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The AMS02 experiment has published the periodic spectra of proton, helium, and helium isotopes across
the majority of solar cycle 24. These precise data exhibit temporal structures that correlate with solar
modulation. In this study, we utilize these data to probe three analytic solar modulation models, including
the force-field approximation, the convection-diffusion model, and the extended force-field approximation
with a drift effect. We adopt a method that eliminates the influence of interstellar cosmic ray spectra, and
use Earth-observed spectra at time t1 to predict those at time t2. In order to explore the rigidity dependence
of solar modulation models, we substitute the conventional potential parameter ϕ with a modified
parameter ϕ0 ¼ R

k2ðRÞϕ for our analysis. Combined with the χ2 minimization method, the best-fit

modulation parameter ϕ0 can be evaluated. First, we test the validity of a rigidity-independent ϕ0 and
find that both the force-field approximation (FFA) and the extended force-field approximation (EFFA)
agree well with data near the solar minimum period. However, all models significantly deviate from the
data during the solar maximum. Consequently, we assume a constant ϕ0ðt1Þ at solar minimum and calculate
Δϕ0 ¼ ϕ0ðt2Þ − ϕ0ðt1Þ for each rigidity bin at time t2. It is found that Δϕ0 generally adheres to a linear-
logarithm relationship with rigidity at any given time. By adopting a linear-logarithm formula of Δϕ0, we
further discover that both the modified FFA and EFFA can reconcile the observations during solar maxima.
This suggests that, at solar maximum, the parameter ϕ0, which correlates with the diffusion pattern in the
heliospheric magnetic fields, exhibits a rigidity dependence. Moreover, the modified EFFA enhances
the concordance with data during periods of pronounced dips, as observed by AMS02. This implies that the
drift effect could significantly contribute to these solar transient phenomena.

DOI: 10.1103/PhysRevD.109.083009

I. INTRODUCTION

Because of the interaction with the heliospheric mag-
netic fields (HMFs) embedded in the solar wind [1], the
cosmic ray (CR) energy spectra detected at the top of the
atmosphere (TOA) of Earth differ from those at the local
interstellar space (LIS). The entire process that CRs
undergo within the solar system is referred to as solar
modulation. During the passages of CR particles traversing
through the interplanetary space, the modulation effects for
them include convection driven by the solar wind, diffusion
induced by the small-scale magnetic field irregularities,
drift occurring in the large-scale magnetic structures, and
adiabatic losses due to the expansion of the solar wind [2].
Solar modulation effects are inherently influenced by the

solar activities. The number and surface area of sunspots
are related to the intensity of solar activity, and observations
of them show a 11-yr solar cycle. Meanwhile, the solar
magnetic field undergoes a polarity reversal at the solar
maximum, suggesting a 22-yr cycle for solar activity [3,4].
These periodic variations in solar activities cause both the
solar modulation and the cosmic ray energy spectra, which

are affected by solar modulation, to change periodically
over time. Direct observation experiments such as
PAMELA and AMS-02 have performed long-term mea-
surements on CRs [5–11]. The unprecedented accurate
periodic data reveal that the CR intensities display time
structures that are anticorrelated with solar activities. These
data offer substantial potential for us to reveal the features
of solar modulation.
The CRs’ transport processes in the heliosphere is

usually described by the Parker equation [12]. It can be
solved either through numerical methods or analytical
methods. While the numerical models provide more accu-
rate and physically reasonable solutions [13–16], they
necessitate a comprehensive understanding of the details
of various physical quantities in the heliosphere, coupled
with strong computational power. In contrast, analytical
methods, which rely on a set of simple assumptions, may
yield less precise results. However, these methods are
computationally efficient and hence frequently employed
by researchers. The most commonly used analytic models
are the force-field approximation (FFA) and the convec-
tion-diffusion model (CD) [17]. These models describe
solar modulation by using a single parameter and greatly
enhance the convenience of their applicability [18,19].*wu@cug.edu.cn
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A robust solar modulation model is crucial for compre-
hending CR acceleration and propagation [20–24], as well
as for detecting dark matter signals [25–28].
As is known, the modulation effects might be very

sensitive to the particle’s rigidity [29]. For a CR particle,
the diffusion coefficient is κ ¼ vλ=3, in which v is the
particle’s velocity and λ is its mean free path. This coefficient
is important for us to understand the scattering of particles on
the random heliospheric magnetohydrodynamic waves and
discontinuities. When the particle resonates with the HMF
fluctuations with a spectrum wðkÞ ∼ k−η, where k is the
resonant wave number, the diffusion mean free path can be
expressed as λ ∼ R2−η [30–34]. A fundamental prerequisite
for FFA is that the mean free path λ of a particle is
proportional to its rigidity, i.e., η ¼ 1. However, the real
relationship between λ and the rigidity remains uncertain. If
η ≠ 1, themodulation parametermayhave a different rigidity
dependence. In recent years, there has been a lot of research
focusing on the modification of FFA. Some studies have
investigated the rigidity dependence of the FFA and have
updated the FFA analytic formula by introducing additional
parameters [35–37]. There are also some studies [38,39] on
FFA that have considered a drift effect, which is prominent
near the solar minimum and negligible during the HMF
polarity reversal period [40]. The inclusion of this effect
extends the FFA into a charge-sign-dependent model.
However, these studies usually first assumed CR LIS

spectra, and then combined the experimental data to
constrain the modulation parameters. It is known that
CR LIS spectra have only been measured by Voyager 1
below a few hundred MeV [41]. Above this energy, no
experimental data exist, leading to the adoption of different
LIS models in the literature. Therefore, the analysis results
might be biased due to inaccurate assumptions of LIS
spectra. To get rid of the impact of LIS energy spectra, an
alternative method (herein referred to as the non-LIS
method) was proposed in [42]. In their work, they rewrote
the FFA formula by removing the term of LIS spectra.
Instead, they calculated the CR TOA intensity at time t2
[Jðt2Þ] based on the TOA intensity at t1 [Jðt1Þ]. This
method does not require an assumption of LIS spectra, but
only needs to use the periodic CR data for the analysis. An
important finding from their work was that the validity of
the FFA varies at different periods of solar activity. In this
work, we will utilize the non-LIS method to further
investigate the rigidity dependence of the solar modulation
effect for various analytic modulation models, including
FFA, CD, and an extended FFA (with a drift effect).

II. DESCRIPTION OF ANALYTIC SOLAR
MODULATION MODELS

A. Force-field approximation

The basic transport equation (TPE) was first derived by
Parker in the solar wind reference frame [17,18,43],

∂f
∂t

þ∇ · ðVf−K ·∇fÞ− 1

3p2
ð∇ ·VÞ∂f

∂p
ðp3fÞ¼Q; ð1Þ

where fðr; p; tÞ is the phase space density or the omnidi-
rectional distribution function of CRs as a function of
position r, momentum p, and time t. It is linked to the
differential intensity in terms of energy by JT ¼ p2fðr; p; tÞ.
In Eq. (1), V is the solar wind velocity, K is the diffusion
tensor, and Q is the local source in the heliosphere. The
diffusion tensor can be expressed asK ¼ Ka þKs, inwhich
Ks denotes the symmetrical component of the diffusion
tensor and Ka represents the asymmetrical component
associated with the drift effect.
After that, an equivalent equation was derived in the

observer’s reference frame [44],

∂f
∂t

þ∇ · ðCVf −K ·∇fÞ þ 1

p2

∂

∂p
ðp2hṗifÞ ¼ Q: ð2Þ

Here C ¼ −ð1=3Þ∂ ln f=∂ lnp is the Compton-Getting
coefficient, which corrects the anisotropy of transformation
from the wind reference frame to the stationary reference
frame [45].
FFA solves Eq. (2) under a series of assumptions: (a) no

local source of CRs, i.e., Q ¼ 0, (b) the existence of a
steady state, i.e., ∂f=∂t ¼ 0, (c) spherically symmetric and
ignoring the drift effect, and (d) an adiabatic rate
hṗi ¼ ðp=3ÞV ·∇f=f ¼ 0. Additionally, the streaming
term ðCVf −K ·∇fÞ is assumed to be divergence free
and only the radial component of K, denoted as κ for
convenience, is nonzero. Consequently, Eq. (2) can be
written as the so-called force-field equation,

∂f
∂r

þ Vp
3κ

∂f
∂p

¼ 0; ð3Þ

where κ is the one-dimension diffusion coefficient, r is the
radial position, and V is the radial component of solar wind
velocity.
It is a first-order partial differential equation with a

characteristic equation,

dp
dr

¼ pV
3κ

: ð4Þ

The solution of Eq. (3) is

fðrTOA; pTOAÞ ¼ fðrLIS; pLISÞ; ð5Þ

where rLIS, pLIS and rTOA, pTOA are the positions and
momenta of CR particles in LIS and at TOA, respectively,
and fðr; pÞ is the density of CRs along the characteristic
curve described by Eq. (4).
Assuming the diffusion coefficient κ could be separated

in radius distance r and rigidity R≡ pc=Ze, i.e.,
κðr; RÞ ¼ βk1ðrÞk2ðRÞ, where Z is the charge number of
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the particle, β is the ratio of the particle velocity v, and
the speed of light c, we can define the modulation
parameter ϕ as

Z
RLIS

RTOA

k2ðRÞβ
R

dR ¼
Z

rLIS

rTOA

V
3k1ðrÞ

dr≡ ϕ; ð6Þ

where RLIS and RTOA are the rigidities of CR particles in
LIS and at TOA, respectively. Both ϕ and k2ðRÞ are
independent of the CR species but vary with time.
Assuming that TLIS and TTOA represent the energies of a
CR particle in LIS and at TOA, the energy loss experienced
by this particle in the heliosphere can be denoted as
Φ≡ TLIS − TTOA. If Φ ≪ E0, where E0 is the stationary
energy of the particle, then the relationship between Φ and
ϕ becomes [46]

ΦðRÞ ¼ jZje R
k2ðRÞ

ϕ: ð7Þ

From Eq. (7), we can define the modified modulation
potential ϕ0 as

ϕ0 ≡ Φ
jZje ¼ R

k2ðRÞ
ϕ: ð8Þ

Taking λ ∝ R [47,48], thus k2ðRÞ ¼ R. From the
definition of Eq. (6), it can be found that ϕ is a
rigidity-independent parameter, so Φ ¼ Zeϕ for any
arbitrary rigidity. This leads to the conventional FFA,
which condenses all the physical processes into a single
parameter ϕ (or Φ) [46,49]. It should be noticed that if
k2ðRÞ ¼ R is not the condition, we may get more general
results by substituting ϕ0 for ϕ. In this case, ϕ0 could
become rigidity dependent, and Φ can be expressed
as Φ ¼ Zeϕ0.
The modulated spectrum JðrTOA; TTOAÞ and the unmodu-

lated LIS spectrum JðrLIS; TTOA þΦÞ are related as

JðrTOA; TTOAÞ ¼
TTOAðTTOA þ 2E0Þ

ðTTOA þ Zeϕ0ÞðTTOA þ Zeϕ0 þ 2E0Þ
× JðrLIS; TTOA þ Zeϕ0Þ: ð9Þ

Therefore, by studying the modified potential parameter ϕ0,
we can investigate the FFAs rigidity dependence effect.

B. Convection-diffusion equation

The other analytic modulation model (CD) can be
directly derived from Eq. (1). The assumptions made in
CD are similar to those given in FFA. Then Eq. (1) can be
simplified into the CD equation

Vf − κ
∂f
∂r

¼ 0; ð10Þ

for which the solution is

fðrTOA; pTOAÞ ¼ fðrLIS; pLISÞe−M; ð11Þ

where

M ≡
Z

rLIS

rTOA

V
κ
dr:

According to Eqs. (6), (8), and (11), the relation between ϕ
(ϕ0) and M is [17,50]

M ¼ 3ϕ

βk2ðRÞ
¼ 3ϕ0

βR
: ð12Þ

FFA and CD have been widely used due to their
simplicity. Both of them can compress the modulation
processes into one single parameter, which depends on the
specific form of k2ðRÞ. Unlike FFA, which assumes
k2ðRÞ ¼ R, CD does not place any constraints on k2ðRÞ.
It may allow the modulation effect expected by CD to be
rigidity dependent.

C. Extended force-field approximation

Both FFA and CD neglect the drift effect. By incorpo-
rating the drift effect, Eq. (3) led to Kuhlen’s extended FFA
(EFFA) equation [39],

∂f
∂r

þ pV
3κ

∂f
∂p

¼ vd;r
κ

f; ð13Þ

in which all the quantities are angular averaged, and vd;r is
the radical component of the averaged drift velocity.
The solution of Eq. (13) is

fðrTOA;pTOAÞ¼ fðrLIS;pLISÞ×exp

�
−
Z

rLIS

rTOA

dr
vd;rðr;pÞ
κðr;pÞ

�
;

ð14Þ

whose characteristics curve is also Eq. (4). This solution’s
form seems to be a combination of FFA and CD, except for
the fact that the solar wind velocity in the integral term is
replaced by the drift velocity. The rigidity dependence of
vd;r correlates with the behavior of the antisymmetrical
diffusion coefficient κa and is given as [51]

vd;r ∝
βR
3B

10R2

1þ 10R2
; ð15Þ

where B is the magnitude of the heliospheric magnetic field
on a large scale.
Given the similarity between the spatial integral part in

Eq. (14) and the definition ofM in Eq. (11), whenΦ ≪ E0,
this integral term can be associated with ϕ0 as
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Z
rLIS

rTOA

dr
vd;rðr;pÞ
κðr;pÞ ⟶ g

Rϕ
k2ðRÞ

10R2

1þ10R2
¼ gϕ0 10R2

1þ10R2
;

ð16Þ

where g is a scaling factor related to the magnitude of
magnetic field B and the solar wind velocity V. A larger g
indicates a stronger impact on the CR flux caused by the
drift effect.
In summary, all three analytical models are derived from

equivalent forms of TPE. Both FFA and CD are one-
parameter models that disregard a term related to the
adiabatic energy. But these terms differ, as they are derived
in different frames. Other than FFA and CD, Kuhlen’s EFFA
incorporates a drift effect and depends on two parameters.

III. MODULATION ANALYSIS BASED ON THE
PERIODIC OBSERVATIONS

A. The non-LIS method

In order to eliminate the influence of CR LIS energy
spectra, we use the non-LIS method to explore the general
properties of the above analytical models. Since the nature
of the heliospheric diffusion effect remains incompletely

understood, we refrain from specifying the formula for
k2ðRÞ. Therefore, we use the modified modulation param-
eter ϕ0 to obtain the relationship between Jðt1Þ and Jðt2Þ.
For FFA, assuming Δϕ0 ¼ ϕ0ðt2Þ − ϕ0ðt1Þ, Eq. (9) can be
transformed into

JðrTOA;TTOA;t2Þ¼
TTOAðTTOAþ2E0Þ

ðTTOAþZeΔϕ0ÞðTTOAþZeΔϕ0þ2E0Þ
×JðrTOA;TTOAþZeΔϕ0;t1Þ: ð17Þ

Similar approaches can be applied to CD and EFFA. For
CD, we yield

JðrTOA;TTOA;t2Þ¼JðrTOA;TTOA;t1Þexp
�
−
3Δϕ0

βR

�
: ð18Þ

For EFFA, we get

JðrTOA;TTOA;t2Þ¼
TTOAðTTOAþ2E0Þ

ðTTOAþZeΔϕ0ÞðTTOAþZeΔϕ0þ2E0Þ
×JðrTOA;TTOAþZeΔϕ0;t1Þ

×exp

�
−g

10R2

1þ10R2
Δϕ0

�
: ð19Þ
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FIG. 1. Top: the rigidity-independent parameter Δϕ0 (=Δϕ) estimated by using the p, He, and He isotope periodic data measured by
AMS-02 for FFA and CD models. Bottom: the corresponding χ2=d:o:f: at each BR. The shaded area corresponds to the HMF polarity
reversal period from A < 0 to A > 0 (November 2012–March 2014).
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These three models are all written in terms of Δϕ0. As
suggested in [42], traditional FFA may be reliable to
describe the solar modulation effect around the solar
minimum period. If we select t1 near a period of minimal
solar activity, it is reasonable to postulate that ϕ0ðt1Þ ¼
ϕðt1Þ is rigidity independent. Therefore, the analysis on
parameter Δϕ0 can characterize the properties of param-
eter ϕ0ðt2Þ. This approach will reveal the characteristics of
solar modulation at any given time t2. For CD and EFFA,
we also set t1 near solar minimum and similarly assume
ϕ0ðt1Þ is rigidity independent. Subsequently, we use the
free parameter Δϕ0 to study the modulation effect at other
times. Note that in EFFA, except for Δϕ0, the factor g
linked to the drift effect is also allowed to vary freely in
the fittings.

B. Test of the rigidity-independent Δϕ0

Synodic solar rotation causes the CR flux recurrent
variations on the timescale of Bartels rotations (BRs),
which is 27 days for each BR. We use periodic data from
AMS02 [8], which provides the measurements of proton
(p) flux between 1 and 60 GV and helium (He) flux

between 1.9 and 60 GV from May 2011 to May 2017. It
also provides helium-3 (3He) flux between 1.9 and 15 GV
and helium-4 (4He) flux between 2.1 and 21 GV from May
2011 to November 2017 [9]. The measurements covered
most of the time of solar cycle 24, during which the solar
maximum appeared in April 2014, and the HMF polarity
reversed from A < 0 to A > 0 at that time.
For p and He, BR 2504 (February 18–March 16, 2017)

is selected as t1 in our work, since the measured flux at
this time is higher than those at other phases. This
indicates that the solar activity is weakest at this time.
For 3He and 4He, since each of them has been measured in
periods of four Bartels rotations (108 days), the period
from BR 2502 to BR 2505 is selected as t1. It is assumed
that the distribution of flux within rigidity bin ðR1; R2Þ
follows a power law. Consequently, the flux value at this
bin is assigned to the interval center rigidity R ¼ ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p
.

We employed a cubic spline method to calculate the
interpolated flux values for other rigidities within the
rigidity range of observation and utilize a power-law
distribution to extrapolate flux beyond this range. A least-
square analysis using the MINUIT package [52] is applied
to obtain the Δϕ0 values for each model, as well as the
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FIG. 2. Top and middle: the rigidity-independent parameter Δϕ0 (¼ Δϕ) and g estimated by using the p, He, and He isotope periodic
data measured by AMS-02 for Kuhlen’s EFFA. Bottom: the corresponding χ2=d:o:f: at each BR. The shaded area corresponds to the
HMF polarity reversal period from A < 0 to A > 0 (November 2012–March 2014).
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χ2=d:o:f: values at time t2. For EFFA, the best-fit values
of parameter g are also estimated.
First, we use AMS-02 p, He, 3He, and 4He data to test the

validity of a rigidity-independent Δϕ0 for both FFA and
CD. The results are shown in Fig. 1. As we can see, for
FFA, at any given time t2, He isotopes yield rather
consistent values of Δϕ0 with p and He. This is also the
case for CD. For a given time t2, the best-fit Δϕ0 parameter

obtained in CD is higher than that given in FFA. The
possible reason is that the integration of FFA from LIS to
TOA is constrained by the characteristic curve, and the
corresponding path of FFA is longer than that of CD for a
same value of ϕ. In other words, the adiabatic energy term
of TPE ignored in CD is larger than that ignored in FFA.
For both models, the largest Δϕ0 appears around 2014,
which corresponds to a solar maximum.
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During periods around 2011–2012 and 2016–2017, it is
found that the χ2=d:o:f: values are close to 1. This infers
that FFA and CD can generally reproduce data during the
low solar activity periods. However, during the periods
with high Δϕ0, the χ2=d:o:f: values are much larger than
1. Especially, by using the p and He fluxes, the χ2=d:o:f:
values can achieve more than 20. It means that, for both
FFA and CD, a rigidity-independent Δϕ0 (or ϕ0) does not
agree well with the p and He data during these periods
with intense solar activity. This phenomenon is further
confirmed in Fig. 3. At BR 2426 (May 5, 2011–June 10,
2011), a period after the solar minimum in 2009, the solar
activity is not strong. As we can see that, at this BR, both
FFA and CD generally give consistent results with the p
data above 2 GV and the He data in the whole rigidity
range, except for an obvious discrepancy that exists
between CD and the p data below 2 GV. However, the
p and He fluxes predicted by both models at BR 2463
(February 7, 2014–March 6, 2014), which is in a polarity
reversal in solar cycle 24, show significant disagreement
with the data. These disagreements indicate that both

models with a rigidity-independent ϕ0 cannot describe the
solar modulation behavior well during the HMF polarity
reversal period.
By using the 3He or 4He data, the calculated χ2=d:o:f:

values at solar maximum are not that high. This may be due
to the large errors existing in the 3He and 4He data, which
infer that using the He isotope data alone is not enough to
test the validity of solar modulation models. Therefore, to
further investigate EFFA, we use only the p and He data
to run the analysis.
For EFFA, the time variations of Δϕ and g are shown in

Fig. 2. This model presents a similar tendency of Δϕ0 (ϕ0)
in terms of time with FFA and CD. The scaling factor g
does not show a clear variation with time. The minor
fluctuations of g indicate the intensity of the drift effect
does not vary greatly in different periods. According to the
χ2=d:o:f: values given in Fig. 2, it can be found that EFFA
can better fit the data than FFA and CD. At all the periods,
EFFA reduces the χ2=d:o:f: values by more than half, but
EFFA still displays a poor performance during 2013–2014.
This can also been seen in Fig. 3. It seems that including a
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drift effect still cannot explain the solar modulation effect
during the polarity reversal period.

C. Modulation with rigidity-dependent ϕ0

Since a rigidity-independent ϕ0 cannot accommodate the
data well during the periods with intense solar activities, we
only assume a constant ϕ0 at solar minimum period t1.
However, at other periods, we calculate Δϕ0 at each rigidity
bin to study the change of Δϕ0 [ϕ0ðt2Þ] with rigidity. The
analysis is performed both for AMS-02 p and He data and
the results for FFA are presented in Fig. 4. Noted that in this
figure the x axis is represented on a logarithmic scale.
As the intensity of solar activity increases, the variation

of Δϕ0 with rigidity becomes more and more significant.
This further confirms the necessity to introduce a rigidity-
dependent ϕ0 during periods of high solar activity. We
particularly show the relationships between Δϕ0 and
rigidity in Fig. 5 for BR 2426, BR 2442, and BR 2463.
It can be found that, for all BRs, the curves are very close to
straight lines in linear-logarithmic (lin-log) coordinates.
Here we include BR 2442 in the plot because this BR is
related to the location of sharp dips in the p and electron
fluxes observed by AMS02 [53]. At this BR, Δϕ0 has a
slight downturn at very low rigidity. For CD and EFFA,
Δϕ0 has a similar relation with rigidity. Therefore, we

assume that Δϕ0 has a lin-log relationship with rigidity,
with the formula

Δϕ0
lin-log ¼ ϕ0 þ ϕ1 ln ðR=R0Þ; ð20Þ

where ϕ0 is the normalization ofΔϕ0 at R0 ¼ 1 GV, and ϕ1

is the slope of Δϕ0 with lnR. They both vary with time.
We adopt this lin-log formula of Δϕ0 in FFA, CD, and

EFFA. In this case, the free parameters include ϕ0, ϕ1 for
FFA and CD and ϕ0, ϕ1, g for EFFA. The predicted p and
He flux are compared with the data measured at BR 2442
and BR 2463, as shown in Fig. 6. At BR 2442 and 2463, the
modified FFA can generally reproduce the p and He data in
most rigidity ranges. It only gives slightly lower predictions
than the p data below 2 GV. This might be because Δϕlin-log

does not give a perfect description of the p flux at very low
rigidity, as exhibited in Fig. 5. Nevertheless, the agreement
between the modified FFA and the data is highly increased
compared with the conventional FFA. This is also the case
for modified EFFA. However, the improvement of the
modified CD is limited compared with the conventional
CD. It gives worse goodness of fit than the modified FFA
and EFFA.
The χ2=d:o:f: results of different models are summarized

in Table I. As we can see, CD does not fit well with all of
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the data. For BR 2426, both the FFA and EFFA with a
rigidity-dependent or rigidity-independent ϕ0 agrees well
with the p and He data. For BR 2442, the conventional FFA
does not accommodate the data. The modified FFA
improves the goodness of fit, but still yields a χ2=d:o:f:
close to 2. By including a drift effect, both conventional
EFFA and modified EFFA can reproduce the p and He data
at BR 2442. This suggests that the flux dips observed in
AMS02 data may be associated with the drift effect. For BR
2463, the conventional FFA and EFFA have large disagree-
ments with the data. However, by adopting a rigidity-
dependent ϕ0, both models can explain the data well. For
solar minimum and maximum phases, it is difficult to judge
whether the drift effect needs to be introduced to interpret
the data.

D. Comparison with other modified FFA models

We compared our lin-log FFA and lin-log EFFA with
other modified FFA models. One is the model of Cholis
et al. [38,54]. Instead of adding a drift term in the
relationship between JðrTOA; t2Þ and JðrTOA; t1Þ, they
incorporated the drift term in ϕ. Based on their work,
Δϕ0 can be written as

Δϕ0
Cholis ¼ ϕ0 þ ϕ1

�
1þ ðR=R0Þ2
βðR=R0Þ3

�
: ð21Þ

The other is the model of Shen et al. presented in [37]. In
that paper, the authors attributed the variation of ϕ with

energy to the behavior of the diffusion coefficient. They
used a double power-law empirical formula to describe ϕ.
In the model of Shen et al., Δϕ0 can be written as

Δϕ0
Shen ¼ ϕ0β

−1
�
E
Eb

�
ϕ1

�
1þ

�
E
Eb1

�
b1
�
b2
; ð22Þ

where Eb ¼ 1 GeV, and ϕ0 is a scaling factor in units of
gigavolts. The rest of the parameters are dimensionless.
Both ϕ0 and ϕ1 vary with time, while Eb1 , b1, and b2 are
time-independent parameters. It is worth noting that the
estimations of all the parameters in the model of Shen et al.
are adjustable to perform a good agreement with the data.
This could result in overfitting and instability of the
parameters [34,55].
Both the models of Cholis et al. and Shen et al. include a

β term from the diffusion coefficient into ϕ0. The relation-
ship between β and rigidity shows that β is a function of
A=Z. Thus, for different particles, the same values of ϕ0 and
ϕ1 may lead to different values of Δϕ0

Shen (or Δϕ0
Cholis) for a

given rigidity. This difference is slight in the model of
Cholis et al., since β only exists in the ϕ1 term of Δϕ0

Cholis.
However, from Eq. (8), we can see that a β term is
unnecessary to be introduced in ϕ0. The inclusion of β
may lack a rigorous theoretical basis.
The above models with a rigidity-dependent Δϕ0 all

contain two free parameters, ϕ0 and ϕ1. Other parameters
are nuisances. The χ2 minimization results of the lin-log
FFA, the lin-log EFFA, and the models of Cholis et al. and
Shen et al. are shown in Fig. 7, respectively.
It can be found that the lin-log FFA gives excellent

goodness of fit for most periods. There are only a few BRs
at which the values of χ2=d:o:f: > 1. Peaks of χ2 appear at
BR 2437, BR 2442, BR 2453, and BR 2478. All these BRs
happen only in the A > 0 stage and correspond to the sharp
dips in AMS-02 p and electron fluxes. Notably, at these
BRs, the lin-log EFFA agrees better with the AMS02 p and
He data. This indicates that these solar transients on
timescales of BRs maybe related with the drift effect.
For the model of Cholis et al., there are many more BRs

corresponding to χ2=d:o:f: > 1, especially by fitting the p
or pþ He data. The largest χ2 values are exhibited during
the solar reversal phase, which means the model of Cholis
et al. is particularly poor to simulate the solar modulation
during those stages. In this model, the χ2 distribution over
time is similar to that in conventional EFFA. This suggests
that the introduction of a drift effect is not sufficient to
explain the variation of ϕ0 with rigidity.
The model of Shen et al. could obtain good agreement

with either p or He data. However, when we combine p and
He data to do the analysis, the resulted χ2=d:o:f: values are
large. The reason is that the estimated ϕ0 and ϕ1 deviate
significantly between p and He. This reveals that the model
of Shen et al. does not give consistent descriptions of p
and He.

TABLE I. The χ2=d:o:f: results for different analytical models
at BR 2426, BR 2442, and BR2463 based on the analysis of p or
(and) He data. Here ϕ0 ¼ ϕ assumes a rigidity-independent ϕ0,
and ϕ0

lin-log assumes a linear-logarithm rigidity-dependent ϕ0.

BR Model ϕ0 χ2p=d:o:f: χ2He=d:o:f: χ2pþHe=d:o:f:

2426 FFA ϕ 35.1=44 6.8=39 65.0=84
2426 FFA ϕ0

lin- log 30.0=43 13.4=38 53.9=83
2426 CD ϕ 75.3=44 18.5=39 108.3=84
2426 CD ϕ0

lin- log 54.3=43 18.5=38 86.7=83
2426 EFFA ϕ 12.3=43 15.2=38 37.6=83
2426 EFFA ϕ0

lin- log 5.8=42 12.9=37 33.4=82
2442 FFA ϕ 178.4=44 109.5=39 289.2=84
2442 FFA ϕ0

lin- log 84.7=43 20.0=38 110.1=83
2442 CD ϕ 289.8=44 60.6=39 354.2=84
2442 CD ϕ0

lin- log 238.2=43 59.7=38 321.8=83
2442 EFFA ϕ 18.9=43 19.1=38 39.4=83
2442 EFFA ϕ0

lin- log 18.8=42 12.3=37 38.1=82
2463 FFA ϕ 585.2=44 283.8=39 906.8=84
2463 FFA ϕ0

lin- log 18.7=43 9.4=38 29.2=83
2463 CD ϕ 237.6=44 105.1=39 344.7=84
2463 CD ϕ0

lin- log 233.2=43 62.1=38 314.3=83
2463 EFFA ϕ 146.8=43 73.6=38 226.4=83
2463 EFFA ϕ0

lin- log 6.3=42 5.6=37 13.7=82
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IV. CONCLUSION AND DISCUSSION

In this paper, we take into account three analytic solar
modulation models: FFA, CD, and EFFA. To investigate
these models, the non-LIS method is employed to
eliminate the impact of CR LIS spectra. The traditional
potential parameter ϕ in FFA, CD, and EFFA is a rigidity-
independent parameter. However, since the radial diffu-
sion coefficient may not be proportional to rigidity, the
parameter Φ could be rigidity dependent. Therefore, we
introduce an alternative parameter ϕ0 ¼ R

k2ðRÞϕ to revisit

these models. By using Δϕ0 ¼ ϕ0ðt2Þ − ϕ0ðt1Þ, we can
determine the CR flux at time t2 based on the observed
CR flux at time t1. Then we use the χ2 minimization
analysis to estimate the best-fit Δϕ0.
First, it is found that the conventional FFA and EFFA

with a rigidity-independent ϕ0 can describe the data well
around solar minimum. However, these models do not
agree well with the data at HMF polarity reversal periods.
Therefore, it is reasonable to assume a constant ϕ0 near
solar minimum, but consider a rigidity-dependent ϕ0

(or Δϕ0) for other periods. By calculating Δϕ0 at different
rigidity ranges, the results show that Δϕ0 is not a constant,
but seems have a lin-log relationship with rigidity. By
incorporating this lin-log formula of Δϕ0 into FFA and
EFFA models, we find that they can satisfactorily describe
the data during the HMF polarity reversal stage. The CD
models, no matter if conventional or modified, cannot
explain the data well. We infer that the ignored adiabatic
term in CD plays a relatively important role in modulation,
which could have a significant rigidity dependence.
The effect of drift may be important to explain the

modulation during those solar transients detected by
AMS02, since during those stages, the conventional and
modified EFFA models can fit the date better than other
models. The hysteresislike loops (coinciding with the sharp
dip times) between the proton and electron fluxes [53] or
between the proton and antiproton fluxes [56] display a
charge-sign-dependent solar modulation. This may be
related to the fact that particles with opposite charge signs
have different patterns of drift effects. Nevertheless, the
variation of ϕ0 with rigidity is not mainly due to the drift
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effect, since the model of Cholis et al. has a worse
performance than our lin-log FFA model. This suggests
that the rigidity dependence of the parameter ϕ0 mainly
originates from the rigidity dependence of the diffusion
coefficient. The lin-log FFA model is also better than the
model of Shen et al., in which they consider a double
power-law ϕ0. The specific form of ϕ0 is important for the
understanding of HMF fluctuations during the HMF polar-
ity reversal periods.
A recent study by simultaneous scanning of the solar

modulation parameter and other CR acceleration and
propagation parameters has suggested that the conventional
FFA can describe well the CR spectra measured by AMS02
and Voyager 1 integrated over the entire detection period
[57]. However, a rigidity-dependent ϕ0 may challenge our
traditional understanding of CR acceleration and propaga-
tion mechanisms.
It should be noted that these analytic models are based on

a series of assumptions. The dependence of modulation on
A/Z is not studied in this work. However, we find that,
during the sharp dip periods, the deviations of the He data

from lin-log FFA are less significant than those of the p
data. This will be further studied in our future work. The
solar modulation model proposed in our work enables us to
place effective constraints on the CR source and propaga-
tion models. This allows for a reliable calculation on the
CR LIS spectra. Some other studies have shown that it is
also possible to derive the LIS spectra from synchrotron
and γ ray observations without any assumption of solar
modulation [58–61]. In our future work, we will further
compare them for a better understanding of cosmic ray
behaviors in the Galaxy.
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