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The next generation of space- and ground-based facilities promise to reveal an entirely new picture of
the gravitational wave sky: thousands of galactic and extragalactic binary signals, as well as stochastic
gravitational wave backgrounds (SGWBs) of unresolved astrophysical and possibly cosmological signals.
These will need to be disentangled to achieve the scientific goals of experiments such as LISA, Einstein
Telescope, or Cosmic Explorer. We focus on one particular aspect of this challenge: reconstructing an
SGWB from (mock) LISA data. We demonstrate that simulation-based inference (SBI)—specifically
truncated marginal neural ratio estimation (TMNRE)—is a promising avenue to overcome some of the
technical difficulties and compromises necessary when applying more traditional methods such as
Monte Carlo Markov Chains (MCMC). To highlight this, we show that we can reproduce results from
traditional methods both for a template-based and agnostic search for an SGWB. Moreover, as a
demonstration of the rich potential of SBI, we consider the injection of a population of low signal-to-noise
ratio supermassive black hole transient signals into the data. TMNRE can implicitly marginalize over this
complicated parameter space, enabling us to directly and accurately reconstruct the stochastic (and
instrumental noise) contributions. We publicly release our TMNRE implementation in the form of the
code SAQQARA.
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I. INTRODUCTION

With the detection of gravitational waves (GWs) by the
LIGO-Virgo-KAGRA (LVK) collaboration [1], and more
recently by pulsar timing arrays (PTAs) [2–4], GW
astronomy has now entered the stage as a new player to
explore our Universe. While existing GWobservatories are
noise dominated with transient signals that are relatively
sparse and can be described by a few parameters, the
situation will drastically change with the next generation of
GW observatories. Both the space-based interferometer
LISA [5] and the next-generation ground-based interfer-
ometers, such as the Einstein Telescope [6] or Cosmic
Explorer [7], are expected to see thousands of binary
systems as well as the stochastic gravitational wave back-
ground (SGWB) of unresolved signals. This “orchestra” of
overlapping signals poses a severe data analysis challenge
to successful parameter reconstruction and component
separation [8].

Within this global analysis, the accurate reconstruction
of an SGWB of cosmological origin is particularly chal-
lenging [9]—but also offers a unique window to probe
particle physics at energy scales far beyond the reach of
colliders [10]. Taking LISA as an example, the difficulties
are quickly identified: we lack the possibility of carrying
out cross-correlation (as in LVK or PTAs), and there are no
perfect null-channels [11–13] or the possibility to “shield”
GWs, so the instrumental noise cannot be measured
independently of a possible SGWB signal. Combined with
the variety and complexity of possible particle physics
models that lead to SGWBs, the accurate reconstruction of
signal and noise parameters quickly becomes a highly
challenging data analysis task.
A range of recent work has taken up this challenge using

traditional inference techniques such as Markov Chain
Monte Carlo (MCMC). The goal of the so-called LISA
“global fit” [8,14–16] is to simultaneously fit waveforms
for different types of binaries and noise components.
Focusing on LISA, and assuming that all individual
above-threshold sources are removed, several approaches
have demonstrated the possibility of achieving the simul-
taneous reconstruction of SGWB and noise. These rely
on templates either for the noise [17–20], the SGWB
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signal [21,22], or both [13,23]. The overall challenge is the
sheer dimensionality of the problem (in principle, there will
likely be at least ∼105 parameters in the full problem, see,
e.g., Refs. [8,16]), and the high precision reconstruction
required to extract an SGWB signal. In a very broad sense,
the goal of our work is to argue that simulation-based
inference (SBI) techniques may be a promising path toward
mitigating these traditionally conflicting goals of precision
and scale. Moreover, an SBI pipeline could offer an
independent cross-check to validate the results obtained
with traditional methods.
SBI techniques (see, e.g., Ref. [24] for a review) have

recently undergone a significant up tick in popularity as we
approach a new era of big data analysis challenges. In
contrast to stochastic-sampling approaches such as MCMC
or nested sampling, SBI algorithms look to solve the
Bayesian inference problem of reconstructing the posterior
distribution, pðθjxÞ, without requiring an explicit expres-
sion for the likelihoodpðxjθÞ (although there are additional,
independent benefits including, e.g., amortization, scalabil-
ity, and simulation efficiency). Instead, the likelihood
distribution is sampled implicitly via some stochastic for-
ward simulator that generates data x from parameters θ. This
fundamentally shifts the focus from building a statistical
model to developing a realistic computational forward
model for the data, including e.g. all relevant instrumental
and physical effects. SBI methods have now been shown to
perform inference to the level of a full likelihood-based
approach in several astrophysical and cosmological settings,
including GW data analysis, see e.g. [25–34]. While several
SBI algorithms exist, seeRefs. [35–40], in this work,wewill
focus on the application of (truncated marginal) neural ratio
estimation (TMNRE) [41], implemented within the code
SWYFT [42].
Several crucial benefits suggest the TMNRE algorithm

could be an ideal tool for LISA SGWB data analysis. First,
the truncation aspect (which makes TMNRE a sequential
SBI algorithm) allows us to effectively “zoom-in” on the
relevant regions of parameter space for a given observation
(see Refs. [27,42] for details on this procedure). In a variety
of cases, such as for cosmic microwave background
data [43], strong lensing image analysis [30], and GWs
from compact binary coalescences [25,27], this makes
TMNRE extremely simulation efficient compared to both
traditional methods and nonsequential SBI algorithms.
Indeed, Ref. [27] demonstrated that analysing LIGO-type
binary black hole mergers with TMNRE requires 98%
fewer waveform evaluations than the currently adopted
nested sampling approach. Second, the TMNRE algorithm
can target specific parts of the model while implicitly
marginalizing over all other components [44]. We will
highlight this property in our analysis and demonstrate that
we can directly analyze only the noise and SGWB
components, properly marginalized over additional tran-
sient sources. Third, realistic LISA data will contain

numerous GW signals (binaries and SGWBs) and instru-
mental noise. The methodologies and pipelines for the
forward modeling of GW waveforms, known individual
noise components, and instrument response functions are,
up to technical refinements, well established for LISA.
Conversely, the complexity of the problem could prohibit
an explicit, exact expression for these marginalized like-
lihoods, rendering the inverse problem of parameter esti-
mation potentially very costly, since one would have to
work with the full likelihood. The implicit likelihood
benefits that are at the core of SBI can circumvent these
difficulties.
Ultimately, our proposed use-case for this algorithm has

the same spirit in mind as the “global fit” [16]: separating
the multiple components in a LISA data stream. As such, if
possible, it is useful to split these into distinct analysis
“blocks” to combat the dimensionality issues and consis-
tently pass the subsequent inference results around the full
model. Here, we illustrate how one could do this for the
block containing the SGWB and noise components,
accounting for, e.g., the presence of transient sources. In
this regard, our analysis should be seen as a first step,
dealing with a setup that, in many ways, is simplified
compared to the data analysis challenge that LISAwill face.
However, this proof of principle and verification against
other methods is a key step to unlocking the potential of
SBI for GW data analysis.

II. ANALYSIS SETUP
AND DATA GENERATION

To explore the ability of SBI—and more specifically
TMNRE—to address the challenges of SGWB analysis, we
set up several case studies to analyse. These are broadly
similar to those presented in Ref. [20] and cover both the
recovery of a signal given a parametrized template, as well
as the agnostic fitting of an unknown signal. We then
extend the analysis to include transient signals for a mock
population of supermassive black holes to investigate the
implications at the level of parameter estimation. Given
this, there are several technical components to setting up
the analysis: a model for the instrument noise in LISA;
characterization of the SGWB templates; explanation of the
transient setup; and data generation.
Considering the instrument noise first, currently, the

knowledge of the LISA noise comes from LISA Pathfinder
(LPF) [45], which tested the purity of free-fall for the test
masses (TM), and from on-ground experiments. A two-
parameter noise model, specified in terms of low-frequency
TM noise and high-frequency optical metrology system
(OMS) noise, defines a reasonable approximation of the
LISA noise [5,46]. Each noise component depends quad-
ratically on a parameter (referred to as A and P, respec-
tively, and with fiducial values A ¼ 3, P ¼ 15), which
controls its amplitude. For more details on the LISA noise
model and the measurements LISAwill perform, see Sec. A
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in the Appendices. Consistent with Refs. [13,18–20,46], in
the present work, we make the somewhat strong assumption
that the noise shapes are perfectly knownwhilewe allow for
the amplitude to vary within a wide, uniform prior for the
noise parameters (assumed to be positive) centered around
the fiducial values. However, we stress that tackling realistic
LISA data analysis will require more complex noise
modeling, which we leave to future work.
As far as the SGWB signal itself is concerned, we

consider two types of templates: a power law (PL) specified
by a tilt (γ) and (log) amplitude (α); and a more agnostic
form defined by a (log) amplitude in the first bin α1 and a
sequence of slopes γj for j ¼ 1;…; Nbins, where Nbins is the
number of equally spaced logarithmic bins that the template
is split into. In this work, we consider Nbins ≤ 10, though
we note that Ref. [47] recently demonstrated the possibility
of scaling to a larger (∼20) number of bins. More
concretely, we specify the templates (written in terms of
the GW energy density ΩGWh2) as

power law∶ ΩGWðfÞh2 ¼ 10α
�

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fminfmax

p
�

γ

agnostic∶ ΩGWðfÞh2 ¼
XNbins

i¼1

10αi

�
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fmin;ifmax;i

p
�

γi

× Θðf − fmin;iÞΘðfmax;i − fÞ

where fmin ¼ 10−4 Hz, fmax ¼ 5 × 10−2 Hz, fmin=max;i are
the boundaries of each of the bins, Θ denotes the Heaviside
function, and αi and γi are the amplitude and tilt in each bin.
In the analysis, we will vary each of the corresponding
parameters uniformly in prior ranges specified in Table I.
Imposing continuity, this fixes all the αi for i ≥ 2.
Beyond this, there are several assumptions that we make

in our data generation. First, we work with a single time-
delay interferometry (TDI) channel. Moreover, we model
the time domain data dðtÞ as a superposition of one (or
more) signal component(s) scðtÞ, and detector noise nðtÞ as
dðtÞ ¼ nðtÞ þP

c scðtÞ. We assume stationarity in the
time-domain data,1 which implies vanishing correlations
between different frequencies in the Fourier domain. We
consider mock data corresponding to an observation time
Td of 12 days.2 For data compression, we divide it into

Nd ¼ 100 data segments of duration Ts ≡ Td=Nd each. In
this scheme, the frequency resolution in each data segment
is Δf ¼ 1=Ts ¼ 10−4 Hz, and we denote with d̃sðfkÞ the
frequency-domain data for each segment s and (discrete)
frequency fk. We also assume signal and noise to be
Gaussian distributions with zero mean and variances based
on their respective power spectral densities (PSDs). Under
these assumptions, we generate Nd statistical realizations
of the SGWB signal and noise. In the final analysis, we
also investigate the implications of introducing a popula-
tion of transient signals. To do so, we introduce a
probability p that a given data segment contains a
transient (this could easily be extended to include multiple
transients). For each data segment, we inject a mock
supermassive-black hole waveform with probability p.3

We use the IMRPhenomXAS waveform template imple-
mented in the jax-based ripple package [48] to
generate the frequency-domain strains for this signal
component. For the explicit choices of the population
parameters see the Appendices.
Finally, there are several details that are relevant

for constructing the comparison to the MCMC method.
Specifically, following the approach introduced in [18,20],
we define averaged data D̄k ≡P

s d̃sðfkÞd̃�sðfkÞ=Nd and
down-sample it through coarse-graining. This yields a new
(binned) dataset Dk̂, where k̂ covers a sparser set of
frequencies fk̂, and comes with weights wk̂ [18,20]. An
unbiased (log-) likelihood for the compressed dataset can be
built, e.g., as a mixture of a Gaussian and a log-normal
component [20]. For the explicit expression see Sec. A in the
Appendices. To sample the parameter space, we use the
EMCEE sampler described in Ref. [49]. Given this setup, we
can define the four benchmark analyses that we present the
results for below:

C1: PL template and LISA noise.
C2: Agnostic template with 5 bins and LISA noise.
C3: Agnostic template with 10 bins and LISA noise.
C4: PL template, LISA noise, and additional transients.

TABLE I. Prior choices for the case studies and analyses
presented in this work for the (dimensionless) amplitudes, tilts,
and instrumental noise parameters.

Parameter Prior choice

(Log) Amplitudes, α, α1 Uð−20;−5Þ
Tilts, γ, γi Uð−10; 10Þ
TM noise, A Uð0; 6Þ
OMS noise, P Uð0; 30Þ

1The assumption of stationarity does not apply to transient
sources, or if so, only statistically.

2This corresponds to about 1=100th of the planned LISA
observation time, however, it suffices to demonstrate our main
points regarding the statistical flexibility and precision agreement
of our algorithm. In addition, though, we explicitly tested the
pipeline with Δf ¼ 10−5 Hz, or about 115 days of data split into
100 segments, and achieved similarly good agreement with
MCMC. We leave the task of optimally scaling this up (e.g.
via a similar coarse-graining scheme to Ref. [20]) to the full
length of the LISA data—including importantly nonstationary
noise components—for future work.

3Specifically we take p ¼ 0.05, which on average would
introduce 5 sources.
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III. SIMULATION-BASED
INFERENCE FRAMEWORK

The implementation (as presented in SAQQARA) of the
TMNRE [42] algorithm in the context of SGWB recovery
is one of the key results of this work. As such, we devote
this short subsection to a description of some of the specific
design choices relevant to SGWB analysis. We do not cover
detailed explanations of the algorithm but instead refer
the reader to, e.g., Ref. [42] for the initial presentation
of TMNRE. In addition, we point the reader to Sec. 2 of
Ref. [27] for a detailed description of the application of
TMNRE to GWs from compact binary coalescence
sources, outlining a lot of the logic we also follow in this
work. Finally, the implementation of the autoregressive
ratio estimation used to explore the parameter space in the
final stage of inference is described in Ref. [44].
To understand where the design choices are made, it is

useful to think of the ratio estimation step in TMNRE in
two parts: compression, and ratio estimation. In particular,
to implement the TMNRE algorithm, one must design a
network architecture that can take in data x and parameters
θ and estimate the ratio rðx; θÞ ¼ pðxjθÞ=pðxÞ, where pðxÞ
is the (Bayesian) model evidence. In practice, x is usually
(or at least can be) a high-dimensional and complicated
data structure, so we normally first define a compression
network that compresses x to some lower-dimensional
summary sðxÞ. This summary sðxÞ is then combined with
θ and inputted into the standard ratio estimators imple-
mented within SWYFT [41]. Importantly, both the summary
and the ratio estimators are optimized simultaneously,
resulting in an automatically learned summary statistic.
As such, for various applications, the main novelty in the
implementation lies in the design of the compression
network that produces the summary sðxÞ. In the current
context, we make use of the following structure. Starting
with SGWB data x that is a time-averaged sequence of
frequency bins, as in Fig. 1, we first perform a normali-
zation step by taking the natural logarithm and then
applying an online normalizing layer [41]. This is purely
for performance reasons in the sense that the network
optimization proceeds more robustly on normalized data. In
the next stage, we do consider the structure of the data,
however, and utilise an architecture similar to that
described in Ref. [27]. In particular, we apply a set of
1-dimensional convolutional layers, organized into a UNet
architecture [50]. The motivation for this is to allow both
the local and global sharing of information across the
various frequency bins as we look to learn the SGWB and
noise templates. Scalability to more complex situations also
guided this part of our architecture, allowing for direct
application to either multiple channels or correlated noise
without any modifications. Finally, we added a simple
linear compression network to summarise this information
into a lower dimensional vector that can then be combined
with the parameters θ. The remainder of the network

consists of the standard ratio estimators4 implemented in
SWYFT and described in Refs. [41,44], optimized on the
standard binary cross-entropy loss relevant to neural ratio
estimation [40,41,51,52]. As a reference, we provide the
various numerical settings choices for the algorithm both in
the SAQQARA release, as well as in the Appendices, where
we also discuss the computational performance.
When designing this architecture, one motivation was to

ensure its scalability to more complex situations. For
example, with this implementation, we can directly apply
this to a LISA data structure containing either multiple
channels or correlated noise without any modifications. In
addition, looking toward analyses carried out in the time-
frequency domain, aside from possibly slight modifications
to the compression network, the entirety of the rest of the
pipeline can remain unchanged. This opens up the pos-
sibility of applying this algorithm directly to, e.g., the
separation of several SGWB components, more complex
noise models including nonstationary noise scenarios, or
varying detector configurations, which is something we
aim to do in future work.

IV. RESULTS AND DISCUSSION

All of the key results for this work are in the context of
the case studies described above and are summarized in
Figs. 1 and 2. In brief, they highlight two key points: first,
SBI techniques reproduce the results from traditional
sampling methods (MCMC in this case). This is true both
in the case of a PL template, as well as a more agnostic fit.
Secondly, when we introduce the additional complexity
from transient sources, our SBI method still produces
unbiased posterior distributions without any modification.
In more detail, we will first discuss the agreement with

traditional methods. To do so, we take case studies C1, C2,
and C3. The first of these is shown by the black solid and
dashed contours in Fig. 1. These highlight very clearly the
fact that we can accurately reproduce the unbiased and
accurate posteriors obtained from a traditional likelihood-
based analysis for a PL template. Furthermore, in Fig. 2, we
illustrate our ability to constrain a more agnostic template
(in this case with 10 signal bins, although the result with 5
bins is shown in the Appendices). The three panels show
the relative constraining power of the analysis via the
posterior draws (blue lines) compared to prior draws (black
lines) for the total signal, as well as the separate SGWB
signal and instrumental noise contribution. For comparison,
the injected signal is shown in yellow across all panels. We
see that we reproduce several desirable characteristics in
this agnostic case, for example, the fact that we obtain tight
constraints on the SGWB signal when it dominates over the

4In particular, we can either estimate the individual
1-dimensional marginals, higher dimensional marginals, or an
autoregressive estimator. All of these are implemented within
SAQQARA.
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instrumental contribution, and wider constraints in the
opposite case, i.e., outside the frequency band in which
the instrument is most sensitive. The specific agreement
with MCMC at the level of the posterior distribution over
parameters for the five bin case is provided in the
Appendices. Again, this highlights our precise agreement
with traditional sampling-based methods.
The second key result is presented via the orange

contours in Fig. 1. This is the result for the case study
C4 described above, where we introduce a population of
supermassive black hole transients into the data. At the
level of data realizations, we can easily understand the
effect of this by looking at the upper inset in Fig. 1. In
particular, the additional transients lead to a relative (and
realization dependent) excess in the mid-frequency region

compared to the noise templates alone. It is important to
note that this excess is not distributed in the same way as
the instrumental noise and SGWB contributions (which are
distributed as colored zero mean Gaussian noise). This
means that the impact of the transients cannot be simply
accounted for in a likelihood-based approach unless each
signal is individually analyzed and the full parameter space
for transient signals is sampled within the MCMC. The cost
of this is significant, however, since the relative dimension-
ality of the problem would then increase by a huge margin
in line with the number of signals (hundreds) multiplied by
the number of signal parameters (tens). If we look to avoid
this and take the naive approach by analysing the data
using the same likelihood model as in C1–C3, we obtain
the dashed orange contours. Not unexpectedly, these are

FIG. 1. Analysis results for the case studiesC1 andC4. Main Plot. Corner plot highlighting the two analysis results for case studiesC1—
which corresponds to the PL template without additional transients (shown in black solid and dashed contours)—and C4—where the
transients are now present (shown in orange solid and dashed contours). The true injected values are highlighted by the dashed black
horizontal and vertical lines, and by the yellowmarkers. Upper inset. Illustration of the explicit data realization (black line) for the case study
C4 along with the injected instrumental noise (pink line), stochastic background signal (blue line), and their sum (dashed black curve).
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significantly biased compared to the true injection value
shown by the yellow dot. We do emphasise that this is not
necessarily an intrinsic limitation of the MCMC approach,
since we knew that the likelihood was incorrect. What this
result emphasises, however, is that if one wants to use
traditional sampling methods, there is a crucial need for
either (a) clean data with all transients removed, or (b) a
higher-dimensional likelihood fitted to each transient, at the
cost of significant sampling time.
At this point, we present the approach using our SBI

algorithm, which looks to provide a compromise between
these two options. Essentially, SBI allows us to implicitly
marginalise over the complicated parameter space intro-
duced by the transients by learning the effective margin-
alized likelihood-to-evidence ratio. This only depends on
the SGWB and instrumental noise parameters and can be
directly sampled. The results of this process are shown by
the solid orange contours in Fig. 1. Crucially, we see that
we are able to provide an unbiased and precise posterior
that correctly accounts for the presence of the transients via
a slight, but noticeable broadening of the SGWB parameter
(α and γ) posteriors. Furthermore, we see that we are
actually able to obtain identical constraints on the noise
parameters as compared to the C1 case. There are two
reasons for this: firstly, in our setup, the transients mainly
affect the mid-frequency region, so the noise parameters
can be constrained to the same precision from the low- and
high-frequency data, and secondly, we used the same data
realization for the SGWB and noise components. In
addition to this, we carry out standard posterior coverage
tests [53] for this case study, which are provided in the
Appendices. We find that for all parameters, our posteriors
are extremely well calibrated, adding strength to the claim
that we correctly marginalise over the additional transient
components. This is a key result of this work and is the
connection point to something resembling the LISA global

fit challenge. In particular, this shows that SBI provides the
possibility to directly analyse the SGWB or instrumental
noise component of a LISA data stream without necessarily
removing all transient artifacts. Instead, they could be simply
included in the data generation, and implicitly marginalized
over using the procedure presented in this work.

V. CONCLUSIONS AND OUTLOOK

This work is a first step in demonstrating the potential of
SBI techniques in addressing the data analysis challenges
of LISA. Specifically, we showed in the case studies
C1–C3 that posteriors computed with SBI match the ones
obtained with traditional likelihood-based methods. The
final study (C4) shows that these results are robust even in
the presence of additional transients (when included in the
training data), demonstrating the potential of directly
estimating marginal posteriors, which poses a serious
challenge in the MCMC approach. While we choose a
specific class of transients, we anticipate this result to hold
for different signals (or noise features), too. More inves-
tigations are required to test the robustness and limitations
of the methodology. This characteristic of SBI opens up the
intriguing possibility of integrating similar techniques in
(or using them as independent cross-checks for some parts
of) the LISA global fit pipeline.
Building on this, future work will need to address (i) the

inclusion of multiple data channels (nominally the standard
A, E, and T basis that is well-established in the literature),
(ii) more realistic source modeling, providing either a full
range of possible sources or a representative and realistic
output of an initial analysis where sources are fully or
partially removed, as well as robustness tests in view of
limited source knowledge and (iii) instrumental noise that
is less well-calibrated, nonstationary, correlated, and/or
contains more relevant noise components. We stress that
none of these strike us as fundamental obstacles within the

FIG. 2. Reconstruction of stochastic background and instrumental noise components for an agnostic template with ten signal bins. In
all panels, draws from the initial Bayesian prior are shown in black, whereas the resulting posterior draws are shown in blue. The injected
signal is shown in yellow. Left: reconstruction of the total power-spectral density (PSD). Middle: Reconstruction of the individual
stochastic background component. Right: reconstruction of the instrumental noise contribution.
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infrastructure presented here and that the simplifying assump-
tions taken in this work only served as a starting point in the
development of these techniques. In addition, we envisage
applications of SBI techniques to perform parameter estima-
tions in other blocks of the LISA analysis problem, main-
taining the ability to correctly marginalize over all other
parameters. In this spirit,wehope that the releaseof our public
code will trigger some of these developments.

Note added. In parallel to this work, neural posterior
estimation (as opposed to neural ratio estimation used
here) was investigated in Ref. [47], demonstrating in
particular the feasibility of efficiently reconstructing signals
using the full 3 years of LISA data and 3 data channels.
They follow the same simplifying assumptions on the noise
model as employed in this work.

Along with the results presented here, we also provide
an extendable public code which can be found in [54].
GitHub: The SAQQARA simulation and inference library is
available in [54] (peregrine-gw/saqqara). In addi-
tion, the TMNRE implementation SWYFT is available in
[55] (undark-lab/swyft).
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APPENDIX A: LISA MEASUREMENTS

This section summarizes the formalism to characterize
signal and noise in LISA. Following Ref. [13], we start with
a brief description of single link GW measurements,
proceed by discussing the noise PSDs, and conclude by
introducing time delay interferometry (TDI) variables. As
discussed in the main body of this work, the data dðtÞ

contains a linear superposition of signal and noise, and has
a Fourier transform5 which reads

d̃ðfÞ ¼
Z

T=2

−T=2
e2πiftdðtÞdt; ðA1Þ

where T is the observation time. Assuming these compo-
nents are uncorrelated—which implies we can treat them
independently—and stationary—which implies vanishing
correlations between different frequencies—we obtain

hd̃ðfÞd̃�ðf0Þi ¼ 1

2
δðf−f0Þ½SNðfÞþSGWðfÞ�

¼ 1

2
δðf−f0Þ

�
SNðfÞþ

X
λ

RλðfÞPλ
hðfÞ

�
;

ðA2Þ

where SNðfÞ, SGWðfÞ are the noise and signal PSDs. These
are real, positive, and even functions of f. In the second
equality, we have further expanded SGWðfÞ in terms ofRλ,
the sky-averaged LISA response function, which projects
the GW PSD Pλ

h (with λ running over the two GW
polarizations), onto the data. For this purpose, we have
assumed Pλ

h to be homogeneous, isotropic, and diagonal
in the GW polarization basis (for details, see, e.g.
Refs. [13,20,56,57]). For completeness, we recall that,
given the intensity IðfÞ≡P

λ P
λ
h=2, the SGWB energy

density reads:

ΩGWh2 ≡ 4π2

3ðH0=hÞ2
f3IðfÞ; ðA3Þ

where H0 ≈ 3.24 × 10−18h Hz is the Hubble constant
today and its dimensionless value [58] is h ¼ 0.6766�
0.0042. Since planar interferometers like LISA are not
sensitive to chirality,6 RL ¼ RR (with L, R, denoting the
two GW helicities), and thus, the data only depends
on IðfÞ.
For the transient signals, we generate a database of

2 million waveforms evaluated on the same frequency grid

5We are assuming dðtÞ is a continuous function of time, which
is not strictly correct since, in reality, data sampling occurs at a
finite rate (and typically is impacted further by some down-
sampling procedure). On the other hand, since these effects will
only affect the high-frequency end of the spectrum (f ≳ 1 Hz),
which we do not include in the analysis, we can safely ignore this
effect.

6Due to symmetry, left and right-hand polarized GW waves
coming from opposite directions would induce the same effect in
a planar interferometer. Possible ways to break this degeneracy
and measure chirality include, e.g., correlating the signal mea-
sured by non-coplanar interferometers [59–61] or using the
dipole induced by the motion of the detector with respect to
the SGWB frame [57,62,63].
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as in the main analyses.7 Each waveform has parameters
sampled uniformly from the priors: Mc ∈ ½8; 9� × 105M⊙
(chirp mass), η∈ ½0.25; 1� (mass ratio), χ1; χ2 ∈ ½−1; 1�
(dimensionless spins), dL ∈ ½5; 10� × 104 Mpc (luminosity
distance), tc ¼ 0 s (time of coalescence), and ϕc ¼ 0
(phase). We then rescale the strain amplitude of the
transient by 10−3 to make them behave like a population
of sub-threshold sources. While this setup is not fully
realistic, it provides a case study to show that these
injections are sufficient to bias the MCMC approach.

1. Single link signal response and noise PSDs

Following the notation of Ref. [13], the fractional
frequency shift ηGWij ðtÞ induced by a GW perturbing the
path of a photon released at time t − Lij from an emitter
located at x⃗i, to a receiver x⃗j at time t, (with Lij ≡
jx⃗i − x⃗jj), reads

ηGWij ðtÞ ¼ i
Z

∞

−∞
df

f
fij

e2πifðt−LijÞ

×
Z

dΩk̂e
−2πifk̂·x⃗i

X
λ

ξλijðf; k̂Þh̃λðf; k̂Þ; ðA4Þ

wherewehave expanded theGWinplanewaves,with k⃗ being
the GW momentum, Ωk̂ denoting the solid angle, h̃λðf; k̂Þ
being the coefficients of the expansion, and λ runningover the
twoGWpolarizations.Wehave also introduced the character-
istic frequencies fij ≡ ð2πLijÞ−1 and

ξλijðf; k̂Þ¼ eπifLijð1−k̂·l̂ijÞsincðπfLijð1þ k̂ · l̂ijÞÞ
l̂aijl̂

b
ij

2
eλabðk̂Þ;

ðA5Þ

where l̂ij ¼ ðx⃗j − x⃗iÞ=jx⃗j − x⃗ij is a unit vector pointing from
i to j and eλabðk̂Þ are the GW polarization tensors. Let us
proceed by assuming that fluctuations in the arm lengths are
negligible and the LISA configuration is perfectly equilateral
at all times,8 so thatLij ¼ L andfij ¼ f�. By substituting the

statistical properties for a homogeneous, isotropic, and non-
chiral SGWB GW signal

hh̃λðf; k̂Þh̃�λ0 ðf0; k̂0Þi ¼ δðf − f0Þδðk̂ − k̂0Þδλλ0
Pλλ0
h ðfÞ
16π

hh̃λðf; k̂Þh̃λ0 ðf0; k̂0Þi ¼ 0; ðA6Þ

where Pλλ0
h ðfÞ denotes the one-sided GW PSD, and compar-

ing with Eq. (A2), we express the signal PSD as

SGWij;mnðfÞ≡
X
λ

Rλ
ij;mnP

λλ
h ðfÞ

≡
�
f
f�

�
2X

λ

Pλλ
h ðfÞ

×
Z

dΩk̂

4π
e−2πifk̂·ðx⃗i−x⃗mÞξλijðf; k̂Þξλmnðf; k̂Þ�: ðA7Þ

Here, Rλ
ij;mn are the (polarization-dependent) single link

response functions.
As far as noise is concerned, we assume two contribu-

tions dominate the noise budget: test mass (TM) noise,
typically dominating at low-frequency, and optical metrol-
ogy system (OMS) noise, typically dominating at high
frequencies. These are the two preeminent secondary
noises that remain unsuppressed at the end of the TDI
procedure9 (see next section). TM and OMS noise con-
tribute to the single link measurement as

ηNijðtÞ ¼ nOMS
ij ðtÞ þDijnTMji ðtÞ þ nTMij ðtÞ; ðA8Þ

where Dij denotes the time-delay operator that, under the
assumptions of the present work (static and equilateral
LISA constellation), acts on any function of time xðtÞ as
DijxðtÞ ¼ xðt − LÞ, which, in the frequency domain,
reduces to a phase shift represented by a multiplicative
expf−2πifLg factor. To express the noise contribution to
Eq. (A2), we should then proceed by computing the noise
PSD SNðfÞ. For this purpose, we assume the individual
noise terms to be uncorrelated and zero mean so that

hñTMij ðfÞñTM�
lm ðf0Þi ¼ δij;lm

2
STMðfÞδðf − f0Þ;

hñOMS
ij ðfÞñOMS�

lm ðf0Þi ¼ δij;lm
2

SOMSðfÞδðf − f0Þ; ðA9Þ

This in turn assumes that all the TM and OMS components
are equal. Furthermore, following Ref. [5], the PSDs are
given by:

7Assuming each merger to occur within a data segment, the
observation time defines, beyond the frequency resolution, the
minimal frequency at which the system emits in that segment. In
practice, this would correspond to cutting each of the transients at
some minimal frequency, such that the time for the evolution
from this frequency to the mergers is ≤ Tc. For the sake of
simplicity, we ignore this effect, which, in some sense, is only an
artifact of the short observation period used in this analysis.

8In reality, several effects will contribute to breaking this
perfectly symmetric configuration, leading to unequal and time-
varying arm lengths. A more accurate description of the system
should account for these modifications, which, e.g., will break the
orthogonality of the usual AET Michelson TDI variables (see
next section). For a discussion of some of these effects and their
data analysis implications, see e.g. Ref. [13].

9A more realistic noise model would also have to account for
subdominant contributions, e.g., the tilt-to-length noise [64–69],
due to angular jitter in the readout system).
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STMðfÞ ¼ A2 × 10−30 ×

�
1þ

�
0.4 mHz

f

�
2
�

×

�
1þ

�
f

8 mHz

�
4
�
×

�
1

2πfc

�
2

× ðm2=s3Þ;

SOMSðfÞ ¼ P2 × 10−24 ×

�
1þ

�
2 × 10−3 Hz

f

�
4
�

×

�
2πf
c

�
2

× ðm2=HzÞ: ðA10Þ

In these expressions, the amplitudes of the TM and OMS
noise PSDs are controlled by the dimensionless A and P
parameters, respectively. To reproduce the noise level
specified in [70], we set the fiducial values for these
parameters to be A ¼ 3, P ¼ 15.
We stress that this is an overly simplified model of noise

expected in LISA. For example, note that LPF’s in-flight
noise differs in level and shape from predictions, mostly
at frequencies below 10−3 Hz. Moreover, we have not
included any non-stationarity, such as glitches or drifts in
the instrument noise. These effects will almost certainly be
present in realistic data and will need to be taken into
account in the development of data analysis pipelines. For
longer observation times, possible anisotropies in the
SGWB would also need to be taken into account.

2. Projection on the TDI variables and likelihood

TDI [71–77] is a data processing technique consisting of
combining several interferometric measurements, typically
performed at different times, that will be used in LISA to
suppress the primary noise sources (mostly laser noise, a
white noise contribution several orders of magnitude larger
than the required noise level). While several TDI variables
can achieve the target noise suppression [12,78–80], in this
work, we focus on the most commonly used variables,
the Michelson XYZ variables, and their orthogonal combi-
nations, typically referred to as AET TDI variables.
Moreover, several generations of TDI variables exist, which
achieve noise cancellation in scenarios with increasing
complication and realism. In the present work, we employ
first-generation TDI variables, which can suppress primary
noises for a constellation with unequal (but constant) arm
lengths. This choice is sufficient, given that we restrict
ourselves to the case of a maximally symmetric, i.e.,
equilateral and equal noise levels, configuration. In this
framework, the X TDI variable is defined as:

X ¼ ð1 −D13D31Þðη12 þD12η21Þ
þ ðD12D21 − 1Þðη13 þD13η31Þ; ðA11Þ

and the Y and Z variables correspond to cyclic permuta-
tions of the three satellites. Effectively, working in the XYZ
TDI basis consists of considering three interferometers that
share their arms, leading to correlated measurements. For

this reason, it is customary to introduce the AET basis,
which, under the assumptions made throughout this work,
can be shown to be orthogonal. For explicit expressions of
the noise PSDs in the AET basis see, e.g., Refs. [13,20].
We recall that for simplicity, in the analysis carried out in

this work, we used the X TDI variable only, the generali-
zation to all channels and to higher generation TDI
variables is left for future work. In particular, exploiting
the different response functions of these channels will
enable some discrimination between signal and noise [20],
although degeneracies remain when the instrument is
modeled more realistically. Under the assumptions of this
work, a generalization to three TDI channels is straightfor-
ward, however relaxing some assumptions on the sym-
metry of the configuration would require more elaborate
treatment [13].
As discussed in Ref. [20], the data obtained following the

procedure discussed in the main text presents mild non-
Gaussianity. Thus, the (log-)likelihood should include
some skewness corrections to model this component and
avoid a systematic bias in the results. It is known [81–84]
that an appropriate (log-)likelihood has form:

lnLðθ⃗jDkÞ ¼
1

3
lnLGðθ⃗jDkÞ þ

2

3
lnLLNðθ⃗jDkÞ; ðA12Þ

where θ⃗ ¼ fθ⃗s; θ⃗ng are the parameters (with θ⃗s, θ⃗n being
the signal and noise parameters, respectively), and lnLG,
lnLLN are a Gaussian and log-normal likelihood:

lnLGðθ⃗jDkÞ ¼ −
Nd

2

X
k

wk

h
1 −Dk=Dkðθ⃗Þ

i
2
;

lnLLNðθ⃗jDkÞ ¼ −
Nd

2

X
k

wkln2
h
Dkðθ⃗Þ=Dk

i
: ðA13Þ

Here, DkðθÞ denotes the theoretical model for the data
DkðθÞ ¼ ΩGWðfk; θÞ þ Ωnðfk; θÞ, with ΩGWðfk; θÞ and
Ωnðfk; θÞ, being the signal and noise model, respectively.

APPENDIX B: TECHNICAL DETAILS,
COVERAGE TESTS, AND PERFORMANCE

In this section, we report some technical details con-
cerning the implementation of our technique, discuss its
computational performance, and present coverage test
results for the case study C4, which includes the additional
transient sources. Starting with technical details regarding
the implementation of SAQQARA, several numerical settings
should be chosen for the general structure of the algorithm,
as well as the network architecture. Each of the options is
explained in detail within the configuration files in the
SAQQARA repository, however, here we detail the choices
made to produce the results in this work. First, in each
round of inference, we use 500,000 simulations. For
training the network, we train for a maximum of 50 epochs,
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and set the patience before early stopping is triggered (due
to a non-decreasing validation loss) to 7 epochs. Note
that after training, we then reset the network to the state
with the lowest validation loss. We take training and
validation batch sizes of 512, splitting the simulation
dataset in the ratio 0.9∶0.1, and start with an initial learning
rate of 2 × 10−5. In terms of inference, for truncating the
1-dimensional priors, we take α ¼ 10−5 (in the sense of
Refs. [27,42]). For the sampler, we follow the notation in
Ref. [44] and take ϵ ¼ 10−3, logLmax ¼ 500, nbatch ¼ 10,
nsamples=slice ¼ 20, and nsteps ¼ 4. As mentioned, these are
detailed both in the SAQQARA repository, as well as in
Ref. [44]. Finally, for the MCMC runs, we take
nburn ¼ 500, nsteps ¼ 1000, rconv ¼ 10−3, and a maximum
of 50 iterations.
As mentioned in the main text, coverage tests are an

important consistency check of our SBI pipeline, especially
in scenarios where a comparison to a traditional method
like MCMC is not possible (either computationally, or
statistically). As a brief review, coverage tests (see e.g.
Ref. [53] for a more complete discussion in the context of
SBI) implement the idea that in Bayesian parameter
estimation, repeated inference over different noise/statis-
tical realizations of the same signal should result in
posteriors that shift relative to the true value. The rationale
behind this sort of expected coverage test is that—simply as
a result of statistical fluctuations—the x% credible interval
for the posterior should contain the simulation-truth value
x% of the time. To carry out this test for the case study in
this work, we generated 1000 additional test simulations
generated from the truncated prior. We then perform
inference on each observation. In each case we can note
how often the injected value was contained inside the x%
confidence interval and construct a cumulative distribution.
A well-calibrated posterior distribution will be a totally
diagonal line when the expected coverage is plotted against
the empirical findings. The results for case study C4 are

shown in Fig. 3 for each model parameter. We see that in
every case, we obtain extremely well calibrated coverage
for our posterior estimates. This strongly supports our
claim in the main text of recovering unbiased posteriors for
noise and SGWB parameters even in the presence of
transient signals.
The final relevant discussion point concerns the compu-

tational performance of our SBI algorithm. In terms of
computational complexity, there are a number of steps to
generating posteriors; simulation/data generation (which is
fully parallelized within SAQQARA); network training/like-
lihood-to-evidence estimation; and inference. With the
setup considered here, we perform the inference in two
steps. The first of these learns the individual marginal
posteriors for the SGWB and noise parameters. This step is
fully amortized (in the sense that once the training is
complete, the inference is almost immediate on any signal)
and allows us to efficiently “zoom in” (or truncate) to the
prior region most relevant to the given observation, see
Refs. [27,42] for more details on this process. Then, in the
second step, we use the techniques developed in Ref. [44]
to estimate the full joint posterior, which we explore with a
pytorch-based sampling technique.10 In terms of timing
(on a 20 CPU-core resource with a single NVIDIA GeForce
GT 73 graphics card), the 500,000 simulations we use in
each step took around 15 minutes to generate, and the
subsequent network training took an additional 25 minutes
(which does not need to be repeated). For the 1-dimen-
sional ratio estimators, the inference is then essentially
instantaneous, only requiring a single network evaluation.
For the higher-dimensional marginals, the sampling adds a
slight overhead (around 7 minutes in e.g. case study C1).

FIG. 3. Coverage test results for the analysis of the power law template in the presence of additional transient signals (case study C4).
From left to right, the panels show the coverage statistics for each of the four parameters in the model (α, γ, A, P). For all panels, the
empirical coverage is shown on the horizontal axis, and the nominal coverage is shown on the vertical axis. The 68% confidence interval
on the coverage is shown by the blue shaded region, and the central value is shown by the pink line.

10We could also have estimated, e.g., 1- or 2-dimensional
marginals for any/all parameters, depending on the specific
inference needs.
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APPENDIX C: FULL RESULTS
FOR AGNOSTIC TEMPLATE FITS

In addition to the results presented in the main text, here
we show additional results for the case studies C2 and C3.
In particular, in Fig. 4, we illustrate the reconstruction of
the stochastic background and instrumental contributions in
the context of the agnostic template with ten signal bins.
Furthermore, in Fig. 5, we present the analysis at the level
of parameter constraints for the agnostic template fit with
five signal bins. We also show the comparison with the
MCMC approach, which we see agrees extremely well
with our SBI approach. Finally, in Fig. 6, we show the
corresponding analysis for the ten bin agnostic fit.

APPENDIX D: REVIEW OF
SIMULATION-BASED INFERENCE

AND TMNRE

In this section we provide a brief review of simulation-
based inference. Specifically, we cover the various classes
of SBI methods before focusing on the technicalities
of TMNRE.

1. Classes of SBI algorithm

All SBI algorithms are designed to answer the same
question: how can we do robust Bayesian inference given
an implicit representation of the likelihood through a
generative model? In other words, suppose we are only
given a “simulator” that takes model parameters θ ¼
ðθ1; θ2;…Þ and stochastically generates data x, then the
key idea is that running this simulator is equivalent to
sampling from the likelihood x ∼ pðxjθÞ. This is the origin
of the term “likelihood-free inference”, although this has
now been replaced by the more appropriate “simulation-
based” or “implicit likelihood” description [24]. It is worth
noting that many of the recent advances in SBI have been

facilitated by corresponding developments in machine
learning. This has opened up the opportunity to use SBI
methods to analyse high-dimensional and complex data
structures such as images, time series, point clouds etc.
On a more historical note, all of these algorithms move
beyond the paradigm of approximate Bayesian computa-
tion (ABC) [85], which requires the choice of a hand-
crafted summary statistic and distance measure to quantify
the similarity between two sets of data.
There are a number of classes of SBI algorithms that vary

in terms of how they estimate the relevant quantities in
Bayes’ theorem. In each case, the general goal is to obtain
the posterior pðθjxÞ ¼ pðxjθÞpðθÞ=pðxÞ, where pðθÞ is the
(Bayesian) prior and pðxÞ is the (Bayesian) evidence. In
particular, they can be broadly classified as follows:

(i) Neural posterior estimation (NPE). These methods
aim to directly estimate the posterior pðθjxÞ,
typically utilizing neural network structures such
as normalizing flows, which are manifestly nor-
malized probability densities and easy to sample
from [35]. This has been used successfully in a
number of contexts including compact binary GW
data analysis [28,29,86].

(ii) Neural likelihood estimation (NLE). In contrast to
NPE, likelihood-estimation techniques construct an
approximation to the (simulated) data likelihood
pðxjθÞ [35,38,39]. This can then be sampled using
traditional stochastic sampling techniques such as
MCMC or nested sampling.

(iii) Neural ratio estimation (NRE). The third
class of methods is neural ratio estimation
[40,42,51,52,87,88], which, contrary to the two
mentioned above, approaches the Bayesian infer-
ence problem by constructing an estimate of the
likelihood-to-evidence ratio rðx; ϑÞ ¼ pðxjϑÞ=
pðxÞ ¼ pðϑjxÞ=pðϑÞ, where ϑ is some collection

FIG. 4. Reconstruction of SGWB and instrumental noise components for an agnostic template with five signal bins. In all panels,
draws from the initial Bayesian prior are shown in black, whereas the resulting posterior draws are shown in blue. The injected signal is
shown in yellow. Left: reconstruction of the total power-spectral density. Middle panel. Reconstruction of the individual SGWB
component. Right: reconstruction of the instrumental noise contribution.
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FIG. 5. Parameter constraints for agnostic template fit with five signal bins. Main plot. Corner plot highlighting the relative agreement
between the MCMC (shown by orange dashed lines) and SBI (shown in solid black) approaches for all parameters in the agnostic
template fit with five signal bins. The true injected values are highlighted by the dashed black horizontal and vertical lines, and by the
yellow markers. Upper inset. Illustration of the explicit data realization (black line) for the case study C2 along with the injected
instrumental noise (pink line) and stochastic background signal (blue line).
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FIG. 6. Parameter constraints for agnostic template fit with five signal bins. Main plot. Corner plot highlighting the parameter
constraints using the SBI approaches for all parameters in the agnostic template fit with ten signal bins. The true injected values are
highlighted by the dashed black horizontal and vertical lines, and by the yellow markers. Upper inset. Illustration of the explicit data
realization (black line) for the case study C3 along with the injected instrumental noise (pink line) and stochastic background signal
(blue line).
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of parameters in θ, or derived parameters. The
equality here follows simply as a result of proba-
bility rules and therefore if one can construct rðx; ϑÞ,
then it is possible to directly access the posterior by
re-weighting prior samples. This work is based on a
specific implementation of NRE, truncated marginal
neural ratio estimation (TMNRE) [41], which we
discuss in detail below.

2. Truncated marginal neural
ratio estimation (TMNRE)

In the main text, we discussed the reasons whywe believe
that, from the big-picture perspective, TMNRE is a suitable
algorithm for the application of SBI to SGWB analysis.
Broadly, these were focussed on two key properties of the
algorithm: the truncation/sequential aspect (the “T”), and the
ability to directly estimatemarginal posteriors (the “M”).We
argued that we expected these to lead to significant simu-
lation efficiency and statistical flexibility when applied to
the LISA data analysis challenge. In this section, we briefly
review the technical aspects of our TMNRE algorithm. It is
also worth noting that TMNRE has been successfully
applied in a number of scenarios beyond SGWB and
LISA data analysis, including CMB and 21 cm cosmology,
stellar streams, strong lensing image analysis, point sources,
and GWs from compact binaries [25–27,30,31,43,89–91].
Estimating the ratio rðx;ϑÞ. The first point to clarify

about the TMNRE algorithm is how it estimates rðx;ϑÞ. In
particular, we note here that ϑ need not be the full set of
model parameters θ. In what follows, it could be a single
parameter ϑ ¼ θi, a set of parameters ϑ ¼ ðθi; θj;…Þ, or
some derived model parameter. This directly encodes the
marginal aspect of the algorithm and defines what we mean
in the main text with “implicitly marginalizing” over, e.g.,
the parameters of transient signals. With this clarified,
the estimation of the ratio proceeds as follows: first, we
note that we can reexpress rðx;ϑÞ ¼ pðxjϑÞ=pðxÞ ¼
pðx;ϑÞ=pðxÞpðϑÞ. In other words, rðx;ϑÞ is the ratio
between a joint sample x;ϑ ∼ pðx; ϑÞ ¼ pðxjϑÞpðϑÞ and
a marginal sample x;ϑ ∼ pðxÞpðϑÞ. It is worth noting that
for any choice of ϑ, it is trivial to get either set of samples.
Joint samples x;ϑ ∼ pðxjϑÞpðϑÞ, properly marginalized
over the variation in the other parameters, are obtained
by running the simulator on prior samples from the full
model θ ∼ pðθÞ. Parts of the parameter space that are not of
interest can be simply discarded or masked. Similarly, to
generate marginal samples, one can take a pair ðx; θÞ from a
simulation run, and resample θ ∼ pðθÞ. Again irrelevant
parameters can be discarded.
The second step for ratio estimation is to construct a

binary classification task between joint and marginal
samples. Specifically, the goal is to find a classifier
dϕðx;ϑÞ with some trainable parameters ϕ (almost always
in the form of a neural network and its weights) that

optimally outputs, e.g., dϕðx;ϑÞ ¼ 0 if x, ϑ is a joint sample
and dϕðx;ϑÞ ¼ 1 if it is drawn marginally. Said differently,
we can rephrase the task of performing parameter inference
as a classification (marginal vs. joint samples) problem,
which is extremely well suited to modern supervised
machine learning techniques. In practice, the mapping of
ratio estimation onto the binary classification task defined
above is realized using the standard TMNRE (binary cross-
entropy) loss function [41],

L½fϕ� ¼ −
Z

dxdϑ
�
pðx;ϑÞ ln�σðfϕðx;ϑÞÞ	

þ pðxÞpðϑÞ ln�1 − σðfϕðx; ϑÞÞ
	

; ðD1Þ

where dϕðx;ϑÞ ¼ σðfϕðx;ϑÞÞ and σðxÞ ¼ ð1þ e−xÞ−1 is
the sigmoid function. The main motivation to justify such
choice for the loss function is that it can be shown
analytically (i.e., taking a functional derivative with respect
to fϕ) that the optimal classifier f⋆ϕðx;ϑÞ is pre-
cisely f⋆ϕðx; ϑÞ ¼ ln rðx;ϑÞ.
The above review explains the general reason that

TMNRE works as a parameter inference algorithm, and
also highlights how it can be used to implicitly marginalise
over any part of the model. To further emphasise this point,
TMNRE does not require any hand-crafted or analytic
method for marginalization, just the ability to sample from
a simulator, and mask/ignore the parameters that you wish
to marginalize over.
Truncation. Before we end this section by discussing the

relevant algorithm design choices in the context of SGWB
analysis, we will briefly explain how truncation, or “zoom-
ing-in” is achieved. To illustrate this process, imagine that ϑ
is just a single parameter ϑ ¼ θi and that we have a learned
estimator r̂ðx; θiÞ of the ratio rðx; θiÞ. Then, to obtain
posterior estimates for some observation x0, we can sample
from the prior θi ∼ pðθiÞ and reweight by the ratio
rðx0; θiÞ ¼ pðθijx0Þ=pðθiÞ. In this process, if θi is a
well-measured parameter, then there will be regions where
rðx0; θiÞ is very small. The general intuition behind the
truncation part of TMNRE is to sequentially exclude these
regions from the initial prior range (without changing the
shape of the prior), and re-simulate new data targeting the
region of interest. This approach has been shown to be
extremely simulation efficient compared to either tradi-
tional joint inference or amortized techniques [25,27,43] to
analyze data for individual GW observations. See
Refs. [41,44] for a technical description of how this is
achieved in single- and multiparameter setups, as well as
the various precision settings that are required to achieve
efficient but conservative truncation.

3. Design choice for SGWB analysis

Within this general framework, there are a number of
design choices that are relevant to the application of
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TMNRE to SGWB analysis. The most obvious of these is
the forward simulation model, which we discuss in the main
text. The second set of choices are the TMNRE settings
which are also discussed above. The final concrete design
specifications that are required concern the design of the
network architecture for the classifier fϕðx;ϑÞ. As we
mention in the main text, for the application of TMNRE,
this network typically splits into two components: a com-
pression network s̃ðxÞ and a ratio estimator r̃ðs; ϑÞ, which
are combined to getfϕðx;ϑÞ ¼ r̃ðs̃ðxÞ; ϑÞ. Importantly, both
the compression network s̃ and r̃ are trained simultaneously.
This ensures that no hand-crafted compression statistics are
required, but rather, they are learnt directly. In our imple-
mentation, we use a relatively standard form for the ratio
estimator r̃ðs; ϑÞ, see e.g. Refs. [41,44], and therefore we
spend the rest of the section explaining the choices for the
compression network s̃ðxÞ.
Ultimately the compression network architecture that we

chose for s̃ðxÞ is motivated by the data that we are trying to
analyse for extracting the SGWB. In particular, in terms
of structure, the data x consists of noise variances
hd̄⋆ðfiÞd̄ðfiÞi across a sequence of frequency bins fi, in
one or more channels. We know that broadly, the signal we
are looking for in this work is characterized by a set of
parameters θSGWB that define a template that spans the
various bins. Beyond this, we know that there are/could
be additional contributions from instrumental noise or

transient sources that may induce excesses to the signal,
or correlated, non-Gaussian statistics across frequency bins.
This physical intuition motivated the main component of
the compression network in SAQQARA, which is essentially
a 1-dimensional version of a unet architecture, similar to
that described in Ref. [27]. In simple terms, the unet
consists of two parts: a part that shrinks the initial data
down, and a second part that rescales it back up. In the
downscaling part, the goal is to gradually downsample
(using a sequence of convolutional and max-pooling layers)
the data and extract sequentially more fine-grained features.
This creates an information bottleneck at the bottom of the
“U” structure which encourages the network to extract the
most important features from the data. In the decompres-
sion step, the unet attempts to rebuild the data, with
various segments identified and classified. The final tech-
nical addition to the network architecture is the existence of
“skip” connections, which allow for the higher-level
features learned in the downsampling steps to be used in
the corresponding reconstruction. In the context of LISA
data, we can imagine this architecture first extracting the
relevant frequency bins for a given SGWB signal, before
focussing on the fine-grained details that are controlled by
e.g. the template, and then reconstructing the signal. These
are very general statements of course, but one of our aims
with the SAQQARA (see github repository) pipeline is to be
agnostic to the classes of excess on top of an SGWB signal.
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