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Approximations are commonly employed in realistic applications of scientific Bayesian inference, often
due to convenience if not necessity. In the field of gravitational-wave (GW) data analysis, fast-to-evaluate
but approximate waveform models of astrophysical GW signals are sometimes used in lieu of more
accurate models to infer properties of a true GW signal buried within detector noise. In addition, a Fisher-
information-based normal approximation to the posterior distribution can also be used to conduct inference
in bulk, without the need for extensive numerical calculations such as Markov chain Monte Carlo
simulations. Such approximations can generally lead to an inaccurate posterior distribution with poor
statistical coverage of the true posterior. In this paper, we present a novel calibration procedure that
calibrates the credible sets for a family of approximate posterior distributions, to ensure coverage of the true
posterior at a level specified by the analyst. Tools such as autoencoders and artificial neural networks are
used within our calibration model to compress the data (for efficiency) and to perform tasks such as logistic
regression. As a proof of principle, we demonstrate our formalism on the GW signal from a high-mass
binary black hole merger, a promising source for the near-future space-based GW observatory LISA.
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I. INTRODUCTION

The ground-breaking observation of a gravitational-
wave (GW) signal spectacularly opened the field of
gravitational-wave astronomy on the 14th of September,
2015. The ground-based gravitational-wave observatories,
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) in Livingston and Hanford, observed a GW signal
emanating from the coalescence of two stellar-mass black
holes (BHs) [1]. This feat was achieved through the use of
sophisticated statistical signal processing algorithms and
accurate waveform templates used to filter the data stream
[2–4]. In a traditional (ground-based) matched-filtering
search, template banks are used to detect the presence of
a signal buried within the instrumental noise [5–8]. Once a
candidate signal in the data stream is established, stochastic
sampling algorithms, such as Markov chain Monte Carlo
(MCMC), are used to estimate the parameter set that best
describes the corresponding astrophysical source [9–11].
To do this both efficiently and accurately, we require
astrophysical waveform models to be both cheap to
generate and sufficiently detailed to describe the fully
relativistic waveform in the data stream [12].

The current state-of-the-art waveform modeling tech-
nique for binary black holes with mass ratios ≲20 is
numerical relativity (NR), where the fully general Einstein
equations are numerically solved for the space-time metric
perturbations [13–16]. These NR simulations are the most
accurate method to date we have to generate comparable
mass BHs, but can take months to generate a small number
of orbits [17,18]. For data analysis, which relies on
generating hundreds of thousands of waveforms with
multiple cycles, this is computationally infeasible. In order
to circumvent this, various waveform approximations have
been developed that rely on a hybrid between the post-
Newtonian (PN) formalism and NR [19–24]. This has the
major advantage that these waveform models are faster to
generate, but with the cost that they are not truly faithful to
the GW signal hidden within the data stream. Modeling
errors can result in an overall reduced sensitivity in the
detection of actual signals. Using nonfaithful waveforms
can also impact inference: we may potentially recover
biased parameter estimates, and/or claim incorrectly how
precise we can measure the parameters in question
[12,25,26]. Additionally, it can be shown that biases arising
from approximate waveform models scale inversely in the
limit of high signal-to-noise ratio (SNR) [26]. Further,
waveform inaccuracies could result in systematic errors in*alvincjk@nus.edu.sg
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parameter estimates and even dominate them, especially
with multiple overlapping signals [27–30].
In our work, we will restrict our attention to a particular

class of sources expected to be observed by the space-based
gravitational-wave observatory: the Laser Interferometer
Space Antenna (LISA) [31,32]. In contrast to ground-based
detectors, which are limited by seismic noise at lower
frequencies, the LISA instrument will achieve optimum
sensitivity in the mHz GW frequency band, providing the
means to probe the rich structure of high mass binaries. One
of the most promising sources of mHz gravitational
radiation will be the collisions of comparable massive
black hole binaries (MBHBs) with masses of 105–107M⊙
up to redshifts of z≲ 20. Observation of these MBHBs at
specific redshifts gives one a means to probe various
formation channels for MBHBs [33–36]. Unlike sources
observed by ground-based detectors, MBHBs will be
extremely loud, with SNRs up to ∼1000, offering strong
constraints on the parameters that govern the signal [37,38].
Owing to the strength of these signals and the precision in
which we can measure their parameters, they will provide
powerful tests of general relativity (GR) [39–41].
With the immense strength of these signals, we will

require exceptionally accurate waveform models to ensure
that recovered parameters are not biased and that uncer-
tainties are correctly quantified. For this reason, calibration
techniques that provide a means to “correct” inference
resulting from an approximate waveform model to an exact
waveform model (such as a NR simulation) may be viewed
as essential. An early example of this was presented in
[12,25,26], which showed how to estimate the bias (and
thus the accurate maximum a posteriori estimate) in the
linear-signal regime. More recently, Gaussian process
regression has been developed as a viable method for
interpolating and marginalizing over model error in the GW
likelihood, thus calibrating the likelihood itself before it is
used for posterior estimation [42–45]. Similar studies can
also be found with ground-based detectors, like LIGO and
Virgo, as well as preparations for Cosmic Explorer and
Einstein Telescope. Early Fisher studies, with an approxi-
mation to the full likelihood, may not be applicable for low
SNR events. Full analyses into the full parameter space
were needed when correcting the model uncertainties.
Signal-specific calibration with marginalization in gravita-
tional-wave inference was implemented [46]. The applica-
tion of the Bayesian method was also proposed to
marginalize the ignorance of (unknown) higher PN order
terms and give general directive calibrations [47].
When the generative model lacks computational effi-

ciency for executing the MCMC simulation, resorting to
posterior density approximation becomes an appealing
option, and the MCMC simulation can be avoided. This
is often seen in Bayesian inference, and some well-known
approximations include the mean field approximation in
the variational Bayes [48] and Laplace approximation

[49,50]. In this paper, the posterior density is normally
approximated by imposing the Fisher matrix approach to
the likelihood and the uniform prior. The Fisher matrix for
the GW likelihood can be expressed in terms of waveform
derivatives of the approximate model (which may need to
be computed numerically, but using far fewer evaluations of
the model than posterior sampling). It is widely used
throughout GW astronomy to cheaply forecast precision
statements on parameters [51] and to predict biases on
parameter estimates through the use of nonfaithful wave-
form models [26]. As the Fisher matrix lends itself to
calculations in bulk, it is often also used to approximate and
hence study a family of posteriors over a space of GW
signals [52–55]. Thus there is plenty of motivation for
methods that can calibrate the family of approximate
normal posteriors obtained via the Fisher matrix.
In this paper, we introduce a novel calibration technique

that approaches the problem from another angle, using the
formalism presented by [56]. In the Bayesian framework,
the uncertainty about unknowns is probabilistically repre-
sented by the posterior distribution. When an approximate
waveform generation model is used or a likelihood/pos-
terior is approximated, the resulting inference is not exact.
Operational coverage of a credible set of a parameter
vector based on an approximate posterior measures how
much of the exact posterior probability mass lies in this set,
and it can be interpreted as an error estimate for the
approximate posterior. A practical operational coverage
estimator allows us to estimate an error of posterior
approximation for any observed waveform generated from
a prior distribution [56,57]. To perform the calibration
formalism, it is necessary to generate a large number of
posteriors using an approximate waveform model. This
would clearly become computationally prohibitive with
expensive posterior simulation methods. Owing to the
usage of normal approximations via a Fisher-based for-
malism to the posteriors, expensive posterior simulation is
not required, and the practical operational coverage esti-
mator is acquired with a more budget-friendly comput-
ing cost.
Here, we present a practical estimator for gravitational-

wave data analysis and demonstrate how to compute the
calibrated credible set of an approximate posterior that
corresponds to the desired exact posterior probability mass.
Systematic studies usually focus on correcting a single
posterior, generated via an approximate waveform model at
a specific point in parameter space [28]. Instead, we
propose a method that, after a training scheme (on the
prior space of samples), near-instantaneous calibrated
posterior estimates can be generated over the entire signal
space. In other words, we devise a scheme that can calibrate
a family of posteriors, rather than a single one.
This paper is organized as follows. In Sec. II we set

notations and introduce the data analysis concepts that will
be used throughout this work. In Sec. III, we summarize the
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work of [56], outlining a framework that can be used to
calibrate the statistical coverage of approximate posterior
distributions to the exact posterior distribution as if param-
eter estimation was performed using a more faithful
waveform model. In Sec. IV we demonstrate this calibra-
tion procedure using a simple toy example and finally show
its general applicability on an MBHB source within the
LISA framework in Sec. V. Our conclusions and scope for
future work are presented in Sec. VI.

II. GRAVITATIONAL-WAVE DATA ANALYSIS

A. Noise modeling and likelihood

The typical time-domain data stream observed by the
LISA instrument will be a combination of time delay
interferometry (TDI) variables X ¼ fA;E; Tg, representing
the response of the LISA instrument to the plus and cross
polarizations of the incoming GW source in the transverse-
traceless gauge [58,59]:

dðXÞo ðtÞ ¼ hðXÞe ðt; θ0Þ þ nðXÞðtÞ; X ¼ fA;E; Tg: ð1Þ

Here do is the observed data stream, θ0 are the true

parameters of the true gravitational wave hðXÞe , and
nðXÞðtÞ are noise fluctuations arising from perturbations
to the LISA instrument from unresolvable GW sources and
non-GW instrumental perturbations. In our work, we will
perform inference on a single waveform within the data
streams dðXÞ and ignore potential multiple signals within
the data stream, such as would be considered in the global
fit [60]. We make the assumption that the noise nðXÞ in each
channel is a weakly stationary Gaussian stochastic process
with zero mean, colored by the power spectral density
(PSD) of their respected TDI channel. A consequence of
this is that the noise nðXÞ is uncorrelated in the frequency
domain, resulting in a purely diagonal noise covariance
matrix Σ [61–63]:

Σðf; f0Þ ¼ hn̂ðXÞðfÞðn̂ðXÞðf0ÞÞ⋆i ð2Þ

¼ 1

2
δðf − f0ÞSðXÞn ðf0Þ: ð3Þ

for f∈ ð0;∞Þ. Here h·i denotes an average ensemble over
many noise realisations, δ is the Dirac delta function and

SðXÞn is the PSD of the noise process within a channel X.
Hatted quantities refer to the Fourier transform with
convention,

ĥðfÞ ¼
Z

∞

0

dt hðtÞ expð−2πiftÞ: ð4Þ

Assuming that the arm lengths of the LISA interferometer
are both equal and constant, it can be shown that the noise
across channels X is independent and thus uncorrelated

[58,59]. From Eq. (3), Whittle showed that the likelihood in
the frequency domain takes the form [64]

pðnÞ ¼ −
1

2

X
X

ðnjnÞðXÞ ð5Þ

with inner product [11,25]

ðajbÞðXÞ ¼ 4Re
Z

∞

0

df
âðXÞðfÞðb̂ðXÞðf0ÞÞ⋆

SðXÞn ðf0Þ
: ð6Þ

Substituting equation (1) into (5), we obtain the usual
likelihood used throughout gravitational-wave astronomy
[10,11,63],

pðdjθÞ ¼ −
1

2

X
X

ðd − hmjd − hmÞðXÞ; ð7Þ

where hm are our approximate model templates, favorably
quick to generate and used when inferring parameters θ.
The SNR, ρ, is a quantity used to determine the power of

the signal when compared to noise. Within the framework
of matched filtering [65,66], the optimal matched filtering
SNR takes the form [11]

ρ2X ¼ ðhmjhmÞðXÞ ¼ 4

Z
∞

0

df
jĥðfÞj2
SðXÞn ðfÞ

; ð8Þ

with total (squared) SNR across X ¼ fA;E; Tg given by
summing Eq. (8) in quadrature ρ2 ¼ P

XðhmjhmÞðXÞ.
We now describe how we generate detector noise given

that the noise is both stationary and we know, a priori, the
PSD of the noise process nðXÞ.
The frequency domain equation (2) can be discretized in

the continuum limit to give the covariance of the noise
between two frequency bins fi and fj:

Σ̂ij ¼ Ed½n̂ðXÞðfiÞðn̂ðXÞðfjÞÞ⋆� ð9Þ

¼ SðXÞn ðfiÞδij=2Δf: ð10Þ

Here fi ∈ ½0;Δf;…; ðN
2
ÞΔf� is an individual frequency bin,

Δf ¼ 1=NΔt ¼ 1=Tobs the spacing between frequency
bins, N the length of the time series, and Δt the sampling
interval.
Equation (10) highlights that, for stationary Gaussian

noise, the frequency bins for i ≠ j are uncorrelated.
Focusing on the diagonal elements of (10), it is possible
to show that the real and imaginary components of the
noise follows a Gaussian distribution:

Reðn̂ðXÞðfiÞ ¼ N

�
0;
SðXÞn ðfiÞ
4Δf

�
ð11aÞ
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Imðn̂ðXÞðfiÞ ¼ N

�
0;
SðXÞn ðfiÞ
4Δf

�
: ð11bÞ

To simulate noise, we thus draw components of the noise
from Eqs. (11a) and (11b) given PSDs SðXÞn for each of the
channels X ¼ fA; E; Tg. An exact signal is then generated,
added to this specific noise realization, and this constructs
the dataset dðXÞðtÞ in (1).
As will be discussed in Sec. II B, assuming that the

likelihood is consistent with the noise model, the detector
noise will encode a statistical fluctuation forcing a
deviation between the recovered and true parameters. In
reality, the recovered parameters will not be centred on the
true parameters due to the presence of two features:
waveform modeling errors and noise. The next section
describes how one can compute the bias on parameters due
to waveform modeling errors and statistical fluctuations
due to the inclusion of noise.

B. Fisher matrix

In our work we will use a Fisher matrix formalism to
generate approximate distributions on parameters given an
observed data streampðθjdoÞ [11,51]. In the high SNR limit,
it is expected that the distribution of parameter sets is a
multivariate Gaussian defined by a mean vector and covari-
ance matrix. Here we will show how one can approximate
both the mean vector and covariance matrix using a Fisher
matrix approach, rather than using costly MCMC simula-
tions. Here we generalize the results from [12,25,26] to
account for the three LISA channels A, E, and T.

We denote the best fit parameter θibf as the maximum
likelihood estimate that maximizes Eq. (7):X

X¼fA;E;Tg
ð∂ihðXÞm ðt; θbfÞjdðXÞ − hðXÞm ðt; θbfÞÞ ¼ 0: ð12Þ

Here ∂i ≔ ∂=∂θi denotes a partial derivative with respect to
θi. Now consider a small perturbation around the true
parameters θbf ¼ θ0 þ Δθ for Δθ ¼ ðθbf − θ0Þ. By apply-
ing the linear signal approximation, an expansion in Δθ ≪
1 to first order in our model templates gives

hðXÞm ðθ0Þ ≈ hðXÞm ðθbfÞ − ∂ih
ðXÞ
m ðθbfÞΔθi: ð13Þ

From this point onward, we will drop the (fixed) time
coordinate t for notational convenience. Equation (13) can

then be used in the expression dðXÞ − hðXÞm to find

dðXÞ − hðXÞm ðθbfÞ
¼ nðXÞ þ hðXÞe ðθ0Þ − hðXÞm ðθbfÞ
¼ nðXÞ þ hðXÞe ðθ0Þ − hðXÞm ðθ0Þ þ hðXÞm ðθ0Þ − hðXÞm ðθbfÞ
≈ nðXÞ þ δhðXÞðθ0Þ − ∂ih

ðXÞ
m ðθbfÞΔθi þ ðΔθiÞ2 ð14Þ

for δhðXÞðθ0Þ ¼ hðXÞe ðθ0Þ − hðXÞm ðθ0Þ denoting residuals

between the true waveform hðXÞe and the approximate

waveform hðXÞm . When there are no mismodeling errors
present, the term δhðXÞ ¼ 0. Substituting Eq. (14) into (12),
one obtains at first order in Δθi

X
X¼fA;E;Tg

½Δθjð∂jhmðθbfÞj∂ihmðθbfÞÞðXÞ − ð∂jhmðθbfÞjnÞðXÞ − ð∂jhmðθbfÞjδhðθ0ÞÞðXÞ� ¼ 0: ð15Þ

Defining the matrix

ðΓAETÞij ¼
X

X¼fA;E;Tg
ð∂ihmðθbfÞj∂jhmðθbfÞÞðXÞ ð16Þ

it is then possible to invert the matrix-vector equation (15)
to calculate Δθi:

Δθi ¼ ðΓ−1
AETÞij

�X
X

ð∂jhmðθbfÞjnÞðXÞ

þ ð∂jhmðθbfÞjδhðθ0ÞÞðXÞ
�
: ð17Þ

In the presence of noise fluctuations nðXÞ and waveform
modeling errors he ≠ hm, there are two sources of discrep-
ancy between the recovered parameters θibf and true
parameters θi0 described by Eq. (17). Each of these terms

represent a statistical error, determined by the presence of
noise and the second a systematic error, a consequence of
nonfaithful model templates hm:

Δθin ¼ ðΓ−1
AETÞij

X
X

ð∂jhmðθbfÞjnÞðXÞ; ð18Þ

Δθisys ¼ ðΓ−1
AETÞij

X
X

ð∂jhmðθbfÞjδhðθ0ÞÞðXÞ: ð19Þ

The first term (18) enforces a statistical fluctuation to the
recovered parameters. Since the noise has mean zero, the

statistic θin;bf ¼ θi0 þ ðdΔθinÞAET is an unbiased estimator of
the true parameters such thatE½θin;bf � ¼ θi0. The quantity (19)
governs the bias in the recovered parameters due to using
inaccurate waveform models where δhðXÞðθ0Þ ≠ 0. The
overall bias is thus given by the second term in Eq. (19):
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E½θibf � ¼ θi0 þ ðΓ−1
AETÞij

X
X

ð∂jhmðθbfÞjδhðθ0ÞðXÞÞ: ð20Þ

Note that since h ∼ ρ and SnðfÞ ∼ ρ0, we have that Γ−1 ∼
ρ−2 giving the scaling relationship for the statistical

uncertainty ðdΔθinÞAET ∼Oð1=ρÞ. Similarly, for the system-

atic error, the scaling relationship is given by ð dΔθisysÞAET ∼
Oðρ0Þ and is thus independent of the SNR of the source.
Therefore, if the signal-to-noise ratio of the underlying
signal is large, then the (relative) magnitude of the syste-
matic error will be larger when compared to the statistical
fluctuation. Further details can be found in [12,25,26,28].
In the limit of small waveform modeling errors

jδhðXÞj2 ≪ ρ0 and high SNR, the Fisher matrix yields an
approximation to the predicted covariance matrix of the
posterior distribution

E½ðΔθibfÞðΔθjbfÞ� ≈ ðΓ−1
AETÞij: ð21Þ

with rooted diagonal elements an approximation to how
well one can constrain the parameters of the system. The
Fisher matrix is widely used within gravitational-wave
astronomy to cheaply compute precision measurements on
parameters of interest. Precision measurements are given by
the rooted diagonals of the inverse of the Fisher matrix

Δθistat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
no sum: ð22Þ

where Δθistat is the statistical error, the 1σ deviation
(through expectation) in the recovered parameters due to
noise fluctuations. For systematic studies in Cutler-
Valisneri framework [26], the ratio between (19) and
(22) is computed. If the bias on parameters exceeds the
statistical uncertainty, then the proposed waveform model
is not suitable for parameter estimation.
In our work, we will not focus on error induced due to

approximate waveform models. Instead, we will focus on
the notion of coverage given by an approximate posterior
distribution. The “coverage” of a posterior density
describes the probability that the true parameters are
contained within the posteriors credible set. The Cutler
Valisneri formalism can be discussed in terms of coverage
of a posterior: If the (assumed normal) approximate
posterior has a 68% coverage, then the waveform model
will be deemed suitable for parameter estimation.1 The
primary focus of our work is to calibrate the coverage of an
approximate posterior to a much higher level, specified by
the user. The final (calibrated) credible region will then

contain the true parameters with higher level of probability
the original credible region. In other words, the coverage of
the new calibrated approximate posterior will be larger,
indicating greater certainty that we have recovered the
correct parameters to a reasonable certainty. To discuss this
in more detail, it is necessary to introduce the Bayesian
tools we will use to perform parameter estimation.
The Fisher matrix formalism leading to Eqs. (18), (19),

and (21) can be used to compute precision measurements
on parameters and potential sources of bias on the recov-
ered parameters θbf . However, given an observed data
stream do, we wish to make inference on parameters θ that
govern the structure of the underlying dataset (and thus the
GW signal).

C. Bayesian theory

The standard procedure used within GW astronomy to
estimate parameters of a signal hðXÞ given observation of a

set of data streams dðXÞo is Bayesian inference. At the heart
of Bayesian theory lies Bayes’ theorem:

pðθjdoÞ ¼
pðdojθÞpðθÞ

pðdoÞ
ð23Þ

∝ pðdojθÞpðθÞ; ð24Þ

where pðθjdoÞ is the posterior density of unknown param-
eters θ given the observation of a data stream do,pðdojθÞ the
likelihood function, and pðθÞ the prior distribution, reflect-
ing our beliefs onparametersθ before observing thedata. The
marginal likelihood pðdoÞ ¼

R
θ∈Θ pðd0jθÞpðθÞdθ is a con-

stant over the parameter space and is unnecessary for
our work.
Stochastic sampling algorithms, such asMCMC, are used

to obtain random samples θ from the posterior density
pðθjdoÞ by constructing a Markov chain whose steady-
state distribution is the posterior distribution of interest. The
posterior distribution is then summarized usingMonte Carlo
integration to compute moments such as the posterior mean
EpðθjdoÞ½θ� or quantifying levels of precision on how well we
can constrain parameters. In this work, we use the MCMC
ensemble sampler emcee [67] to obtain samples from
pðθjdoÞ.
To obtain the exact posterior density, one would use the

likelihood function (7) with model templates hm precisely
equal to the true waveform within the data stream he. This
would yield an unbiased result in the recovered parameters, a
consequence of generating an exact posterior density
pðθjdoÞ. However, in the context of gravitational-wave
astronomy, this is unfeasible. The two-body problem in
general relativity has no exact solution, and the most
numerically accurate are NR waveforms [16] that are
computationally prohibitive for MCMC algorithms.
Instead, we must make do with approximate models that

1In other words, for an approximate one-dimensional Gaussian
distribution, if the true parameters are contained within the 68%
level credible interval ½μ̂ − σ̂; μ̂þ σ̂�, the model is deemed
suitable for parameter estimation. Here hatted quantities are
estimates of the posterior means and standard deviations.
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are both fast to generate and faithful with their true counter-
part. Hence, in the statistical inference procedure of param-
eter estimation in gravitational-wave astronomy, we in fact
sample from an approximate posterior density p̃ðθjdoÞ:

p̃ðθjdoÞ ∝ p̃ðdojθÞpðθÞ; ð25Þ

with hm ≠ he in the approximate likelihood function (7). As
discussed in Sec. II B, this would result in a biased set of
parameters.
Generating samples from an approximate posterior dis-

tribution is very common in Bayesian inference [48,68–70].
When an approximate likelihood p̃ðdojθÞ is used, the
resulting posterior inference will be distorted2 with respect
to the exact posterior distribution pðθjdoÞ. Within the
statistical literature, various estimators have been proposed
to measure this distortion [71–73]. Most of the existing
methods are based on [74,75]. Their original motivation was
to check for correct sampling from the posterior distribution
based on the following equality for all θ; θ0 ∈Θ:

Edo;θ0 ½pðθjdoÞ� ¼ pðθÞ; ð26Þ

i.e., the integral of the exact posterior density with respect to
the generativemodelpðdojθ0Þpðθ0Þ is equal to theprior. Then
they constructed statistical tests to check the validity of this
relationship when replacing pðθjdoÞ by an approximate
posterior density p̃ðθjdoÞ. However, these types of tests
can falsely accept the hypothesis of correct sampling even if
the approximate likelihood is far from the exact likelihood,
see, e.g., [56,72]. Moreover, they do not quantify the
distortion for a particular observation.
Reference [56] showed how to quantify the distortion of

an approximate posterior credible interval conditional on
the observed data by estimating its operational coverage as
described in Secs. III A and III B. We present a practical
operational coverage estimator for gravitational-wave prob-
lems in Sec. III B and how to calibrate approximate credible
set in Sec. III C.

III. GENERAL CALIBRATION METHODOLOGY

A. Ideal operational coverage estimation

Let do represent the observed data. When we refer to
“coverage,” we are describing the posterior probability that
a credible set, determined by a specific prior and likelihood
function forming the posterior, contains the true parameters
we intend to estimate.
Let C̃do and Cdo be the level α posterior credible sets

calculated using p̃ðθjdoÞ ∝ p̃ðdojθÞpðθÞ and pðθjdoÞ ∝
pðdojθÞpðθÞ, respectively, i.e.,

α ¼ Pðθ∈CdoÞ ¼
Z

1Cdo
ðθÞpðθjdoÞdθ

α ¼ P̃ðθ∈ C̃doÞ ¼
Z

1C̃do
ðθÞp̃ðθjdoÞdθ; ð27Þ

where 1 denotes the indicator function, i.e., 1AðxÞ ¼ 1 if
x∈A and 0 otherwise. A coverage of α is only guaranteed if
the data are distributed according to the assumed generative
model. This means that if the data do are actually generated
from the specified likelihood pðdojθÞ, then Cdo achieves the
nominal level α.
However, since the likelihood p̃ðdojθÞ of the approxi-

mate posterior does not correspond to the generative model,
its level α credible set C̃do does not achieve the nominal
level α but only an operational coverage probability

bðdoÞ ¼ Pðθ∈ C̃doÞ ¼
Z

1C̃do
ðθÞpðθjdoÞdθ ð28Þ

that is not generally equal to the nominal coverage, α.
If bðdoÞ ≫ α or bðdoÞ ≪ α, this would indicate a poor

approximation. Thus jα − bðdoÞj measures the distortion or
discrepancy in coverage of the credible set at the observed
data do. If an approximation is not good enough for a user,
there are two possible approaches to fix this: using a different
approximation, such as using a more accurate but more costly
waveform model, or correcting the posterior itself [76].
In practice, we often generate samples from the approxi-

mate posterior p̃ðθjdoÞ using MCMC and estimate C̃do . If
we denote this estimator of C̃do by Ĉdo, we get the realized
operational coverage probability

brðdoÞ ¼ Pðθ∈ ĈdoÞ: ð29Þ

The realized operational coverage probability in Eq. (29)
can be estimated using the standard Monte Carlo method,
i.e., sampling from the exact posterior pðθjdoÞ and taking
the proportion of the samples that are inside credible
intervals Ĉdo . This estimate takes the Monte Carlo error
of estimating the credible set into account. However, this
procedure will not be practical because it needs samples
from the exact posterior pðθjdoÞ, which may be expensive
and impractical to sample from. An example here would be
generating an exact posterior density pðθjdÞ using the most
accurate, but computationally prohibitive numerical rela-
tivity waveforms for massive black holes (MBHs). Instead,
using techniques from regression, we show that it is
possible to provide operational coverage estimators without
sampling from the exact posterior distribution pðθjdÞ in the
next section.

B. Practical operational coverage estimation

Operational coverage estimators that do not require simu-
lation from the exact posterior have been suggested [56,57].

2By distortion we refer to the nonzero statistical distance
between two distributions, say p1 and p2. For example, such a
distortion (and thus statistical distance) could be measured by the
Kullback-Leibler divergence.
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These are based on logistic regression (binary classifi-
cation) and (annealed) importance sampling. In this
paper, we use the logistic regression as the operational
coverage.
The setup is the following. For j ¼ 1;…; J, we sample

θðjÞ from the prior, θðjÞ ∼ pðθÞ and generate data
dðjÞ ¼ heðθðjÞÞ þ n. For each dðjÞ, we estimate a credible

set ĈdðjÞ of p̃ðθðjÞjdðjÞÞ and, cj ¼ 1ðθðjÞ ∈ ĈdðjÞ Þ which is
regarded as a Bernoulli trial with success probability
brðdðjÞÞ associated with the data themselves, i.e.,

cj ∼ BernoulliðbrðdðjÞÞÞ:

If we can fit a logistic regression to cj with dðjÞ as
predictors, one can use the model to predict brðdoÞ with
the observed data do. We denote this prediction as b̄rðdoÞ.
In literature, a semiparametric regression [56] and a
Bayesian additive regression tree [57] were used.
Theoretical properties of traditional parametric and non-

parametric regression often assume that the number of
samples is larger than the dimension of predictor, i.e.,
jdj ≪ J. As is often the case within gravitational-wave data
analysis, this assumption is violated when the length of dðjÞ
is larger than the training dataset size J. In this paper, we
use an artificial neural network (ANN) with the sigmoid
activation function to fit the binary classification for
practicality. To enhance the efficiency of the ANN [77],
we utilize an autoencoder to project dðjÞ into a lower-
dimensional subspace while capturing the main features of
the data [78]. The autoencoder comprises two neural

networks: an encoder network that maps the input data
into a lower-dimensional latent space, and a decoder
network that recreates the input from the encoded
representation.
For realistic applications of data analysis, the choice of

the nominal value α is chosen by the user. The proposed
estimators by [56,57] are conditioned on a nominal value
and restrict the operational coverage estimate to a particular
nominal coverage. In an attempt to tackle this issue, the
nominal level α is also taken as an input to fit the
classification. The training set is fdðjÞ; cj; αjgJj¼1 where
αj ∼ pðαÞ, dðjÞ ¼ heðθðjÞÞ þ n and cj ¼ 1ĈdðjÞ ;αj

ðθðjÞÞ.
Here, ĈdðjÞ;αj is an estimated credible set of p̃ðθjdðjÞÞ with
a nominal level, αj, i.e., αj ¼

R
1ĈdðjÞ ;αj

ðθÞp̃ðθjdðjÞÞdθ.
Figure 1 shows the procedure for constructing the

operational coverage estimator. It consists of two compo-
nents, dimensional reduction and classification. First, we
train the encoder function in the autoencoder to reduce the
dimension of fdðjÞgJj¼1. Then the compressed data and
nominal values are fed to an ANN as an input feature. To
obtain the target output c1;…; cJ, the classifier is trained.
The operational coverage, which is the success probability
of the fitted classifier, can be predicted with do at a desired
nominal level of α, and it is denoted by b̄rðdo; αÞ.
We should point out that data stream dðjÞ, as an input of

the proposed classifier, can be either an actual signal
(he þ n) or discrete Fourier transform of signal (ĥe þ n̂).
Alternatively, an adequate summary of signals can be used,
and it is denoted by SðdðjÞÞ. If a summary is used, the

FIG. 1. The flow chart describing the overall procedure of our operational coverage estimator. For j ¼ 1;…; J, generate θðjÞ ∼ pðθÞ,
and data streams generated using an exact model with noise dðjÞ ¼ hðXÞe ðt; θðjÞÞ þ nðXÞðtÞ are passed into an encoder where dimensional

reduction is applied. After this process, nominal levels are simulated αj ∼ pðαÞ and ĈdðjÞ;αj of an approximate posterior distribution using

the Fisher based parameter estimation scheme returns cj, where cj ¼ 1 if θðjÞ ∈ ĈdðjÞ;αj and 0 otherwise. The classifier is subsequently

trained, enabling us to predict b̄rðdo; αÞ at a specified nominal level α.

CALIBRATING APPROXIMATE BAYESIAN CREDIBLE … PHYS. REV. D 109, 083002 (2024)

083002-7



training set is fSðdðjÞÞ; cj; αjgJj¼1 and, the prediction is
made with a nominal level of α and the summary of the
observed data, b̄rðSðdoÞÞ. Our choice of the summary for
numerical simulation studies is included in Secs. IV and V.
We use k-fold cross validation to predict success

probabilities b̄rðdoÞ and class at do, but the uncertainty
of the operational coverage estimate is not attainable (i.e.,
only a point estimate is available with this approach). For a
simple logistic regression, the Delta method [79] and the
bootstrap method [80] are therefore applied to measure the
prediction errors in Sec. IV. We emphasize here that there
does not exist any unbiased and universal estimator of the
variance of k-fold cross validation that is valid under all
distributions [81].

C. Credible interval calibration via operational
coverage estimation

There are no formal guidelines on how to interpret
operational coverage. One may consider correcting an
approximate posterior distribution. Within the approximate
Bayesian computation framework, adjustment procedures
for bias and frequentist coverage of Bayesian credible sets
were suggested when the credible set does not have the
correct nominal coverage probability in the frequentist
sense [82]. With a focus on coverage in the Bayesian
sense, a distortion map estimator using machine learning
methods was proposed by [76], and is limited to one-
dimensional problems.
The application of an operational coverage estimator

enables us to determine the approximate credible set level
that yields the desired posterior coverage level. Since an
exact inverse map of the trained ANN is not always feasible
or necessary, the simplest way is to read off from a plot of
operational coverage estimates against nominal values at
observed signal do.

For an observed signal do, the calibration curve is
constructed with nominal levels and operational coverage
predictions, which the nominal level is parametrized by
operational coverage, and the procedure is summarized in
Fig. 2. The training data fαj; b̄r;jðdoÞgMj¼1 are constructed
by finding the operational coverage at each of the M
nominal levels in ½αmin; αmax� from the estimator (Fig. 1).
Taking a nominal level (αj) as a response and operational
coverage (b̄r;jðdoÞ) as a predictor, the K-degree polynomial
regression is fitted. The value for K is chosen by minimiz-
ing the residual mean squared error, i.e.,

αj ¼ c0 þ
XK
k¼1

ckb̄r;jðdoÞk; j ¼ 1;…;M:

Given the desired operational coverage bðdoÞ, the
calibrated nominal coverage level, α̂, is estimated from
the calibration curve for do and, with the calibrated
approximate credible set Ĉdo;α̂, Pðθ∈ Ĉdo;α̂Þ ¼ bðdoÞ.
We demonstrate how to estimate an operational coverage

and calibrate a credible set using a simple toy example in
Sec. IV and a massive black hole problem in Sec. V.

IV. APPLICATION: SIMPLE TOY MODEL

In this section, we present a simple toy model to illustrate
our calibration procedure discussed in Sec. III.

A. Setup and Fisher matrix validation

In this section, we will consider a data stream of the form

dðtÞ ¼ heðt; θÞ þ nðtÞ ð30Þ

with an exact template of the form

FIG. 2. The flow chart describes the overall procedure of the calibration curve. After the procedure given in Fig. 1 is completed, for a
nominal level sample αj ∼ pðαÞ the operational coverage is predicted b̄r;jðdoÞ using the estimator, j ¼ 1;…;M. Taking b̄r;jðdoÞ as a
predictor and αj as a response, polynomial regression is fitted, and then the calibrated nominal level α̂ is predicted at the desired
operational coverage bðdoÞ.
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heðt;a0; f0; ḟ0Þ ¼ a0 sin

�
2πt

�
f0 þ

1

2
ḟ0t

��
: ð31Þ

Here, we have the true values for parameters
θ0 ¼fa0 ¼ 5×10−21;f0¼ 10−3 Hz; ḟ0¼ 10−8 Hz=sg.
We use model templates

hmðt; a; f; ḟ; ϵÞ ¼ a sin

�
2πt

�
f þ 1

2
ḟt

�
ð1 − ϵÞ

�
: ð32Þ

Here ϵ ≪ 1 is used as a tuneable parameter allowing
deviations from the exact model (31) heðt; θ; ϵ ¼ 0Þ given
by an approximate model hmðt; θ; ϵ ≠ 0Þ. For simplicity,
we do not take into account the response function through
TDI as outlined in Sec. II. Hence, when calculating the
inner product (6), which is used in likelihood (5), Fisher
matrix (16) and SNR (8) calculations, we only consider a
single data stream and use the approximate LISA-like PSD
defined by Eq. (1) of [83].
Using Eqs. (11a) and (11b), we generate stationary

Gaussian noise in the frequency domain to construct the
toy model data stream (30). In this example, we will set
ϵ ¼ 10−6, allowing for a discrepancy between the exact
model he and approximate model hm. For ϵ ¼ 0 and over a
time of observation of 30 hours sampled with cadence Δt ∼
200 seconds, we observe an optimal matched filtering SNR
ρ ∼ 188. The length of the data stream is N ¼ 216.
Our calibration technique requires multiple parameter

estimation simulations using an approximate model to then
estimate the operational coverage. As discussed in Sec. I,
this is extremely computationally intensive so we approxi-
mate samples from the approximate posterior density using
a Fisher matrix approach instead.
To validate our Fisher matrix approach, we inject an

exact model with ϵ ¼ 0 and recover with an approximate
model with ϵ ¼ 10−6 using the emcee algorithm. We
generate 31,000 samples from the approximate posterior
under hmðt; θÞ; ϵ ¼ 10−6Þ, and then discard 6,000 samples
as burn in. In parallel, we compute the Fisher matrix (16)
and then sample from a multivariate Gaussian,

θ ∼N ðθ0 þ θbias;Γ−1ðhmÞÞ;
θibias ¼ ½Γ−1ðhmÞ�ijð∂jhmjδhþ nÞ; ð33Þ

with θi ∈ θbias. Here Eq. (33) is evaluated at the true
parameters θ0 and δh ¼ heðt; θ0Þ − hmðt; θ0; ϵ ¼ 10−6Þ.
We plot the approximate posterior densities in Fig. 11.
The blue curve is generated via MCMC, and the green
curve generated via the Fisher matrix computation. This
simulation has shown that the Fisher matrix can be used as
a suitable approximation to the posterior density. Having
verified the Fisher matrix is a suitable approximation, we
then use it to generate approximate posteriors in bulk in
order to apply the calibration procedure discussed in
Sec. III. This is the focus of the next section.

B. Calibration procedure

The calibration technique described in Sec. III requires a
training set, built from the prior space of samples and the
resultant generation of a family of approximate posteriors.
We first focus our attention on a single-parameter study,
then generalize to the three-parameter study at the end of
this section.
For a single-parameter study, ḟ is unknown, and the true

values for a, f are used, i.e., θ ¼ ḟ. The uniform prior is
assigned for ḟ,

ḟ ∼ U½ḟ0 − 10−13; ḟ0 þ 10−13� Hz=s: ð34Þ

The training data fSðdðjÞÞ; cj; αjg5000j¼1 are generated to
obtain a practical operational coverage estimator. For
j ¼ 1;…; 5000, θðjÞ is generated from the prior (34) and
αj ∼U½0.78; 0.97�. For each of prior sample θðjÞ, the data

stream dðjÞ ¼ ĥe;ðjÞðf; θðjÞÞ þ n̂ðjÞ is generated by adding a

noise n̂j through (10) to the exact reference signal ĥe;ðjÞ. An
approximate posterior density is in the form of a multi-
variate Gaussian (33) using the inverse Fisher matrix (21)
and expectation for the bias (17) at θðjÞ. An output cj is
obtained from the αj credible set of the approximate
posterior density. Instead of dðjÞ, the real part of discrete
Fourier transform of signal is used to find the practical
operational coverage estimator, i.e, SðdðjÞÞ ¼ ReðdðjÞÞ. We
tried jdðjÞj2 and jdðjÞj and did not gain any improvement in
the results.
We use autoencoders to reduce the dimension of SðdðjÞÞ

in order to apply the calibration procedure. The autoen-
coder is trained with an Adam optimizer [84] and a learning
rate, 10−4, is chosen by minimizing the mean squared error.
The size of SðdðjÞÞ is then reduced from 216 to 23, which is
far less than the size of the overall training dataset. From
our preliminary study, reducing the size of the dataset any
less than 23 gave a significantly poor fit. For classification,
an ANN with one fully connected layer is trained using the
cross entropy loss function. The calibration curve is
obtained from the feed-forward ANN inversion. We tried
multiple layers for the ANN but found no real gain from
using more than one layer for this toy example.
The left panel of Fig. 3 presents the performance of the

operational coverage estimator (with summary of the
procedure given in Fig. 1) using 30 approximate signals
with noise and on average absolute errors are relatively
small. The right panel of Fig. 3 compares the operational
coverage estimates using the practical estimator b̄rðSðdoÞÞ
(Sec. III B) and the realized operational coverage brðdoÞ
(29) for the test signal. At a given nominal level α, the
practical operational coverage and the realized operational
coverage agree to excellent precision. Absolute errors tend
to be less than 0.06 in general and, for the test data, the
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coverage of posterior density over the 0.9 approximate
credible set is 0.76.
Exact and approximate inferences on the true signal (31)

are compared in Fig. 4. It is observed that the exact and
approximate posterior densities do not overlap completely
and there is some deviation between them. The calibration
curve shows how the calibrated level changes with the
desired operational coverage and the calibrated level α̂ is
higher than bðdoÞ, i.e., b̄rðSðdoÞÞ is smaller than α (right
panel of Fig. 3). The main conclusion of this study is that
we have calibrated an approximate credible set (arising
from an approximate posterior) to achieve 0.76 coverage of
the posterior.
We now consider the full model with three parameters,

i.e., θ ¼ fa0; f0; ḟ0g. Tight priors are assigned on these
three parameters:

a ∼ U½a0 − 10−22; a0 þ 10−22�
f ∼ U½f0 − 10−7; f0 þ 10−7� Hz
ḟ ∼ U½ḟ0 − 10−13; ḟ0 þ 10−13� Hz=s:

We increase the size of the training data to 10,000,
fSðdðjÞÞ; cj; αjg10000j¼1 where SðdðjÞÞ ¼ ReðdðjÞÞ, and it is
generated similarly. For approximate posterior density, the
multivariate Gaussian form of density approximation for
logged parameter values was imposed. We used three fully
connected layers with one dropout layer in both the encoder
and decoder to reduce the dimension of SðdðjÞÞ from 216 to
26. A one-layer ANN classifier with the l1 penalty on
weights of neurons is fitted.
The performance of the operational coverage estimator

using 30 approximate signals with noise is shown in the left
panel of Fig. 5, and absolute errors are less than ≈0.075 in
general. The right panel of Fig. 5 compares b̄rðSðdoÞÞ and
brðdoÞ for the test signal. The practical and realized
operational coverage agrees relatively well at a given α.
Exact and approximate posterior densities for the test data
do are compared in Fig. 6. The calibration curve for the test
waveform do is shown in Fig. 7, and the calibrated nominal
level α̂ is higher than the desired operational coverage
value, i.e., brðdoÞ is smaller than α. For do, the coverage of
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FIG. 3. Estimation of ḟ-only. Absolute error from 30 replicates against α (left) and operational coverage estimates b̄rðSðdoÞÞ with 2-
SE error and realized operational coverage brðdoÞ (right) for the test waveform do.
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FIG. 4. Left panel: calibration curve. Right panel: exact and approximate posterior densities of ḟ0. The dashed lines on the left figure
represent the operational coverage for the 90% credible interval of approximate posterior (C̃do;0.9). This is calculated by using the
calibration curve to map the calibrated nominated level of α̂ ¼ 90% back to an operational coverage level, which is ≈76% for the test
waveform.
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FIG. 5. Estimation of the full model, i.e., a0; f0; ḟ0. Absolute error from 30 replicates against α (left) and operational coverage
estimates b̄rðSðdoÞÞ with 2-SE error and realized operational coverage brðdoÞ (right) for the test waveform do.

FIG. 6. Corner plot summary of samples from the exact and approximate posterior densities in the toy model. The panels on the
diagonal show the exact (blue) and approximate (green) empirical marginal posterior densities with the true value (yellow dashed line)
and calibrated approximate credible interval (red line). The off-diagonal panels shows the exact (blue contour) and approximate (green
contour) credible sets with a nominal level of α ¼ 0.8 and, calibrated approximate credible set (red contour) with the desired operational
coverage of 0.8 based on exact (blue points) and approximate (green points) posterior sample. The true values θ0 are marked by red
points.
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posterior density over the approximate credible set with a
nominal level of 0.89 is 0.8.
Having demonstrated our calibration procedure through

an illustrative example, we will now apply it to a more
realistic gravitational-wave scenario.

V. APPLICATION: MASSIVE BLACK HOLES

In this section, we apply the calibration procedure dis-
cussed in Sec. III and exemplified in Sec. IV on a realistic
massive black hole binary signal. Using lisabeta devel-
oped in [85,86], we generate complete inspiral-merger-
ringdown frequency domain spin-aligned massive black
holes in the solar system barycenter frame with the LISA
response applied.

A. Setup

In the Bayesian inference, we incorporate higher modes
He ¼ fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ; ð4; 3Þg for the
true MBH waveform denoted by heðt; θÞ. Approximate
waveforms denoted by hmðt; θÞ are generated by removing
a single harmonic Hm ¼ Henfð4; 3Þg, giving a deviation
from the exact model and the approximate model. For our
exact signal with modesHe, we define the true parameters:
the total mass M ¼ m1 þm2 ¼ 3 × 107M⊙; mass ratio
q ¼ m1=m2 ¼ 2; the two effective spin parameters of
the two component masses χ1 ¼ 0.5 and χ2 ¼ 0.5; the
time of coalescence tc ¼ 105 seconds; luminosity distance
6.67 Gpc; initial phase at coalescence ϕc ¼ 1.1; sky
position ðβ ¼ 0.3; λ ¼ 0.8Þ in ecliptic coordinates; and
polarization angle ψ ¼ 1.7. In our example, we will focus
on a subset of parameters θ ¼ fM; q; χ1; χ2; tcg, to dem-
onstrate the calibration procedure as a proof of principle.
We choose true parameters given by θ0 ¼ fM0 ¼

107M⊙; q0 ¼ 2; χ1;0 ¼ 0.5; χ2;0 ¼ 0.5; tc;0 ¼ 105 secondsg.
The observation time of our signals will be∼1 day, sampled
with cadence Δt ¼ 200 seconds. Owing to the large total
mass, the frequencies emitted by the massive black hole
signal are low, even at the larger harmonics. This allows us to

analyze very short data segments with large sampling
intervals thus reducing computational costs. The length of
our datasets areN ¼ 212. We found that the optimal matched
filtering SNR using (8) over both the A and E channels are
given by ρA ∼ 2022.02 and ρE ∼ 1702.57 giving a total SNR
over both A and E as ρAE ∼ 2643.35.
Before applying the calibration procedure, we will show

that our Fisher matrix calculations are not subject to
numerical instabilities. We inject a signal with true param-
eters θ0 defined earlier into a two noiseless data streams
corresponding to TDI channels X ¼ fA; Eg. Including the
T channel is unnecessary for our purposes since the
contribution of SNR is low with respect to the A and E
channels. For inference, we use the likelihood defined in
(7) with model template hm with an incomplete set of
modes Hm ¼ He=fð4; 3Þg. Starting close to the true
parameters, we use the emcee sampling algorithm to
generate samples from the approximate posterior density
p̃ðθjdÞ. To compute the Fisher matrix, we use the numerical
procedure of finite differences to compute derivatives of the
MBH waveform with respect to parameters. After comput-
ing the matrix (16), we apply a log transformation to reduce
the condition number of the matrix prior to computing the
inverse. From Eq. (20), we then sample from a multivariate
Gaussian,

θ ∼N ðθ0 þ θbias;Γ−1
AEðhmÞÞ;

θibias ¼ ½ΓAEðhmÞ−1�ij
X

X¼fA;Eg
ð∂jhðXÞm jδhðXÞ þ nðXÞÞ; ð35Þ

for θibias a component of θ. We remind the reader that each
of the quantities in (35) is evaluated at the true parameters
θ. We then plot the histogram of samples alongside the
approximate posterior density in Fig. 12. What we learn
here is that the Fisher matrix is a suitable approximation to
the posterior density and can be used to approximate
posterior distributions generated using an approximate
waveform model.

B. Calibration procedure

As a proof of principle, we will apply our calibration
procedure on a five-dimensional space. We will choose the
five parameter set θ ¼ fM; q; χ1; χ2; tcg. For this study,
tight uniform priors are set for the five parameters as
follows:

M ∼ U½M0 − 5 × 104;M0 þ 5 × 104�
q ∼ U½q0 − 2.5 × 10−3; q0 þ 2.5 × 10−3�
χ1 ∼ U½χ1;0 − 5 × 10−4; χ1;0 þ 5 × 10−4�
χ2 ∼ U½χ2;0 − 5 × 10−4; χ2;0 þ 5 × 10−4�
tc ∼ U½tc;0 − 0.25; tc;0 þ 0.25�:
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FIG. 7. Calibration curve for do. The dashed lines represent the
calibrated nominal level α̂ ¼ 0.89 for the target operational
coverage bðdoÞ ¼ 0.8.
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Following a similar procedure outlined in Sec. IV B, the
data stream is d ¼ ĥeðθÞ þ n̂, and the test waveform is
do ¼ ĥeðθ0Þ. The training data fSðdðjÞÞ; cj;αjg105j¼1 where
SðdðjÞÞ ¼ ReðdðjÞÞ is generated to get a practical opera-
tional coverage estimator. We also considered jdðjÞj2 and
did not gain any significant improvements in the results
and, the corresponding result is not included in the paper.
We reduce the input feature size of N ¼ 212 to N ¼ 28

using a three-layer fully connected encoder and decoder
network. For classification, an ANN using three fully
connected hidden layers and an output layer with a sigmoid
activation function are used. For the realized operational
coverage estimation br, we used 26,880 exact posterior
samples, using the complete inspiral-merger-ringdown

waveform with full harmonic structureHe, with 32 parallel
chains with a thinning factor of 5.
In general, the operational coverage estimator b̄r exhibits

generally small absolute errors in Fig. 8. Although the
absolute errors tend to increase with α, relative errors are
likely to be less variable. The absolute error is small as
0.013 and large as 0.065, i.e., the smallest and largest
relative absolute errors are 0.013=0.6 ¼ 0.0217 and
0.065=0.99 ¼ 0.0657 respectively. For the test waveform
do, the estimate b̄rðSðdoÞÞ from the practical operational
estimator is compared to the realistic operational coverage
brðdoÞ in the left plot of Fig. 9. The calibration curve in
Fig. 9 was modeled by a polynomial regression with the
degree 7. We observe a very small operational coverage in
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comparison to the nominal level (b̄rðSðdoÞÞ ≪ α), and this is
due to the small overlap between the exact and approximate
posterior distributions in Fig. 10, in particular q and χ2. For
example, the posterior coverage of the 0.967 credible set of
an approximate posterior distribution is 0.35, and this is also
confirmed from the calibration curve that the calibrated level
is 0.97 for the target operational coverage of 0.35. As result,
the calibrated credible set of an approximate posterior (red
contour) is larger in order to achieve the target 0.35 opera-
tional coverage, which is about 1.8σ.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a Bayesian calibration
procedure for the operational coverage of an approximate
family of GW posteriors and applied the method to both a
toy model and a more realistic analysis of MBHB signals
for LISA. Specifically, the posteriors that are calibrated in
our work are Fisher-information-based approximations
(i.e., normal approximations) to the posteriors that are
obtained by using an approximate waveform model in the
GW likelihood. Such approximations are frequently used in

FIG. 10. Corner plot summary of samples from the exact and approximate posterior densities for the massive black hole binary signal
do. The panels on the diagonal show the exact (blue) and approximate (green) empirical marginal posterior densities with the true value
(black dashed line) and calibrated approximate credible interval (red line). The off-diagonal panels show the exact (blue contour) and
approximate (green contour) credible set with a nominal level of α ¼ 0.35 and, the calibrated approximate credible set (red contour) with
the desired operational coverage of 0.35 based on exact (blue points) and approximate (green points) posterior samples. The true values
θ0 are marked by black points.
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GW astronomy to perform bulk calculations in exploratory
data analysis studies; our proposed method then allows
users to rapidly obtain corrected credible sets that corre-
spond to some desired coverage level (“correct” relative to
a more accurate waveform model).
At present, our proposed method is novel in the GW

literature and has no comparable counterpart since other
methods for inference calibration (i) focus on correcting the
posterior itself in terms of coverage and (ii) deal only with a
single posterior at a time. For example, one would have to
evaluate the accurate model in bulk in order to use the
method proposed by Cutler and Vallisneri [26] for estimat-
ing inference biases on the fly. Even if a regression model is
fit directly to the biases over the waveform model space,
that would still require learning a parameter vector rather
than a single coverage number, which would require more
complex computation and stringent accuracy requirements
on the fit.
In addition to our proposed usage of the method in bulk

studies over a space of GW signals, the calibration
procedure could potentially also be used on actual data
containing a signal. With a model that is pretrained on more
accurate waveforms and realistic detector noise, one could
rapidly compute calibrated credible sets for the approxi-
mate waveforms used in template banks for ground-based
observing. This could be useful for applications such as the
rapid sky localization of sources for low-latency electro-
magnetic follow-up. The future third-generation ground-
based GW detectors, such as the Einstein Telescope
and Cosmic Explorer, will have enhanced sensitivity to
gravitational wave signals in the Hz frequency band
f∈ ð5; 2000Þ Hz. These instruments can exploit the pro-
posed operational coverage discussed in this paper in order
to quantify the systematic biases and thus investigate the
impact of inaccurate waveforms on tests of GR in an
efficient way [87]. The estimated operational coverage can
be regarded as a criterion to set requirements for the
sensitivity of the detectors to yield unbiased parameter
inference for the target system. The forward-thinking
calibrated result gives reasonable and meaningful informa-
tion for future GW research.
The MBH example we presented was restricted to five

parameters of the full waveform model. However, the
computational complexity of the calibration procedure—
in particular, the operational coverage estimator—will
typically require a significant increase in computing
resources as additional parameters are considered.
Increasing the computational efficiency of the operational
coverage estimator for high-dimensional problems, and
thus improving the scalability of the calibration method to
the dimensionalities of both the parameter space and the
data representation, is an avenue for future research.

We should point out that the approximate posterior
distribution is not too different to the true one. At least,
the overlap of the credible intervals exists, which is not
always the case. As the divergence between posteriors
becomes large, the nominal credible level to achieve any
operational coverage goes to 1, which is trivial and
manifests the inability to train the model. Therefore, it is
encouraged to estimate the maximum operational coverage
when obtaining the calibration curve; if it is small, for
example, less than 0.5σ, more accurate waveforms should
be considered.

The PYTHON code for the one-dimensional toy example
in Sec. IV is provided at [88].
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APPENDIX: FISHER MATRIX COMPUTATIONS

FIG. 11. The blue curve represents a posterior distribution on parameters θ when inferring parameters of an injected exact signal
heðt; θ0Þ into Gaussian noise with an approximate model template hmðt; θ; ϵ ¼ 10−6Þ. The green curve represents an approximation to
the posterior, computed via the Fisher matrix formalism. We highlight here that the computation of the Fisher matrix accurately
describes the posterior, implying we are not subject to numerical instabilities when calculating derivatives/inverses. The black line
indicates the value of the true parameters in the study.
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Béla Szilágyi et al., Template banks for binary black hole
searches with numerical relativity waveforms, Phys. Rev. D
89, 042002 (2014).

[6] Samantha A. Usman, Alexander H. Nitz, Ian W. Harry,
Christopher M. Biwer, Duncan A. Brown, Miriam Cabero,
Collin D. Capano, Tito Dal Canton, Thomas Dent, Stephen
Fairhurst et al., The pycbc search for gravitational waves
from compact binary coalescence, Classical Quantum
Gravity 33, 215004 (2016).

[7] P. Ajith, N. Fotopoulos, S. Privitera, A. Neunzert, N.
Mazumder, and A. J. Weinstein, Effectual template bank
for the detection of gravitational waves from inspiralling
compact binaries with generic spins, Phys. Rev. D 89,
084041 (2014).

[8] T. Adams, D. Buskulic, V. Germain, G. M. Guidi, F Marion,
Matteo Montani, B. Mours, Francesco Piergiovanni, and
Gang Wang, Low-latency analysis pipeline for compact
binary coalescences in the advanced gravitational wave
detector era, Classical Quantum Gravity 33, 175012 (2016).

[9] Nelson Christensen and Renate Meyer, Parameter estima-
tion with gravitational waves, Rev. Mod. Phys. 94, 025001
(2022).

[10] Renate Meyer, Matthew C. Edwards, Patricio Maturana-
Russel, and Nelson Christensen, Computational techniques
for parameter estimation of gravitational wave signals,
Wiley Interdiscip. Rev. 14, e1532 (2022).

[11] Lee S. Finn, Detection, measurement, and gravitational
radiation, Phys. Rev. D 46, 5236 (1992).

[12] Mark Miller, Accuracy requirements for the calculation of
gravitational waveforms from coalescing compact binaries
in numerical relativity, Phys. Rev. D 71, 104016 (2005).

[13] Luis Lehner and Frans Pretorius, Numerical relativity
and astrophysics, Annu. Rev. Astron. Astrophys. 52, 661
(2014).

[14] Frans Pretorius, Numerical relativity using a generalized
harmonic decomposition, Classical Quantum Gravity 22,
425 (2005).

[15] Luis Lehner, Numerical relativity: A review, Classical
Quantum Gravity 18, R25 (2001).

[16] Michael Boyle, Daniel Hemberger, Dante A. B. Iozzo,
Geoffrey Lovelace, Serguei Ossokine, Harald P. Pfeiffer,
Mark A. Scheel, Leo C. Stein, Charles J. Woodford, Aaron
B. Zimmerman et al., The SXS collaboration catalog of
binary black hole simulations, Classical Quantum Gravity
36, 195006 (2019).

[17] Carlos O. Lousto and Yosef Zlochower, Orbital evolution of
extreme-mass-ratio black-hole binaries with numerical rel-
ativity, Phys. Rev. Lett. 106, 041101 (2011).

[18] Jonathan Blackman, Scott E. Field, Chad R. Galley, Béla
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