energy density
εc and the central pressure Pc are obtained as εc ≈
863 MeV=fm3 and Pc ≈ 182 MeV=fm3, respectively.
Consequently, Λ ¼ M̄Nρc=εc ≈ 0.86, P̂c ≈ 0.21 and
η ≈ −0.74, β ≈ 0.86 and ξ ≈ 0.10. In Fig. 19, we show
the dependence of a4 on the nuclear EOS parameters K0,
J0, S, L, Ksym and Jsym according to Eq. (B9), within their
currently known uncertainty ranges.

We first notice that a4 ∼Oð1Þ and it can take either
positive or negative values, depending on the empirical
parameters. We can further find, for instance, a4 can
be positive with the increasing of skewness parameter J0
of SNM or the skewness parameter Jsym of the symmetry
energy, e.g., Jsym ≳ 560 MeV is needed for a4 ≳ 0 (while
fixing other parameters at their default values). A
more positive Jsym or J0 makes a4 more positive, tending
to generate the peak in s2 at a smaller density [37].
In addition, the lower-order parameters such as S or L
have little impact on the evolution of a4. It is necessary
to point out that graphs of Fig. 19 are obtained by
truncating the relevant expansions to linear order, which
is expected to well behave for S or L, e.g., S=M̄N ≈ 3.3%
or L=M̄N ≈ 6.5% for S ≈ 30 MeV or L ≈ 60 MeV,
respectively. However, for terms like Jsym=M̄N ≈ 33%

(adopting Jsym ≈ 300 MeV) and J0=M̄N ≈ −33% (with
J0 ≈ −300 MeV), the corresponding higher-order correc-
tions are necessarily needed. Based on these results, we
conclude that the maximum absolute value of a4 is about 1
within the current uncertain ranges of all EOS model
parameters considered.
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