
Impact of modified gravity theory on neutron star
and nuclear matter properties

Naosad Alam ,1,* Subrata Pal,1 A. Rahmansyah ,2 and A. Sulaksono 2

1Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research,
Mumbai 400005, India

2Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia

(Received 6 September 2023; accepted 2 February 2024; published 5 April 2024)

New observational data measured with high degree of accuracy of compact isolated neutron stars and
binary stars in gravitational wave remnants have the potential to explore the strong field gravity. Within the
framework of energy-momentum squared gravity (EMSG) theory, we study its impact on several properties
of neutron stars and plausible modifications from the predictions of general relativity. Based on a
representative set of relativistic nuclear mean field models, nonrelativistic Skyrme-Hartree-Fock models,
and microscopic calculations, we show deviations of neutron star mass-radius sequence in EMSG theory as
compared to general relativity. The variation in the effective nuclear equation of state in EMSG results in
distinct magnitudes in the reduced pressure, speed of sound, and maximum compactness at the center of
neutron stars. We perform extensive correlation analysis of the nuclear model parameters with the neutron
star observables in light of the new observational bounds. Perceptible modifications in the correlations are
found in the models of gravity that provide different estimates of the slope and curvature of nuclear matter
symmetry energy. The available neutron star data, however, do not impose stringent enough constraints for
a clear evidence of deviations from general relativity.
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I. INTRODUCTION

Understanding the stellar structures, such as the compact
neutron stars, relies entirely on the physics of high-density
matter [1]. The two major impediments to a precise
determination of neutron star (NS) properties at supra-
nuclear densities are the lack of detailed knowledge of
nuclear interaction, in particular [2–4], and gravitational
interaction [5–9]. The repulsive nuclear equation of state
(EOS, characterizing the dependence of matter pressure P
on energy density ρ) and the balancing attractive strong
field gravitational physics are intertwined via the Tolman-
Oppenheimer-Volkoff (TOV) equations [10,11] for hydro-
static equilibrium of the star configuration; hence their
uncertainties could impact the predictions of structure and
properties of neutron stars.
While terrestrial experiments and ab initio calculations

provide nuclear matter description only about the saturation
densities, one relies on several sophisticated nuclear many-
body interaction theories [2,3] for high-density behavior.
These models by construction reproduce the ground state
nuclear matter properties; as a consequence, the higher-
density predictions of these EOS are very diverse and
remain largely unconstrained. Particularly uncertain are the
supranuclear density behavior of nuclear symmetry energy

esym, its slope, and curvature at saturation density and thus
the EOS of neutron-rich matter [1,12,13]. Considerable
attempts have been made to put stringent constraints on
the EOS by employing the combined measurements of
neutron star masses and radii, as well as the observed
tidal deformability bound from the detected gravitational
waves [14].
On the other hand, the impact of various theories of

gravity in the strong field regime remains largely unex-
plored [5,8]. While Einstein’s general theory of relativity
(GR) continues to be a very effective theory of gravitational
interaction at various scales, especially with the detection
of gravitational waves, sufficient motivation to investigate
alternate viable theories of gravity arises from unexplained
dark matter and dark energy at the Galactic and cosmo-
logical scales and the presence of singularity in the early
Universe and inside black holes [6]. Being a superdense
object with strong gravitational field, neutron stars offer an
exciting avenue for investigation of general relativity in the
strong field or high curvature domain and open up a
direction for the study of new gravitational physics.
Hence, it will be appealing to explore and test alternative
theories of gravity in the case of superdense stars in
addition to the traditional approach based on GR.
In the absence of a fundamental quantum gravity theory

for the description of complete gravitational action, the
formulation of modified theories mainly focused initially*naosad.alam@tifr.res.in
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on the simplest modification of the gravitational Lagrangian
by some analytic function fðRÞ different from the linear
function of the spacetime curvature (the Ricci scalar)R. This
approach enforces a modification on the left-hand side of
Einstein’s field equations Rμν − gμνR=2 ¼ κTμν, in the
usual notation [5]. Subsequently, a generalized fðR; TÞ
gravity was developed [15] that also includes the trace T
of the energy-momentum tensorTμν ofmatter.More recently,
a more generic covariant form was proposed that considers a
nonlinear Lorentz scalar involving the entire matter
Lagrangian fðR; T2Þ≡Rþ αðT2Þn ¼ Rþ αðTμνTμνÞn,
dubbed the energy-momentum powered gravity (EMPG),
where α is a parametric constant [6,7,9,16–19]. This theory
provides nonminimal matter and geometry coupling and
introduces a higher-order contribution to thematerial stresses
on the right-hand side of the Einstein equations. The case
with dimensionless parameter n ¼ 1 (referred to as energy-
momentum squared gravity, EMSG) can be effective at high-
energydensities relevant to the neutron star interior [6,7]. The
EMSG theory also resolves the ineffectiveness of the
fðR; TÞ gravity for a perfect fluid with EOS P ¼ ρ=3,
where the trace T ¼ 0 and fðR; TÞ reduces to the usual
fðRÞ theory. The EMSG gives deviations from GR also at
lowcurvaturedomains [20] andcompatible toGRat vacuum.
Technically, the field equations alter the expressions of the
TOV equations and hence the astrophysical properties
of stars.
The EMPG theory suggests a bounce in the early

Universe due to maximum energy density and correspond-
ingly a minimum length scale factor, thereby addressing the
problem of big bang singularity as well as the current
cosmic accelerated expansion. This theory also correctly
predicts cosmic behavior and follows the actual progression
of cosmological eras [21]. Since EMSG is proposed to
resolve the singularities classically, it is expected that the
deviations from GR appear in the properties of compact
stars [6]. Further, the EMSG model passes the weak field
tests for the Solar System regime where the EMSG light
deflection, Shapiro time delay, and gravitational micro-
lensing scenarios are found similar to GR [17,22].
Moreover, this theory is consistent with the strong field
gravity test as investigated from analysis of the first time
derivative of the orbital period of binary pulsars [17].
Consequently, the EMSG theory is considered to be a
viable model that explains the cosmological behavior, as
well as passes the weak and strong gravity-field tests, thus
being ideally suited to test GR modifications in neu-
tron stars.
Recently, the parameter α in the EMSG model has been

constrained [7] by using the 2M⊙ maximum mass NS
constraint and physicality of certain effective EOS in the
center ofNSs to be in the range−10−38≲α≲10−37 cm3=erg.
Whereas, binary pulsar observation [9] yields a compatible
value of−6×10−38≲α≲10−36 cm3=erg, but those reported

from Solar System tests are relatively lower −4 × 10−27 <
α < 10−26 cm3=erg.
In the present study, we shall compare the predictions of

EMSG theory relative to general relativity to explore the
strong field effects in neutron stars. The field equations in
EMSG with the standard physical energy-momentum
tensor can be mapped into the GR Einstein field equations,
but with an effective or modified energy-momentum tensor.
This enables a rather straightforward calculation of the
moment of inertia, tidal deformation, and other properties
of the stars [23].
For the nuclear EOS, we have employed a comprehen-

sive set of relativistic mean field (RMF) theory for nuclear
interaction that provides Lorentz covariant extrapolation
from sub- to suprasaturation densities. The model has been
extensively applied in the description of several finite
nuclei properties and studies in NS structure. Further, we
have employed a representative set of nonrelativistic
Skyrme-Hartree-Fock (SHF) models and two microscopic
theories based on Brueckner-Hartree-Fock (BHF) and
variational approaches. Within these model EOS, which
have diverse high-density behavior, we shall explore the
EMSG and the GR effects on the neutron star properties.
Furthermore, we will examine the correlations between the
NS properties, namely, mass, radius, and tidal deform-
ability with the key nuclear EOS parameters (as well as
between the thermodynamic variables, namely, the pressure
and speed of sound). Only if tight correlations between NS
observables and EOS parameters in various models of
gravity can be established, one can then provide suitable
(model-independent) bounds on these nuclear matter quan-
tities by employing the precisely measured NS observables.
Alternatively, these relations can be used to constrain an
astrophysical observable from the knowledge of the corre-
lated nuclear matter observables. In fact, by using a larger
number of unified EOS, extensive correlation analysis in
general relativity have been conducted between neutron
star mass M, radius R, etc. with the parameters of the
nuclear EOS, such as the nuclear matter incompressibility
Kðρ0Þ, its slope Mðρ0Þ, the nuclear symmetry energy
slope Lðρ0Þ, and curvature Ksymðρ0Þ, at the saturation
density ρ0 ≈ 0.16 fm−3 [24], and their linear combinations
[25–29], as well as with the tidal deformability Λ [26] and
corrections to mass-weighted tidal deformability [27] of the
detected gravitational waves GW170817 [30]. While the
individual EOS parameters were found to be weakly
correlated, their specific linear combinations showed a
rather strong correlation [14,25–28,31]. It will be instruc-
tive to investigate and understand how these correlations
between the astrophysical observables and nuclear EOS
behave in the alternative EMSG model as compared to the
predictions of general relativity and whether an approxi-
mate universal constraint can be imposed on the EOS
parameters that is independent of nuclear and gravitational
interactions.
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The outline of the paper is as follows. In Sec. II, we
briefly describe the modified field equations in EMSG. The
modified structure in TOV equations for neutron stars in
EMSG is discussed in Sec. III. We then discuss the
methodology to compute the moment of inertia in slow
rotation approximation in Sec. IV and the tidal deform-
ability parameter in Sec. V. Next, we provide a brief review
of the key EOS parameters and the EOS used in the analysis
in Sec. VI. Our results on the calculations of neutron star
configurations within EMSG and GR are presented in
Sec. VII. Within various diverse EOS, correlations between
the parameters of the EOS and the NS properties in the
EMSG modified theory of gravity will be also discussed.
Finally, the conclusions are drawn in Sec. VIII. We will
adopt the system of units ℏ ¼ c ¼ G ¼ 1 throughout the
manuscript.

II. ENERGY-MOMENTUM SQUARED GRAVITY

In the energy-momentum squared gravity theory, the
Einstein-Hilbert action is modified by the addition of a
scalar term fðTμνTμνÞ ¼ αTμνTμν leading to [7–9]

S ¼
Z �

1

2κ
ðR − 2ΛÞ þ αTμνTμν þ Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where κ ¼ 8πG is Newton’s constant, R denotes the Ricci
scalar, g is the determinant of the metric, Λ is the
cosmological constant, and α is the coupling parameter.
The Lagrangian density Lm represents the source of the
matter described by the energy-momentum tensor, which
can be defined as usual

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

¼ gμνLm − 2
∂Lm

∂gμν
: ð2Þ

Consequently, the Einstein field equation for the modified
action becomes

Gμν þ Λgμν ¼ κTμν þ καðgμνTσϵTσϵ − 2θμνÞ; ð3Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor and the

new tensor θμν is defined as

θμν ¼ Tσϵ δTσϵ

δgμν
þ Tσϵ

δTσϵ

δgμν

¼ −2Lm

�
Tμν −

1

2
gμνT

�
− T Tμν

þ 2Tγ
μTνγ − 4Tσϵ ∂

2Lm

∂gμν∂gσϵ
: ð4Þ

Here T ¼ gμνTμν is the trace of the energy-momentum
tensor. We consider the star to be a perfect fluid (i.e.,
nonviscous and stress-free), with energy-momentum tensor

Tμν ¼ ðρþ PÞuμuν þ Pgμν, where ρ is the energy density,
P is the isotropic pressure, and uμ is the four-velocity. Since
the definition of the matter Lagrangian for the perfect fluid
described via the energy-momentum tensor is not unique,
one can consider Lm ¼ P or Lm ¼ −ρ; both of these
choices lead to the same Tμν in the case of GR. In contrast,
for nonminimal coupling of matter with gravity as in EMSG,
it gives rise to distinct theories with different predictions
[32,33]. In this work, we consider the former choice ofLm ¼
P that has been commonly employed to construct a viable
astrophysical/cosmological model [32–34]. The covariant
divergence of Eq. (3) then becomes

∇μTμν ¼ −αgμν∇μðTσϵTσϵÞ þ 2α∇μθμν: ð5Þ

Note that the local/covariant energy-momentum conserva-
tion ∇μTμν is not identically zero for α ≠ 0. Using Eqs. (3)
and (4) and the above definition ofTμν, one finally obtains [7]

GμνþΛgμν

¼ κρ

��
1þP

ρ

�
uμuνþ

P
ρ
gμν

�

þακρ2
�
2

�
1þ4P

ρ
þ3P2

ρ2

�
uμuνþ

�
1þ3P2

ρ2

�
gμν

�
: ð6Þ

Equation (6) can be recast into theGREinstein field equation

Gμν þ Λgμν ¼ κTμν
eff ; ð7Þ

with an effective energy-momentum tensor Tμν
eff ¼ ðρeff þ

PeffÞuμuν þ Peffgμν for an ideal fluid, where the effective
energy density and pressure are given by

ρeff ¼ ρþ αρ2
�
1þ 8P

ρ
þ 3P2

ρ2

�
; ð8Þ

Peff ¼ Pþ αρ2
�
1þ 3P2

ρ2

�
: ð9Þ

It is important to note that the EMSGmodel with an isotropic
energy-momentum tensor (ideal fluid) can be mapped
exactly into GR with an isotropic effective Tμν

eff appearing
only on the material side of the field equations [33]. While
many modified gravity theories [such as fðRÞ] do not have
this feature, the Eddington-inspired-Born-Infeld theory can
be mapped into GR, but has an anisotropic effective energy-
momentum tensor [20,23]. Hence, the mapped expressions
for the field equations in the case of EMSG theory allows a
straightforward calculation of the NS properties. One can
easily see from Eq. (7) that the twice contracted Bianchi
identity yields vanishing of the covariant divergence
∇μT

μν
eff ¼ 0. Thus, the (isotropic) effective energy-momen-

tum tensor is conserved in EMSG gravity. This generalized
conservation is local (stemming from equivalence principle),
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which is the actual criterion that should be considered for
modified gravity and not the conservation ∇μTμν ¼ 0 of
conventional matter fluids. These equations in curved space-
time have an essentially distinct description from the usual
conservation ∂μTμν ¼ 0 in absence of gravity; a detailed
discussion can be found in Ref. [35]. Consequently, due to
isotropy of the effective energy-momentum tensor and its
conservation in EMSG, one does not require any additional
equations for thermodynamical consistency via the general
maximum entropy principle [36,37].

III. TOV EQUATIONS IN EMSG

To obtain the Tolman-Oppenheimer-Volkoff equations
[10,11] for a nonrotating star in the EMSG description, we
adopt the general spherically symmetric metric as

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dθ2 þ r2 sin2 θdϕ2; ð10Þ

where metric functions νðrÞ and λðrÞ depend only the radial
coordinate r. Using Eqs. (3) and (10), one obtains the ðttÞ
and ðrrÞ components of the EMSG field equation as

1

r2
−
e−2λ

r2

�
1 − 2r

dλ
dr

�
¼ κρeff ; ð11Þ

−
1

r2
þ e−2λ

r2

�
1þ 2r

dν
dr

�
¼ κPeff ; ð12Þ

where ρeff and Peff are the effective values of mass density
and pressure at a distance r from the center of the NS. By
defining the metric function λðrÞ in terms of the mass
function mðrÞ as

e−2λðrÞ ¼ 1 −
2mðrÞ

r
ð13Þ

and the metric function νðrÞ via the pressure as [7]

dν
dr

¼ −
�
ρ

�
1þ P

ρ

��
1þ 2αρ

�
1þ 3P

ρ

���
−1

×

�
ð1þ 6αPÞ dP

dr
þ 2αρ

dρ
dr

�
; ð14Þ

one obtains the modified TOV equations in EMSG as

dm
dr

¼ 4πr2ρ

�
1þ αρ

�
1þ 8P

ρ
þ 3P2

ρ2

��
; ð15Þ

dP
dr

¼ −
mρ

r2

�
1þ P

ρ

��
1 −

2m
r

�
−1

×

�
1þ 4πr3P

m
þ α

4πr3ρ2

m

�
1þ 3P2

ρ2

��

×

�
1þ 2αρ

�
1þ 3P

ρ

���
1þ 2αρ

�
dρ
dP

þ 3P
ρ

��
−1
:

ð16Þ

The structure of the relativistic stars, i.e., themass and radius,
can be obtained by solving Eqs. (15) and (16) simultaneously
with an input EOS P≡ PðρÞ, which describes the relation
between the pressurePðrÞ and the density ρðrÞ of the matter.
It is evident from Eqs. (15) and (16) or, equivalently, from
Eqs. (8) and (9), that EMSGmodifications to GR for the NS
configurations stem from the additional terms contributing to
the energy density ρEMSG ¼ αðρ2 þ 8ρPþ 3P2Þ and pres-
sure PEMSG ¼ αðρ2 þ 3P2Þ. Because of the isotropic and
perfect fluid nature of the effective energy-momentum
tensor, one can also obtain the above generalized TOV
equations by using the effective thermodynamic variables
and maximizing the effective entropy [36,37].

IV. MOMENT OF INERTIA

In this section, we briefly present the calculation of the
moment of inertia of a rotating neutron star in the energy-
momentum squared gravity. We consider that the star
rotates uniformly with a stellar frequency Ω which is much
lower in comparison with the Kepler frequency at the
equator, i.e., Ω ≪ Ωmax ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. The moment of inertia

of such an axially symmetric and uniformly rotating
neutron star [38,39] in EMSG can be written as

I ≡ J
Ω

¼ 8π

3

Z
R

0

r4e−νðrÞ
ω̄ðrÞ
Ω

½ρeffðrÞ þ PeffðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=rp dr: ð17Þ

Note that the effective energy density ρeff and pressure Peff
of Eqs. (8) and (9) enter the expression. J is the angular
momentum; νðrÞ and ω̄ðrÞ are the metric functions. In the
slowly rotating approximation, the line element for the
background metric of a stationary and axially symmetric
star can be taken as

ds2r ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dθ2

þ r2 sin2 θdϕ2 − 2ωðrÞr2 sin2 θdtdϕ: ð18Þ

Here the metric functions νðrÞ and λðrÞ will be identical to
the case of a static and spherically symmetric neutron star
and simply follow Eqs. (13) and (14).
To calculate the moment of inertia, we further require the

form of the metric function ωðrÞ which appears due to the
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slow rotation of the star. The dimensionless relative
frequency, defined as

ω̄ðrÞ≡Ω − ωðrÞ
Ω

; ð19Þ

obeys the differential equation

d
dr

�
r4jðrÞ dω̄ðrÞ

dr

�
þ 4r3

djðrÞ
dr

ω̄ðrÞ ¼ 0; ð20Þ

where

jðrÞ ¼ e−νðrÞ−λðrÞ ¼
�
e−νðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=rp

if r ≤ R;

1 if r > R:

ð21Þ

The solution to the above equation can be obtained by using
the following two boundary conditions:

ω̄0ð0Þ ¼ 0; ð22aÞ

ω̄ðRÞ þ R
3
ω̄0ðRÞ ¼ 1: ð22bÞ

To solve the differential equation (20), one can start with
a guess value of the central frequency ω̄c ¼ ω̄ð0Þ and
numerically integrate the equation up to the surface of the
star. Since we start with an arbitrary value of ω̄c, usually,
the boundary condition at R will not be satisfied. However,
this can be achieved by simply rescaling ω̄c by an
appropriate constant. Once we have the solution of ω̄ðrÞ,
the moment of inertia can be calculated from Eq. (17). After
obtaining the solutions of ω̄ðrÞ and I, the consistency of the
formalism may be verified from the condition ω̄0ðRÞ ¼
6GI=R4 [38,39].

V. TIDAL DEFORMABILITY

The phase of the gravitational wave signal resulting from
the merger of two neutron stars carries valuable information
about the tidal deformability parameter that is directly related
to the internal structure and composition of the star, particu-
larly the equation of state of nuclear matter. It quantifies the
deformations induced in the star due to an external tidal field
of the companion star. The tidal deformability parameter λ
can be expressed as [26,31,40–43],

λ ¼ −
Qij

Eij
; ð23Þ

whereQij represents the components of the induced quadru-
pole moment tensor and Eij denotes the components of the
tidal field tensor. In terms of the Love number k2, the mass
normalized dimensionless tidal deformability parameter is
given by

Λ≡ λ

M5
¼ 2

3
k2

�
R
M

�
5 ≡ 2

3
k2C5; ð24Þ

where R andM are the radius and mass of the star, and C≡
M=R is its compactness.
The tidal Love number k2 depends on the underlying

EOS of the star and it can be expressed in terms of the
dimensionless compactness parameter C as [40–43]

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� ln ð1 − 2CÞg−1:

ð25Þ

The function yR ≡ yðrÞjr¼R is related to the metric pertur-
bation and satisfies the following differential equation:

r
dyðrÞ
dr

þ yðrÞ2 þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð26Þ

where the functions FðrÞ and QðrÞ are given as

FðrÞ ¼ r − 4πr3½ρeffðrÞ − PeffðrÞ�
e−2λðrÞ

;

QðrÞ ¼ 4π

e−2λðrÞ

�
5ρeffðrÞ þ 9PeffðrÞ þ

ρeffðrÞ þ PeffðrÞ
∂PeffðrÞ=∂ρeffðrÞ

−
6

4πr2

�
− 4

�
mðrÞ þ 4πr3PeffðrÞ

r2e−2λðrÞ

�
2

: ð27Þ

For a spherically symmetric star, the Love number and tidal
deformability parameter Λ can be determined by simulta-
neously solving Eq. (26) and the TOV equations (15) and
(16), with the boundary conditionsPð0Þ ¼ Pc andmð0Þ ¼ 0
in addition to yð0Þ ¼ 2, which arises from perturbative
expansion of the deformed metric up to the second order.

VI. NUCLEAR MATTER EQUATIONS OF STATE

In the parabolic approximation, the equation of state of
isospin asymmetric nuclear matter at a given density ρ and
asymmetry δ can be written as [13,44]

eðρ; δÞ ¼ e0ðρÞ þ esymðρÞδ2 þOðδ4Þ; ð28Þ

where eðρ; δÞ is the total energy per nucleon at a nucleon
density ρ ¼ ρn þ ρp, and δ ¼ ðρn − ρpÞ=ρ is the neutron-
proton asymmetry parameter, where ρn and ρp are the
neutron and proton densities, respectively. The first term on
the right-hand side e0ðρÞ≡ eðρ; δ ¼ 0Þ represents the EOS
for symmetric nuclear matter, and the second term
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esymðρÞ≡ 1
2

∂
2eðρ;δÞ
∂δ2

jδ¼0 is the nuclear symmetry energy. The
isoscalar part e0ðρÞ and the isovector part esymðρÞ can be
further Taylor series expanded around the saturation
density ρ0 as

e0ðρÞ ¼ e0ðρ0Þ þ
K0

2
χ2 þQ0

6
χ3 þOðχ4Þ; ð29Þ

esymðρÞ ¼ esymðρ0Þ þ Lχ þ Ksym

2
χ2 þOðχ3Þ; ð30Þ

where the dimensionless variable χ ¼ ðρ − ρ0Þ=3ρ0 gives
the deviation of density from the saturation value ρ0. The
saturation parameters for the symmetric nuclear matter are
the binding energy per nucleon e0 ≡ e0ðρ0Þ, incompress-

ibility K0 ¼ 9ρ20
∂
2e0ðρÞ
∂ρ2

jρ0, and skewness coefficient

Q0 ¼ 27ρ30
∂
3e0ðρÞ
∂ρ3

jρ0 . Similarly, the parameters for the sym-

metry energy expansion are the symmetry energy coefficient
J ≡ esymðρ0Þ and the slope and curvature of symmetry

energy, i.e., L ¼ 3ρ0
∂esymðρÞ

∂ρ jρ0 and Ksym ¼ 9ρ20
∂
2esymðρÞ
∂ρ2

jρ0 ,
respectively.
The slope of the incompressibility, M0 ¼ Mðρ0Þ ¼

3ρ0
∂K0ðρÞ
∂ρ jρ0 , at the saturation density can be expressed

in terms of Q0 and K0 as [31]

M0 ¼ Q0 þ 12K0; ð31Þ

and the symmetry energy incompressibility is defined as

Kτ ¼ 9ρ2δ
∂
2esymðρÞ
∂ρ2

jρδ , where ρδ is the saturation density of

asymmetric nuclear matter corresponding to the asymmetry
δ. The symmetry energy parameters Ksym and Kτ are
related by the following expression [31]:

Kτ ¼ Ksym − 6L −
Q0

K0

L: ð32Þ

For analysis of neutron star properties, we employ a
representative set of 18 RMF models [2,3], 24 nonrelativ-
istic SHF-type models, and 2 microscopic calculations; one
of these uses the BHF approach with Argonne V18 plus
three-body Urbana-type nuclear potentials [45,46], and the
other uses a variational approach, namely, the Akmal-
Pandharipande-Ravenhall EOS [47,48].
In the RMF model, the nucleon-nucleon interactions are

described by the exchange of scalar-isoscalar σ mesons,
vector-isoscalar ω mesons, and vector-isovector ρ mesons.
Over the years, the model has been improved by the
inclusion of nonlinear self- and cross-couplings between
the mesons. Based on the form of the interactions in the
Lagrangian density, the RMF models that we have
employed in this study can be broadly classified as follows:
NL-type with nonlinear σ term [49,50]; NL3-type with
additional σ-ρ and ω-ρ term [51], NL3σρ4, NL3σρ6 [52],

NL3ωρ02 [53], NL3ωρ03 [54]; TM-type with nonlinear ω
term, TM1 [55], TM1-2 [56]; FSU-type with an additional
form of nonlinear ω coupling FSU2 [57]; BSR-families
with more nonlinear couplings [58,59]; and DD-type with
density-dependent couplings, DD2 [60], DDHδ [61],
DDHδMod [48], DDME1 [62], DDME2 [63], TW [64],
and the GM1 [65].
The SHFmodels we have taken in the present calculation

are SKa, SKb [66], SkI2, SkI3, SkI4, SkI5 [67], SkI6 [68],
Sly2, Sly9 [69], Sly230a [70], Sly4 [71], SkMP [72], SKOp
[73], KDE0V1 [74], SK255, SK272 [75], Rs [76], BSk20,
BSk21 [77], BSk22, BSk23, BSk24, BSk25, and BSk26
[78]. The coupling constants are obtained by sophisticated
fitting procedures to the finite nuclei, such as the binding
energies, charge radii, and the infinite nuclear matter
properties at the saturation density ρ0.
All the models considered here have been successful in

reproducing various experimental data for finite nuclei.
These models are also consistent with the 2M⊙ constraint
for the measured maximummass of neutron stars in general
relativity. The SHF-type models can often exhibit a
causality problem at very high densities. The SHF models
that we have selected in this study do not become causal up
to the central density of neutron stars with mass ∼2M⊙. To
obtain the EOS for neutron star matter, we have employed a
unified inner-crust-core EOS, i.e., the inner-crust EOS and
the core EOS have been calculated using the same nuclear
model, and the outer-crust EOS is taken from the work of
Baym et al. [79].
The values of the EOS parameters at ρ0 and the

corresponding properties of neutron stars obtained in these
models show a significant variation. In this regard, we note
that large-scale analysis [3] of experimental data from finite
nuclei and heavy-ion collisions with various model calcu-
lations have provided reliable bounds on incompressibility
of symmetric nuclear matter 210 ≤ K0 ≤ 260 MeV
[80,81], the symmetry energy 28 ≤ esymðρ0Þ ≤ 34 MeV
[82] from combined analysis of observational data, and a
reasonable constraint on the slope of symmetry energy
46 ≤ L ≤ 106 MeV [83–85] at the saturation density ρ0.
However, other nuclear matter parameters are not con-
strained and exhibit wide variations even at the saturation
density. The large set of models of different classes
employed in the present study will predict different NS
configurations and thus will allow us to perform the
correlation analysis between the nuclear matter parameters
and NS observables with more accuracy.
It may be mentioned that alternative approaches have

been developed to construct the high-density EOS by
incorporating state-of-the-art chiral effective field theories
at the low nuclear matter density ρ≲ 1.5ρ0 and the quark
EOS based on perturbative quantum chromodynamics for
ρ≳ 40ρ0. The EOS at the intermediate density region is
constructed by interpolation methods [86–88] or piecewise
polytropes [89] that satisfy the causality condition of sound
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speed squared c2s ≤ 1 and follow thermodynamic consis-
tency. This approach is independent of models of gravity,
but ignores the crucial nuclear interactions at intermediate
densities. On the other hand, we note that the microphysics
used to calculate the dense matter EOS may depend on the
inherent gravity theory. Nontrivial effects of curved space-
time have been indicated in calculations performed in the
Fermi gas EOS by maximizing the entropy in Palatini fðRÞ
gravity [37] and in the simple σ − ωmodel by including the
effect of gravitational time dilation [90]. In contrast, it has
been shown that, for hydrostatic equilibrium of dense
matter within GR and relativistic fluid dynamics, the
EOS should be calculated in flat spacetime, so as to be
consistent with local thermodynamic relations and energy-
momentum conservation of the fluid [91]. In what follows,
as our study involves diverse sets of realistic EOS derived
from different underlying microscopic theories with dis-
tinct nuclear interactions, such involved calculation incor-
porating curved spacetime for various EOS is beyond the
scope of the present paper. Thus, the study mainly focuses
on the effects of modified gravity from matter Lagrangian
on the modification of hydrostatic equilibrium equations
only and thereby the properties of neutron stars and their
connections to the nuclear matter parameters.

VII. RESULTS AND DISCUSSIONS

In this section, we first discuss with a few selected nuclear
EOS how the results in the EMSG model for gravity differ
from GR for the NS configurations due to modifications of
the hydrostatic equilibrium. Thereafter, we will focus on
correlation analysis between the nuclear matter parameters
and properties of neutron stars composed of neutrons,
protons, electrons, and muons in β equilibrium.

A. Neutron star properties in EMSG theory

It is useful to estimate the effects of EMSGmodifications
to GR on the observational properties of neutron stars using
three nuclear EOS with diverse high-density behavior.
Figure 1 displays the mass-radius relations obtained as
solutions of TOV equations using three different represen-
tative EOS: namely, the relativistic NL3 [52–54] based on
the RMF model, the relativistic BSR2 [58,59], which is an
extended version of RMF with nonlinear meson-meson
cross-couplings, and the nonrelativistic Sly4 [71] based on
the SHF approach. To explore the EMSG modifications to
GR, one ensures that the magnitude of the parameter α
should be such that it only induces perturbative changes
in the structure of NSs compared to GR. To this end,
we consider the maximum (positive) value of αmax ≈
10−37 cm3=erg as estimated in Ref. [7] from combined
constraints (at the 68% confidence level) from M − R
measurements of NSs in low-mass x-ray binaries [92].
The exact αmax value depends on the matter EOS that
causes distinct effective stiffening/softening inside the NS.

For the NL3, BSR2, and Sly4 models, the upper bounds on
α are, respectively, ð0.9; 1.9; 3.6Þ × 10−37 cm3=erg. For
larger values of α > 0, the mass-radius curves increase
continuously and will not satisfy the M − R constraints
(see Fig. 3 in Ref. [7]). For clarity of presentation in the
figure we have considered a fixed maximum value of
αmax ≈ 10−37 cm3=erg, which is also consistent for diverse
sets of EOS used in subsequent correlation analysis. The
minimum value of α < 0 is obtained by the NS conditions:
dm=dr > 0 from the surface (r ¼ R) to the center (r ¼ 0)
of the star and dP=dr < 0 from central pressure Pc to the
surface value P ¼ 0, as well as the stability criterion
dM=dρc ≥ 0, where the equality criterion provides the
maximummassMmax at the central energy density ρc. From
the TOV equation (15), the dm=dr > 0 condition is
satisfied when αρcð1þ 8Pc=ρc þ 3P2

c=ρ2cÞ > −1. On the
other hand, Eq. (16) determines the stability condition
dP=dr < 0 for α < 0, which is dictated by the dominant
last (negative) term within the square brackets leading to
the condition2α½3Pþ ρðdρ=dPÞ2� > −1.Note that this term
itself gives singularity in the TOV equation at a negative
αs ¼ −2½3Pþ ρðdρ=dPÞ2�−1, which is then avoided by the
dP=dr < 0 condition. Hence, no further restriction on α < 0
is required to exclude the singular value inEMSG, in contrast

FIG. 1. Neutron star mass-radius curves in the BSR2, NL3, and
Sly4 nuclear EOS. The results are in GR (dotted lines) and in
EMSG with a maximum value for the α parameter of αmax ¼
10−37 cm3=erg (solid lines) and minimum values of αmin ¼
−ð1.9; 1.2; 0.8Þ × 10−37 cm3=erg (dashed lines) that correspond
to stable configuration stars in NL3, BSR2, Sly4 EOS, respec-
tively (see text for details). The contours and bands refer to
M − R constraints from Neutron Star Interior Composition
Explorer (NICER) measurements of PSR J0030þ 0451 [93]
and PSR J0740þ 6620 [94], the pulsars PSR J0348þ 0432 [95]
and PSR J1614-2230 [96,97], the secondary component of the
gravitational waves GW190814 with mass 2.59þ0.08

−0.09M⊙ [98]
(horizontal bands), and from the GW170817 event [30] (orange
and gray contours).
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to that in the Palatini fðRÞ gravity for a conformal equation
of state P ¼ ρ=3 [88]. Figure 1 depicts the mass-
radius results with the minimum values of αmin ¼
−ð1.9; 1.2; 0.8Þ × 10−37 cm3=erg determined using these
stability conditions for the (NL3, BSR2, Sly4) EOS.
[However, in the correlation analysis involving several
diverse sets of EOS,wewill use theminimumvalue ofαmin ≃
−10−38 cm3=erg [7], which can be obtained by inserting, in
the stability condition for dm=dr > 0, the typical (lower)
central values Pc=ρc ∼ 0.2 and ρc ∼ 1037 erg−1 cm3.]
For our choice of the three EOS, the NL3 has the stiffest

P − ρ variation and hence reveals the largest maximum
mass Mmax and the correspondingly the largest radius
Rmax. As compared to GR, the EMSG model, in general,
causes an effective stiffening of the EOS at low densities
and softening at high densities for α > 0, and conversely
for α < 0. The maximum masses are found to remain
almost unaffected, whereas the radii increase (decrease)
appreciably for the maximum (minimum) values of α
employed here. For the constant positive value of
α≡ αmax ≈ 10−37 cm3=erg, the softest Sly4 has as the
largest increase in radii ΔR, whereas for α < 0, the stiffest
NL3 (with smallest αmin ¼ −1.9 × 10−37 cm3=erg) exhib-
its the maximum decreases in ΔR. In fact, the maximum
variation of the radius ΔR ≈ 0.6 km is seen for the M ∼
0.5M⊙ NS, relative to the GR calculation. These EMSG
modifications can be understood by noting that TOV
equations can be represented by a single relevant dimen-
sionless quantity P=ρ. This translates to the dimensionless
compactness parameter C ¼ GM=Rc2 of a star given that
a larger degenerate pressure P essentially leads to a larger
star radius R [12]. As discussed in Sec. III, the corre-
sponding ratio in the EMSG model turns out to be
PEMSG=ρEMSG ¼ ½1þ 8ρP=ðρ2 þ 3P2Þ�−1. Finite limits
can be placed at P=ρ ¼ 0 (vacuum), P=ρ ¼ 1=3 (ultra-
relativistic Fermi gas: conformal bound), and P=ρ ≤ 1
(causality condition), which translate, respectively, to
PEMSG=ρEMSG ∈ ð1; 1=3;≤ 1=3Þ. This implies from
Eqs. (15) and (16) that, for α > 0, EMSG stiffens the
effective EOS below the conformal bound P=ρ ¼ 1=3 and
softens the effective EOS above the bound, and conversely
for α < 0. Figure 2(a) illustrates such a variation of the ratio
Pc=ρc in the NS centers with the masses of the star
sequence. Note that, for each EOS shown, most of the
stars in the sequence are confined withinPc < ρc=3 leading
to stiffening (softening) for positive (negative) values of α
and, correspondingly, predict larger (smaller) star radii. On
other hand, the stars at and near the maximum mass Mmax
are located above the conformality boundPc=ρc ¼ 1=3 and
well within the causality constraint Pc=ρc ≤ 1.
Profound implications may follow in EMSG theory for

negative α. For example, various parametrizations of the
nuclear EOS strive to simultaneously describe the obser-
vational tidal deformability bound of Λ1.4 ≤ 580 of
a canonical 1.4M⊙ NS inferred from the GW170817

event [30] and the maximum mass bound Mmax ≳ 2M⊙.
The current tension can be effectively addressed in EMSG
(for α < 0) that predicts smaller radii [thereby even smaller
Λ ∼ ðR=MÞ5] for low-mass neutron stars, but is relatively
insensitive to the maximum mass of NSs. Furthermore, a
star of extremely small mass M ¼ 0.77þ0.20

−0.17M⊙ and radius
R ¼ 10.4þ0.86

−0.78 km is estimated within the supernova rem-
nant HESS J1731-347 [99], which has posed the interesting
possibility of exotic strange stars. We emphasize that even a
pure nucleonic star, owing to its small radius in the EMSG
strong field gravity, can be an exciting viable alternative.
Figure 3 explores the EMSG effects on the NS observ-

ables: the moment of inertia I, tidal Love number k2, and
the tidal deformability Λ as a function of compactness
parameter C ¼ M=R for each of the NL3, BSR2, and Sly4
EOS. The variation of these observables on the central
pressure to central energy density ratio Pc=ρc for the star
sequence is shown in Figs. 2(b)–2(d). As discussed above,
the dimensionless C naturally translates into a measure of
the neutron star pressure and energy at the center via the
relationM=R ∼ Pc=ρc. The moment inertia can be a useful
estimate of the EMSG effects since the dimensional relation
I ∝ MR2 gives relatively larger ranges from changes in the
radius, and moreover, the accuracy of radius estimations is
largely limited by uncertainties. Although the moment of
inertia depends on the underlying stiffness/softness of the
EOS, one notices in Fig. 3(a) small effects of gravity on the

FIG. 2. The ratio Pc=ρc for central values of pressure and
energy densities as a function of (a) neutron star mass M,
(b) moment of inertia I, (c) Love number k2, (d) tidal deform-
ability Λ in the NL3, BSR2, and Sly4 nuclear EOS. The results
are in GR and EMSG with α parameters as given in Fig. 1.

ALAM, PAL, RAHMANSYAH, and SULAKSONO PHYS. REV. D 109, 083007 (2024)

083007-8



variation of moment of inertia with the dimensional
parameter M=R in any individual nuclear EOS. This can
be traced from Fig. 2(b) to the subdued effect of EMSG on
the ratio Pc=ρc, irrespective of the choice of nuclear EOS.
On the other hand, the variation of Love number k2 of

(25) with compactness in Fig. 3(b) shows noticeable
modifications in EMSG primarily near the k2 peak at
C ≈ 0.1 that corresponds toM ≈ 1M⊙. Whereas k2 is found
to be relatively independent of the details of the models of
gravity as well as the EOS at small compactness C≲ 0.05
that is dominated by the large crustal radii for these small
stellar masses. At large C≳ 0.25 near the maximum mass
configurations, the values of k2 become much smaller than
at theirMmass. Although k2 is seen here to be quite sensitive
to the EOS, the EMSG modifications to GR at this strong
gravity field regime are, however, smaller compared to the
observed spread in k2 for 1M⊙ stars.
Tidal fields from inspiraling binary neutron stars induce

a quadrupole polarizability λ ¼ ð2=3Þk2R5 or a dimen-
sional tidal deformability Λ ¼ ð2=3Þk2ðR=MÞ5, which may
be sensitive to models of gravity due to R5 dependence. The
inset of Fig. 3(c) depicts a larger variation of λ withM=R in
the EMSG, especially near 1M⊙ as seen at the k2 peak. In
contrast, a strong correlation between the dimensionless
tidal deformability Λ and compactness [as well as between
Λ − Pc=ρc; see Fig. 2(d)] appears, irrespective of the
models of gravity and the three representative EOS. In
fact, such a tight correlation was found between Λ1.4 and
R1.4 for canonical 1.4M⊙ pure nucleonic stars [100] and
with nucleon-quark phase transition [101], suggesting the
possibility to constrain the radius and perhaps the sym-
metry energy esymðρ0Þ.

B. Correlation analysis between neutron star
properties and nuclear matter parameters

In the following, we shall explore the possible correla-
tions between the NS observables (R, I, Λ) with the nuclear
matter (NM) saturation parameters (K0, Q0, M0, J, L,

Ksym) and linear combination of two NM parameters (such
as K0 þ βL, M0 þ ηL, M0 þ ζKsym) and their impact due
to the EMSG theory. To facilitate the correlation study, we
include all the RMF, SHF, and microscopic models
described in Sec. VI. Hereafter, we shall employ the fixed
maximum and minimum values of the parameter α esti-
mated in the EMSG theory [7], αmax ¼ 10−37 and αmin ¼
−10−38 cm3=erg for all the EOS employed, which ensure
stable configurations for all the neutron stars.
Before attempting such NS-NM correlations, it is instruc-

tive to employ the causality bound of speed of sound squared
c2s ¼ dP=dρ ≤ 1 to impose limits on the maximum value
Pc=ρc at the center and its natural transform Rmax=Mmax for
the superdense NS matter. Figure 4 displays the correlation

FIG. 3. Dependence of neutron star compactness parameter M=R on (a) moment of inertia I, (b) dimensionless Love number k2,
(c) dimensionless tidal deformability Λ, and quadrupole polarizability λ (inset) in the NL3, BSR2, and Sly4 nuclear EOS in the GR and
EMSG as referred to in Fig. 1.

FIG. 4. Correlation between speed of sound squared c2s and the
ratio of central values of pressure and energy densities Pc=ρc
corresponding to maximum mass stars in the RMF, SHF, and
microscopic models of EOS. The results are in EMSG with
α ¼ 10−37 cm3=erg (red solid symbols) and in GR (green open
symbols). The lines represent the linear best fit and the shaded
regions correspond to the 95% confidence band.
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between central sound speed c2s and the reduced central
pressure P̃c ≡ Pc=ρc from all the diverse EOS in the EMSG
theory for the parameter α ¼ 10−37 cm3=erg (red solid
symbols) and in GR (green open symbols). The central
speed of sound for the maximum mass stars increases with
the reduced central pressure, which is a measure of stiffness
of dense nuclear matter inside a NS. Reasonably good
correlations are found, given that a broad class of EOS are
employed. Albeit, the correlations are found to be distinct in
EMSG andGR, which are a direct consequence of the strong
field gravity. Compared toGR, a stiffer EOS in EMSGbelow
the conformality boundP ¼ ρ=3 and a softer EOS above this
bound for α > 0 manifest in an increase in c2s at P̃c ≲ 0.45
and a reduced c2s at larger P̃c. We find that the conformability
bound (c2s ≤ 1=3) appears to be violated at the central
densities reached in all the stars. Also depicted in Fig. 4
are the linear regressions between c2s and Pc=ρc in EMSG
(solid lines) andGR(dashed lines)with slope and intercept as

c2s ¼ ð1.880� 0.120ÞPc

ρc
þ ð−0.113� 0.054Þ ðEMSGÞ;

ð33Þ

c2s ¼ ð2.341� 0.102ÞPc

ρc
þ ð−0.304� 0.050Þ ðGRÞ:

ð34Þ
The intercept at c2s ¼ 1 enables one to set an upper bound on
reduced central pressure P̃c that is enforced by the causality
requirement c2s ≤ 1. Our analysis suggests a central upper
bound of P̃c ≲ 0.592 in EMSG and P̃c ≲ 0.557 in the
effectively stiffer EOS in GR.
The dependence of c2s on P̃c translates into its depend-

ence on Rmax=Mmax for the maximum mass configurations
at the NS centers as displayed in Fig. 5. The intrinsic
structures in the TOVequations, however, prevent a perfect
dimensionless mapping, leading to some cluttering in the
correlation with the compactness parameter. In fact, some
model dependence is revealed, viz. the relatively stiffer
equations of state in the relativistic mean field model
generate stars with large Mmax, but also have fairly large
radius Rmax, and thus yield less compact stars with smaller
c2s as compared to those in the nonrelativistic Skyrme-
Hartree-Fock models. In general, the central speed of sound
is found to increase with the compactness of the NSs [102].
The EMSG theory, which predicts slightly larger Rmax for
α > 0, has a smaller sound speed compared to GR. Also
depicted in Fig. 4 are our constructed linear regressions
between c2s andMmax=Rmax with 95% confidence bands by
accounting for the EOS scatter in the EMSG and GR as

c2s ¼ð6.259�0.808ÞMmax

Rmax
þð−1.071�0.223Þ ðEMSGÞ;

ð35Þ

c2s ¼ ð9.995� 1.167ÞMmax

Rmax
þ ð−2.3172� 0.347Þ ðGRÞ:

ð36Þ

From the causality condition, we obtain a central upper
bound on the compactness of about Cmax ≡Mmax=Rmax ≲
0.338 that corresponds to a lower limit for the radius
Rmax=km≳ 4.370Mmax=M⊙ in EMSG theory. Similarly, in
GR, a maximum compactness of Cmax ≲ 0.314 translates to
the radius bound of Rmax=km≳ 4.704Mmax=M⊙. These
compactness bounds are much smaller than Buchdahl’s
upper limit Cup

max ¼ 4=9 [103]. A direct comparison of our
estimated radii bounds can be made with the NICER
observations for the PSR J0740þ 6620 [94] radius of
about 12.39þ1.30

−1.98 kmwith a massM ≈ 2.08þ0.07
−0.07M⊙ and for

the PSR J0030þ 0451 radius ≈12.71þ1.14
−1.19 km with a mass

≈1.34þ0.15
−0.16M⊙ [93]. Clearly, our estimated radii lower

bounds in the models of gravity are well consistent with
the NICER measurements. Inversely, constraints on the
EOS variables can be applied by using the NS measure-
ments. For example, the central mass and radius values
(M ¼ 2.08M⊙, R ¼ 12.39 km) of PSR J0740þ 6620

yields, from Eq. (35), a central sound speed of c2s≈0.481,
which [from Eq. (33)] corresponds to a reduced central
pressure of P̃c ≈ 0.316.
Various approximate universal relations connecting the

NS observables, such as the compactnessC ¼ M=R, dimen-
sionlessmoment of inertia Ĩ ≡ I=M3 ∝ C−2, and dimension-
less tidal deformability Λ ∝ C−5, have been established that
are insensitive to the microscopic details of the high-density
EOS [14,26–28]. It is useful to test and validate these
relations with respect to our collection of EOS and to the
models of gravity as well. Figure 6 shows correlations
between the reduced central pressure P̃c ≡ Pc=ρc with the

FIG. 5. Same as Fig. 4, but for correlation between c2s and the
ratio Mmax=Rmax for the maximum mass and corresponding
radius of neutron stars.
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dimensionless quantitiesC; Ĩ, andΛ of the NSs. Remarkably
tight correlations do exist that are insensitive primarily to the
EOS and the gravitational interactions. Measurements of
these NS observables thus provide accurate estimates of
pressure at the fiducial densities, which can be invoked in the
model EOS to constrain nuclear interactions and the nuclear
matter parameters. Polynomial fits up to fifth order of the
form ln P̃c ¼

P
5
i¼0 aiS

i, where S ≡ ðC; ln Ĩ; lnΛÞ are
shown in EMSG and GR.
To explore the impact of tidal deformability on the

structure of a star in EMSG, we display in Fig. 7 the
correlation between Λ1.4 and radius R1.4 for stars of M ¼
1.4M⊙ computed for all the EOS. The increase of R1.4 with
Λ1.4 is simply due to the fact that Λ quantifies the variation
of gravitational field relative to a point-mass object. The
proportionality of Λ on R5 reveals in a tight correlation,

i.e., an approximate universal relation independent of the
input EOS. Interestingly, the increase in R for positive α
values (as seen inM − R curve of Fig. 1) enforces a distinct
class of universalities for the EMSG and GR gravity
models. In fact, the correlations can be expressed as
Λ1.4 ¼ ARξ

1.4, which are practically EOS insensitive and
reveal a small but finite dependence on the models of
gravity, as evident from the parameters A ¼ 8.37ð9.67Þ ×
10−5 and ξ ¼ 6.15ð6.12Þ for EMSG (GR). A bound on
Λ1.4 ¼ 190þ390

−120 at 90% confidence was extracted by LIGO-
Virgo from the observed binary neutron-star merger
GW170817 event using Bayesian analysis with a common
EOS for the compact binaries [104].
The more recent observation of the GW190814 signal

[98] from coalescence of a massive ð22.2 − 24.3ÞM⊙ black
hole and a compact object of mass ð2.50 − 2.67ÞM⊙ can
provide an intriguing opportunity to test modifications of
GR due to large asymmetry in the masses. While the
primary component of GW190814 is conclusively proven
to be a black hole (BH), the lack of measurable tidal
deformations and the nondetection of an electromagnetic
counterpart are consistent with the secondary component
being either a NS or a BH. Considering that the NS-BH
scenario cannot be completely discounted, a stringent
constraint was given [98] for the NS that favors a stiff
EOS that translates to radius and tidal deformability of a
canonical 1.4M⊙ NS of R1.4 ¼ 12.9þ0.8

−0.7 km and Λ1.4 ¼
616þ273

−158 at 90% credible level. Currently, GW190814 offers
this unique observational bound simultaneously for R1.4
andΛ1.4, which we shall use hereafter to constrain the EOS.
Imposing this bound in Fig. 7 (gray shaded region), we find
that the rather small sensitivity of the gravity models cannot
be disentangled from the R1.4 − Λ1.4 relation. In this
respect, we note that the higher multipole moments of
the gravitational signal, which enable one to test the
multipolar structure of gravity, do not show any deviations
from the predictions of GR [98]. While our derived

FIG. 6. Correlation between Pc=ρc and several neutron star quantities: (a) compactness M=R, (b) scaled moment of inertia I=M3,
(c) tidal deformability in the RMF, SHF, and microscopic models of EOS. The results are in GR (green circles) and EMSG with
α ¼ 10−37 cm3=erg (magenta stars). The lines are fifth-order polynomial fits to the correlations.

FIG. 7. Correlation between tidal deformability Λ1.4 and radius
R1.4 of neutron star of mass M ¼ 1.4M⊙. The symbols are the
same as in Fig. 4. The fits are represented by Λ1.4 ¼ 8.37 ×
10−5ðR1.4=kmÞ6.15 in EMSG (solid line) and Λ1.4 ¼ 9.67×
10−5ðR1.4=kmÞ6.12 in GR (dashed line). The gray shaded region
refers to R1.4 ¼ 12.9þ0.8

−0.7 km and Λ1.4 ¼ 616þ273
−158 bounds from the

GW190814 event [98].
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correlations are consistent with the GW190814 constraints,
the bound clearly favors EOS with soft symmetry energy
esymðρÞ at density ρ ∼ 2ρ0 and rules out the super stiff EOS
that predict large radii.
We next analyze the correlation between the neutron star

bulk observables presented above with the key nuclear
matter parameters of the EOS, namely,K0,M0, L, andKsym
and a few selected linear combinations of these parameters.
In particular, we also explore the influence of the EMSG
modifications to GR on these correlations. The Pearson
correlation coefficient C½a; b� has been used for a quanti-
tative analysis of a linear correlation between two quantities
a and b, which can be expressed as [105]

C½a; b� ¼ σabffiffiffiffiffiffiffiffiffiffiffiffiffi
σaaσbb

p ; ð37Þ

where the covariance σab is given by

σab ¼
1

Nm

X
i

aibi −
�

1

Nm

X
i

ai

��
1

Nm

X
i

bi

�
: ð38Þ

The index i runs over the number of models Nm used in the
analysis; ai and bi, respectively, refer to the NS properties
(such as radius, moment of inertia, deformability) at a fixed
mass and the NM parameters in the EOS. A correlation
coefficient C½a; b� ¼ �1 would suggest a perfect correla-
tion/anticorrelation between the two quantities of interest,
and C½a; b� ¼ 0 would indicate no correlation.

Figure 8 displays the NS mass dependence of the
Pearson correlation coefficients between the NS quantities
(R, I, Λ) and the EOS parameters in the EMSG model with
coupling parameter αmin ¼ −10−38 cm3=erg (solid lines)
and αmax ¼ 10−37 cm3=erg (dashed lines) corresponding to
the minimum and maximum estimated bounds [7].
Noticeable effects of the parameter α on the correlation
coefficients are seen. The isovector parameterL correspond-
ing to the slope of symmetry energy induces somewhat
enhanced correlation due to larger radius (smaller compact-
nessM=R) for positiveαmax. In contrast, the correlationswith
the isoscalar parameters K0, M0 show opposite dependence
onα. On the other hand, for the isovector symmetry curvature
Ksym, the correlation strengths between the positive and
negative α show inversion at M ≈ 1.2M⊙. Further, the low-
mass NSs exhibit much stronger sensitivity to L, Ksym

(characterized by large correlation function), which gradu-
ally decreases with increasing NS mass, and eventually at
M ≳ 1.4M⊙ the isoscalar parameters K0, M0 dominate the
correlations. Such trends can be understood from the
expressions of pressure on energy density (i.e., the EOS)
when these are expressed in terms of theNMparameters [25].
The linear combinations, K0 þ βL, M0 þ ηL, and M0 þ
ζKsym indicate the strongest sensitivity to theNSobservables
over the entire mass range, wherein the correlations are
designed to yield optimum values by tuning the coefficients
β, η, ζ. This means that these combinations have a stronger
correlation compared to that for the individual nuclear

FIG. 8. Neutron star mass M dependence of the Pearson correlation coefficients C between NS observables and nuclear EOS
parameters within the RMF, SHF, and microscopic models. The correlations involve NS radii R (top row), moment of inertia I (middle
row), tidal deformability Λ (bottom row), with the EOS parameters b∈ ðK0; L;M0; KsymÞ and their linear combinations: K0 þ βL,
M0 þ ηL,M0 þ ζKsym. The results are in the EMSG gravity model with coupling parameter αmin ¼ −10−38 cm3=erg (dashed lines) and
αmax ¼ 10−37 cm3=erg (solid lines).

ALAM, PAL, RAHMANSYAH, and SULAKSONO PHYS. REV. D 109, 083007 (2024)

083007-12



parameters. Interestingly, the correlationM0 þ ζKsym,which
shows an increasing trend with NS masses, has the largest
value near the canonical 1.4M⊙ star in the case of all the NS
observablesR, I,Λ. For orientation,wehave listed inTables I
and II the correlation coefficients of the NS quantities with
the individualNMparameters and their linear correlations for
1.4 solar mass NS.

In Fig. 9, we display the envisaged strong correlation
between the NM parameters K0 þ βL,M0 þ ηL, andM0 þ
ζKsym with the radii R1.4 (left panels) and tidal deform-
ability Λ1.4 (right panels) for 1.4M⊙ NS in the EMSG
theory. Such strong correlations can be traced essentially to
the increase in the NS radii with the increase of isoscalar
and symmetry energy pressures at ρ ∼ ð1.5 − 2Þρo [106].
Correspondingly, the stiffer effective EOS for α > 0 at this
density range leads to smaller correlation strength relative
to α < 0, as evident from the linear regression fits to these
correlations. For αmax ¼ 10−37 cm3=erg, the constructed
linear regressions (solid lines) can be represented as

K0 þ βL ¼ ð36.42� 3.36ÞR1.4 þ ð−167.01� 44.51Þ;
M0 þ ηL ¼ ð762.49� 47.82ÞR1.4 þ ð− 6045.71� 632.56Þ;

M0 þ ζKsym ¼ ð698.48� 50.02ÞR1.4 þ ð− 6656.65� 661.64Þ;
K0 þ βL ¼ ð0.10� 0.01ÞΛ1.4 þ ð232.44� 6.80Þ;
M0 þ ηL ¼ ð2.14� 0.13ÞΛ1.4 þ ð2352.40� 101.82Þ;

M0 þ ζKsym ¼ ð2.16� 0.12ÞΛ1.4 þ ð1057.95� 93.13Þ: ð39Þ

Here (K0; L;M0; Ksym) are in the units of MeVandR1.4 is in
kilometers. We use the above set of relations (and the
coefficients β, η, ζ listed in Table II) in conjunction with
the GW190814 bound on R1.4 ¼ 12.9þ0.8

−0.7 km and Λ1.4 ¼
616þ273

−158 [98] to estimate the nuclear matter parameters. We
utilize the quite accurately constrained nuclear matter
incompressibility at the saturation density of K0 ¼ 240�
20 obtained from analysis of isoscalar giant monopole
resonance (ISGMR) collective excitations in 90Zr and
208Pb nuclei [80,81,107]. The central values are estimated
to be (L ¼ 65.22,M0 ¼ 2585.15,Ksym ¼ −41.35) MeV for

the R1.4 constraint and (L ¼ 70.36,M0 ¼ 2546.36, Ksym ¼
−28.79) MeV for the Λ1.4 constraint. The obtained slope of
symmetry energy is in line with L ¼ ð50.0� 15.5Þ MeV
extracted from available nuclearmasses of heavy nuclei [83],
as well as the reported values of L ¼ ð106� 37Þ [84] and
L ¼ ð54� 8Þ MeV [85] from analysis of neutron skin
thickness measurements of 208Pb by the PREX-II experi-
ment. Further, our estimated slope of the incompressibility
M0 is consistentwith the empirical constraintM0 ¼ ð1800 −
2400Þ MeV determined by comparing the Skyrme-like
energy density functional and the energies of the ISGMR

TABLE II. Pearson correlation coefficients C between the NS
quantities and linear combinations of EOS parameters in the
RMF, SHF, and microscopic models. The EMSG parameters and
notations are the same as in Table I.

K0 þ βL M0 þ ηL M0 þ ζKsym

β C η C ζ C

R<
1.4 0.878 0.848 16.972 0.923 5.351 0.914

R>
1.4 0.963 0.858 18.484 0.926 5.596 0.907

RGR
1.4 0.886 0.849 17.103 0.923 5.373 0.914

Λ<
1.4 0.670 0.837 13.846 0.919 5.008 0.941

Λ>
1.4 0.768 0.856 15.979 0.925 5.482 0.937

ΛGR
1.4 0.666 0.840 13.918 0.920 5.027 0.942

I<1.4 0.614 0.823 12.917 0.907 5.136 0.950
I>1.4 0.710 0.839 14.820 0.912 5.548 0.945
IGR1.4 0.622 0.824 13.081 0.908 5.173 0.949

TABLE I. Pearson correlation coefficients C between the
parameters in RMF, SHF, microscopic nuclear models and the
radii R1.4, moment of inertia I1.4, and tidal deformability Λ1.4 of a
1.4M⊙ mass NS. The nuclear matter EOS parameters are
incompressibility K0, skewness Q0, slope of incompressibility
M0, symmetry energy J, its slope L and curvature Ksym, and the
parameter Kτ all calculated at the saturation density. The
correlations are calculated in GR and EMSG with coupling
parameter αmin ¼ −10−38 and αmax ¼ 10−37 cm3=erg, denoted,
respectively, by superscript (GR; <;>) on the NS quantities.

K0 Q0 M0 J L Ksym Kτ

R<
1.4 0.704 0.572 0.743 0.559 0.743 0.713 −0.686

R>
1.4 0.698 0.554 0.728 0.576 0.762 0.717 −0.693

RGR
1.4 0.703 0.570 0.742 0.560 0.744 0.713 −0.686

Λ<
1.4 0.730 0.605 0.778 0.507 0.696 0.719 −0.662

Λ>
1.4 0.729 0.572 0.757 0.521 0.732 0.736 −0.670

ΛGR
1.4 0.734 0.602 0.778 0.501 0.698 0.720 −0.662

I<1.4 0.729 0.609 0.781 0.451 0.673 0.731 −0.625
I>1.4 0.724 0.582 0.761 0.473 0.706 0.745 −0.635
IGR1.4 0.728 0.607 0.779 0.453 0.676 0.733 −0.626
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132Sn and 208Pb nuclei [108,109]. Our estimate of the
curvature parameter of symmetry energy lies well within
the present fiducial valueKsym ¼ −107� 88 MeVobtained
from combined analysis of NS observables of the
GW170817 signal [26,27,110], energy density functionals
constrained by terrestrial experiments, and observational
data [111], and metamodeling of nuclear EOS with these
constraints [112].
Likewise, the linear regressions for correlations with

EMSG parameter value αmin ¼ −10−38 cm3=erg (dashed
lines in Fig. 9) can be utilized to extract the NM parameters
from the GW190814 constraints. The deviations from αmax
are found to be at the level of about 18% for L and ∼32%
forM0. The symmetry energy curvature Ksym was found to
have large sensitivity to the α parameter. Combining all
these results, our estimated central values are found to be
77.88≲L≲65.22, 1951.32≲M0≲2589.12, and −41.35≲
Ksym ≲ 117.49 MeV. Although the EMSG theory suggests
different classes of approximate relations for various α, the
nuclear matter parameters obtained are within the current
bounds from various model analysis of terrestrial and
observational measurements.
For orientation, the linear regression in general relativity

is given as

K0 þ βL ¼ ð33.93� 3.39ÞR1.4 þ ð−129.60� 44.04Þ;
M0 þ ηL ¼ ð707.10� 46.11ÞR1.4 þ ð−5196.25� 598.15Þ;

M0 þ ζKsym ¼ ð661.74� 45.28ÞR1.4 þ ð−5961.00� 587.45Þ;
K0 þ βL ¼ ð0.09� 0.01ÞΛ1.4 þ ð233.55� 6.80Þ;
M0 þ ηL ¼ ð2.05� 0.13ÞΛ1.4 þ ð2393.63� 94.16Þ;

M0 þ ζKsym ¼ ð2.14� 0.11ÞΛ1.4 þ ð1218.85� 77.44Þ: ð40Þ

Adopting the same approach as in EMSG, we obtain in GR
the central values (L ¼ 76.86, M0 ¼ 2610.80, Ksym ¼
−6.58) MeV for the R1.4 constraint, and (L ¼ 73.56,
M0 ¼ 2632.62, Ksym ¼ −19.00) MeV for the Λ1.4 con-
straint. The estimated NM parameters in GR and EMSG
(with αmax for example) are found to be somewhat different.
However, the large uncertainty associated with the current
bounds (from nuclear experiments and/or detected NS
observables) prevents a clear preference for the various
descriptions of gravity.
We would like to mention that the above bounds in

EMSG theory of gravity are obtained by employing the
observational constraints that are often performed based on
general relativity. In particular, the tidal deformability is
extracted from the gravitational wave signal using wave-
form models derived assuming GR. However, the current

detectors are not sensitive to the new class of modes that
may appear from additional degrees of freedom in the
modified theories of gravity that do not exist in GR [113].
Consequently, the detected observables (M, R, Λ) cannot
clearly resolve GR from the modified theories of gravity.
While our results are based on EOS with purely

nucleonic degrees of freedom, the possible existence of
exotic phases, such as phase transition to hyperons [114],
kaon condensation [115], and deconfined quark matter
[101,116] at high densities in the core of neutron stars,
cannot be excluded. In general, the onset of phase transition
inside the star at nucleon density ρ > ρ0 softens the EOS,
resulting in a decrease in the speed of sound, masses, radii,
moment of inertia, and tidal deformability of NSs. Hence,
as compared to GR results, the reduction in the magnitude
of these observables as found here in EMSG theory for

FIG. 9. Correlation between NS quantities R1.4 and Λ1.4 and
linear combinations of nuclear matter parameters K0 þ βL,
M0 þ ηL,M0 þ ζKsym in the EMSG gravity model with coupling
parameter αmin ¼ −10−38 cm3=erg (blue open symbols) and
αmax ¼ 10−37 cm3=erg (red solid symbols). The linear regres-
sions are for αmin (dashed lines) and αmax (solid lines). The gray
shaded regions refer to R1.4 ¼ 12.9þ0.8

−0.7 km and Λ1.4 ¼ 616þ273
−158

bounds from the GW190814 event [98].
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α > 0 will be further accentuated with phase transition.
Conversely, the increase seen for α < 0 will be minimized
by softening of the EOS in the presence of phase transition.
The validity of the universal relations connecting Pc=ρc
with compactness, moment of inertia, and tidal deform-
ability as seen in EMSG and GR (Fig. 6) is expected to
persist even with phase transition, as universality has been
established with phase transition in GR itself [117]. Since
non-nucleonic degrees of freedom (for realistic EOS) are
likely to appear in massive stars only, one expects the
strong correlations observed between the nuclear matter
parameters and low-mass neutron star observables (Figs. 8
and 9) will have marginal effect.

VIII. CONCLUSIONS

Using a representative set of accurately calibrated
models of nuclear equations of state, we have investigated
within the energy-momentum squared gravity theory (a
nonminimal matter-coupling extension to general relativ-
ity) the impact of strong field gravity on several properties
of dense neutron stars. In particular, correlations between
nuclear matter parameters at saturation density and the
neutron star observables were studied in the EMSG theory
to ascertain the effectiveness of the theory and to quantify
its modifications to the predictions in GR. By using three
realistic EOS (NL3, BSR2, Sly4), we first showed that for a
fixed value of the coupling strength α in EMSG, the NS
mass-radius curves are affected differently as compared to
GR predictions. The softest EOS in Sly4 enforces the
largest increase in the radii of, especially, the small-mass
stars for the positive α value, whereas the stability con-
ditions dm=dr > 0 and dP=dr < 0 (from center to surface
of the NS) enable smallest α < 0 in the stiffer NL3 EOS
and correspondingly provides the largest decrease in the
radii near the 1M⊙ neutron star. While the variation of the
NS compactness C ¼ M=R with the moment of inertia and
tidal deformability, in particular, are quite small, the peak
value of tidal Love number k2 was found to have appreci-
able modifications to GR in the EMSG model.
We next explored the correlations between the NS

observables and nuclear matter EOS parameters in

EMSG and GR. An approximate universal correlation,
independent of the nuclear model EOS, was established
for the variation of the central speed of sound squared c2s
with the reduced pressure P̃c ≡ Pc=ρc and its natural
transform, the compactness Cmax ≡Mmax=Rmax at the
center of the stars. We found that c2s has a linear increase
with P̃c and Cmax. However, the universality is violated to
some extent by the strong field gravity that induces distinct
correlations for different values of the parameter α in
EMSG. For instance, the causality bound on the NS
mass-radius curve in EMSG suggested a lower limit on
the star radius Rmax=km≳ 4.37Mmax=M⊙ in direct contrast
to the GR bound of Rmax=km≳ 4.70Mmax=M⊙.
We also demonstrated that gravity modifications have

marginal effects on the universal properties of the compact-
ness Ĩ tidal deformability relations with the reduced central
pressure, and thus P̃c could be inferred from measurements
of NS properties. A truly universal correlation within the
realms of current observational bounds was found between
the measurable radius and tidal deformability of 1.4M⊙ NS
that is practically EOS insensitive and depicted marginal
separation between different classes of universality in the
EMSG and GR. The correlation between nuclear matter
incompressibility K0, its slope M0, the symmetry energy
slope L and curvature Ksym, and their linear combinations
revealed the previously studied correlation with NS radii
and deformability. These relations were found to be quite
sensitive to EMSG theory of gravity that may hinder a
precise estimation of the nuclear matter parameters from
these correlations. To conclude, our study emphasizes that
certain neutron star observables are insensitive to nuclear
EOS and gravity modifications and can be employed as
approximate universal relations to determine the EOS
parameters, whereas small yet detectable signatures of
gravity effects are evident in some neutron star observables.
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