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We present a new subgrid model for neutrino quantum kinetics, which is primarily designed to
incorporate effects of collective neutrino oscillations into neutrino-radiation-hydrodynamic simulations for
core-collapse supernovae and mergers of compact objects. We approximate the neutrino oscillation term in
a quantum kinetic equation using the Bhatnagar-Gross-Krook (BGK) relaxation-time prescription, and the
transport equation is directly applicable for classical neutrino transport schemes. The BGK model is
motivated by recent theoretical indications that nonlinear phases of collective neutrino oscillations settle
into quasisteady structures. We explicitly provide basic equations of the BGK subgrid model for both
multiangle and moment-based neutrino transport to facilitate the implementation of the subgrid model in
the existing neutrino transport schemes. We also show the capability of our BGK subgrid model by
comparing it to fully quantum kinetic simulations for fast neutrino-flavor conversion. We find that the
overall properties can be well reproduced in the subgrid model; the error of angular-averaged survival
probability of neutrinos is within ∼20%. By identifying the source of error, we also discuss perspectives to
improve the accuracy of the subgrid model.
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I. INTRODUCTION

Astrophysical phenomena usually involve intricately
intertwined multiphysics. Direct numerical simulation is
an effective tool to study the physical mechanism behind
these complex phenomena, and also to provide theoretical
models for interpretations of the observed data. Often,
however, the temporal and spatial scales among different
physical processes span many orders of magnitudes,
rendering the first-principles simulations prohibitively
computationally expensive. This indicates the need for
approximations or coarse-grained approaches.
It has been recognized for many years that neutrino

quantum kinetics in core-collapse supernovae (CCSNe) and
mergers of compact objects represented by a binary neutron
star merger (BNSM) corresponds to such a problem
requiring coarse-grained treatments (see the reviews in
[1–5]). Neutrino-flavor conversion is a representative quan-
tum feature, and various types of neutrino-flavor conver-
sions associated with neutrino self-interactions occur in
CCSNe [6–8] and BNSMs [9,10]. On the other hand, the

length scale of flavor conversions is much smaller than the
astrophysical size, making the first-principles simulations
intractable. Although neutrino-radiation-hydrodynamic si-
mulations have matured significantly, one should keep in
mind that large uncertainties still remain concerning the
impacts of neutrino-flavor conversions even in the current
state-of-the-art numerical simulations. Since neutrino-
matter interactions depend on neutrino flavors, flavor con-
versions change the feedback to the fluid dynamics [11–13]
and also nucleosynthesis [14–19]. We also note that the
dynamics of flavor conversion and its asymptotic behavior
hinge on the global advection of neutrinos [11,20–23],
exhibiting that global neutrino-radiation-hydrodynamic sim-
ulations that incorporate effects of flavor conversions are
mandatory for studying the astrophysical consequences of
flavor conversions.
There is respectable previous work that incorporates

effects of neutrino-flavor conversion in global neutrino-
radiation-hydrodynamic simulations in CCSNe and BNSMs
[12,13,16–18]. Although the details vary, a neutrino-mixing
prescription is commonly added to classical neutrino trans-
port schemes, in which researchers shuffle neutrino flavors
one way or another. It should be noted that all mixing*hiroki.nagakura@nao.ac.jp
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schemes employ rather phenomenological treatments, and
hence these results need to be considered provisional. This
is mainly because the current implementation of flavor
conversion in their codes are rather schematic, which does
not allow robust conclusions to be drawn about impacts
of flavor conversions. Improving their neutrino mixing
schemes is obviously needed, but it is very difficult with
the proposed approaches. More importantly, it is not clear
how we can give feedback from the results of fully quantum
kinetic neutrinos to these phenomenological models. This
paper is meant to address this issue and to provide a new
way to fill the gap between phenomenological and first-
principles simulations.
In this paper, we propose another coarse-grained neutrino

transport approach: subgrid-scale modeling for neutrino-
flavor conversions. We distinguish our method from other
phenomenological approaches since the method is desi-
gned to reproduce the spatially and time-averaged features
of neutrino-flavor conversions obtained from quantum
kinetic neutrino simulations. The noticeable advantage of
our subgrid model is having a refinable formulation for
dynamics of flavor conversions in various ways, including
analytical methods [24–27] and artificial intelligence (AI)
techniques [28]. In this paper, we also demonstrate classical
neutrino transport simulations with the subgrid model in
which we employ a simple but physically motivated subgrid
model for flavor conversions.
This paper is organized as follows. In Sec. II, we start by

explaining the philosophy of our proposed method. We
then provide the quantum kinetic equation with our subgrid
model. We also provide its two-moment formalism in
Sec. III. These transport equations are written in terms
of the 3þ 1 general relativistic formulation, which would
be helpful for those who work on CCSN and BNSM
simulations. After we discuss some details of the method in
Sec. IV, we highlight novelties of our subgrid model by
comparing it to other phenomenological approaches in
Sec. V. In Sec. VI, we discuss the relevance to another
coarse-grained approach: miscidynamics [29]. As shown in
the section, this formulation is closely associated with our
formulation, indicating that the two approaches are com-
plementary. To show the capability of our subgrid model,
we demonstrate numerical simulations by using both
quantum kinetic neutrino transport and classical transport
with the subgrid model, paying attention to fast neutrino-
flavor conversion (FFC) in Sec. VII. By comparing their
results, we can learn the source of errors in the subgrid
model. We then discuss strategies on how to improve them
based on studies of quantum kinetic neutrino transport.
Finally, we summarize our work in Sec. VIII. Unless
otherwise stated, we work with the units c ¼ ℏ ¼ 1, where
c and ℏ are the speed of light and the reduced Planck
constant, respectively. In this paper, we will describe all
equations with the metric signature −þþþ.

II. BASIC EQUATION FOR NEUTRINO
TRANSPORT WITH BHATNAGAR-GROSS-

KROOK SUBGRID MODELING

It has been discussed that neutrino-flavor conversions
have quasisteady and asymptotic behavior in the nonlinear
phase [25–27,30–34] or quasiperiodic properties repre-
sented as pendulum motions in flavor space [35–41]. We
are interested in the time- and spatially averaged states in
the late nonlinear phase since it is unlikely that fine
structures with short-time or small-length variations affect
astrophysical consequences. Motivated by these studies, we
assume that flavor conversions make the radiation field
settle into an asymptotic state, and the asymptotic density
matrix of neutrinos is denoted by fa.
In general, the nonlinear evolution of flavor conversions

is very complex, and details hinge on flavor instabilities,
neutrino-matter interactions, and global geometries of
radiation fields. On the other hand, there is always a
characteristic timescale of flavor conversions or associated
flavor instabilities, which is denoted by τa in the following
discussion. We note that the timescale depends on the
neutrino energy, the angle, and the neutrino flavor. τa also
provides a rough estimation of the timescale over which the
density matrix of the neutrinos settles into fa.
The quantum kinetic equation (QKE) for neutrino trans-

port can be written as

pμ ∂f
∂xμ

þ dpi

dτ
∂f
∂pi ¼ −pμuμSþ ipμnμ½H; f�; ð1Þ

where f denotes the density matrix of the neutrinos.
In the expression, pμ, xμ, and τ denote the neutrino four-
momentum, the spacetime coordinates, and the affine
parameter for the trajectories of the neutrinos, respec-
tively. uμ, nν, S, and H on the right-hand side of Eq. (1)
represent the four-velocity of the fluid, the unit vector
normal to the spatial hypersurface in four-dimensional
spacetimes, the collision term, and the neutrino oscillation
Hamiltonian, respectively. Below, we approximate Eq. (1)
by using fa and τa.
Our subgrid model is developed based on an assumption

that the neutrino distributions are relaxed to fa via flavor
conversions in the timescale of τa. This corresponds to a
relaxation-time approximation proposed by Bhatnagar-
Gross-Krook (BGK) [42], who used the approximation
of the collision term in the Boltzmann equation for gas
dynamics. In our BGK subgrid model, we apply the model
to the neutrino oscillation Hamiltonian [the second term on
the right-hand side of Eq. (1)],

pμ ∂f
∂xμ

þ dpi

dτ
∂f
∂pi ¼ −pμuμSþ pμnμ

1

τa
ðf − faÞ: ð2Þ

We note that the relaxation time (τa) is measured in the
laboratory (or n) frame, but it can be changed based on the
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fluid rest frame (see also [43]), which may be useful for the
frequently used two-moment formalism for neutrino trans-
port (see Sec. III). It should also be noted that fa and τa are
determined from f at each time step, implying that they are
time-dependent quantities.
It should be mentioned that the BGK subgrid model

(or relaxation-time approximation) is applicable to any
system for which there is an equilibrium (or asymptotic)
state. As shown in [44], neutrino-flavor conversion is
ergodic (at least approximately), thus indicating that
the dynamical feature is similar to thermodynamics.
The equilibration occurs because it is the most probable
(entropy-maximizing) outcome (see also [29]).
It is worth noting that a similar approximation was used

to obtain a temporally coarse-grained quantum kinetic
equation for the production of sterile neutrinos [see
Eqs. (4) and (5) of [45] ]. There it was proposed that the
entire right-hand side, including both oscillation and colli-
sion terms, should be treated using a BGK approximation.
This ansatz showed excellent agreement with the numerical
results. Here we adapt the relaxation-time approximation to
the context of collective neutrino oscillations by proposing
that it can be applied to oscillations alone, with subgrid
relaxation being caused by collective modes rather than
collisions.
From a practical point of view, we also provide a

conservative form of Eq. (2), which is used for numerical
simulations for both Boltzmann and quantum kinetic
neutrino transport (see, e.g., [43,46]). Following [47], we
can rewrite the transport equation as

1ffiffiffiffiffiffi−gp ∂

∂xα

����
qi

��
nα þ

X3
i¼1

lðiÞeαðiÞ

� ffiffiffiffiffiffi
−g

p
f

�

−
1

ε2
∂

∂ε
ðε3fωð0ÞÞ þ

1

sin θν

∂

∂θν
ðsin θνfωðθνÞÞ

þ 1

sin2θν

∂

∂ϕν
ðfωðϕνÞÞ ¼ DS −

1

τa
ðf − faÞ: ð3Þ

In the expression, ε and g are the neutrino energy measured
from an eαð0Þ ¼ nα observer, i.e., ε≡ −pαnα and the

determinant of the four-dimensional metric, respectively.
eαðiÞ (i ¼ 1, 2, 3) denotes a set of the (spatial) tetrad bases

normal to n. θν and ϕν denote the neutrino flight direction
in the laboratory (or n) frame. These angles are measured
from eαð1Þ, and the three coefficients of li represent the

directional cosines, which can be expressed as

lð1Þ ¼ cos θν;

lð2Þ ¼ sin θν cosϕν;

lð3Þ ¼ sin θν sinϕν: ð4Þ

D on the right-hand side of Eq. (3) represents the effec-
tive Doppler factor, which is defined as D≡ ν=ε with

ν≡ −pμuμ, while ν denotes the neutrino energy measured
in the fluid rest frame. ωð0Þ;ωðθνÞ;ωðϕνÞ on the left-hand side
of Eq. (3) can be written as

ωð0Þ ≡ ε−2pαpβ∇αnβ;

ωðθνÞ ≡
X3
i¼1

ωi
∂lðiÞ
∂θν

;

ωðϕνÞ ≡
X3
i¼2

ωi
∂lðiÞ
∂ϕν

;

ωi ≡ ε−2pαpβ∇αe
β
ðiÞ: ð5Þ

Spherical polar coordinate is often employed in multiangle
neutrino transport codes (see, e.g., [43,48,49]). We hence
choose a set of tetrad bases eðiÞ as

eαð1Þ ¼ ð0; γ−1=2rr ; 0; 0Þ;

eαð2Þ ¼
 
0;−

γ−1=2rθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γrrðγrrγθθ − γ2rθÞ

q ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γrr
γrrγθθ − γ2rθ

r
; 0

!
;

eαð3Þ ¼
 
0;

γrϕffiffiffiffiffiffiffi
γϕϕ

p ;
γθϕffiffiffiffiffiffiffi
γϕϕ

p ;
ffiffiffiffiffiffiffi
γϕϕ

q !
; ð6Þ

where γαβ ≡ gαβ þ nαnβ.
One thing we do notice here is that Eq. (2) [or Eq. (3)]

corresponds to a classical transport equation if we neglect
the off-diagonal elements. Since the main purpose of this
study is to provide a subgrid model of neutrino-flavor
conversion for classical neutrino transport schemes, we
limit our discussion to classical transport with the BGK
subgrid model. One should keep in mind that the subgrid
model can be applied to neutrino quantum kinetics, and
appropriate modeling of off-diagonal components would
increase the physical fidelity of the subgrid model. This is
an intriguing possibility that deserves further investigation,
although we postpone the study to future work.
Below, let us consider how to determine diagonal

components of fa. It is well known that the lepton number
of neutrinos/antineutrinos does not change during flavor
conversions. This indicates that we can characterize fa via
the survival probability of neutrinos (η), while it depends on
neutrino energy and flight angle in general. Following the
prescriptions in [24,50–52], we can write fa in terms of f as

fae ¼ ηfe þ ð1 − ηÞfx;

fax ¼
1

2
ð1 − ηÞfe þ

1

2
ð1þ ηÞfx; ð7Þ

where fe and fx represent distribution functions (or
diagonal elements of density matrix) for electron-type
and heavy-leptonic-type neutrinos, respectively. We note
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that μ and τ neutrinos are assumed to be the same in Eq. (7),
which is a reasonable assumption for CCSNe and BNSMs.
However, they are quantitatively different from each other,
particularly for high energy neutrinos (see, e.g., [53]), due to
high-order corrections in neutrino-matter interactions (e.g.,
weak magnetism [54]). We also note that if on-shell muons
appear [55–57], we should distinguish between the μ and τ
neutrinos. We can deal with these cases by introducing
another parameter to represent neutrino mixing. For anti-
neutrinos, we can use the same form as in Eq. (7) but replace
f and η with f̄ and η̄, respectively.
There are two important remarks about our BGK subgrid

model. First, fa (or η) hinges on flavor instabilities, and it
should be determined (or calibrated) based on neutrino
quantum kinetics. It is important to note that the results
from analytic studies and local simulations of flavor
conversions can be directly used to determine it. In
Sec. VII, we demonstrate such simulations for FFC.
Second, if the system contains multiple flavor instabilities,
we can handle the problem with multiple BGK terms. More
specifically, the second term on the right-hand side of
Eq. (2) can be rewritten as

pμnμ
1

τa
ðf − faÞ → pμnμ

XN
i¼1

1

τai
ðf − faiÞ; ð8Þ

where the index i distinguishes the flavor instabilities
among N modes. As shown in Eq. (8), the contribution
of each term is characterized by τai and f − fai , which
guarantees that flavor conversion with a shorter relaxation
time and a large difference between f and fai dominates the
system. This prescription may be important for realistic
CCSN and BNSM models since FFC and collisional flavor
instabilities (CFIs) may occur simultaneously (see, e.g.,
[8]) at the same position. The extension in Eq. (8) allows us
to study the situation where multiple flavor instabilities are
competing to each other.
Before we discuss how to estimate τa in Sec. IV, let us

describe the two-moment transport formalism for our
subgrid model in the next section. This is helpful for those
who use the moment formalism for numerical modeling of
CCSNe and BNSMs.

III. TWO-MOMENT FORMALISM

Moment formalism of radiation transport has, in princi-
ple, the ability to describe full neutrino kinetics with
equivalent levels of Boltzmann (or fully quantum kinetic)
neutrino transport. In practice, however, the moment for-
malism results in an infinite hierarchy of coupled equations,
indicating that we need to truncate the hierarchy of moments
at a certain rank. The most popular current approach in
neutrino transport simulations is two-moment formalism
[58–69], in which the zeroth and first angular moments
correspond to fundamental variables. We determine their

time evolution and spatial distributions by solving their
coupling equations, while higher-rank moments are com-
plemented by closure relations. It is worth noting that the
moment formalism is also used for the study of neutrino-
flavor conversions [36,70–73]. In this section, we provide
an explicit description of the two-moment formalism in the
BGK subgrid model.
Following the convention of [58], we decompose the

neutrino four-momentum (pα) into uα and its orthogonal
normal vector (lα) as

pα ¼ νðuα þ lαÞ; ð9Þ

where the conditions of lαuα ¼ 0 and lαlα ¼ 1 are
satisfied. The unprojected second- and third-rank moments
of neutrinos are defined as (see also [74])

Mαβ ≡ ν3
Z

fðuα þ lαÞðuβ þ lβÞdΩ;

Mαβγ ≡ ν3
Z

fðuα þ lαÞðuβ þ lβÞðuγ þ lγÞdΩ; ð10Þ

where Ω denotes the solid angle of neutrino momentum
space defined in the fluid rest frame. It should be mentioned
that the integral ofMαβ over the neutrino energy (

R
Mαβdν)

corresponds to the energy-momentum tensor of the neu-
trinos. We also define the zeroth and first angular moments
defined in the fluid rest frame as

J ≡ ν3
Z

fdΩ;

Hα ≡ ν3
Z

lαfdΩ;

Lαβ ≡ ν3
Z

lαlβfdΩ;

Nαβγ ≡ ν3
Z

lαlβlγfdΩ: ð11Þ

Using these variables, the basic equation for the two-
moment formalism with BGK subgrid model can be written
as [see also Eq. (2)]

∇βMαβ −
∂

∂ν
ðνMαβγ∇γuβÞ ¼ Sα −Wα; ð12Þ

where

Sα ≡ ν3
Z

Sðuα þ lαÞdΩ;

Wα ≡ 1

τfla
ν3
Z

ðf − faÞðuα þ lαÞdΩ; ð13Þ

where τfla ≡Dτa. Equation (12) indicates that the BGK
subgrid model can be implemented simply by replacing
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Sα → Sα −Wα from the original two-moment formalism.
Wα can be expressed in a form similar to the emission-
absorption process of the collision term, which can be
written as

Wα ¼ 1

τfla
ððJ − JaÞuα þ ðHα −HαaÞÞ: ð14Þ

We hence need to determine τa, Ja, and Hαa to implement
the BGK model.
Ja and Hαa can be obtained by taking the angular

integrals of Eq. (7), and it looks as though the process is
straightforward. However, η depends on Ω in general,

indicating that we need higher-rank angular moments to
evaluate them. Below, we provide an approximate pre-
scription to address this issue.
We start by expanding the angular dependence of η by

lα as

η ¼ η0 þ ηα1lα þ ηαβ2 lαlβ þ � � � ; ð15Þ

where the coefficients (ηi) do not depend on Ω. Using the
expression, Ja and Hαa can be written as

Jae ¼ Jx þ η0ðJe − JxÞ þ ηα1ðHeα −HxαÞ þ ηαβ2 ðLeαβ − LxαβÞ þ � � �
Hαa

e ¼ Hα
x þ η0ðHα

e −Hα
xÞ þ ηβ1ðLα

eβ − Lα
xβÞ þ ηβγ2 ðNα

eβγ − Nα
xβγÞ þ � � �

Jax ¼
1

2
ðJe þ JxÞ −

η0
2
ðJe − JxÞ −

ηα1
2
ðHeα −HxαÞ −

ηαβ2
2

ðLeαβ − LxαβÞ þ � � �

Hαa
x ¼ 1

2
ðHα

e þHα
xÞ −

η0
2
ðHα

e −Hα
xÞ −

ηβ1
2
ðLα

eβ − Lα
xβÞ −

ηβγ2
2

ðNα
eβγ − Nα

xβγÞ þ � � � : ð16Þ

This method guarantees that flavor-integrated angular
moments are conserved, regardless of ηi, even if we
truncate their angular moments at any order.
Equation (16) exhibits that the accuracy of determining

Ja and Hαa hinges on how well we can determine the
coefficients ηi. In two-moment neutrino transport code, the
maximum-entropy completion [75,76] (or the fitting
method proposed in [77], which can be used only for
CCSNe, though) may be useful to obtain physically
reasonable solutions. A noticeable feature of these methods
is that we approximately reconstruct full angular distribu-
tions of neutrinos from their zeroth and first angular
moments. This suggests that the angular dependence of
η can be determined in a similar way as multiangle neutrino
transport (see Sec. VII B for more details).
Neglecting energy dependence and anisotropic compo-

nents in η, i.e., ηðν;ΩÞ ¼ η0, corresponds to the simplest
case, but it would be a reasonable approximation of CFI.
Since the CFI becomes important in regions where neu-
trinos and matters are tightly coupled, neutrinos are nearly
isotropic in momentum space [8,78]. We also note that the
so-called isotropy-preserving branch in k ¼ 0 mode pro-
vides the maximum growth rate of the instability [79],
thereby leading to confidence about diminishing the angular
dependence in η. Regarding the energy dependence, on the
other hand, Liu et al. [79] found that the growth rate of CFI
can be well approximated by the monochromatic energy
treatment with averaged-energy collision rates. We also note
that flavor swap is accompanied by resonancelike CFI, but
the dynamics does not depend on neutrino energy [80],

suggesting that energy dependence is not important in
these cases.
The condition ηðν;ΩÞ ¼ η0 corresponds to the simplest

case for our BGK model, but it would be useful to explore
qualitative trends for impacts of flavor conversions on
CCSNe and BNSM, as studied with phenomenological
approaches. It should be emphasized that our subgrid
model takes into account the relaxation timescale, indicat-
ing that the interaction between neutrino advection,
neutrino-matter interaction, and flavor conversions would
be more appropriately handled than other phenomenologi-
cal ones. It seems that η0 ¼ 1=3 and 0 are two interesting
cases which correspond to flavor equipartition and flavor
swap, respectively.

IV. ESTIMATION FOR τa

The vigor of flavor conversion cannot be measured only
by fa. Even if the asymptotic distribution is very different
from the original nonmixing state, the flavor conversion
cannot be completed if the relaxation time is very long.
This exhibits that the determination of τa is also an
important task for increasing the accuracy of our sub-
grid model.
Linear stability analysis can offer the growth rate of flavor

conversion, which would be the most accurate determina-
tion of τa. However, the growth rate can be obtained by
solving the dispersion relation (see, e.g., [81,82]), which is a
computationally expensive task. We also note that, in the
stability analysis, full energy- and angular-dependent infor-
mation regarding neutrinos in momentum space is required

BHATNAGAR-GROSS-KROOK SUBGRID MODEL FOR NEUTRINO … PHYS. REV. D 109, 083013 (2024)

083013-5



in general, but it can be obtained only by solving multiangle
and multienergy neutrino transport, indicating that this
information is not available for approximate neutrino trans-
port. We hence need alternative approaches for the estima-
tion of τa to suit our needs.
We can utilize some approximate approaches to stability

analysis that have been proposed in the literature. For FFC,
a simple formula was provided in [83,84]. In this method,
we can approximately estimate τa as

τa ∼ 2π

����
�Z

Gv>0
dΓGv

��Z
Gv<0

dΓGv

�����−1=2; ð17Þ

where

dΓv ≡ 1

4π
dðcos θνÞdϕν;

Gv ≡ 1

2π2

Z
ððfe − f̄eÞ − ðfx − f̄xÞÞε2dε: ð18Þ

In Sec. VII, we demonstrate neutrino transport simulations
for FFC by using Eq. (18).
It is also noteworthy that Eq. (17) is applicable to the two-

moment method using maximum-entropy completion
[75,76] or a fitting method [77] since either can approx-
imately retrieve f from the zeroth and first angular
moments. It would also be useful to employ other methods,
as in [73,75,76,79,85–87], which allow us to evaluate the
growth rate of flavor conversions directly from low angular
moments of neutrinos. For CFI, the growth rate can also be
estimated analytically [10,79,88], which is useful in our
subgrid model. We can select them depending on the
problem and the purpose of study. Another remark here
is that machine-learning techniques potentially provide
accurate estimations of η and τa without a significant
computational burden (see, e.g., [28,89,90]).

V. COMPARISONS WITH OTHER
PHENOMENOLOGICAL MODELS

It would be worthwhile to highlight differences of our
subgrid model from other phenomenological methods
implemented in some neutrino-radiation-hydrodynamic
codes. The study by [16] corresponds to a pioneer work
for BNSM simulations with a phenomenological model of
FFC, in which the effects of FFC are incorporated via a
parametric prescription. In their method, occurrences of
FFC are identified based on k ¼ 0 mode stability analysis.
They shuffle neutrinos among νe, νμ, and ντ to have flavor
equipartition if the timescale of flavor conversion is shorter
than the critical one (which was assumed to be 10−7 s).
This indicates that their prescription of flavor conversion
can be reproduced in our subgrid model by setting η ¼ 1=3
and τa → 0 if the growth timescale is shorter than 10−7 s
(otherwise, τa is set to infinity).

In [18], Just et al. carried out BNSM simulations using
an approach similar to that in [16], but they studied impacts
of FFCs on BNSM dynamics by considering three types of
neutrino mixing schemes. Essentially, the degree of neu-
trino mixing varies among schemes, while the detection
criterion for occurrences of FFC is common, in which they
determine FFCs only by energy-averaged flux factor of ν̄e.
They also assumed that flavor conversions occur instanta-
neously (e.g., τa → 0 in our BGK subgrid model). This
approach can also be reproduced using our subgrid model.
A similar study for FFCs in BNSM has also been made

by [17]. Unlike [16,18], Fernández et al. employed a so-
called leakage scheme for neutrino transport. In their
method, the neutrino transport scheme is left as the original,
but they changed the estimation of neutrino luminosity by
taking into account FFCs, which corresponds to a key
ingredient in their scheme to give a feedback of neutrinos to
fluid dynamics and ejecta compositions. They determine
asymptotic neutrino luminosities by varying parameters
(including cases with flavor equipartition), while they also
employ neutrino opacities to determine the degree of
mixing. In their approach, flavor conversions are suppressed
in an optically thick region, whereas they occur in an
optically thin one. Since this phenomenological model is
developed based on a different philosophy than ours, our
subgrid model cannot reproduce their model. Nevertheless,
it is interesting to compare our subgrid model to their
phenomenological model in CCSN and BNSM simulations.
The impacts of FFC on CCSN dynamics have been

studied with another phenomenological approach in [12,13].
In the method of Ehring et al., there are three independent
neutrino flavors, νe, ν̄e, and νx, which they shuffle so as to
guarantee the neutrino lepton number conversion. They
employ matter density to determine occurrences of FFC,
in which there is a threshold density that flavor conversions
occur. In the region where the matter density is lower than
the threshold, they assume that neutrino-flavor conversions
occur instantaneously. They also assume that neutrinos are in
flavor equilibrium, but νx and ν̄x are assumed to be identical
after the conversion is completed. As such, this phenom-
enological model is developed based on a very different
approach from our subgrid one.
One of the interesting applications for our subgrid model

is to assess the capability of each phenomenological model.
The assessment has been impossible thus far through direct
numerical simulations of quantum kinetic neutrino trans-
port due to extremely high computational cost, but it is
feasible using our subgrid model. This study would also
help us to improve each phenomenological model.

VI. COMPARISON WITH MISCIDYNAMICS

The coarse-grained subgrid model is compatible with the
proposal to approximate neutrino quantum kinetics using
neutrino quantum thermodynamics [29]. Taking τa → 0 in
Eq. (2) results in
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pμ ∂f
a

∂xμ
þ dpi

dτ
∂fa

∂pi ¼ −pμuμSa; ð19Þ

where Sa is S evaluated using f ¼ fa. This equation is
equivalent to the miscidynamic transport equation written
in Ref. [29] if fa is equated to ρeq in that paper.
Miscidynamics refers to coarse-grained neutrino trans-

port based on the concept of local mixing equilibrium. Our
subgrid model does not necessarily assume that fa is an
equilibrium state in a thermodynamic sense. If we do
assume this, however, then taking the limit of short
relaxation time τa is a means of imposing local mixing
equilibrium. The thermodynamic input then enters through
the determination of fa.
If τa → 0, the neutrino flavor instantaneously equili-

brates; therefore, it should never depart from equilibrium in
the first place. This is the idea behind the adiabatic proposal
of Ref. [29]. Accepting this logic, it is then possible to
determine fa using the assumption of adiabaticity and the
requirements of self-consistency. Adiabaticity relates f to
the Hamiltonian, but the Hamiltonian is itself a function of
f through neutrino-neutrino forward scattering—hence the
need for self-consistency. In the more straightforward case
of Mikheyev-Smirnov-Wolfenstein flavor conversion with-
out neutrino self-interactions, self-consistency is not
required and fa is determined simply by vacuum oscil-
lations and neutrino-matter forward scattering.
Finite equilibration rates entail some amount of entropy

production. Formulating diabatic miscidynamics—in con-
trast to the adiabatic version described above—would
require a consideration of how subgrid degrees of freedom
in the neutrino-flavor field respond to grid-level changes
driven by the derivative and collisional terms in Eq. (2).
Generally speaking, if the microscopic constituents
respond very quickly, then the macroscopic system moves
between equilibria with minimal entropy production.
Equations supplementing miscidynamics with diabatic
terms have not yet been worked out. In their absence,
the relaxation time τa is a simple and plausible approxi-
mation of diabaticity.
One subtlety in using our BGK subgrid model for

diabatic miscidynamics is that fa changes under diabatic
evolution. The system heats up, and mixing equilibrium is
set by the system itself rather than an external environment.
Because entropy production is a subgrid effect, fa can
change on a subgrid timescale, which threatens the use of
coarse graining. However, a simple approximation is to
adopt

fa ⟶ fa∞; τa ⟶ τ∞a ; ð20Þ

where fa∞ and τ∞a are the t → ∞ equilibrium and relaxation
time. In this approximation, the neutrino flavor relaxes
directly toward the ultimate equilibrium state fa∞ rather
than pursuing a time-evolving equilibrium that converges

on fa∞ at late times. The form of Eq. (2) is unchanged,
except for replacements of fa and τa with the respective
asymptotic quantities.
In sum, the τa → 0 relaxation subgrid model can

reproduce adiabatic miscidynamics. Miscidynamics can
be systematically improved by calculating diabatic correc-
tions from the statistical mechanics underlying neutrino
quantum thermodynamics [29]. It appears that Eq. (2) can
likewise be systematically improved by adjusting fa and τa
to reflect these corrections.

VII. DEMONSTRATION

In this section, we discuss capabilities of our BGK
subgrid model by carrying out local simulations of FFC
in one spatial dimension. Under the symmetry, neutrino
angular distributions in momentum space become axisym-
metric, indicating that we solve the QKE for one in time,
one in real space, and one in momentum space. We select
this problem because analytic schemes for determining
asymptotic states of FFC have been proposed in the
literature [25,27] which can be used to compute fa.
After we describe essential information on numerical
simulations, we explicitly describe how to determine fa.

A. Full quantum kinetic simulations

Here we describe the problem under a full quantum
kinetic approach. Note that the results of these simula-
tions will be used to assess simulations with the BGK
subgrid model; details will be given in Sec. VII B.
Quantum kinetic simulations in this study are essentially
the same as those performed in [24], in which we demon-
strated one-dimensional (1D) local simulations of FFCs in
a two-flavor framework. One noticeable difference from
the previous study is that we solve the QKE under a three-
flavor framework. Assuming spherically symmetry and
no collision terms, we solve the following QKE:

∂ f
ð−Þ

∂t
þ 1

r2
∂

∂r
ðr2 cos θν f

ð−Þ
Þ − 1

r sin θν

∂

∂θν
ðsin2θν f

ð−Þ
Þ

¼ −i½H
ð−Þ

; f
ð−Þ

�; ð21Þ

where

H
ð−Þ

¼ H
ð−Þ

vac þ H
ð−Þ

mat þ H
ð−Þ

νν: ð22Þ

In this expression, fðf̄Þ and HðH̄Þ denote the density
matrix of the neutrinos and the oscillation Hamiltonian
for neutrinos (antineutrinos), respectively. Since we focus
only on local simulations in this study, neutrino advection
in θν direction is basically negligible. Each term of
neutrino Hamiltonian can be written as
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H̄vac ¼ H�
vac;

H̄mat ¼ −H�
mat;

H̄νν ¼ −H�
νν: ð23Þ

As in [24], we ignore matter potential in Hamiltonian,
but their effects are effectively taken into account in the
vacuum potential (see below). The vacuum term, on
the other hand, is included in our simulations, which have
the following form:

Hvac ¼
1

2ε
U

2
64
m2

1 0 0

0 m2
2 0

0 0 m2
3

3
75U†; ð24Þ

where m2
i and U denote the neutrino squared mass for the

mass eigenstate of i and the Pontecorvo-Maki-Nakagawa-
Sakata matrix, respectively. Neutrino-flavor conversions
depend only on the difference of each squared mass of the
neutrino, and we set them as Δm2

21 ¼ 7.42 × 10−5 eV2 and
Δm2

31 ¼ 2.510 × 10−3 eV2, where Δmij ≡m2
i −m2

j in this
study. We effectively include the effects of matter sup-
pression of flavor conversion by setting the neutrino
mixing angles at 10−6, which is much smaller than the
constraints imposed by experiments. It should be noted that
the vacuum potential is necessary only for triggering flavor
conversions, and it does not affect nonlinear evolutions of
FFCs. This is simply because the self-interaction potential
is several orders of magnitude higher than the vacuum one,
which also guarantees that FFCs overwhelm the slow
modes. Throughout this test, we use a monochromatic
assumption with a neutrino energy of 12 MeV.
In setting up the initial angular distributions of νe and ν̄e,

we employ the following analytic formula:

f
ð−Þ

ee¼h f
ð−Þ

eeið1þ β
ð−Þ

eeðcosθν−0.5ÞÞ; cosθν ≥ 0; ð25Þ

where hfeei corresponds to an angular-averaged distribu-
tion function for electron-type neutrinos and its bar denotes
the same quantity but for antineutrinos. In this model, we
vary the angular distributions of neutrinos by changing

h f
ð−Þ

eei and β
ð−Þ

ee. The former and latter are associated with
neutrino number density and asymmetric degree of their
angular distributions (see also [20,24]). As in [24], we put a
dilute neutrino gas for incoming neutrinos (cos θν ≤ 0),
which do not play a role in FFC. We also assume that there
is neither νμ nor ντ nor any of their antipartners in the initial
distributions. Following [24], hfeei is chosen so that the
number density of νe becomes 1032 cm−3. We determine
hf̄eei via a new variable, α, which is defined as

α≡ hf̄eei
hfeei

¼ n̄νe
nνe

; ð26Þ

where nνe ðn̄νeÞ denotes the number density of νe (ν̄e). In
this demonstration, we study four cases by varying α and
β̄ee while setting βee ¼ 1 for all models. The reference
model corresponds to the case with α ¼ 1 and β̄ee ¼ 1. We
add two models by varying α (α ¼ 0.9 and 1.1), while β̄ee is
the same as the reference one. We test another model with
β̄ee ¼ 0.1, while α is set to be the same as the reference
model. It should be mentioned that the angular position for
electron-neutrinos lepton number (ELN) crossings hinges
on α, and that β̄ee dictates the depth of crossing increases
(see [24] for more details).
In these simulations, we focus on a spatially narrow

region with 50 km ≤ r ≤ 50 kmþ 10 m. The radial
domain and angular (θν) direction in neutrino momentum
space are covered by Nr ¼ 49152 and Nθν ¼ 128 uniform
grid points, respectively. We employ a Dirichlet boundary
condition for incoming neutrinos from at each boundary
position, while the free boundary one is adopted for
escaping neutrinos from the computational region. We
run each simulation up to 10−4 ms.

B. Classical simulations with the BGK subgrid model

The equation in our BGK subgrid model that corre-
sponds to Eq. (21) can be written as

∂ f
ð−Þ

∂t
þ 1

r2
∂

∂r
ðr2 cos θν f

ð−Þ
Þ − 1

r sin θν

∂

∂θν
ðsin2θν f

ð−Þ
Þ

¼ −
1

τa
ð f
ð−Þ

− fa
ð−Þ

Þ; ð27Þ

while we assume that the off-diagonal terms are zero,
implying that Eq. (27) is equivalent to classical neutrino
transport. For this simulation, we extend our GRQKNT code
[43] by adding the BGK subgrid module. This indicates
that these numerical simulations for both full quantum
kinetics and this classical Boltzmann transport with the
subgrid model have the same accuracy of neutrino advec-
tion. The initial and boundary conditions are also the same
as those in QKE simulations. In this demonstration, we
employ Eq. (17) to estimate τa. We note that τa is updated
at every time step during the simulation.

To determine fa
ð−Þ

, we employ a method in [25]. This offers
an approximate scheme to determine the asymptotic states
of FFC analytically. As we shall discuss later, however, this
analytic method corresponds to the simplest prescription,
and there is room for improvement. In fact, the scheme is
developed based on assumptions that the neutrino flight
directions are v > 0 (or v < 0) and there is a single ELN
angular crossing. These assumptions are not appropriate in
general, leading to a systematic error in realistic situations.
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Nevertheless, this scheme can capture the essential trends of
FFCs (see below), which may provide sufficient accuracy as
a subgrid model.
In this method, we first compute the positive and

negative ELN–heavy-leptonic neutrinos lepton number
(XLN) densities,

A≡
����
Z
Gv<0

dΓGv

����;
B≡

Z
Gv>0

dΓGv; ð28Þ

while Gv is as given in Eq. (18). In cases with B > A
(positive ELN-XLN density), we determine η in Eq. (7) as

η ¼
(

1
3

ðGv < 0Þ;
1 − 2A

3B ðGv ≥ 0Þ: ð29Þ

Meanwhile, η in B < A (negative ELN-XLN density) is
determined as

η ¼
(

1
3

ðGv > 0Þ;
1 − 2B

3A ðGv ≤ 0Þ: ð30Þ

In the case with B ¼ A, η is set to be 1=3 for all v,
indicating that fa corresponds to the complete flavor
equipartition (see also [25,27,30]). We also note that η̄ is
equal to η since we do not have to distinguish neutrinos
from antineutrinos in FFC (see also [25]).
Let us put an important remark here. As shown in [26],

the asymptotic state of FFCs obtained from quantum kinetic
simulations depends on boundary conditions. In fact, the
Dirichlet boundary condition (as used in this demonstration)
results in a qualitatively different asymptotic state than that
obtained with the periodic one. In the Dirichlet case, the
asymptotic state is determined so as to preserve ELN and
XLN fluxes. In this demonstration, however, we determine η
from the condition of number conservation [Eqs. (28)–(30)],
despite employing the Dirichlet boundary condition. One
may wonder whether this is inconsistent treatment. As we
shall demonstrate below, however, our choice is appropriate.
We will provide this detailed discussion in Sec. VII C.
One of the advantages of the subgrid model is that high

resolutions are no longer necessary in these simulations,
since there are no driving terms to create small-scale
structures in this coarse-grained model. For this reason,
we employ Nr ¼ 192 and Nθν ¼ 16 grid points with the
same domains as those used in QKE simulations. It should
be mentioned, on the other hand, that τa is much smaller
than the advection timescale (which is also associated with
the Courant-Friedrich-Lewy condition for the stability of
numerical simulations), implying that Eq. (27) becomes a
stiff equation. This requires an implicit time evolution to
numerically stabilize in solving the equation. In this

demonstration, an operator-splitting approach is adopted
in which we first evolve f by neutrino advection in time
explicitly, and then the BGK term [right-hand side of
Eq. (27)] is handled in an implicit way. More specifically,
the distribution function of neutrinos at the nþ 1 time step
(fnþ1) is computed as

fnþ1 ¼
�
1

Δt
þ 1

τa

�
−1
�
f�

Δt
þ fa

τa

�
; ð31Þ

where Δt denotes the time step. In this expression, f�
corresponds to a tentative distribution function which is
obtained by f evolved only by advection terms in Eq. (27).
We confirm that this operator-splitting method works well
to evolve the system in a numerically stable manner.
For the sake of completeness, a resolution study is also

undertaken with the reference model (α ¼ 1 and β̄ee ¼ 1)
of the subgrid model. One of them is a simulation with
twice the spatial resolution of the reference one (i.e.,
Nr ¼ 384), while the angular resolution remains the same.
We also carry out another simulation with high angular
resolution, Nθν ¼ 128, which corresponds to the same
resolution as that adopted in quantum kinetic transport,
while the spatial resolution is the same as the reference one
(Nr ¼ 192). As shown below, these results are essentially
the same as the reference model, indicating that simulations
employing BGK subgrid models are not sensitive to
numerical resolutions.

C. Results

In Fig. 1, we show the color map of survival probability
of νe as functions of r and cos θν. From left to right, results
with three different time snapshots are displayed (T ¼
10−5; 5 × 10−5, and 10−4 ms, respectively). The top and
bottom panels distinguish the quantum kinetic model from
the classical one with the BGK subgrid model. Since
antineutrinos have essentially the same properties as those
in neutrinos, we omit them.
As shown in the top left panel of Fig. 1, neutrino-flavor

conversions vividly occur and nearly reach flavor equi-
partition in almost the entire neutrino flight directions at
T ¼ 10−5 ms. This is consistent with previous studies
[25,27,30] in that FFC makes the system evolve toward
the flavor equipartition in the case with nνe ¼ nν̄e . As we
discussed in [24,26], however, the flavor equipartition is
not the actual asymptotic state in cases with the Dirichlet
boundary condition. In fact, angular distributions of sur-
vival probability of νe become remarkably different around
the boundary at R − Rin ¼ 0; indeed, FFC tends to be less
vigorous in cos θν ≳ 0.5. The region expands with time,
and eventually it dominates the entire computational
domain (see the middle and right panels in the top row
of Fig. 1). We will later discuss in detail the physical
mechanism of the transition, which is associated with the
determination of fa from f in BGK subgrid model.
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As shown in the bottom panels of Fig. 1, the corre-
sponding classical simulation with the BGK subgrid model
can reproduce results that are qualitatively similar to those
found in the quantum kinetic simulation. In the earlier
phase, FFC occurs in the entire angular regions, except for
the vicinity of R − Rin ¼ 0, but the flavor conversion in
cos θν ≳ 0.5 subsides after neutrinos injected (constant in
time) at R − Rin ¼ 0 reach there. In Fig. 2, we compare the
radial profiles of the angular-averaged survival probability
of νe between the two simulations, and we confirm that the
errors are within ∼20%. This comparison leads to con-
fidence in the capability of the BGK subgrid model.
It is interesting to inspect how τa and fa vary in space

and evolve with time. To see their essential features, we
show the time evolution of τa and naνe (the number density
of electron-type neutrinos computed from faee) at three
different radii (R − Rin ¼ 2.5, 5, and 7.5 m) in Fig. 3. As a
reference, we also show nνe in the same figure. In the early
phase (T ≲ 10−5 ms), τa monotonically increases with
time, while nνe approaches naνe . These time evolutions
are identical for the three different radii, indicating that the
system evolves nearly homogeneously. The increase of τa

indicates that ELN-XLN angular crossings become shallow
[see also Eq. (17)] due to f → fa. At T ∼ 10−5 ms, the time
evolutions of both τa and fa become qualitatively different
from that in the earlier phase. This phase corresponds to the
transition of asymptotic states from the periodic case to the
Dirichlet one. In fact, the onset timing of the phase
transition is earlier for a smaller radius, which indicates
that the impacts of the Dirichlet boundary condition
propagate in the positive radial direction. During the
transition phase, both τa and naνe are dynamically evolved
and also inhomogeneous in space; meanwhile, nνe keeps
approaching naνe . At T ∼ 10−4 ms, the system settles into a
steady state. Interestingly, τa remains finite at different
positions, and it varies with the radius even at the end of our
simulation. This indicates that ELN-XLN angular crossings
do not disappear completely in the steady state, and that
ELN-XLN angular crossings are deeper for smaller radii.
This trend can be interpreted as the effect of neutrino
advection under the Dirichlet boundary condition.
Neutrinos having ELN-XLN angular crossings are injected
constantly in time at R ¼ Rin, and the angular crossing
fades with the radius. Nevertheless, τa is much larger than

FIG. 1. Color map of survival probability of νe for the reference model (α ¼ 1 and β̄ee ¼ 1). The horizontal and vertical axes denote
the radius (R − Rin) and the directional cosine of the neutrino flight angle (cos θν), respectively. The dashed line in each panel represents
the neutrino angle with an ELN zero crossing at the initial condition. The top and bottom panels distinguish the results of the quantum
kinetic simulation from those of the classical one with the BGK subgrid model. From left to right, we show the results at three different
time snapshots: T ¼ 10−5; 5 × 10−5, and 10−4 ms.
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the timescale of neutrino self-interactions at R ≫ Rin,
indicating that ELN-XLN angular crossings almost
disappear.
Although the overall properties can be well captured

with the BGK subgrid model, there are quantitative devia-
tions, the origins of which are worthy of discussion. In the
early phase, the growth of flavor conversion is slightly
faster for the classical simulation with the BGK subgrid
model. This error comes from the empirical determination
of τa via Eq. (17), which does not have the ability to
determine the growth rate of FFC quantitatively. We also
find that some detailed angular-dependent features are not
captured by the subgrid model. In quantum kinetic simu-
lations, flavor conversions vividly occur in the region of
0 ≤ cos θν ≲ 0.6, but the angular region is slightly narrower

for the subgrid model (0 ≤ cos θν ≲ 0.5). This is due
mainly to the accuracy of the determination of η in our
subgrid model. As described in Eqs. (29) and (30), the
angular distribution of η is discrete at Gv ¼ 0 in our
approximate scheme, but it is continuous in the real
scheme. Regarding this issue, one can reduce the error if
we employ smooth functions to determine the angular
distributions of η, although the numerical cost may become
more expensive. We note that such approximate schemes
were recently proposed by Xiong et al. [27], who showed
that quadratic functions can reduce the error by 30% to
50% from our boxlike treatment.
In Figs. 4–6, we show the same plots as in Fig. 1 but for

different models. These figures exhibit that the BGK
subgrid model works well in all cases. One may think

FIG. 3. Time evolution of τa (black lines), naνe (red lines), and nνe (green lines) at three spatial positions for the reference model. The
line types distinguish the spatial positions from each other: R − Rin ¼ 2.5 m (solid lines), 5 m (dashed lines), and 7.5 m (dotted lines).
The left and right y axes are for τa and naνe (nνe ), respectively. In this plot, n

a
νe and nνe are normalized by nνe at T ¼ 0 ms. See the text for

more details.

FIG. 2. The radial profile of angular-averaged survival probability of νe for the reference model. Different colors distinguish the results
in the time snapshot from one another. The thin and thick lines show the results for the quantum kinetic simulation and the classical one
with the BGK subgrid model, respectively.
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FIG. 4. Same as Fig. 1, but for the model with α ¼ 0.9 (and β̄ee ¼ 1).

FIG. 5. Same as Fig. 1, but for the model with α ¼ 1.1 (and β̄ee ¼ 1).
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that the error around the boundary of R − Rin ¼ 0 in the
model with β̄ee ¼ 0.1 is higher than that in the other
models. However, this error is also due to the low accuracy
of determining τa. It can be improved if we employ better
methods to determine it, for instance, those based on linear
stability analysis. In Fig. 7, we compare the angular-
averaged survival probabilities of νe at the end of our
simulations from different models. For all models, we

confirm that the error is within ∼20% for the asymptotic
distribution of the neutrinos.
We show the result of our resolution study in Figs. 8

and 9, which correspond to the plot in Fig. 1. As can be seen
in these figures, the overall features are essentially the same
as the reference model, which leads to confidence that the
BGK subgrid model is applicable to numerical simulations
with coarse resolutions.

FIG. 6. Same as Fig. 1, but for the model with β̄ee ¼ 0.1 (and α ¼ 1.0).

FIG. 7. Same as Fig. 2, but for all models. Different colors distinguish the various models. We display the results only at the end of
simulation (T ¼ 10−4 ms).
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Finally, we describe the reason why our BGK subgrid
model with a prescription of Eqs. (28)–(30) works well,
despite the fact that the flavor conversions in cases with the
Dirichlet boundary are qualitatively different than the
periodic one. We start by discussing the mechanism of
transition of asymptotic states from the periodic case to the
Dirichlet one. As shown above, we observed at least
temporarily in the early nonlinear FFC phases that the
asymptotic states determined from the number conserva-
tion (i.e., the periodic boundary case) appear in almost the
entire spatial region. This is because the dynamics of flavor
conversions is almost identical in the adjacent spatial
regions, which offers an environment that is similar to a
periodic boundary condition. As a result, the neutrino flux
is also constant in adjacent spatial positions, guaranteeing
the ELN and XLN conservation at each spatial position.
On the other hand, both ELN and XLN fluxes (or first
angular moments) in this (temporal) asymptotic state
become different from those in initial conditions, whereas
they are fixed in time at the boundary of R ¼ Rin due to the
Dirichlet condition. This is a crucial problem for asymp-
totic states since the number flux needs to be balanced to
achieve the steady state [see Eq. (6) in [26] ]. This implies
that the neutrino distributions in the periodic boundary
condition does not satisfy the actual asymptotic state. This

also exhibits that ELN and XLN fluxes at R > Rin is
different than R ¼ Rin, resulting in evolving ELN and
XLN densities (or zeroth angular moments) at each spatial
position.
One thing we notice along this discussion is that the

classical simulation with BGK subgrid model has the
ability to handle the effects of neutrino advection precisely
since the advection term is the same as that in the quantum
kinetic one. This indicates that the dynamical evolution of
ELN and XLN densities at all spatial positions are well
modeled. This also suggests that the neutrino radiation field
obtained in the subgrid model evolves in time such that
neutrino fluxes become constant in space to achieve the
steady state, while this results in the dynamical change of
ELN and XLN densities. In the BGK subgrid model, we
determine fa by the time- and spatial-dependent f to satisfy
ELN and XLN densities at each position, which eventually
leads to the consistent asymptotic state determined from the
conservation of ELN and XLN fluxes. This corresponds to
the asymptotic state with the Dirichlet boundary condition.
The above argument exhibits that the local study of

flavor conversions with periodic boundary conditions is
worthy of improving the BGK subgrid model. As demon-
strated in [11,22,23,91], the global advection of neutrinos
affects the dynamics of flavor conversion significantly, and

FIG. 8. Same as Fig. 1, but for a subgrid model (reference model) with twice the spatial resolution (Nr ¼ 384) of the reference one.

FIG. 9. Same as Fig. 1, but for a subgrid model (reference model) with higher angular resolution (Nθν ¼ 128) than the reference one.
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the final outcome of neutrino radiation fields are qualita-
tively different than those estimated from local simulations.
This study suggests, however, that the effects of global
advection can be decoupled from local dynamics of flavor
conversion under the framework of our BGK subgrid
model. This suggests that the classical BGK model has
the capability of modeling global quantum kinetics of
neutrinos in CCSN and BNSM environments by precise
determinations of fa and τa based on a local study of flavor
conversions.

VIII. SUMMARY

In this paper, we present a new subgrid model for
neutrino quantum kinetics, particularly for neutrino-flavor
conversion. The basic assumption in this subgrid model is
to handle the dynamics of flavor conversions as a relaxation
process in which the flavor conversion makes the system
into asymptotic states (fa) in the timescale of τa. This
treatment is essentially the same as a BGK relaxation-time
approximation [42], which was originally developed to
approximately handle collisional processes in gas dynam-
ics. In our model, we apply not the approximation to the
collision term but instead the neutrino oscillation term. We
describe the QKE with the BGK model in Sec. II and also
provide an explicit form of the two-moment method in
Sec. III. We also present a concrete example of how we can
use the BGK model in classical neutrino transport by
focusing on FFC (Sec. VII). We assess the capabilities of
the BGK subgrid model by comparing it to the results of
quantum kinetic neutrino transport, and we show that the
subgrid model has the ability to capture the overall features
in the dynamics of neutrino-flavor conversions.
Although our subgrid model is a valuable tool with

great potential, more work is certainly needed to increase
its accuracy. It should be pointed out that this study also
provides a strategy to improve the subgrid model. As
shown in Eq. (7), an accurate determination of η (and η̄)
from f is crucial, and all approaches, including analytic
schemes [24–27] and AI [28], are applicable. We note
that the prescription used in this demonstration [see
Eqs. (28)–(30)] is just one example of FFC, and we certainly
need others for different types of flavor conversions. In fact,
the analytical scheme involving Eqs. (28)–(30) cannot
handle the flavor swap phenomena recently found in
FFC simulations of BNSM environments [22,34]. As such,

we still need to improve approximate schemes to determine
asymptotic states of FFCs.
We are also interested in how well the BGK subgrid

model can work in cases in which flavor conversions and
collision processes (neutrino emission, absorption, and
scatterings) interact with each other. As demonstrated
in [92–98], the asymptotic states of flavor conversion
depend on neutrino-matter interactions. Detailed study is
necessary to assess the capability of our subgrid model in
such complicated systems. This detailed study is postponed
to future work.
Although there is certainly room for improvement, the

BGK subgrid model is very useful and easy to be
implemented into currently existing CCSN and BNSM
codes. This indicates that the global neutrino-radiation-
hydrodynamic simulations with respectable physical fidel-
ity of flavor conversions become feasible. We hope that the
BGK subgrid model will contribute to the entire CCSN and
BNSM community to incorporate the effects of neutrino
quantum kinetics in their simulations.
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