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The Primakoff mechanism is one of the primary channels for the production of solar axions.
In canonical estimations of the Primakoff photon-axion conversion rate, the recoil effect is neglected
and a static structure factor in adopted. By use of linear response theory, we provide a dynamic description
of the solar Primakoff process. It is found that the collective electrons overtake ions as the dominant factor,
in contrast to the static screening picture, where ions contribute more to the photon-axion conversion.
Nonetheless, the resulting axion flux is only 1% to 2% lower than the standard estimate based on the static
structure factor.
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I. INTRODUCTION

The QCD axion that emerged originally as a solution to
the strong-CP problem [1–3] is also well promoted as a
promising dark matter candidate [4–7] alternative to weakly
interacting massive particles, and has attracted increased
interest on both theoretical and experimental fronts in
recent years. The rich phenomenology of axion can leave
peculiar traces in cosmology, astroparticle physics, and
particle physics [8–14].
The Sun is the primary natural source for terrestrial

axion detection. With a coupling to standard model
particles, axions can be produced in the solar interior
through a number of channels, such as the Primakoff
process [15,16] and the axiorecombination, bremsstrah-
lung, and Compton scattering process [17,18]. For
Kim-Shifman-Vainshtein-Zakharov axions [19,20], the
former reaction dominates, while for the Dine-Fischler-
Srednicki-Zhinitsky axions [21,22], the latter mechanism
dominates. In this paper, we focus on the Primakoff axion
production mechanism, where photons convert to axions
through the Coulomb field sourced by the charged
particles (i.e., electrons and ions).
In conventional wisdom [8,10], the charged particles in

the Sun are so heavy compared to the energies of ambient
photons that they can be regarded as fixed, in which case

the photon energy in a scattering event is considered equal
to that of the emitted axion, and the differential cross
section of the Primakoff process dσγ→aðpγÞ=dΩ is propor-
tional to jpγ × paj2=Q4, with pγ and pa being the momenta
of the incident photon and emitted axion, respectively, and
Q ¼ jQj ¼ jpγ − paj. In the massless limit of an axion, the
cross section is divergent due to the long-range Coulomb
interaction. This Coulomb potential can be regulated if the
solar in-medium screening effect is taken into account.
Raffelt [8] argued that the implication of the screening
effect on the differential cross section is described by the
following substitution:

jpγ × paj2
Q4

→
jpγ × paj2

Q4
SðQÞ

¼ jpγ × paj2
Q4

1

1þ κ2=Q2
; ð1Þ

where the Debye-Hückel scale κ can be as large as ∼9 keV
at the solar center and effectively provides a cutoff of
the Coulomb interaction. Note that this description is
based on the assumption of a negligible recoil effect in
the solar medium, and thus a static structure factor SðQÞ ¼
ð1þ κ2=Q2Þ−1 is introduced to measure the correlation
between the charged particle density [10].
In Ref. [23], Raffelt further considered finite energy

shifts in the axion production process in the presence of
classical electric-field fluctuations in the solar plasma, so
the collective electron motion and the its implication for the
axion conversion are unified under a general framework.
Moreover, by use of the Kramers-Kronig relations that
relate the spectral densities in the electromagnetic
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fluctuation description to the static structure factor SðQÞ,
Raffelt reasoned that the Primakoff production rate in
Ref. [8] agrees with the total rates of the decay process
γtðtransverse plasmonÞ → γlðlongitudinal plasmonÞþ
aðaxionÞ, the plasma coalescence process γt þ γl → a, and
the individual Primakoff process γtþe=Nðelectron=ionÞ→
aþe=N. Thus, as far as the calculation of the axion
production rate is concerned, the static structure factor
SðQÞ has already included the collective behavior of the
solar medium. These two seemingly different descriptions
reflect the same electromagnetic properties of the solar
medium.
References [24–26] reproduced the same Primakoff

production rate using thermal field theory while making
the same Kramers-Kronig relations argument in the last
step. It should be noted that in order for the Kramers-
Kronig sum rules to work, the energy shift between the
axion and the photon ω is assumed to be remarkably
smaller than the solar temperature T⊙, such that
1 − e−ω=T⊙ ≃ ω=T⊙. Thus, a detailed numerical examina-
tion of this assumption is one of the inspirations for
this work.
Recently, in Ref. [27] we applied the nonrelativistic linear

response theory to the dynamic screening effect in the
nondegenerate gas of the solar plasma associated with dark
matter scattering. Under this framework, one no longer
needs to add the dielectric function by hand since both the
finite temperature effect and the many-body effect are
inherently encapsulated in the dynamic structure factor
SðQ;ωÞ. Dynamic means that a finite energy ω transfer
(and thus a temporal variation) is taken into account in a
scattering event, in contrast to the static case where the
charged particles are regarded as fixed targets. This is
important considering that the thermal velocities of electrons
can reach ∼0.1c in the core of the Sun, which may bring a
non-negligible Doppler energy shift in the Primakoff proc-
ess. And more importantly, the screening and the collective
effect (plasmon) are naturally incorporated into this dynamic
structure factorSðQ;ωÞ. Thismethod could be an alternative
to the electromagnetic fluctuation description [23] and the
thermal field theory approach [24–26] mentioned above.
Therefore, the purpose of this work is to apply the linear

response theory approach [27] to the photon-axion con-
version process on the Sun in order to investigate the
implication of the recoil effect and the collective effect, and
especially to numerically explore in detail to what extent
the Kramers-Kronig sum rule argument is reliable to
validate the calculation of the Primakoff conversion rate
based on the static structure factor.
Discussion will proceed in the natural units, where

ℏ ¼ c ¼ kB ¼ 1.

II. PRIMAKOFF EVENT RATE

We first introduce how we describe the Primakoff
process in the context of the linear response theory that

naturally encodes the relevant finite temperature physics
and the many-body in-medium effect.
At the effective field theory (EFT) level, the interaction

relevant for the Primakoff process is given as

Laγ ¼ −
gaγ
4

aFμνF̃μν; ð2Þ

where a is the axion field, gaγ represents the axion-photon
coupling, and Fμν and F̃μν ¼ 1

2
ϵμνρσFρσ are the electro-

magnetic field strength and its dual, respectively. Since the
electrons and ions move nonrelativistically in the Sun, we
express the relevant interactions in the nonrelativistic EFT.
For instance, the electromagnetic field–electron interaction
is written as

LAe ¼ −eA0ψ
�
eψe −

ie
2me

A · ðψ�e∇!ψe − ψ�e∇ ψeÞ

−
e2

2me
jAj2 · ψ�eψe þ � � � ; ð3Þ

where ψe is the nonrelativistic electron wave function.
Considering that the second term on the right-hand side
is subject to an electron velocity suppression ∇

me
∼ ve ∼

Oð10−2–10−1Þ in the solar medium (with me being the
electron mass), and the longitudinal and transverse photon
propagators do not mix under the random phase approxi-
mation (RPA), only the longitudinal component in the
nonrelativistic effective electron-photon interaction A0

(or, more specifically, the Coulomb interaction) is retained
for the description of electron-electron (and electron-ion)
interaction in this work. Thus, we only consider the
components −gaγaϵijk0∂iAj∂kA0 of the Lagrangian in
Eq. (2) in the estimate of the Primakoff process in the
Sun. While the A0 component is responsible for the
Coulomb interaction, fAjg are relevant for the transverse
photon external legs.
The calculation of the Primakoff process shown in Fig. 1

depends on an accurate description of the electronic and
ionic in-medium effect on the Sun. In this work, we invoke
the linear response approach proposed in Ref. [27] to
describe the screening effect on the Sun. Within this
framework, the axion production rate for an incident
photon with energy Eγ and momentum pγ can be summa-
rized by the following expression (see the Appendix for
further details):

FIG. 1. Diagram for the Primakoff scattering process where a
photon is converted into an axion in the Coulomb potential of
charged particles (electron and ions). See the text for details.
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ΓðpγÞ ¼
Z

dω
Z

d3Q
ð2πÞ3

g2aγjpγ ×Qj2

8Eγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q 1

Q2
δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q
− Eγ þ ω

�

×
ð−2Þ

1 − e−ω=T⊙

"
VeImðΠeÞ

j1 − VeΠe − Ve
P

iZ
2
iΠNi
j2 þ

Ve
P

iZ
2
i ImðΠNi

Þ
j1 − VeΠe − Ve

P
iZ

2
iΠNi
j2
#
; ð4Þ

where α ¼ e2=4π is the electromagnetic fine structure
constant, ω and Q ¼ jQj denote the energy and the
magnitude of the momentum transfer to the solar medium,
respectively, VeðQÞ ¼ 4πα=Q2 is the electron Coulomb
interaction in momentum space, and Ea (ma) is the energy
(mass) of the axion. The delta function represents the
energy conservation in the scattering.
In this work, we only consider the case where the axion

masses are so small (typically ≪ keV) compared to their
energies that they can be effectively considered massless.
Besides, Eq. (4) does not take into account the fact that
photons inside a plasma have a nontrivial dispersion
relation E2

γ ≃ ω2
p þ jpγj2, which means that photons propa-

gating in the solar medium have an effective mass
ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne=me

p
. Consequently, the conversion process

is possible only for Eγ > ωp, and the plasmon mass effect
becomes remarkable for energies Eγ ≳ ωp. However, since

ωp ≈ 0.3 keV is much smaller than the typical plasmon
energy 3T⊙ ≈ 4 keV in the solar core [28], where the
majority of axions are produced, the photons are also
treated as massless in Eq. (4), which is in line with the
treatment in Ref. [8]. Reference [29] provided an analytical
conversion rate that adds the plasma frequency to the
original expression in Ref. [8], based on which we verify
that the plasmon mass effect brings a correction on the
order of 10−4 between 1 and 12 keV.
The first and second terms in the square brackets

correspond to the finite temperature many-body effect
from the electrons and ions, respectively; while ImðΠeÞ
(ImðΠNi

Þ) is responsible for the thermal movement of the
electrons (ions), the denominator describes the screening
[27]. Πe denotes the electron one-particle-irreducible dia-
gram in the RPA, which is approximated as the bubble
diagram. For the nondegenerate electron gas in the Sun, Πe
can be expressed as [27]

ΠeðQ;ωÞ ¼ −
ne
Q

ffiffiffiffiffiffiffiffiffi
me

2T⊙

r �
Φ
� ffiffiffiffiffiffiffiffiffi

me

2T⊙

r �
ω

Q
þ Q
2me

��
−Φ

� ffiffiffiffiffiffiffiffiffi
me

2T⊙

r �
ω

Q
−

Q
2me

���

− ine

ffiffiffiffiffiffiffiffiffiffiffiffi
2π

meT⊙

s �
me

Q

�
exp

�
−
�
m2

eω
2

Q2
þQ2

4

�
1

2meT⊙

�
sinh

�
ω

2T⊙

�
; ð5Þ

where ne is the number density of the electron gas and the
function Φ is defined as the Cauchy principal value of the
integration [30],

ΦðxÞ≡ P
Z þ∞

−∞

dyffiffiffi
π
p e−y

2

x − y
: ð6Þ

Similarly, ΠNi
denotes the bubble diagram of the ith ion

species carrying the charge Zie. At the RPA level, ΠNi
can

be obtained by simply replacing ne andme with ion number
density nNi

and ion massmNi
in Eq. (5). Contributions from

all solar ion species are included in Eq. (4). In order to
describe the collective behavior of the solar medium, we
introduce a nondimensional function F ðQ;ωÞ, which
represents the second line in Eq. (4). Interestingly, in
Fig. 2 a strong resonance structure is observed in the
parameter area where the real part approaches zero in the
denominator in Eq. (4), which corresponds to the absorp-
tion of a longitudinal plasmon in the process γt þ γl → a.
At the symmetric position in the upper half plane there is

another pole corresponding to the emission of a plasmon in
the process γt → γl þ a. As long as kinematically allowed,
such collective behavior may significantly alter the fixed-
electron picture of the axion production process. F ðQ;ωÞ
provides a complete description of the longitudinal plas-
mon behavior far beyond the approximated dispersion
relation ω2 ⋍ ω2

p þ 3ðT⊙=meÞQ2 [8].
Based on the axion production rate of Eq. (4), the

differential axion flux reaching Earth can then be written
as the convolution of the differential transition rate with the
photon blackbody distribution in the Sun,

dΦaðEaÞ
dEa

¼ 1

4πd2⊙

Z
R⊙

0

d3r
Z

dEγ

π2
E2
γ

eEγ=T⊙ −1

dΓðpγÞ
dEa

; ð7Þ

with the Sun-Earth distance d⊙ and the solar radius R⊙.
In the static screening prescription, since the energy of

the incident photon equals that of the axion, the differential
axion flux is given as [10]
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dΦaðEaÞ
dEa

¼ 1

4πd2⊙

Z
R⊙

0

d3r
1

π2
E2
a

eEa=T⊙ − 1
Γs; ð8Þ

with the relevant static photon-axion conversion rate

Γs ¼
T⊙κ

2g2aγ
32π

��
1þ κ2

4E2
a

�
ln

�
1þ 4E2

a

κ2

�
− 1

�
; ð9Þ

where κ2 ¼ ð4πα=T⊙Þðne þ
P

i Z
2
i nNi
Þ is the square of the

Debye-Hückel scale.

III. AXION FLUX ON EARTH

Equipped with the above formulation that describes the
solar in-medium effect with the linear response theory, now
we are in the position to calculate the axion flux at
terrestrial detectors.
In the left panel of Fig. 3, we compare the solar

Primakoff axion fluxes on Earth computed with the linear
response theory in Eq. (7) and with the static screening
description of the Coulomb interaction in Eq. (8).
These spectra are obtained by integrating the contribu-

tions from the charged particles in every thin shell in the
Sun, based on the standard Sun model AGSS09 [31]. In
practice, the solar radius is discretized into 100 slices, and
the 29 most common solar elements are included in our
computation. In addition, we assume that these solar
elements are fully ionized.
While in the left panel of Fig. 3 it is observed that

the average (4.2 keV) and the maximum (3.0 keV) of the
Primakoff axion energy distribution remain unchanged, the
differential rate is only 1% to 2% lower than the calculation
based on the static structure factor in the energy range of 2
to 12 keV. It is quite a surprising result, given that the
denominator term j1 − VeΠe − Ve

P
i Z

2
iΠNi
j−2 in Eq. (4)

FIG. 3. Left panel: solar Primakoff axion spectra on Earth calculated with the static structure factor (dashed blue line), and with the
dynamic structure factor (red line) that consists of the contributions from electrons (green line) and ions (orange line), for a benchmark
coupling strength gaγ ¼ 10−10 GeV−1. Δ (in %) represents the relative difference between the two approaches, i.e.,
Δ≡ ðstatic − dynamicÞ=static. Right panel: contour plot of the solar axion surface luminosity, normalized to its maximum value,
depending on the radius ρ on the solar disk and energy Ea. See the text for details.

FIG. 2. The factor F ðQ;ωÞ that demonstrates the longitudinal
plasmon resonance of the solar medium at radius r ¼ 0.1R⊙
(with R⊙ being the solar radius). The highly resonant “line”
(below Q < 1 keV) is too narrow to be shown in the plot. It is
evident that such plasmons suffer strong damping forQ≳ 2 keV.
See the text for details.
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asymptotes to the Debye screening form ð1þ κ2=Q2Þ−2 in
the limit ω → 0, where it brings a stronger screening than
the static structure factor ð1þ κ2=Q2Þ−1 in Eq. (1); the
contributions of the recoil effect and the collective effect
must coincidentally make up this loss to keep the total rate
unchanged.
Such a coincidence would be difficult if there were no

intrinsic relation protecting the total rate, especially
considering that, in contrast to the static screening picture,
where the contributions from the electrons and ions are in
scale to the electric charge densities ne and

P
i Z

2
i nNi

and
hence a larger part of the conversion comes from the
scattering with ions, it turns out that the collective
electrons contribute dominantly to the total Primakoff
axion flux in the dynamic screening picture. Thus, our
results actually confirm the validity of the Kramers-
Kronig sum rule argument in Ref. [23] up to a percent-
level correction.
In the right panel of Fig. 3, we also present the differ-

ential solar axion flux (using the dynamic structure factor)
as an apparent surface luminosity ϕaðEa; ρÞ of the solar
disk [29,32,33],

ϕaðEa; ρÞ ¼
R3
⊙

2π3d2⊙

Z
1

ρ

r̃dr̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2 − ρ2

p

×
Z

dEγ

π2
E2
γ

eEγ=T⊙ − 1

dΓðpγÞ
dEa

; ð10Þ

where the dimensionless quantities r̃ ¼ r=R⊙ and ρ re-
present the radial position of the conversion process and the
distance from the center of the solar disk, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

In order to further explore the many-body effect in the
solar medium in detail, in Fig. 4 we present the differential
axion production rates for photon energies Eγ ¼ 2 and
8 keV at the solar radius r ¼ 0.1R⊙, respectively, with the
benchmark coupling gaγ ¼ 10−10 GeV−1. While the spec-
tra of heavy ions are found to narrowly center at the photon
energies, behaving like static targets, it is intriguingly
observed that the non-negligible electron movement in
the inner part of the Sun can bring an energy shift up to
Oð0.1Þ keV from the initial photon energies. For one
thing, the two peaks in Fig. 4 correspond to the absorption
and emission of a longitudinal plasmon at ω ≃
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4παne=me

p
in the Sun, respectively. That is, a con-

siderable part of the Primakoff processes proceed in
conjunction with absorbance and emission of a plasmon.
For another, a broadening width of around 0.4 keV is also
clearly seen due to the thermal movement of the electrons.
While such a finite spread of the photon energy may not
bring a noticeable change to the total spectrum of the solar
axion, the strength of the resonance, i.e., the implication
of the collective effect, can be determined only with a
concrete calculation.
To conclude, in this paper we have applied the linear

response theory formalism for a delicate estimate of the
Primakoff photon-axion conversion rate in the Sun. Based
on this method, progress is gained in two aspects: (1) we
provide an up-to-date panoramic description of the
dynamic Primakoff process, which is explicitly shown to
be a combination of the decay process γt → γl þ a, the
plasma coalescence process γt þ γl → a, and the individual
Primakoff process γt þ e=N → aþ e=N, and (2) beyond

FIG. 4. Primakoff differential photon-axion conversion rates for photon energies Eγ ¼ 2 keV (left panel) and 8 keV (right panel) at the
solar radius r ¼ 0.1R⊙, with contributions from electrons (green lines) and ions (orange lines), respectively. The plasmon absorption
and emission peaks are clearly seen.
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the approximate Kramers-Kronig sum rules, we numeri-
cally calculate the relevant terrestrial axion flux due to the
Primakoff process, and the flux is found to be around 1% to
2% lower than the previous estimation based on the static
structure factor.
Lastly, this dynamic response-oriented approach can be

further applied to other axion production mechanisms such
as electron- and ion-bremsstrahlung processes in the Sun,
where a systematic treatment of the screening and collec-
tive effects is also highly useful.

APPENDIX: FORMULATION FOR THE
PRIMAKOFF SCATTERING EVENT

RATE ON THE SUN

In this appendix we give a detailed derivation of the
formulas in the main text that describe the Primakoff
photon-axion conversion process in the Sun. In the non-
relativistic regime, it is convenient to discuss this process in
the Coulomb gauge.
We start with the T matrix for the Primakoff process

where a photon (with momentum pγ and polarization λ)
scatters with a nonrelativistically moving electron

(illustrated in Fig. 1), emitting an axion with momentum
pa, i.e.,

hpa; ijiT jpγ;λ;ji¼ igaγe
ðpγ ×paÞ · ε̂λðpγÞ
jpγ −paj2

× hijeiðpγ−paÞ·x̂jji2πδðEγ −Ea− εiþ εjÞ;
ðA1Þ

where ε̂λðpγÞ is the polarization vector for the incident
photon, which satisfies the complete and orthonormal
relation, i.e.,

P
λ¼�1 ε̂λiðpγÞε̂λj�ðpγÞ ¼ δij − pi

γp
j
γ=jpγj2,

and pγ · ε̂�1ðpγÞ ¼ 0; Eγ, Ea, εi, and εj represent the
energies of the photon, the emitted axion, the initial and
the final state of the electron, respectively.
Then we take into account the many-body effect of the

solar medium with the approach adopted in Refs. [27,34].
To this end, we resort to the linear response theory, whereby
the Primakoff event rate for a photon with momentum pγ

(by averaging over the initial states and summing over the
final states) is written as follows (for simplicity, here we
assume that only one type of ions with charge Ze and mass
mN are present):

ΓðpγÞ ¼
X
i;j

Z
dωδðω − εi þ εjÞ

Z
d3Q δð3ÞðQþ pa − pγÞ

Z
d3pa

2Eað2πÞ3
�
gaγe

Q2

�
2 1

2

X
λ¼�1

jðpγ × paÞ · ε̂λðpγÞj2
2Eγ

×
1

V

Z
V
d3x d3x0pjhjje−iQ·x½ρ̂e þ ð−ZÞρ̂N �ðxÞjiihijeiQ·x0 ½ρ̂e þ ð−ZÞρ̂N �ðx0Þjj2πδðEγ − Ea − ωÞ

¼
Z

dω
Z

d3Q
ð2πÞ3

4πα

Q4

g2aγjpγ ×Qj2

8Eγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q 1

V

Z
V
d3x d3x0e−iQ·ðx−x0Þ

Z þ∞

−∞
eiωð0−tÞdt½hρ̂eIðx; 0Þρ̂eIðx0; tÞi

þ ð−ZÞhρ̂eIðx; 0Þρ̂NIðx0; tÞ þ ð−ZÞhρ̂NIðx; 0Þρ̂eIðx0; tÞ þ ð−ZÞ2hρ̂NIðx; 0Þρ̂NIðx0; tÞ�δðEγ − Ea − ωÞ

¼
Z

dω
Z

d3Q
ð2πÞ3

4πα

Q4

g2aγjpγ ×Qj2

8Eγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q ð−2Þ
1 − e−ω=T⊙

Im½χrρ̂eρ̂e þ ð−ZÞχrρ̂eρ̂N þ ð−ZÞχrρ̂N ρ̂e þ ð−ZÞ2χrρ̂N ρ̂N �

× δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q
− Eγ þ ω

�

¼
Z

dω
Z

d3Q
ð2πÞ2

4πα

Q4

g2aγjpγ ×Qj2

8Eγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q ð−2Þ
1 − e−ω=T⊙

�
ImðΠeÞ

j1 − VeΠe − VeZ2ΠN j2
þ Z2ImðΠNÞ
j1 − VeΠe − VeZ2ΠN j2

�

× δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q
− Eγ þ ω

�
; ðA2Þ

where we introduce the density operators for electrons
ρ̂eðxÞ≡ ψ̂†

eðxÞψ̂eðxÞ and ions ρ̂NðxÞ≡ ψ̂†
NðxÞψ̂NðxÞ, pj

represents the thermal distribution of the initial state jji, the
symbol h� � �i represents the thermal average, ρ̂eIðx0; tÞ≡
eiĤ0tρ̂eðx0Þe−iĤ0t (ρ̂NIðx; tÞ≡ eiĤ0tρ̂NðxÞe−iĤ0t), with Ĥ0

being the unperturbed Hamiltonian of the medium system,
and V is the volume of the solar medium under consid-
eration, which is only an intermediate quantity and is
canceled in the final expression of the event rate.
In addition, in the above derivation we invoke the

fluctuation-dissipation theorem
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Sρ̂ ρ̂ðQ;ωÞ ¼ 1

V

Z
V
d3x d3x0e−iQ·ðx−x0Þ

Z þ∞

−∞
dt eiωð0−tÞ

× hρ̂Iðx; 0Þρ̂Iðx0; tÞi

¼ i
½χρ̂ ρ̂ðQ;ωþ i0þÞ − χρ̂ ρ̂ðQ;ω − i0þÞ�

1 − e−ω=T

¼ −2Im½χrρ̂ ρ̂ðQ;ωÞ�
1 − e−ω=T

; ðA3Þ

where T represents temperature and ρ̂ generally stands for
ρ̂e and ρ̂N , so Sρ̂ ρ̂ðQ;ωÞ represents the dynamic structure
factor associated with the density-density correlation. In
practice [35], one first evaluates the master function
χρ̂ ρ̂ðQ; zÞ using the Matsubara Green’s function within
the framework of finite temperature field theory, then
obtains the retarded polarizability function χrρ̂ ρ̂ðQ;ωÞ by
performing the analytic continuation χrρ̂ ρ̂ðQ;ωÞ ¼
χρ̂ ρ̂ðQ; z → ωþ i0þÞ.
Here we take the retarded correlation function χrρ̂eρ̂N as an

example to illustrate how the calculation is carried out, with
the calculation presented as the sum of all possible
diagrams that connect the two density operators as follows:

ðA4Þ

where and represent the electron and ion pair-

bubble diagrams, respectively, i.e., Πe and ΠN at the RPA
level [see Eq. (5)], and the double wavy line

ðA5Þ

represents the electron Coulomb interaction screened by the
ions [the single wavy line corresponds to the Coulomb
interactionVeðQÞ]. Then Eq. (A4) can be explicitly written as

χrρ̂eρ̂N ¼
Πeð−ZÞVeΠN

1 − VeΠe − Z2VeΠN
: ðA6Þ

The above discussion can be extended to obtain the
retarded correlation functions χrρ̂N ρ̂e and χrρ̂N ρ̂N such that

χrρ̂N ρ̂e ¼ χrρ̂eρ̂N ðA7Þ

and

χrρ̂N ρ̂N ¼
ð1 − VeΠeÞΠN

1 − VeΠe − VeZ2ΠN
: ðA8Þ

In addition, in Ref. [27], we already derived

χrρ̂eρ̂e ¼
Πeð1 − Z2VeΠNÞ

1 − VeΠe − Z2VeΠN
: ðA9Þ

Thus, by combining all these terms it is straightforward to
verify that

χrρ̂eρ̂eþð−ZÞχrρ̂eρ̂N þð−ZÞχrρ̂N ρ̂eþð−ZÞ2χrρ̂N ρ̂N
¼ Πe

1−VeΠe−Z2VeΠN
þ Z2ΠN

1−VeΠe−Z2VeΠN
ðA10Þ

in Eq. (A2). As noted in Ref. [27], this expression encodes
both the thermal movement and the in-medium effect of the
electrons and ions.
In the practical computation of Eq. (A2), we first

integrate out the polar angle of Q with respect to the
direction of the photon momentum pγ , which is fixed as the
z axis in the spherical coordinate system. We then take a
variable transformation from cos θQpγ

to the variable

Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q
, along with the corresponding

Jacobian

FIG. 5. The effective integral area relevant for the Primakoff
event rate of Eq. (A12). See the text for details.
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d cos θQpγ

dEa

				 ¼ pγQ

Ea
: ðA11Þ

With this change of variable, the term proportional to sin2 θQpγ
in Eq. (A2), i.e., jpγ ×Qj2, can be rewritten as

p2
γQ2 − ½ðE2

a −m2
a − p2

γ −Q2Þ2=4�. Thus, Eq. (A2) is further expressed as

ΓðpγÞ ¼
Z

dω
Z

d3Q
ð2πÞ3

4πα

Q4

g2aγjpγ ×Qj2

8Eγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q ð−2Þ
1 − e−ω=T⊙

�
ImðΠeÞ

j1 − VeΠe − VeZ2ΠN j2
þ Z2ImðΠNÞ
j1 − VeΠe − VeZ2ΠN j2

�

× δð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpγ −Qj2 þm2

a

q
− Eγ þ ωÞ

¼
Z

dω
Z

QdQ
ð2πÞ2

4πα

Q4

g2aγ
8E2

γ

ð−2Þ
1 − e−ω=T⊙

�
ImðΠeÞ

j1 − VeΠe − VeZ2ΠN j2
þ Z2ImðΠNÞ
j1 − VeΠe − VeZ2ΠN j2

�

×
Z

Eþ

E−

dEa

�
p2
γQ2 −

ðE2
a −m2

a − p2
γ −Q2Þ2

4

�
δðEa − Eγ þ ωÞ

¼
Z

dω
Z

QdQ
ð2πÞ2

4πα

Q4

g2aγ
8E2

γ

ð−2Þ
1 − e−ω=T⊙

�
ImðΠeÞ

j1 − VeΠe − VeZ2ΠN j2
þ Z2ImðΠNÞ
j1 − VeΠe − VeZ2ΠN j2

�

×

�
p2
γQ2 −

ðω2 − 2ωpγ −Q2Þ2
4

�
ΘðQþ ωÞ · ½ΘðQ − ωÞΘðpγ −QÞ þ Θð2Eγ −Q − ωÞΘðQ − pγÞ�; ðA12Þ

where E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpγ �QÞ2 þm2

a

q
. On the last line, we take ma → 0, and Θ is the Heaviside step function. The integral

area on the Q − ω plane corresponding to these step functions is shown in Fig. 5 for illustration. In the last
step, we generalize the above expression to the multiple atom species in the Sun [as the sum over isotopes in the square
brackets in Eq. (4)].
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