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We calculate the effect of dark matter on the ringdown waveform and shadow of supermassive black
holes at the core of galaxies. Our main focus is on the supermassive black hole at the core of M87, which is
large enough to allow for viable observational data. We compare the effects of a dark matter spike to those
expected from a galactic halo of the same mass. Our calculation for the halo starts from the Hernquist
density function and assumes anisotropic pressure that is zero in the radial direction. The resulting Tolman-
Oppenheimer-Volkoff equations allow the corresponding metric to be obtained analytically in closed form.
The geometry of the anisotropic dark matter spike is the same as that obtained in [Astrophys. J. 940, 33
(2022)] under the assumption of isotropy. The effect of the spike is orders of magnitude more significant
than the halo as long as the distribution scale of the latter is within a few orders of magnitude of the value
expected from observations. Our results indicate that the impact of the spike surrounding M87* on the
ringdown waveform may in principle be detectable. Finally, we point out the somewhat surprising fact that
existing Event Horizon Telescope observations of black hole shadows are within an order of magnitude
from being able to detect, or rule out, the presence of a spike.
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I. INTRODUCTION

Dark matter (DM) halos are known to surround most, if
not all, supermassive black holes at the center of galaxies.
It has been proposed that DM spikes exist at the core of
galactic halos [1–4]. Several papers [5–12] have recently
derived the effects of DM spikes on the gravitational waves
emitted from black holes, but until recently the prospect of
detecting these waves from supermassive black holes has
been remote. This has now changed due to recent exper-
imental developments.
The North American Nanohertz Observatory for

Gravitational Waves (NANOGrav) [13], Parkes Pulsar
Timing Array (PPTA) [14], and European Pulsar Timing
Array (EPTA) [15] have found a common background noise
at frequencies around 10−8 Hz. The very recent observations
of Hellings–Downs correlations by the Chinese Pulsar
Timing Array (CPTA) collaboration [16], EPTA collabora-
tion [17], NANOGrav collaboration [18] and PPTA collabo-
ration [19] strongly suggest a stochastic gravitational-wave
origin of this background noise. Supermassive black hole
binaries are among the main candidates to produce this
background gravitational wave in the nHz range. A recent
paper [20] has looked for signatures of DM spikes surround-
ing supermassive black holes in this data. Although these
observations are still very far from being able to measure
ringdown waveforms from individual supermassive black
holes, it is nonetheless important to determine accurately the
effect of the DM distributions on these waveforms.

Another important gravitational signature of black holes,
namely the radius of the photon ring, has recently been
measured for M87 using the remarkable images of the
central black hole’s shadow obtained by the Event Horizon
Telescope [21]. Moreover, the authors of [22] used novel
statistical methods to reduce the error in this measurement
to approximately 1%, leading to the possibility that
measurements of the photon ring might one day yield
information about the DM distribution surrounding super-
massive black holes.
The shadow size of the galactic black hole Sagittarius A*

(Sgr A*) in the presence of a DM spike was investigated
in [23].1 In a more recent paper [26], the present authors
studied the impact of the DM spike on ringdown waveforms
for the supermassive black holes SgrA* andM87*.Using an
approach similar to that of [26] in solving the Tolman-
Oppenheimer-Volkoff (TOV) equations, the authors of [27]
calculated the quasinormalmodes (QNMs) that dominate the
gravitational ringdown process of perturbed black holes
surrounded by DM spikes. In these previous papers, the
calculations were done in terms of the Schwarzschild time of
the central black hole as measured by an observer located
between the black hole event horizon and the inner radius of
the spike.

1Similar calculations for the shadow size of black holes
surrounded by DM halos were done in [24,25].
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In the following, we calculate the effect of DM spikes on
the ringdown waveforms and shadows of the supermassive
black holes at the center of theMilkyWay andM87 galaxies.
We emphasize the importance of expressing the results in the
frame of an asymptotic stationary observer for obtaining the
correct predictions.2 Using the Schwarzschild time within
the inner radius of the spike effectively neglects an overall
redshift factor that provides the dominant contribution.
Ignoring this redshift, as done in [26], underestimates
considerably the size of the effect.
In addition, using the method developed in [26]

combined with the redshift, we construct the spacetime
for a black hole surrounded by a DM halo in order to
compare its impact to the spike case. To do this, we start
with the Hernquist density profile [28], which describes
the distribution of DM halos in elliptical galaxies such
as M87.
Two possible assumptions about the DM pressure have

been used to reduce the problem of determining the
spacetime geometry to that of solving the standard TOV
equations. One of these (see [23,26]) is the assumption of
isotropy. Isotropic pressure is however suspect in the case
of noninteracting dust since near the photon sphere, where
the motion is highly relativistic, nonzero radial pressure
necessarily implies a flow of matter into the black hole and
renders the solution nonstatic.3 The assumption of isotropy
can nonetheless be viable in certain regions of the dark
matter halo [29,30] and in certain scenarios such as self-
interacting dark matter spikes [31]. The second, more
physical, assumption is the anisotropic DM with zero
radial pressure and nonzero uniform pressure tangential
to spheres of constant radius. We will show in the following
that the TOV equations imply the same geometry to a high
degree of accuracy for both assumptions when the spike
density profile is near the range previously determined by
observation.
In [32], Cardoso et al. found an analytic solution for a

Hernquist-like density profile for an anisotropic DM halo
(with zero radial pressure) surrounding a black hole.4 In
their solution, Cardoso et al. modify the Hernquist density
function in order to impose the boundary condition
gttðr → ∞Þ → 1, where gttðrÞ is the metric function.
While the two approaches are different, the solution of [32]
turns out to be a close match to the solution we find without
altering the Hernquist density function.
In the context of shadows, we confirm that the presence

of a DM spike/halo increases the size of the black hole
shadow [23,26]. We point out that for the spike density

estimated in [26],5 based on the observational data provided
in [34], the increase of the shadow size due to a DM spike
can be of the order of 0.1%. This calculation has taken on
new significance given the recent results of [22] for M87.
The increase in the shadow size is just one order of
magnitude less than the proposed error bars of [22].
The paper is organized as follows. Section II reviews the

general derivation of the metric for both the isotropic and
anisotropic cases and describes the subtleties associated
with the choice of reference frame. Section III derives the
wave equation, which is covariant under the corresponding
change of frame. The resulting solution for the waveform is
a scalar whose shape depends on the choice of coordinates.
Section IV presents a discussion of galactic black holes
with DM spikes and their associated ringdown waveforms.
Section V derives the metric for a dark matter halo
described by the Hernquist profile. The effects of the halo
on the QNM potential, due to the redshift, are then
compared to those expected from a DM spike of the same
mass. Section VI reviews the shadow calculations and
conclusions are given in Sec. VII. The Appendix is devoted
to deriving an approximate expression for the discontinu-
ities in the QNM potential that necessarily exist at the
boundaries of a DM spike. The discontinuities are propor-
tional to the change in matter density at the boundaries and
negligibly small for the proposed spike profiles.

II. DERIVING THE SPACETIME METRIC

In order to calculate ringdown waveforms that might
emerge from compact objects, one first needs to determine
the static background metric based on the conjectured
matter content surrounding the object. We are thinking here
of DM halos/spikes. This requires solving the TOV
equations with appropriate boundary conditions.
One starts with the most general 4-D spherically sym-

metric static metric (up to coordinate transformations)

ds2 ¼ −AðrÞdt2 þ BðrÞ−1dr2 þ r2dΩ2

¼ −eμðrÞdt2 þ
�
1 −

2MðrÞ
r

�
−1
dr2 þ r2dΩ2; ð1Þ

where we use geometric units with c ¼ G ¼ 1. For
asymptotically flat metrics, eμðrÞ → constant at spatial
infinity. This constant is normally chosen to be unity,
thereby fixing the time coordinate to be the proper time of a
stationary asymptotic observer. This is the correct choice
when comparing waves emitted by distant compact objects,
despite the fact that it has not always been used in recent
discussions of ringdown waveforms.2The authors are grateful to Andrei Frolov for illuminating

discussions in this regard.
3We are grateful to Don Page for bringing this argument to our

attention.
4For spacetime solutions for other DM halo density profiles,

see [33].

5We note a typo in Eqs. (30) and (31) of [26], where the
authors estimate the DM spike density based on observational
data. More specifically, the term ð1þ r0=rÞ should be ð1þ r=r0Þ.
The numerical results, however, are correct.
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We now outline the derivation of the metric in the
spacetime containing a general anisotropic, extended but
finite, spherical shell of matter surrounding a black hole.
See [26] for more details on the derivation. We denote the
inner radius of the shell by rin and the outer radius by rout.
Assume a spherically symmetric anisotropic perfect fluid
stress tensor for the shell of matter

Tμ
ν ¼ diagðρðrÞ; prðrÞ; ptðrÞ; ptðrÞÞ; ð2Þ

wherepr is the pressure in the radial direction andpt denotes
the pressure tangential to a symmetric two sphere at fixed
radius, r. The resulting equations in the shell region are

Gtt ¼ 0 ⇒
dMðrÞ
dr

¼ 4πr2ρðrÞ ð3Þ

Grr ¼ 0 ⇒
dμðrÞ
dr

¼ 2
MðrÞ þ 4πr3prðrÞ

r½r − 2MðrÞ� ð4Þ

∇νTrν ¼ 0 ⇒
dprðrÞ
dr

¼ −½ρðrÞ þ prðrÞ�
MðrÞ þ 4πr3pðrÞ
r½r − 2MðrÞ� þ 2

r
ðpt − prÞ:

ð5Þ

Two different cases have been considered in the recent
literature.
The first case is the isotropic case, where ptðrÞ ¼

prðrÞ ¼ pðrÞ. Equations (3) and (4) remain unchanged,
except that pr is replaced by pðrÞ in the latter. The
momentum conservation equation becomes

∇νTrν ¼ 0 ⇒
dpðrÞ
dr

¼ −½ρðrÞ þ pðrÞ�MðrÞ þ 4πr3pðrÞ
r½r − 2MðrÞ� :

ð6Þ

Equations (3), (4), and (6) are the standard spherical TOV
equations found in textbooks (see [35] for example). They
are rather difficult to solve in general because of the
presence of pðrÞ in both (4) and (6).
The second case is the anisotropic case considered in

[32,33] with zero radial pressure (pr ¼ 0). Equation (3)
again remains unchanged, while the remaining equations
simplify to

Grr ¼ 0 ⇒
dμðrÞ
dr

¼ 2
MðrÞ

r½r − 2MðrÞ� ð7Þ

∇νTrν ¼ 0 ⇒ 0 ¼ −ρðrÞ MðrÞ
r½r − 2MðrÞ� þ

2

r
pt: ð8Þ

In this case, Eq. (7) can be integrated directly while Eq. (8)
can be solved algebraically once MðrÞ is determined

from (3). Note that one does not need to know the
transverse pressure to determine the metric.
In both cases there are three equations in four unknowns,

either ½μðrÞ;MðrÞ; ρðrÞ; pðrÞ� or ½μðrÞ;MðrÞ; ρðrÞ; ptðrÞ�,
which means they need to be supplemented by a fourth
equation. Normally this is taken to be the equation of state
relating the density to the pressure. In the cases we are
interested in, such as DM halos/spikes, theoretical calcu-
lations [2] predict a particular density profile for the shell.
This provides the extra equation. Therefore, there is no
freedom left to specify the equation of state.
To solve the isotropic case, we will assume for the

simplicity that the pressure term is negligible when solving
for μðrÞ in Eq. (4). The validity of this assumption, in the
case of DM spikes, was proven in [26] and is confirmed
again here. As long as the pressure term is negligible in
Eq. (4), it should be clear that, for a given density function,
there is no difference in geometry for the isotropic case
and the anisotropic case. This is a direct consequence of
the fact that in both cases the pressure is irrelevant to the
determination of the geometry, albeit for very different
physical reasons.
Thus, in both cases, given the density profile, one

can obtain the mass function by integrating Eq. (3) from
rBH to spatial infinity with the boundary condition that
Mðr < rinÞ ¼ MBH, where we use rBH andMBH to indicate
the horizon radius and mass of the central black hole
respectively. Given the mass function obtained above, one
integrates Eq. (4) to get the second metric function μðrÞ.
Since the TOV equations are first order, each requires the
specification of a single boundary condition in order to
provide a unique solution. For Eq. (3), the correct boundary
condition is that Mðr < rinÞ ¼ MBH. Equivalently, one can
chooseMðr ≥ routÞ ¼ Mtotal ¼ MBH þMshell, whereMshell
is the total mass of the shell. Since the tangential metric
must be continuous at the boundaries for the surface
geometry on the boundary to be uniquely defined, there
is no freedom in the choice of boundary conditions. A
potential subtlety does arise in the choice of boundary
condition for gttðrÞ [and consequently for μðrÞ] in Eq. (4),
which in turn determines the time coordinate. The obvious
choice is that gttðrÞ → 1 (μðrÞ → 0) far from the black hole
so that t is the proper time of an asymptotic observer at rest
relative to the black hole. This is presumably the frame in
which the measurements of the ringdown waveform and
shadow are made. On the other hand, it is useful to consider
the ringdown waveforms caused by outgoing waves that
originate in the vacuum region r < rin, where the initial
data are specified. Such outgoing boundary conditions are
preferred for two reasons: first, they are in some sense more
physical since the ringdown waveforms from the merger of
binary black holes do originate from near the horizon.
Secondly, numerical integrations of the wave equation yield
better results (i.e., a larger number of reliable oscillations
before errors set in) than simulations that start from ingoing
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waves. When starting with outgoing initial data, as done
in [26], it seems natural to impose the boundary condition
on the metric in the shell’s interior, namely

gttðr < rinÞ ¼ 1 −
2MBH

r
; ð9Þ

which is the Schwarzschild metric of the central black hole.
Following [26] we integrate outward starting at rin with

the boundary condition (9), which fixes the time coordinate
t to be the Schwarzschild time of the vacuum metric
associated with the central black hole. In this case, t is
what would be the proper time of a stationary observer at
infinity had the DM spike not been present. This is not the
same as the actual proper time of an asymptotic observer
when the spike is present. It is the latter proper time with
respect to which measurements will be taken. We can
rewrite Eq. (9) in terms of μðrÞ as

μðr < rinÞ ¼ ln

�
1 −

2MBH

r

�
; ð10Þ

where clearly μðrÞ → 0 as r → ∞.
The integration of Eq. (4) proceeds to larger radii with

the assumption that the metric function be continuous at
both shell boundaries. This is required to ensure that the
shell boundary has a well-defined geometry.6 In the shell
region rin ≤ r < rout, we find the metric function to be

μðrÞ ¼ ln

�
1 −

2MBH

rin

�
þ
Z

r

rin

dr
2MðrÞ

rðr − 2MðrÞÞ : ð11Þ

To obtain a solution that is continuous at the outer radius
of the shell, we extend the integral in Eq. (11) past rout
as follows:

μðr ≥ routÞ ¼ ln

�
1 −

2MBH

rin

�
þ
Z

rout

rin

dr
2MðrÞ

rðr − 2MðrÞÞ
þ
Z

r

rout

dr
2Mtotal

rðr − 2MtotalÞ
: ð12Þ

Note that the last integral above gives

Z
r

rout

dr
2Mtotal

rðr−2MtotalÞ
¼ ln

�
1−

2Mtotal

r

�
− ln

�
1−

2Mtotal

rout

�
:

ð13Þ

After combining Eqs. (12) and (13), we arrive at

μðr ≥ routÞ ¼ ln

�
1 −

2Mtotal

r

�
þ lnðCÞ; ð14Þ

where

C ¼
�
1 − 2MBH

rin

�
�
1 − 2Mtotal

rout

� exp
Z

rout

rin

dr
MðrÞ

rðr − 2MðrÞÞ: ð15Þ

One thereby obtains a metric on the exterior that is
asymptotically flat but for which μðrÞ does not go to zero
(i.e. gttðrÞ↛1) at infinity:

ds2¼−C
�
1−

2Mtotal

r

�
dt2þ

�
1−

2Mtotal

r

�
−1
dr2þ r2dΩ2:

ð16Þ

The constant C ≠ 1 arises due to the presence of the matter
shell so that t is not the proper time of an asymptotic
observer. It turns out that the constant C provides the
dominant contribution to the modification of the ringdown
waveform caused by the presence of the shell. The
relationship between the time t in (16) and the proper
time t̃ of an asymptotic observer is

t̃ ¼
ffiffiffi
C

p
t: ð17Þ

This is simply a redshift factor that is a consequence of the
extra mass in the system provided by the shell. For positive
definite shell densities C is greater than one, so that in terms
of the rescaled time t̃, the waveform appears stretched.

III. WAVE EQUATION

In terms of the Schwarzschild time t of the vacuum
metric of the central black hole, the QNM wave equation
has the general form

�
∂
2

∂t2
−

∂
2

∂r2�
þ Vðrðr�ÞÞ

�
Ψðt; r�Þ ¼ 0; ð18Þ

where r� is the tortoise coordinate defined as

dr� ¼
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞBðrÞp : ð19Þ

For the particular case of massless scalar perturbations,
the QNM potential is

VðrÞ ¼ AðrÞ lðlþ 1Þ
r2

þ 1

2r
d
dr

½AðrÞBðrÞ�: ð20Þ

With the given potential, one then solves (18) for the wave
Ψðt; r�Þ with the initial condition of an outgoing wave

6Note that μðrÞ is not necessarily smooth at the boundaries.
This introduces discontinuities in the QNM potential, which can
be shown to be small in the present context. For details, see the
Appendix.
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Ψð0; r�Þ ¼ fðr�Þ
∂tΨðt; r�Þjt¼0 ¼ −∂r�Ψð0; r�Þ; ð21Þ

where fðr�Þ is usually taken to be a Gaussian function.
As explained earlier, in order to find the waveform

measured by an asymptotic observer, one can first deter-
mine the waveform in terms of the Schwarzschild time t of
the interior geometry (r < rin) by solving Eq. (18) with
initial conditions (21) and then rescale the time coordinate
to the proper time of an asymptotic observer, t̃ ¼ ffiffiffi

C
p

t.
Alternatively, one can do the entire calculation in terms of t̃.
In the latter case, one calculates μ̃ðrÞ by integrating inward
from rout with the boundary condition

μ̃ðr ≥ routÞ ¼ ln

�
1 −

2Mtotal

r

�
: ð22Þ

The integration of Eq. (4) then proceeds to the shell region
of rin ≤ r < rout, where

μ̃ðrÞ ¼ ln

�
1 −

2Mtotal

rout

�
þ
Z

r

rout

dr
2MðrÞ

rðr − 2MðrÞÞ : ð23Þ

Combining Eqs. (11), (15), and (23), one finds that
μ̃ðrÞ ¼ μðrÞ − lnðCÞ, which means

ÃðrÞ ¼ AðrÞ=C: ð24Þ

Therefore, the conversion of the outward integration to an
inward integration suitable for an asymptotic observer can
be reduced to a simple rescaling. The tortoise coordinate for
the asymptotic observer is

dr̃� ¼
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ÃðrÞBðrÞ
q ¼

ffiffiffi
C

p
dr�: ð25Þ

In order to verify the covariance of the wave equation under
time rescales, we note that

ṼðrÞ ¼ ÃðrÞ lðlþ 1Þ
r2

þ 1

2r
d
dr

½ÃðrÞBðrÞ� ¼ VðrÞ
C

: ð26Þ

Putting these transformations together we find, as expected,
that

C
�
∂
2

∂t̃2
−

∂
2

∂r̃2�
þ Ṽðr̃�Þ

�
Ψ̃ðt̃; r̃�Þ ¼ 0; ð27Þ

where

Ṽðr̃�Þ ¼
Vðrðr̃�ÞÞ

C
: ð28Þ

Equation (27) is of the same form as thewave equation (18).
This is all simply a manifestation of the fact that the field is

a scalar, so that the wave equation is covariant and the
solutions are related by

Ψ̃ðt̃; r̃�Þ ¼ Ψðt; r�Þ ¼ Ψ
�

1ffiffiffi
C

p t̃;
1ffiffiffi
C

p r̃�

�
: ð29Þ

In the frame of the asymptotic observer, the same initial
conditions as in Eq. (21) above take the form

Ψ̃ð0; r̃�Þ ¼ f̃ðr̃�Þ ¼ fðr�ðr̃�ÞÞ ¼ f

�
1ffiffiffi
C

p r̃�

�
ffiffiffi
C

p
∂t̃Ψ̃ðt̃; r̃�Þjt̃¼0 ¼ −

ffiffiffi
C

p
∂r̃�Ψ̃ð0; r̃�Þ ¼

ffiffiffi
C

p
∂r̃�f

�
1ffiffiffi
C

p r̃

�
:

ð30Þ

Thus Gaussian initial data specified in terms of r� change
the width by a factor of

ffiffiffi
C

p
under the frame transformation.

Of course, both forms correspond to the same initial data in
terms of the areal radius. Although it is important to
compare apples to apples with respect to initial data,
numerical calculations are not sensitive to small changes
to the initial wave due to the fact that black holes oscillate
with natural vibrational modes (QNMs) that have unique
frequencies and damping rates.

IV. GALACTIC BLACK HOLES
WITH DARK MATTER SPIKES

As we mentioned earlier, the results in [26] are obtained
in the Schwarzschild coordinates in the region r < rin. In
this section, we examine the same waveforms as seen by an
asymptotic stationary observer.
The adiabatically formed DM spike, studied in [26], has

a density profile [2]

ρspDMðrÞ ≃ ρsp

�
Rsp

r

�
γsp
; ð31Þ

were ρsp and Rsp are the density and radius, respectively, at
the outer edge of the spike. The expected value for ρsp,
when γsp ¼ 7=3, is taken to be 8.00 × 10−23 g cm−3 for Sgr
A (see Table 1 of [26]) and 2.12 × 10−23 g cm−3 for M87
(see Table 2 of [26]). In this section, we present the results
for these cases.
To see how the DM spike influences the shape of the

QNM potential given in Eq. (20), in Figs. 1, 3, and 5 we
plot the Schwarzschild potential together with the poten-
tials corresponding to the time coordinates t and t̃,
respectively. Figure 1 shows the potential for Sgr A* with
a DM density at the outer edge of the spike, ρsp, approx-
imately 840 times the expected value given in Table 1 of
[26] for the case of γsp ¼ 7=3. Note that while the potential
for the coordinate t closely follows the Schwarzschild case,
the potential for the asymptotic observer is very different.
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Figures 3 and 5 show the potential for M87* with ρsp ≈ 8.4
and ρsp ≈ 84 times the expected value, provided in Table 2
of [26] for the case of αγ ¼ 1.94, respectively.
The ringdown waveforms for the potentials in Figs. 1, 3,

and 5 are shown in Figs. 2, 4, and 6 respectively. These
waveforms are caused by the outgoing Gaussian pulse used
in [26] that initiates near the event horizon (inside the
photon sphere) and gets detected after being transmitted
through the QNM potential. In these figures, we also
provide the ringdown waveform for the Schwarzschild
case for comparison. Note that for the more massive black
hole M87*, less density at the outer edge of the spike is
required to achieve an observable signal. In Figs. 3 and 4,

the change in the potential and ringdown waveform due to
the presence of DM spike is visible in the asymptotic frame
even for a density as low as ≈8.4 times the expected ρsp.
This is not the case for an observer who uses the time
coordinate t.
Finally, in Fig. 7, we generate the ringdown waveform

produced by the same Gaussian pulse that moves inward
from a far distance outside the potential ṼðrÞ shown in
Fig. 5 and reflects back to generate the ringdown wave-
form. The reflected wave produces considerably fewer
oscillations than the transmitted wave shown in Fig. 6.
However, the transmitted and reflected waves are con-
sistent in terms of the observed impact of the DM spike.
In both cases, the main contribution to the waveform

FIG. 2. In solid brown, ringdown waveform Ψ̃ (left) and ln jΨ̃j (right) as a function of time t̃ for the potential, ṼðrÞ, shown in solid
brown in Fig. 1. For numerical purposes, we detect the waveform at r ¼ 80rBH. For comparison, we include the Schwarzschild
ringdown waveform in dotted green. All our variables are expressed in terms of black hole parameters.

FIG. 3. Scalar QNM potential as a function of radial coordinate
for l ¼ 2 and γsp ¼ 7=3 for M87* with the mass of MBH ¼
6.4 × 109M⊙ surrounded by a DM spike. VðrÞ, in dashed red, is
the potential corresponding to t and ṼðrÞ, in solid brown, is the
potential viewed by an asymptotic observer. We choose ρsp ¼
1.8 × 10−22 g cm−3 (8.4 times the expected value), rb ¼ 2rBH
and Rsp ¼ 4.26 kpc. With these values, C ¼ 1.031. For compari-
son, we include the Schwarzschild potential, VSðrÞ, in dotted
green forMBH ¼ 6.4 × 109M⊙. All our variables are expressed in
terms of black hole parameters.

V (r)

V (r)

VS(r)

0 2 4 6 8 10
0.0

0.2

0.4

0.6
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1.0

r

FIG. 1. Scalar QNM potential as a function of radial coordinate
for l ¼ 2 and γsp ¼ 7=3 for Sgr A* with the mass of MBH ¼
4.1 × 106M⊙ surrounded by a DM spike. VðrÞ, in dashed red, is
the potential corresponding to t and ṼðrÞ, in solid brown, is the
potential viewed by an asymptotic observer. We choose ρsp ¼
6.7 × 10−20 g cm−3 (≈840 times the expected value), rb ¼ 2rBH
and Rsp ¼ 0.235 kpc. With these values, C ¼ 1.172. For com-
parison, we include the Schwarzschild potential, VSðrÞ, in dotted
green forMBH ¼ 4.1 × 106M⊙. All our variables are expressed in
terms of black hole parameters.
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modification comes from the redshift caused by the extra
mass in the system.
Note that it is not possible numerically to generate these

ringdown waveforms for an observer at a region outside the
spike, since Rsp is of the order of at least 107 times the black
hole radius. However, the potential drops very quickly with
distance. For example, at r ¼ 50rBH the potential is three
orders of magnitude smaller than its value at the peak. This
allows us to generate the ringdown waveform for an
observer located at a radius close to the black hole (roughly
around 80rBH). Since the potential is already relatively
small at this radius, we do not expect any significant
modification in the waveform as it travels all the way to the
region outside the spike.

It is evident from the results in this section that the
impact of the DM spike on the ringdown waveform is more
pronounced in the frame of an asymptotic observer,
compared to the results presented in [26]. More specifi-
cally, to generate roughly the same modification in the
ringdown waveform, we need an order of magnitude less
DM density in terms of the proper time t̃ of an asymptotic
observer compared to an observer who uses t. We can,
therefore, conclude that if a significant gravitational wave
detection associated with perturbations of a black hole with
a mass comparable to M87* occurs, it might provide the
means to detect the presence of a DM spike or at least put a
model dependent bound on its parameters. More massive
galactic black holes could likely yield even clearer signals,
as argued in [26].

V. GALACTIC BLACK HOLES WITH DARK
MATTER HALOS

In this section, we investigate a black hole surrounded by
a DM halo in order to compare our results with the spike
case. Since the observational signal is more significant for
larger black holes, we focus on M87*. The density function
of the DM halo in an elliptical galaxy, such as M87, is well-
described by the Hernquist profile that has the form [28]

ρðrÞ ¼ Mhaloa0
2πrðrþ a0Þ3

; ð32Þ

whereMhalo is the total mass of the halo and a0 is the scale
radius. The scale radius of a halo is typically of the order
a0 ≈ 104Mhalo [36]. After integrating the TOVequation (3)
with the above density profile, we obtain

MðrÞ ¼ Mtotal −Mhaloa0
2rþ a0
ðrþ a0Þ2

; ð33Þ

where we choose the constant of integration to be
Mtotal ¼ MBH þMhalo.

FIG. 5. Scalar QNM potential as a function of radial coordinate
for l ¼ 2 and γsp ¼ 7=3 for M87* with the mass of MBH ¼
6.4 × 109M⊙ surrounded by a DM spike. VðrÞ, in dashed red, is
the potential corresponding to t, and ṼðrÞ, in solid brown, is the
potential viewed by an asymptotic observer. We choose ρsp ¼
1.8 × 10−21 g cm−3 (84 times the expected value), rb ¼ 2rBH and
Rsp ¼ 4.26 kpc. With these values, C ¼ 1.371. For comparison,
we include the Schwarzschild potential, VSðrÞ, in dotted green for
MBH ¼ 6.4 × 109M⊙. All our variables are expressed in terms of
black hole parameters.

FIG. 4. In solid brown, ringdown waveform Ψ̃ (left) and ln jΨ̃j (right) as a function of time t̃ for the potential, ṼðrÞ, shown in solid
brown in Fig. 3. For numerical purposes, we detect the waveform at r ¼ 80rBH. For comparison, we include the Schwarzschild
ringdown waveform in dotted green. All our variables are expressed in terms of black hole parameters.
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FIG. 6. In solid brown, ringdown waveform Ψ̃ (left) and ln jΨ̃j (right) as a function of time t̃ for the potential, ṼðrÞ, shown in solid
brown in Fig. 5. For numerical purposes, we detect the waveform at r ¼ 70rBH. For comparison, we include the Schwarzschild
ringdown waveform in dotted green. All our variables are expressed in terms of black hole parameters.

FIG. 7. In solid brown, ringdown waveform Ψ̃ (left) and ln jΨ̃j (right) as a function of time t̃ for the potential, ṼðrÞ, shown in solid
brown in Fig. 5. Unlike all the other figures, the ringdown is produced by an ingoing pulse starting at r ≈ 41rBH. For numerical purposes,
we detect the waveform at r ¼ 70rBH. For comparison, we include the Schwarzschild ringdown waveform in dotted green. All our
variables are expressed in terms of black hole parameters.

FIG. 8. On the left, the DM halo pressure p as a function of λ ¼ 1–2MBH=r is plotted in solid orange for a0 ¼ 1000Mhalo, where
Mhalo ¼ 4.54 × 1013M⊙. The pressure is obtained numerically using Eq. (6). For comparison, we include the DM halo density ρðλÞ in
dashed purple. On the right, for the same parameters, we plot the term 4πrðλÞ3pðλÞ and MðλÞ to show that the pressure term stays
negligible while MðλÞ increases from MBH to Mtotal as λ approaches 1 (r → ∞). All our variables are expressed in terms of black hole
parameters.
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In the anisotropic case with negligible radial pressure,
pr, one can proceed to Eq. (34) below. In the isotropic case,
which is physically less relevant, we need to solve Eq. (6)
for pðrÞ. This is not possible analytically, but we have
solved it numerically using the built-in Mathematica
commands for solving differential equations. It turns out
that the pressure term, 4πr3pðrÞ, can be neglected com-
pared to MðrÞ in the TOV equations. We show the
numerical results in Fig. 8 for the case where
a0 ¼ 1000Mhalo. To better manage the numerical calcu-
lations, we solve Eq. (5) in the coordinate λ ¼ 1–2MBH=r,
which maps the interval rBH ≤ r < ∞ to 0 ≤ λ < 1. While

pressure and density are comparable in magnitude, it is
clear from Fig. 8 that 4πr3pðrÞ ≪ MðrÞ. More specifically,
the term 4πr3pðrÞ stays close to zero while MðrÞ increases
from MBH to Mtotal at large distances from the black hole.
In the absence of pressure, anisotropic and isotropic

cases become the same. This is because for both cases the
TOV equation (4) reduces to Eq. (7). Combining Eqs. (7)
and (33) gives

dμðrÞ
dr

¼ −
1

r
þ 1

r − 2½Mtotal −Mhaloa0
2rþa0
ðrþa0Þ2�

: ð34Þ

We integrate Eq. (34) to get

μðrÞ ¼ −
Z

dr
r
þ
Z

y2dy
y3 − ð2Mtotal þ a0Þy2 þ 4Mhaloa0y − 2Mhaloa20

þ C

¼ −
Z

dr
r
þ y20
y1y2 þ y0ðy0 − y1 − y2Þ

Z
dy

y − y0

þ 1

y1y2 þ y0ðy0 − y1 − y2Þ
Z ðy0y1y2 − y0y1y − y0y2yþ y1y2yÞdy

y2 − ðy1 þ y2Þyþ y1y2
þ C; ð35Þ

where we have used the change of variable y ¼ rþ a0. Here, y0 is the real root of the equation y3 − ð2Mtotal þ a0Þy2 þ
4Mhaloa0y − 2Mhaloa20 and y1 and y2 are the two complex conjugate roots. After integration, the final result for the metric
function, AðrÞ ¼ eμðrÞ, is

AðrÞ ¼
�
1 −

2MBH

rin

�
rin
r

�
rþ a0 − y0
rin þ a0 − y0

� y2
0

y1y2þy0ðy0−y1−y2Þ
� ðrþ a0Þ2 − ðy1 þ y2Þðrþ a0Þ þ y1y2
ðrin þ a0Þ2 − ðy1 þ y2Þðrin þ a0Þ þ y1y2

� ½y1y2−y0ðy1þy2Þ�
2½y1y2þy0ðy0−y1−y2Þ�

× e

2y0y1y2−y0ðy1þy2Þ2þy1y2ðy1þy2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y1y2−ðy1þy2Þ2

p
½y1y2þy0ðy0−y1−y2Þ�

�
arctan

2ðrþa0Þ−y1−y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y1y2−ðy1þy2Þ2

p −arctan 2ðrinþa0Þ−y1−y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y1y2−ðy1þy2Þ2

p
�
: ð36Þ

We have chosen the constant of integration, C, so that AðrinÞ ¼ 1–2MBH=rin.

Using Eqs. (15), (33), and (36) we can obtain the scalar
QNM potential (26) for the DM halo. We show the scalar
QNM potential, ṼhaloðrÞ, for different values of a0 in Fig. 9.
The QNM potential of the halo is only comparable to the
spike of the same mass for a0 ¼ 10Mhalo. In this case,
approximately 99% of the halo mass is contained in the
spike region of rin ≤ r < rout. For larger values of a0, the
mass of the halo spreads out further from the black hole and
the QNM potential becomes almost indistinguishable from
the Schwarzschild case (black hole with no DM) for
a0 > 100Mhalo. In other words, the impact of the redshift
on the QNM potential is negligible for a halo as long as its
distribution scale is within a few orders of magnitude of the
value expected from observations. This indicates the

observational signal does depend on how DM is distributed
around a black hole.
In [32], Cardoso et al. have also found an analytic

solution for a Hernquist-like density profile for an aniso-
tropic DM halo, with negligible pr, surrounding a black
hole. In their solution, Cardoso et al. modify the Hernquist
density function in order to impose the boundary condition
gttðr → ∞Þ → 1. The solution of [32] turns out to be a
close match to the solution we find here, where we do not
alter the Hernquist density function. In Fig. 10, we show the
difference between the scalar QNM potential obtained
using our metric functions (33) and (36) and the potential
found using the metric functions provided in [32]. The
difference between the two solutions is less than 0.1%.
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VI. SHADOW RADIUS

We summarize the shadow calculations as follows.7

Consider the action for particle geodesics

S ¼
Z

λf

λ0

Lðx; ẋÞdλ ¼ 1

2

Z
λf

λ0

gμνẋνẋμdλ; ð37Þ

whereL is the Lagrangian and dot represents derivative with
respect to the affine parameter λ. For the general static
spherically symmetric spacetime inEq. (1), theLagrangian is

Lðx; ẋÞ ¼ 1

2
½−AðrÞṫ2 þ BðrÞ−1ṙ2 þ r2ðθ̇2 þ sin2 θϕ̇2Þ�:

ð38Þ

The spherical symmetry allows us to take θ ¼ π=2 without
the loss of generality. The t and ϕ components of the Euler-
Lagrange equation

d
dλ

�
∂L
∂ẋμ

�
−

∂L
∂xμ

¼ 0 ð39Þ

give us two constants of motion E ¼ AðrÞṫ and L ¼ r2ϕ̇,
which correspond to energy and angular momentum
respectively.
For null geodesics we have gμνẋμẋν ¼ 0. Hence

−AðrÞṫ2 þ BðrÞ−1ṙ2 þ r2ϕ̇2 ¼ 0: ð40Þ

After combining the constants of motion with the above
equation and using the fact that ṙ2=ϕ̇2 ¼ ðdr=dϕÞ2, one
obtains the orbit equation for null geodesics,

�
dr
dϕ

�
2

¼ r2BðrÞ
�

r2

AðrÞ
1

b2
− 1

�
; ð41Þ

where b ¼ L=E is the impact parameter defined as the
perpendicular distance, measured at infinity, between the
geodesic and the parallel line that passes through the center
of black hole in an asymptotically Minkowski spacetime.8

The closest distance, R, of the light ray to the black hole is
the turning point of the geodesic, where the condition
dr=dϕjR ¼ 0 has to hold. This condition gives us a relation
between R and b,

b2 ¼ R2

AðRÞ : ð42Þ

When R ¼ rph, where rph is the radius of the photon sphere,
the light ray that is coming from infinity will orbit around the
black hole. In this situation, in addition to dr=dϕjrph ¼ 0, the

condition d2r=dϕ2jrph ¼ 0 should also hold. Combining
these two conditions with Eq. (41) gives

FIG. 9. Scalar QNM potential as a function of radial coordinate
for l ¼ 2 for M87* with the mass of MBH ¼ 6.4 × 109M⊙
surrounded by a DM halo with the mass of Mhalo ¼
4.54 × 1013M⊙. The halo extends from rin ¼ 2rBH to infinity.
ṼhaloðrÞ is plotted for a0 ¼ 10Mhalo, a0 ¼ 100Mhalo, and a0 ¼
1000Mhalo in dashed red, dashed blue, and dashed black respec-
tively. For comparison, we also plot ṼðrÞ in solid brown for a DM
spike with the same mass, which extends between rin ¼ 2rBH and
rout ¼ 4.26 kpc. We choose the same rout for the DM halo to
calculate the redshift factor. This assumes the observer is located at
r ¼ rout. Choosing rout ∼∞ changes the results by only 0.1%. In
addition, we include the Schwarzschild potential, VSðrÞ, in dotted
green forMBH ¼ 6.4 × 109M⊙. All our variables are expressed in
terms of black hole parameters.

FIG. 10. The difference between the scalar QNM potential for
l ¼ 2 obtained using the metric functions derived in this paper
and the DM halo model suggested by Cardoso et al. [32] is shown
for MBH ¼ 6.4 × 109M⊙ and Mhalo ¼ 4.54 × 1013M⊙.

7For a good review of black hole shadow calculations, see [37].

8Specifically, the spacetime must be asymptotically flat and the
metric must be asymptotically Minkowski so that AðrÞ → 1
as r → ∞.
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1

AðrÞ
dAðrÞ
dr

¼ 2

r
; ð43Þ

which can be used to determine the radius of the photon
sphere. It is easy to show that for the Schwarzschild
spacetime, where AðrÞ ¼ 1–2MBH=r, Eq. (43) gives
rph ¼ 3MBH. Once we determine rph, we can use Eq. (42)
to find the corresponding impact parameter

bph ¼
rphffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrphÞ

p : ð44Þ

The shadow radius, rsh, turns out to be equal to bph, because
the rays with b < bph cannot escape the black hole. It is
important, however, to note that b only corresponds to the
impact parameter at infinity if we assume the black hole
spacetime is asymptotically Minkowski. For asymptotically
flat black holes, rsh does not need to be equal to bph. This can
be explained as the following. If the distance between the
observer and the center of the black hole is ro and the angle
between ro and the geodesic at infinity isα, thenwe canwrite
the relation

sin α ¼ I
ro
; ð45Þ

where I is the impact parameter. Note that at the observer
position, we also have

sinα∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2BðrÞ

p
dϕ

dr

����
ro

∼
�
b2

AðroÞ
r2o

�
1=2

¼
�

R2

AðRÞ
AðroÞ
r2o

�
1=2

;

ð46Þ

where we use Eq. (41) and the small angle approximation.
The above two equations give

I ∼ b
ffiffiffiffiffiffiffiffiffiffiffi
AðroÞ

p
: ð47Þ

It is clear that I ¼ b only whenAðroÞ ¼ 1. Finally, the black
hole shadow size is given by

rsh ¼ Iph ∼ bph
ffiffiffiffiffiffiffiffiffiffiffi
AðroÞ

p
¼ rph

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðroÞ
AðrphÞ

s
: ð48Þ

Note that the shadow radius is invariant under time rescal-
ings, so that one can obtain the correct result using either t̃
or t.
We now explore how the shadow of a black hole changes

in the presence of a DM spike. In an asymptotically
Minkowski space, AðroÞ ≈ 1. For the Schwarzschild case,
we find the radius of the shadow to be

rSchwsh ∼ rph

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

AðrphÞ

s
¼ 3

ffiffiffi
3

p
MBH; ð49Þ

where we use the fact that rph ¼ 3MBH. In the presence of a
DM spike or halo, the asymptotic observer will measure the
radius to be

rspsh ∼ rph

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ÃðrphÞ

s
¼ rph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

AðrphÞ=C

s
¼ 3

ffiffiffiffiffiffi
3C

p
MBH: ð50Þ

Therefore the black hole shadow radius will appear to beffiffiffi
C

p
times larger due to the presence of DM. For the shadow

radius of M87*, bounds on the DM spike density produce
an effect9 that is an order of magnitude smaller than is
accessible with current Event Horizon Telescope data [22].
In the case of a halo, however, the enlargement of the
shadow size is negligible as long as the distribution scale of
the halo is within a few orders of magnitude of the value
expected from observations (see Fig. 9).

VII. CONCLUSION

We have shown that a DM spike or halo surrounding the
black hole at the center of M87 will effect the associated
ringdown waveform predominantly in the form of an
overall redshift between the frame of an observer who
uses the Schwarzschild time below the inner radius of the
spike/halo and that of an asymptotic observer. The impact
of the redshift on the asymptotic ringdown waveform is
significant in case of the spike, but not the halo as long as
the distribution scale of the latter is within a few orders of
magnitude of the value expected from observations. We
conclude that if it becomes possible to detect the gravita-
tional waves associated with perturbations of a galactic
black hole with a mass comparable or larger than that of
M87*, it could provide the means to detect the presence of
a DM spike or put a model dependent bound on its
parameters.
We also showed that the presence of a DM spike or

halo would increase the black hole shadow radius by the
redshift factor of

ffiffiffi
C

p
. Remarkably, known bounds on

the DM spike density produce an effect on the shadow
radius of M87* that is just an order of magnitude smaller
than is accessible with current Event Horizon Telescope
data [22]. Spikes surrounding more massive black holes
would produce even larger effects [26] on the shadow
and may soon provide the observational means to confirm
or rule out their presence.

9C ≈ 1.004 for the M87* spike profile provided in Table 2
of [26] for the case of αγ ¼ 1.94. This leads to an approximately
0.2% enlargement of the shadow diameter.
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APPENDIX: DISCONTINUITY IN POTENTIAL

Here, we derive the discontinuities in the QNM potential
that exist at the boundaries of the matter shell. To do this,
we first rewrite Eq. (20) as

VðrÞ
AðrÞ ¼

lðlþ 1Þ
r2

þ 1

2r

�
BðrÞA

0ðrÞ
AðrÞ þ B0ðrÞ

	
ðA1Þ

¼ lðlþ 1Þ
r2

þ 1

2r

��
1 −

2MðrÞ
r

�
μ0ðrÞ

þ
�
−2M0ðrÞ

r
þ 2MðrÞ

r2

�	
: ðA2Þ

Using the TOV equations (3) and (4), we can write

VðrÞ
AðrÞ ¼

lðlþ 1Þ
r2

þ 1

2r

��
1 −

2MðrÞ
r

��
2MðrÞ

rðr − 2MðrÞÞ
	
þ
�
−8πr2ρðrÞ

r
þ 2MðrÞ

r2

�	

¼ lðlþ 1Þ
r2

þ 1

2r2

�
2MðrÞ

r
þ
�
−8πr2ρðrÞ þ 2MðrÞ

r

�	

¼ lðlþ 1Þ
r2

þ 1

r3
½2MðrÞ − 4πr3ρðrÞ�: ðA3Þ

Therefore,

VðrÞ ¼ AðrÞ
�
lðlþ 1Þ

r2
þ 1

r3
ð2MðrÞ − 4πr3ρðrÞÞ

	
ðA4Þ

and since only ρ is discontinuous, the discontinuity in
VðrÞ is

ΔVðrÞ ¼ −4πAðrÞΔρðrÞ: ðA5Þ

Thus, the discontinuities in the QNM potential are propor-
tional to the change in matter density at the boundaries,
and consequently negligibly small for proposed DM spike
profiles [23,26,38].
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