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Detection confidence of the source-agnostic gravitational-wave burst search pipeline BayesWave is
quantified by the log signal-versus-glitch Bayes factor, lnBS;G. A recent study shows that lnBS;G increases
with the number of detectors. However, the increasing frequency of non-Gaussian noise transients (glitches)
in expanded detector networks is not accounted for in the study. Glitches can mimic or mask burst signals
resulting in false alarm detections, consequently reducing detection confidence. This paper presents an
empirical study on the impact of false alarms on the overall performance of BayesWave, with expanded
detector networks. The noise background of BayesWave for the Hanford-Livingston (HL, two-detector) and
Hanford-Livingston-Virgo (HLV, three-detector) networks are measured using a set of nonastrophysical
background triggers from the first half of Advanced LIGO and Advanced Virgo’s Third Observing Run
(O3a). Efficiency curves are constructed by combining lnBS;G of simulated binary black hole signalswith the
backgroundmeasurements, to characterizeBayesWaves’s detection efficiency as a function of the per-trigger
false alarm probability. The HL and HLV network efficiency curves are shown to be similar. A separate
analysis finds that detection significance ofO3 gravitational-wave candidates asmeasured byBayesWave are
also comparable for the HL and HLV networks. Consistent results from the two independent analyses
suggests that the overall burst detection performance of BayesWave does not improve with the addition of
Virgo at O3a sensitivity, because the increased false alarm probability offsets the advantage of higher lnBS;G.
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I. INTRODUCTION

The Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1] detectors in Hanford, Washington
and Livingston, Louisiana, USA have completed three
observing runs O1, O2 and O3 between 2015 and 2020,
two of which were joint observations with the Advanced
Virgo detector in Cascina, Italy [2]. The Kamioka
Gravitational Wave Detector (KAGRA) [3–5] located in
Hida, Japan also came online toward the end of O3,
conducting a joint observation (O3GK) [6] with the
GEO600 [7] detector in Hannover, Germany. As of the
three observing runs, around 90 candidate gravitational
wave (GW) events were collectively observed and reported
in the Gravitational-wave Transient Catalogs (GWTCs) [8–
11]. In May 2023, the LIGO-Virgo-KAGRA (LVK) col-
laboration began the fourth observing run O4 with the two
LIGO detectors. The Virgo and KAGRA detectors are also
expected to join O4 at a later date.

GW events observed so far by the LVK detectors are
compact binary coalescences (CBCs), namely the mergers
of binary black holes (BBH), binary neutron stars and
neutron star-black hole binaries. CBCs are transient GW
events, otherwise known as GW burst sources. Aside from
CBCs, we expect to observe GW bursts from other
astrophysical sources including but not limited to
core-collapse supernovae [12,13], pulsar glitches [14],
magnetar bursts1 [15,16], nonlinear gravitational memory
due to low-mass BBH mergers [17] and cosmic string
cusps or kinks [18–20]. In addition, the possibility exists
of GW bursts from astrophysical objects or processes that
have not yet been discovered through electromagnetic
observations. By their nature, GW waveforms of such
novel signals are unclassified at present.
Traditionally, GW transient search pipelines use a

matched filter [21–24] to compare the data to a bank of
waveform templates obtained through various waveform
modeling techniques [25–28]. Unlike CBCs, the

*ylee9@student.unimelb.edu.au
†meg.millhouse@gatech.edu
‡amelatos@unimelb.edu.au

1Magnetar bursts are short bursts (∼0.1s) of soft gamma-rays
emitted by highly magnetized, isolated neutron stars. Their
physical mechanism is unknown.
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waveforms of most prospective GW burst sources vary
unpredictably from one event to the next and involve
complicated physics beyond general relativity (e.g. hydro-
dynamics and neutrino transport). It is challenging to
construct robust models with a few well-defined parameters
which predict the waveforms, so template-based matched-
filter searches for unmodeled GW bursts are impractical.
Several developed and emerging pipelines exist to

perform source-agnostic GW burst searches [29–31], includ-
ing but not limited to coherent WaveBurst (cWB) and
BayesWave (BW). The cWB [32–35] burst search pipeline
is used for offline analysis and online, low-latency gener-
ation of triggers for electromagnetic followups. Detection
statistics of the cWB algorithm scales with the excess power
in the time-frequency domain. BWuses the transdimensional
reversible jump Markov chain Monte Carlo (RJMCMC)
algorithm which adjusts the model dimension in response to
the data. For that reason, BW is computationally intensive
and is only used to follow-up potential GW candidates
identified by other search pipelines. In the all-sky GW
burst searches of the three Advanced LIGO and Advanced
Virgo observing runs [36–38], cWB is used to analyse the
full dataset and BW is used to follow-up cWB triggers
[39–43]. Previous studies have shown that hierarchical
implementation of cWB and BW enhances detection
confidence [44].
As of O4, the LVK global network comprises of four

large-scale detectors. With the commissioning of LIGO-
India well under way [45], the network of GW detectors is
expected to expand in the coming years. The expanding
network of detectors with improved sensitivities
increases the duty cycle, sky coverage and the accuracy
of sky localization [46,47]. However, having more
detectors also increases the susceptibility of the network
to transient nonastrophysical disturbances, as noted in O3
[9,11,38,48]. These non-Gaussian instrumental noise
transients, otherwise known as “glitches”, appear as
excess power in detector data and can mimic or mask
unmodeled GW bursts. To enable high confidence detec-
tions with high astrophysical significance, glitches have
to be identified and mitigated appropriately. Several
efforts have been made to identify and characterize
glitches by their origin and/or morphology [49–53].
Three common glitches in the LIGO-Virgo detectors
are termed blip [54], whistle [55] and scattered light
[56]. The whistle and scattered light glitches are of
relatively longer duration (∼0.7–2.0 s) and their origins
are well understood. Blip glitches, on the other hand, are
transient power spikes which lasts for ∼0.1 s and spans a
wide frequency band (∼102 Hz), typically of unknown
origin. In cases where the glitch origin is unknown,
further investigations are necessary before flagging a
glitch and regressing it from the data to avoid overlooking
astrophysical signals [48,57–64].

The BW algorithm enables the joint detection and
characterization of GW burst and instrumental glitches,
with no a priori assumptions of the source or morphology.
Studies have been conducted to evaluate various aspects of
BW’s performance with multidetector networks, including
detection confidence, parameter estimation and waveform
reconstruction [44,65–68]. In Ref. [66], the detection
confidence of BW with multidetector networks is quanti-
fied using the algorithm’s detection statistic: the log signal-
to-glitch Bayes factor, lnBS;G. The study showed analyti-
cally that increasing the number of detectors in a network
has a positive impact on lnBS;G, following derivations in
Ref. [65]. The results are verified empirically with simu-
lated BBH signals. While the outcome is promising, the
study does not consider the increase in glitch rate in an
expanded detector network, i.e. it only focuses on the
lnBS;G of astrophysical events injected into simulated data
in the absence of glitches. This paper generalizes Ref. [66],
presenting a fuller analysis of BW’s burst detection
performance with expanded detector networks by account-
ing for the detector noise background using real detector
data. For noise background measurements, we combine
data from the first half of O3 (O3a) for the LIGO Hanford
(H), LIGO Livingston (L) and Virgo (V) detectors, in
particular the HL (two-detector) and HLV (three-detector)
networks. We compare the overall performance of BW
between the HL and HLV networks in O3a, noting that
Virgo is less sensitive than HL; in contrast, the sensitivities
of all three detectors may be comparable in future observ-
ing runs. The performance of BW is evaluated by compar-
ing the lnBS;G produced by astrophysical signals against
the respective detector network backgrounds, using two
independent injection sets. A set of simulated BBH signals
is used to construct efficiency curves for characterizing
BW’s detection efficiency as a function of detection
significance. To check for consistency, we analyse O3-like
CBC signals to measure BW’s detection significance of O3
GW candidates from GWTC-2 [9] and GWTC-3 [11].
The rest of this paper is organized as follows. In Sec. II we

outline the key features of the BWalgorithm. In Sec. III we
discuss the datasets used to study BW’s performance: (i) HL
and HLV background triggers for background measure-
ments, (ii) simulated BBH injections and (iii) O3-like CBC
waveform injections. In Sec. IV we present BW’s back-
ground measurements. In Sec. V we present the results for
BW’s efficiency analysiswith the simulatedBBH injections,
and in Sec.VI the significancemeasurements for theO3GW
candidates.We summarize our findings and discuss avenues
for future work in Sec. VII.

II. BAYESWAVE

In this section, we briefly overview the fundamental
principles of the BW algorithm (Sec. II A), the models for
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data reconstruction (Sec. II B) and the Bayes factor for
model selection (Sec. II C).

A. Algorithm overview

The BW algorithm is designed to adaptively reconstruct
of nonstationary and non-Gaussian transients in the data,
using models with variable dimensions. The name of the
algorithm, BayesWave, expresses two key concepts:
(i) waveform reconstruction using sine-Gaussian (also
known as Morlet-Gabor) wavelets, and (ii) the implemen-
tation of Bayesian inference to discriminate signals from
glitches.
For a given detector i, the data diðtÞ at time t consists

of three components: the GW signal hiðtÞ, which is
bounded in t for burst sources; glitches giðtÞ, which
are also bounded in t; and random detector noise niðtÞ,
which is present continuously. That is, we have
diðtÞ ¼ hiðtÞ þ giðtÞ þ niðtÞ. The BW algorithm attempts
to reconstruct the transient, non-Gaussian features i.e., hiðtÞ
and/or giðtÞ in a stretch of detector data, by summing a set
of sine-Gaussian wavelets. A single sine-Gaussian wavelet
in the time domain takes the mathematical form

Ψðt; λÞ ¼ Ae−ðt−t0Þ2=τ2 cos ½2πf0ðt − t0Þ þ ϕ0�; ð1Þ

with τ ¼ Q=ð2πf0Þ and λ ¼ ft0; f0; Q; A;ϕ0g. The sym-
bols t0; f0; Q; A;ϕ0 denote the central time, central fre-
quency, quality factor, amplitude and phase offset of the
wavelet respectively. Since the wavelets are not linearly
independent, they form a frame and not a basis (see Sec. 3
of Ref. [41] for further details).
Wavelet parameters are sampled from designated prior

distributions using the transdimensional reversible jump
Markov chain Monte Carlo (RJMCMC) technique [69].
The implementation of transdimensional jumps allows for
the number of wavelets to vary depending on the waveform
complexity. By summing all the wavelets at each iteration
of the RJMCMC chain, we obtain a posterior distribution of
waveform models. For further details on wavelet parameter
estimation and the measures taken to optimize convergence
to the target distribution, we refer the reader to Refs. [41]
and [42].

B. Modeling the data

BW reconstructs the detector data using three indepen-
dent models, namely (i) the GW signal plus Gaussian-
noise model, S, (ii) glitches plus Gaussian-noise model, G
(iii) Gaussian-noise model, N . In this work, we are
interested in the Bayes factor between the S and G models
as a quantitative measure for BW’s detection confidence.

1. Signal model, S

Recall that the five intrinsic parameters of a sine-
Gaussian wavelet can represented with a single parameter

vector λ ¼ ft0; f0; Q; A;ϕ0g. If a real GW signal is present
in the data of a multidetector network, we expect it to be
coherent across all detectors in the network, albeit with
different signal-to-noise ratio (SNR) and polarization per
detector depending on the sensitivity and orientation of the
detectors respectively. Therefore when reconstructing the
data using the signal model, the same wavelet parameters
are used across all detectors in the network. The set of
intrinsic parameters for the signal model (S) is given by
λS ¼ λ1 ∪ λ2… ∪ λNS , where NS denotes the number of
wavelets used in the signal reconstruction. These param-
eters are geocentric, meaning they are measured at a
reference point located at the center of the Earth.
Since the signal models represent astrophysical GW

signals, all NS wavelets used in the reconstruction also
share a set of extrinsic parameters Ω ¼ fθ;ϕ; ϵ;ψg. The
symbols denote the right ascension, declination, ellipticity
and polarization angle of the GW in order of appearance.
The complete set of signal model parameters is then given
by θS ¼ λS ∪ Ω.
The geocentrically measured signal waveforms, para-

meterised by λS, can be projected onto the ith detector
using the detector’s unique time delay operator Δtiðθ;ϕÞ,
along with the antenna beam pattern response functions
Fþ
i ðθ;ϕ;ψÞ and Fþ

i ðθ;ϕ;ψÞ of the plus (þ) and cross (×)
polarizations.2 Mathematically we write [65,70]

hiðf; λS;Ω; NSÞ ¼ ðFþ
i h̃þ þ F×

i h̃×Þe2πifΔti ; ð2Þ
where h̃p denotes the Fourier transform of the time domain
geocentric GW signal, hpðtÞ for polarization p. The version
of BW used in our analysis assumes elliptical polarization
such that the ellipticity parameter ϵ maps h̃þ to the cross
polarization h̃× via

h̃× ¼ ϵh̃þeiπ=2; ð3Þ

and h̃þ is expressed as a linear combination of sine-
Gaussian wavelets in the frequency domain (obtained by
taking the Fourier transform of Eq. (1):

h̃þðfÞ ¼
XNS

n¼1

Ψ̃ðf; λnÞ: ð4Þ

2. Glitch model, G

Unlike GW signals, instrumental glitches and noise are
uncorrelated across the detector network. Therefore the
glitch model uses independent sets of wavelets to

2Antenna pattern functions are typically a function of time.
However, the time dependence is omitted here with the
assumption that the antenna patterns are constant over the short
duration of GW burst. This assumption is conventional across all
burst searches.
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reconstruct glitches in each detector. Let NGi denote the
number of wavelets and λGi ¼ λi1 ∪ λi2… ∪ λi

NGi
be the set

of wavelet parameters used in the glitch model
reconstruction of detector i. We can then write the glitch
model for the ith detector as

gðλGi ; NGiÞ ¼
XNGi

n¼1

Ψ̃ðf; λinÞ: ð5Þ

Thus for a network with I detectors, the complete set of
glitch model wavelet parameters is given by θG ¼ λG1 ∪
λG2… ∪ λGI . Note that there are no extrinsic parameters in
the glitch model as it assumes the non-Gaussianity in the
data to be independent in each detector (i.e. nonastrophys-
ical) [65].

3. Gaussian-noise model, N

In contrast to S and G which models non-Gaussian
transient components of the detector data, the BayesLine
algorithm [40] is implemented within BW to model the
Gaussian-noise power spectral density (PSD). LIGO and
Virgo Gaussian noise sources can be classified into three
broad frequency bands: (i) seismic noise (∼10 Hz), (ii) ther-
mal noise (∼10–200 Hz) and (iii) quantum (photon) shot
noise (≳200 Hz). Moreover, various aspects of the detector
apparatus including mirror suspensions, calibration lines,
and the AC electrical supply are recurrent sources of high-
power, narrow-band spectral lines. BayesLine collectively
characterizes these noise features by modeling the PSD
using cubic splines and Lorentzians as bases to fit smooth
broad-band noise and narrow-band linelike features respec-
tively. The mathematical details of BayesLine are incidental
to this paper, a full description can be found in [40].
By amalgamating all plausible PSD models from

BayesLine, we obtain N . As its name suggests, N models
the data as purely Gaussian noise. In fact S and G also
incorporate BayesLine for PSD estimation on top of the
wavelet models for non-Gaussian feature(s), and are there-
fore known as composite models [41].

C. Bayesian model selection

BW compares the model evidences via the Bayes factor
to give the relative odds between the hypotheses described
in Sec. II B. For a given model M, the evidence is
calculated by

pðdjMÞ ¼
Z

dθMpðθMjMÞpðdjθM;MÞ ð6Þ

where pðθMjMÞ is the prior i.e the probability that M is
parametrized by θM prior to observation of the data d; and
pðdjθM;MÞ is the likelihood of observing d given θM. In
essence, the evidence is the likelihood of producing the data
d from the hypothesis M marginalised over the parameter

space of θM, thus it is otherwise known as the marginalised
likelihood [65]. Obtaining model evidences directly from
the integral in Eq. (6) is computationally expensive,
especially for complex and highly parameterised models.
Therefore BW combines the parallel-tempered RJMCMC
algorithm [71] and thermodynamic integration [72] to
compute the evidences. Implementations of these methods
are detailed in Refs. [41] and [40].
The Bayes factor between two models, Mα and Mβ, is

the ratio of their evidences:

Bα;βðdÞ ¼
pðdjMαÞ
pðdjMβÞ

: ð7Þ

Bα;βðdÞ > 1 suggests that Mα is more strongly supported
by the data and vice versa. The Bayes factor inherently
considers model complexity in model selection by penal-
izing over-fitting. This is a corollary of Occam’s razor,
which prefers simplicity over complexity among compet-
ing models. Occam’s razor is not deliberately implemented;
rather it is an inherent consequence of using Bayes’
theorem and enters via the parameter space volume in
Eq. (6). For a detailed mathematical interpretation, we refer
the reader to Sec. IVA of [66].
A study conducted by Littenberg et al. [65] to assess

BW’s ability to distinguish between GW signals and
instrumental glitches shows that for a two-detector network
with interferometers of equal sensitivity (i.e., the HL net-
work), the primary scaling of the Bayes factor goes as [65]

lnBS;G ∝ N lnðSNRnetÞ: ð8Þ

A simplifying assumption is that the number of wavelets
used in the signal model S is the same as the glitch model G
for a single detector, viz.NS ¼ NGi ¼ N. For a networkwith
I detectors, the overall network SNR of the non-Gaussian
transient in the data is given by

SNR2
net ¼

XI
i¼1

SNR2
i ð9Þ

where SNRi is the SNR in detector i. Altogether, Eq. (8)
suggests that lnBS;G and hence detection confidence scale
with both signal strength and waveform complexity.
In a complementary study [66], BW is used to recover

injected BBH signals from the HL, HLV and HLKV
networks to quantify its detection confidence with
expanded detector networks. In this study, lnBS;G is further
shown to scale with the number of detectors in the network,
I , according to

lnBS;G ∝ IN lnðSNRnetÞ: ð10Þ

In other words, BW’s detection confidence is directly and
positively impacted by increasing the number of detectors
in the network, all else being equal.
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III. BAYESWAVE EFFICIENCY ANALYSIS

In standard GW searches, the astrophysical significance
of a detection candidate is determined by the frequency of
false alarms. False alarms are nonastrophysical events with
detection statistics corresponding to that of GW candidates.
To estimate the prevalence of false alarms, one can count
the number of triggers produced by the detector back-
ground which does not contain astrophysical signals.
Ref. [66] assesses BW’s detection confidence for

expanded detector networks using only the detection
statistic lnBS;G produced by astrophysical events. However
as the global detector network expands, the likelihood
of instrumental glitches increases. The associated increase
in false alarm detections reduces astrophysical significance
of detections, thereby reducing detection confidence.
Unmodeled burst searches (e.g., with BW) place fewer
constraints on the waveform morphology, and are therefore
confounded more readily by glitches compared to modeled
searches (e.g., with a matched filter) [73–77]. Since the
significance of lnBS;G is influenced by false alarms, we
present a more complete analysis of BW’s performance
with expanded detector networks by considering the impact
of detector noise backgrounds on detection confidence.
We use detection efficiency Pdet as a figure of merit to

compare the overall performance of BW between the HL
(two-detector) and HLV (three-detector) networks. Pdet is
typically characterised as a function of detection signifi-
cance by means of a receiver-operating-characteristic
(ROC) curve,3 also known as an efficiency curve. In this
study, we use the per-trigger false alarm probability PFA as
a measure of significance. We define PFA as the probability
that a trigger measured with a given detection statistic is a
false alarm, and Pdet as the probability of detecting an
astrophysical event with a given significance. Higher PFA
indicates low astrophysical significance. Therefore higher
Pdet is achieved, if higher PFA is tolerated. PFA should not
be confused with the false alarm rate (FAR), which
measures the number of false alarms per unit time. We
further discuss the difference in Sec. IV, and explain why
we use PFA instead of FAR in our analysis.
In order to measure PFA, we need to understand the

distribution of lnBS;G produced by the detector noise
background. It is challenging to construct models that
can accurately predict the noise background, so we empiri-
cally obtain the background distribution by applying BW to
triggers identified by cWB from time-shifted background
data of the HL and HLV networks. The distribution of
lnBS;G produced by the background triggers is then used to
computePFA. Using BW to recover a population of injected
signals, we obtain a distribution of lnBS;G for astrophysical
events. Combining lnBS;G of background triggers and

astrophysical injections, we compute Pdet as a function
of PFA to construct efficiency curves. We discuss the
methods of constructing efficiency curves in greater detail
in Sec. VA.
To study the impact of the noise background on BW’s

overall performance with expanded detector networks, we
compare the efficiency curves between the HL and HLV
networks for a synthesised population of BBHs. As a
consistency check, we also analyse a set of O3-like CBC
waveforms to measure and compare BW’s detection
significance of O3 GW detection events for HL and
HLV. In the following sections, we detail the background
and injection datasets for the analyses.

A. Background data

In GW data analysis, it is standard practice to use the
time-shifting method to create pseudo-real detector datasets
for noise background estimations [36–38,78–80]. The
time-shifting method introduces artificial time off-sets
between the outputs of GW detectors operating in concert.
The offsets are much larger than the coherence time
(∼10 ms) of any real GW signals between the detectors,
determined by the distance between the detectors and the
GW propagation speed. As a result, coincident triggers in
the time-shifted data cannot be astrophysical. By perform-
ing time-shifts repetitively on months worth of detector
data, we obtain an artificially extended set of background
data with effective livetimes4 spanning thousands of years.
We can use this to estimate PFA by empirically measuring
the fraction of background (i.e. noise-induced) triggers
above a selected detection threshold in the time-shifted
background [78].
In the Advanced LIGO and Advanced Virgo all-sky

searches for short GW bursts [36–38], the cWB algorithm
is used to analyse the full observational data. Due to the
implementation of RJMCMC, BW is computationally
intensive. Thus, BW is only used to follow-up subsets of
cWB triggers. Although Ref. [44] has shown that the
hierarchical implementation of cWB and BW enhances
detection confidence in all-sky burst searches, the aim of
our study is to assess the independent burst detection
performance of BW. By convention, we use preexisting
trigger lists generated by the cWB pipeline [38,81] to
downselect triggers for BW background measurements, but
we do not make any claims on cWB’s background and
detection efficiency. We choose to use the trigger list for the
first half of O3 (O3a), acquired from the cWB low-
frequency (16–1024 Hz) all-sky analysis of the full
time-shifted O3a background data. The analysis is con-
ducted separately for the HL and HLV networks, on
background data obtained by applying time-shifts on
104.94-day (HL) and 75.19-day (HLV) segments of the

3Typical ROC curves plot probability of detection (true
positives) on the vertical axis and probability of false alarm
(false positives) on the horizontal axis.

4The extended time interval obtained as a result of time-
shifting is known as the effective livetime.
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real-time O3a detector data. The time-shifted background
data accumulates 981 years and 573 years of effective
livetimes for the HL and HLV networks respectively.
We select triggers by thresholding their cWB detection

statistic, ρ, which scales with the network SNR of the signal
present in the data [32,33]. We arbitrarily nominate
ρthreshold ¼ 7 as the significance threshold, in line with
previous work [38,44]. Triggers below the threshold are
presumed to have insignificant impacts on detection effi-
ciency and therefore excluded from the noise background
measurement. cWB identifies 2 × 103 and 7 × 103 triggers5

with ρ > ρthreshold in the HL and HLV background datasets
respectively, but thousands of triggers are still too expen-
sive to handle computationally in this paper. A straightfor-
ward approach is to increase ρthreshold, but that would
deliberately exclude low-SNR triggers from the back-
ground measurement. To avoid implementing a stricter
ρthreshold, we run BW on a fraction (denoted by X) of
randomly selected triggers from the full trigger list, all of
which satisfy ρ > ρthreshold ¼ 7. We set X ¼ 0.45 and X ¼
0.15 for the HL and HLV datasets respectively to deliver
roughly equal numbers of triggers from the two networks.
The reduced HL and HLV background datasets consist of
1008 and 1134 triggers respectively. We employ BW to
analyse the datasets to obtain lnBS;G for each background
trigger. The BW analysis uses the same settings as the
Advanced LIGO and Advanced Virgo O3 all-sky search for
short GW bursts [38] (see Appendix A).
From the BW analysis, we flag background triggers that

are more consistent with the pure Gaussian-noise model,N
than the composite signal plus Gaussian-noise model S. By
definition, the lnBS;N error bars of these triggers encom-
pass values less than or equal to zero, i.e.,

lnBS;N − Δ lnBS;N ≤ 0 ð11Þ

where Δ lnBS;N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Δ lnpðdjSÞ�2 þ ½Δ lnpðdjN Þ�2

p
is

the width of the error bars and Δ lnpðdjMÞ denotes the
uncertainty of the log evidence of modelM [41]. For these
Gaussian-noiselike triggers, the lnBS;G is meaningless as it
serves to compare the evidences of models that characterize
non-Gaussianity. Nevertheless, these triggers cannot be
discarded from the background measurement as they satisfy
ρ > ρthreshold. Therefore we assign them with an arbitrarily
low detection statistic, lnBS;G ¼ −500, to indicate minimal
astrophysical significance. A total of 268 (218) out of 1008
(1134) HL (HLV) triggers are assigned lnBS;G ¼ −500.
We present and discuss the background measurements

in Sec. IV.

B. Injections

In addition to the background measurement, the detec-
tion statistic distribution for astrophysical signals is
required to evaluate BW’s burst detection performance.
We inject waveforms of known morphology and recover
them using BW to empirically measure the distribution of
lnBS;G. Since CBCs are well understood, we use them in
this study to assess BW’s independent performance with
HL and HLV. We analyse two different source populations:
injection set 1 (IS1), comprising phenomenological BBH
waveforms with fixed component masses but uniformly
distributed SNR and extrinsic parameters, and injection set
2 (IS2), comprising CBC waveforms with parameters that
resemble real GW events from O3. The following two
subsections describe the objective and properties of each
injection dataset in order.

1. Phenomenological BBH waveforms (IS1)

IS1 consists of simulated BBH waveforms with a choice
of parameter space encompassing the range detectable by
the Advanced LIGO and Advanced Virgo detectors. The
waveforms are added to temporally spread out segments of
HL and HLV data across all of O3a to reflect practical
observation intervals. We use IS1 to characterize BW’s
detection efficiency (Pdet) as a function of detection
significance (PFA) via efficiency curves and compare the
performance of BW with the HL and HLV networks.
IS1 copies the injection set described in Sec. V of

Ref. [66]. It consists of 1200 simulated BBH waveforms
phenomenologically modeled using the IMRPhenomD
[83,84] approximant. The BBH sources are nonspinning,
nonprecessing and have equal component masses of 30M⊙.
They also have uniformly distributed sky locations, incli-
nations and polarization angles. The distances are randomly
sampled such that the signal amplitude is detectable in
simulated HLV data with network signal-to-noise ratio
within range 10 ≤ SNRnet ≤ 50. We use the same injection
dataset for both the HL and HLV networks; we simply
exclude Virgo data in the HL analysis. By Eq. (9), we
expect SNRnet of any given event to be lower in the HL
network compared to HLV.
The analysis in Ref. [66] injects and recovers waveforms

using projected (simulated) O4 detector data. However,
BW’s background measurements for HL and HLV in this
study are carried out using O3a background triggers as
discussed in Sec. III A. In order to measure the Pdet as a
function of PFA, detection statistics (lnBS;G) of the astro-
physical signals must be compared with the background
triggers of the same detector data. Thus we inject IS1 into
arbitrarily selected segments of HL and HLV data through-
out O3a. The O3a strain data is publicly available at the
Gravitational Wave Open Science Centre (GWOSC)
[85,86] and Fig. 2 of Ref. [9] shows representative
amplitude spectral densities of the detectors. As with the

5These counts include triggers from all three search bins used
in the cWB O3a low-frequency burst analysis: LF1, LF2, and
LF3. The bins are classified based on trigger morphologies.
Classification details can be found in [38] and [82].
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background, IS1 is analyzed using the same BW settings
as Ref. [38].
Events of IS1 are injected into O3a data with the same

distances sampled from the simulated data. Since O3a data
is noisier and has a different characteristic PSD compared
to the simulated HLV data, the SNRnet of IS1 events when
injected into O3a data is lower than the referenced range
10 ≤ SNRnet ≤ 50. In order to assess BW’s performance
under conditions relevant to practical searches, events
below a designated detection threshold must be eliminated
from the injection data. This is because they cannot serve as
triggers by definition, in the same way that background
triggers with ρ < ρthreshold ¼ 7 do not count as false alarms.
Since this a designated search to assess the stand-alone
efficiency of the BW algorithm, independent of cWB, we
set a nominal significance threshold of SNRcut-off ¼ 10 for
BW viz. only injection events with SNRnet ≥ SNRcut-off in
both the HL and HLV networks are adequately significant
to be followed-up by BW and included in the efficiency
curve analysis. Out of 1200 injections, 412 nondetection
events are filtered out from IS1, leaving 788 events going
forward.
From the remaining 788 events, BW identifies 157 (89)

events consistent with Gaussian noise in the HL (HLV)
network according to the lnBS;N constraint defined in
Section III A. These events are retained in the analysis
dataset since they satisfy SNRnet ≥ 10 but as with the
background triggers, they are assigned lnBS;G ¼ −500 to
indicate low detection significance.
To show the overall distribution of IS1 events, we plot

lnBS;G versus SNRnet for the HL (blue circles) and HLV
(orange stars) injections in Fig. 1. The plot shows all but the
lnBS;G ¼ −500 events to focus on events with astrophysi-
cally relevant lnBS;G. Injections with comparable SNRnet

are evidently recovered with higher lnBS;G in HLV

compared to HL. This observation is consistent with
Ref. [66] where lnBS;G is analytically and empirically
shown to increase primarily with I .
Despite the astrophysical origin of IS1, BayesWave

recovers two of the HL events with lnBS;G < 0 ≠ −500
in Fig. 1, suggesting that the evidence for the ‘incoherent’
glitch model (G) is higher than for the “coherent” signal
model (S). These events are also not consistent with
Gaussian-noise, i.e., they have lnBS;N > 0. This is because
the injected signal power in the frequency domain is only
marginally above the sensitivity threshold in one detector,
and is approximately one order of magnitude lower in the
other. Equation (2) shows that the sensitivity of each
detector to different sky locations, at a given time, depends
on the antenna pattern functions. Therefore the lnBS;G < 0

recovery of the two HL injections, caused by the signal
power imbalance across the detectors, is an inadvertent
result of mismatched detector sensitivities to the randomly
sampled sky locations at the time of injection. With
additional coherent signal power from Virgo, the HLV-
equivalents of these two events are recovered with
lnBS;G ∼ 101. This argument also applies to IS2 injections,
discussed in Sec. III B 2.
We present the results of BW detection efficiency

analysis with IS1 in Sec. V.

2. O3-like CBC waveforms (IS2)

To check for consistency with IS1, we measure BW’s
detection significance for real GW detection events in terms
of PFA, and compare the measurements between the HL
and HLV networks. For this purpose, we implement BWon
IS2 consisting CBC waveforms resembling O3a and O3b
GW events from GWTC-2 [9] and GWTC-3 [11] respec-
tively, otherwise known as off-source injected waveforms.
In IS1 the BBH waveforms are sampled from a fixed

parameter space and added to detector data spread out
across all of O3a; in IS2 the off-source injections are
sampled from the matched-filter source parameter poste-
riors for GW detection events and added into the back-
ground data around the event epoch. Off-source injections
are used in the GWTCs to test the consistency6 between
matched-filter (template-based) CBC waveforms and min-
imally modeled waveform reconstructions (e.g., cWB and
BW) [8,9,11].

FIG. 1. Log signal-to-glitch Bayes factor lnBS;G versus net-
work signal-to-noise ratio SNRnet for IS1. The blue circles
(orange stars) correspond to HL (HLV) network injections; each
data point corresponds to a single injection. Gaussian-noise-like
events with lnBS;G ¼ −500 are not shown.

6Consistency test are performed by comparing the on-source
and off-source match. On-source waveforms are reconstructed
directly from the event data. The match, defined by
O ¼ hh1jh2i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p

, measures the overlap between
two waveforms h1 and h2. h·j·i is the noise-weighted inner
product [87]. On-source match compares the maximum like-
lihood waveform from template-based parameter estimation of
the actual event with the point estimate from minimally modeled
reconstructions; off-source match compares the off-source in-
jections with their respective reconstructions.
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IS2 comprises off-source injections of 22 independent
GW events detected by the HLV network in O3. We
summarize the relevant event properties in Table I. All
events listed in Table I, except for GW200202_154313, are
BW waveform consistency test candidates [11,11].
GW200202_154313 is excluded from the GWTC-3 con-
sistency test due to low on-source match, but since the off-
source injections for this event are available there is no
reason to exclude it from IS2 for the assessment of BW’s
detection significance. A set of 200 off-source injections is
available for each of the 22 GW events [9,11]. We
arbitrarily select 50 out of the 200 off-source injections
for each GW event, totaling 22 × 50 ¼ 1100 injections in
IS2. Even though a fraction of the GW events are O3b
detections, we inject all off-source events into segments of
O3a HLV data to ensure comparability with the O3a noise

background described in Sec. III A. The HL data are
equivalent to the HLV data with Virgo removed.
As with IS1, only injections above the BW significance

threshold are retained in IS2. The last column in Table I
shows the number of off-source injections that exceeds
the significance threshold, i.e., SNRnet ≥ SNRcut-off ¼ 10
for each GW event. There are four GW events with
less than 25 off-source injections (i.e., < 50%) satisfy-
ing the significance threshold, namely: GW190517_
055101, GW190720_000836, GW190828_065509, and
GW200219_094415. Since the SNRnet of off-source
injections for these four events are sampled from
match-filter network SNR posteriors with medians ≲11
(see Table I), they are less likely to satisfy SNRnet ≥ 10.
Assessments of astrophysical significance for GW events
with ≤ 25 off-source injections are unreliable due to

TABLE I. List of O3 GWevents used to generate the off-source injections of IS2. The columns from left to right show: (i) The LIGO-
Virgo-KAGRA (LVK) observing run in which the event was detected, (ii) event name, (iii) primary component mass m1, (iv) secondary
component mass m2, (v) HLV network matched-filter SNR† and (vi) number of off-source injections (out of 50) that satisfy SNRnet ≥
SNRcut-off and retained in IS2. Source parameter values displayed in the table are the median and the 90% symmertric credible intervals
of the Bayesian posterior. Information in this table is copied directly from Table VI of GWTC-2 [9] (O3a events) and Table IVof GWTC-
3 [11] (O3b events). †The network matched-filter SNR in this table is not to be confused with SNRnet which denotes injected network
SNR of IS1 and IS2 events.

LVK run Event name m1 (M⊙) m2 (M⊙) Network SNR†
Number of off-source

injections in IS2

O3a GW190408_181802 24.6þ5.1
−3.4 18.4þ3.3

−3.6 15.3þ0.2
−0.3 50

O3a GW190412 30.1þ4.7
−5.1 8.3þ1.6

−0.9 18.9þ0.2
−0.3 48

O3a GW190503_185404 43.3þ9.2
−8.1 28.4þ7.7

−8.0 12.4þ0.2
−0.3 47

O3a GW190512_180714 23.3þ5.3
−5.8 12.6þ3.6

−2.5 12.2þ0.2
−0.4 40

O3a GW190513_205428 35.7þ9.5
−9.2 18.0þ7.7

−4.1 12.9þ0.3
−0.4 49

O3a GW190517_055101 37.4þ11.7
−7.6 25.3þ7.0

−7.3 10.7þ0.4
−0.6 21

O3a GW190519_153544 66.0þ10.7
−12.0 40.5þ11.0

−11.1 15.6þ0.2
−0.3 48

O3a GW190521 95.3þ28.7
−18.9 69.0þ22.7

−23.1 14.2þ0.3
−0.3 44

O3a GW190602_175927 69.1þ15.7
−13.0 47.8þ14.3

−17.4 12.8þ0.2
−0.3 44

O3a GW190706_222641 67.0þ14.6
−16.2 38.2þ14.6

−13.3 12.6þ0.2
−0.4 41

O3a GW190720_000836 13.4þ6.7
−3.0 7.8þ2.3

−2.2 11.0þ0.3
−0.7 24

O3a GW190727_060333 38.0þ9.5
−6.2 29.4þ7.1

−8.4 11.9þ0.3
−0.5 49

O3a GW190728_064510 12.3þ7.2
−2.2 8.1þ1.7

−2.6 13.0þ0.2
−0.4 48

O3a GW190828_063405 32.1þ5.8
−4.0 26.2þ4.6

−4.8 16.2þ0.2
−0.3 48

O3a GW190828_065509 24.1þ7.0
−7.2 10.2þ3.6

−2.1 10.0þ0.3
−0.5 19

O3a GW190915_235702 35.3þ9.5
−6.4 24.4þ5.6

−6.1 13.6þ0.2
−0.3 47

O3a GW190924_021846 8.9þ7.0
−2.0 5.0þ1.4

−1.9 11.5þ0.3
−0.4 36

O3b GW200129_065458 34.5þ9.9
−3.2 28.9þ3.4

−9.3 26.8þ0.2
−0.2 50

O3b GW200202_154313 10.1þ3.5
−1.4 7.3þ1.1

−1.7 10.8þ0.2
−0.4 35

O3b GW200219_094415 37.5þ10.1
−6.9 27.9þ7.4

−8.4 10.7þ0.3
−0.5 13

O3b GW200224_222234 40.0þ6.9
−4.5 32.5þ5.0

−7.2 20.0þ0.2
−0.2 36

O3b GW200311_115853 34.2þ6.4
−3.8 27.7þ4.1

−5.9 17.8þ0.2
−0.2 48
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insufficient PFA measurements. Therefore, the four
events listed above are excluded from the IS2 analysis.
For the remaining 18 GW events, the numbers of
injections shown in the last column of Table I include
events that are more consistent with Gaussian noise than a
GW signal according to BW. As discussed in Sec. III A,
these events are assigned lnBS;G ¼ −500 to indicate low
significance.
Figure 2 shows the distribution of off-source injections

in IS2 for each GW event in different colors. To avoid
clutter, we show only three arbitrarily selected events with
contrasting HLV network match-filter SNRs from Table I,
namely GW190512_180714 (pink), GW190408_181802
(green) and GW190412 (purple). Each circle (star) data
point correspond to an individual HL (HLV) injections.
For each GW event in Fig. 2, the off-source injection
SNRnet are distributed within an approximate range of �5
from their respective median HLV network match-filter
SNR, indicated by the vertical dashed lines in correspond-
ing colors. The lnBS;G also scales with I , consistent
with Ref. [66]. According to Table I, the three events in
Fig. 2 also have comparable number of off-source injec-
tions in IS2. However, the number of injections for
GW190512_180714 (pink) is visibly lower than the other
two events, because the plot excludes Gaussian-noiselike
events with lnBS;G ¼ −500. GW190512_180714 has the
lowest network match-filter SNR of the three events, so its
off-source injections in both the HL and HLV networks
also have comparably lower SNRnet. Hence, the BW
evidences favors the Gaussian noise model more strongly
than the signal model for a larger proportion (∼50%) of
GW190512_180714’s offsource injections, cf., ∼0–5%
for the other two events.

The comparison of BW’s detection significance (PFA)
between the HL and HLV networks is presented in Sec. VI,
for all 18 O3 GW events in IS2.

IV. BACKGROUND MEASUREMENTS

In this section, we discuss the suitability of using PFA (as
opposed to FAR) as a significance measure for the purpose
of our analysis. We then present and discuss the noise
background measurements. Using the dataset described in
Sec. III A, we obtain the distribution of PFA as a function
of lnBS;G.
PFA is the probability that a trigger of a given detection

statistic (lnBS;G) is a false alarm, i.e., nonastrophysical. In
the context of hypothesis testing, PFA represents the false
positive rate (type I error) and is a dimensionless quantity
by definition. In contrast, FAR measures the temporal
frequency of false alarms producing a detection statistic
value equal to or higher than a specified GW candidate
event [88]. In other words, FAR is a time-average quantity
which conflates BW’s performance with engineering
factors such as the detector glitch rate. As discussed in
Sec. III A, BW is not suitable for a full all-sky search of an
observational dataset and is used instead to follow up
triggers identified by other burst search pipelines like cWB.
In this study, we measure BW’s background for the HL and
HLV networks using populations of background triggers
arbitrarily downselected from the cWB all-sky analysis of
the respective O3a time-shifted background data. Since PFA
is time-independent and marginalizes over the number of
triggers analyzed, it relates directly to how BW is used in
this study. It is therefore more appropriate to compare BW’s
performance between the HL and HLV networks using PFA
as a measure of detection significance.7

Figure 3 shows the HL and HLV network background as
measured by BW with the background trigger datasets
described in Sec. III A. PFA, plotted on the vertical axis, is
computed as the fraction (i.e. per-trigger probability) of
nonastrophysical triggers in the background exceeding the
corresponding lnBS;G on the horizontal axis. We restrict the
plot to lnBS;G > −20, the range relevant to real astrophysi-
cal signals. Although not shown in Fig. 3, triggers with
lnBS;G < −20 are included in the denominators for com-
puting PFA, that is 1008 and 1134 respectively for HL and
HLV. To estimate the uncertainties in our background
measurements, we conventionally assume the detector
noise background can be modeled as a Poisson process.
The shaded regions show the 1σ Poisson uncertainty region
for HL and HLV in corresponding colors. In Appendix B,

FIG. 2. lnBS;G versus SNRnet for IS2 off-source injections of
GW190512_180714 (pink), GW190408_181802 (green) and
GW190412 (purple). The vertical dashed lines in the respective
colors at SNRnet ¼ 12.2, 15.3, 18.9 indicate the median HLV
network match-filter SNRs of the GW events (from Table I). The
circles and stars correspond to HL and HLV injections respec-
tively. Gaussian-noise-like events with lnBS;G ¼ −500 are not
shown.

7PFA should not be confused with the definition of false alarm
probability, FAP ¼ 1 − expð−Tobs × FARÞ used in other analysis
pipelines e.g. PyCBC [89]. FAP is the probability of finding one
or more noise background events with significance equal to or
higher than FAR (of a candidate event) within an observation
period Tobs.
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we show the implementation of PFA in Poisson statistics as
opposed to FAR, along with the derivation of the Poisson
uncertainty regions.
The background measurements show that PFA is higher

for HLV than for HL at all lnBS;G as the occurrence of
background triggers increases with the number of detec-
tors. As a result, events detected by the HLV network need
to attain a higher lnBS;G in order to achieve the same
significance (PFA) as the HL network. For example, to
achieve PFA ¼ 0.1, a HL event requires lnBS;G ¼ 25.6;
cf., lnBS;G ¼ 43.1 for HLV. Additionally, lnBS;G of the
HLV background triggers are higher overall compared
to HL. This is because the increased trigger frequency in
HLV results in the increased likelihood of coincident
triggers which more closely resemble coherent signals,
and are therefore recovered with higher detection statistics
by BW. Furthermore, the misalignment of the Virgo
detector senses a different signal polarization to the two
co-aligned LIGO detectors, thus imposing a less stringent
constraints on signal coherence. This reduces the effi-
ciency of HLV in discriminating coincident glitches from
signals.

V. BAYESWAVE DETECTION EFFICIENCYWITH
BBH WAVEFORMS

A. Constructing efficiency curves

In Ref. [44], the performance of a hierarchical pipeline
consisting of cWB and BW is quantified using efficiency
curves, which show the fraction of injected signal wave-
forms recovered above various significance thresholds. We
use the same approach in this work to study the indepen-
dent performance of BW. Using IS1 described in Sec. III B
1, we construct efficiency curves for the HL and HLV
networks by plotting Pdet as a function of PFA.

As per Ref. [44], Pdet is calculated as the fraction of
astrophysical events recovered with detection statistic
above a threshold. For BW, this threshold is set by the
lnBS;G corresponding to a user-selected significance i.e.
PFA. As noted in Fig. 3, the lnBS;G threshold is higher for
HLV than for HL at a fixed PFA. The following example
shows how Pdet is computed for an arbitrary but represen-
tative choice PFA ¼ 0.2.
Figure 4 shows histograms of lnBS;G for theHL (blue) and

HLV (orange) O3a background triggers in the top panel, and
for IS1 in the bottompanel. The lnBS;G thresholds forPFA ¼
0.2 is set by the background triggers in the top panel. In both
panels, we indicate the thresholds by the vertical dashed
lines at 18.1 (HL, blue) and 34.2 (HLV, orange).With theHL
andHLV thresholds established, we turn to the bottom panel
of Fig. 4 where we compute Pdet as the fraction of IS1
injections detected by HL (HLV) greater than the threshold,
i.e. to the right of the blue (orange) vertical line. We find
Pdet ¼ 0.74 and 0.71 for HL and HLV respectively. The
procedure is repeated for PFA in the range 0 ≤ PFA ≤ 1 to
construct the efficiency curves for HL and HLV.

B. Efficiency analysis

The efficiency curves of IS1 for the characterization of
BW’s overall burst detection efficiency is shown in Fig. 5.
The blue and orange curves correspond to the HL and HLV
networks respectively. To indicate the error margins of PFA
from the background measurements, we carry over the 1-σ
Poisson uncertainty regions onto the horizontal axis of the
efficiency curves. From the background measurements, we
also noted that the minimum lnBS;G required to achieve a

FIG. 3. Background measurements for the BW algorithm. The
blue (orange) curve corresponds to the HL (HLV) background
measured using the downselected O3a background triggers
described in Sec. III A. The shaded bands show the 1-σ Poisson
uncertainty regions for each network in corresponding colors.

FIG. 4. Worked example: computing one representative point
on the efficiency curve for a significance threshold PFA ¼ 0.2.
Top: histogram of lnBS;G for the O3a background triggers
described in Sec. III A. Bottom: histogram of lnBS;G for IS1.
The HL and HLV network histograms are color-coded blue and
orange respectively. In both panels, the vertical dashed lines at
lnBS;G ¼ 18.1 (HL) and 34.2 (HLV) indicates the threshold for
PFA ¼ 0.2. The fraction of injections to the right of the thresholds
in the bottom panel yields Pdet ¼ 0.74 (HL) and 0.71 (HLV).
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given significance reduces with increasing tolerance forPFA.
Therefore the efficiency curves show thatPdet increases with
PFA, as more events in IS1 satisfy the reduced lnBS;G

threshold. The cluster of data points at Pdet ¼ PFA ¼ 1,
disjointed from the rest of the efficiency curves, is an artifact
from assigning an arbitrarily low significance of lnBS;G ¼
−500 to Gaussian-noiselike events. As discussed in
Sec. III B 1, these events occupy 20% (11%) of the HL
(HLV) IS1 injections. Therefore we observe a discrete jump
in the fraction of recovered injections, i.e., Pdet of HL (HLV)
from 0.80 (0.89) to 1.We also note a gap in the PFA between
the cluster of data points and the point before PFA ¼ 1. This
is because the second lowest lnBS;G for the HL and HLV IS1
injections are of order −101 according to Fig. 1.
In order to assess the overall detection efficiency of BW

with theHL andHLVnetworks,we focus on the regionwhere
PFA is low enough to be astrophysically relevant. We
arbitrarily define this region to be where PFA ≤ 0.4 as
indicated by the green shading. In this region, Pdet of HL
is generally higher than HLV, but the opposite is true for
PFA ≳ 0.25. By quantifying the ratio between HL and HLV
Pdet for all data points in PFA ≤ 0.4, we find that the HL
network is only 1.02 times (i.e. 2%)more efficient in detecting
IS1 injections than theHLVnetwork on average.Hence, there
are no significant differences in BW’s overall detection
efficiency with a two- or three-detector configuration.
To justify our findings, we show the event-wise com-

parison of lnBS;G between the HL and HLV networks for
IS1 in Fig. 6, color-coded according to the SNRnet of HLV.

8

The dashed diagonal line indicates where lnBS;G is equal in

both networks. For a specified detection significance (PFA),
the plot can be divided into four quadrants by the
corresponding lnBS;G thresholds of the HL and HLV
networks. Using PFA ¼ 0.2 again as a representative
example, we indicate the HL (HLV) threshold with a blue
(orange) solid line in Fig. 6. The quadrants classify IS1
events based on their detectability. A successful detection
in the HL (HLV) network is when the event lnBS;G is higher
than the detection threshold set by the blue (orange) line.
By this definition, events in the top left quadrant (shaded
orange) are detected by the HLV network only; the bottom
right (shaded blue) by the HL network only; the top right by
both networks and the bottom left by neither. We note that a
fraction of events (in the blue shaded region) are only
detected by HL despite having higher lnBS;G in HLV. This
is because a successful detection with the HLV network
requires the increased lnBS;G to satisfy a higher detection
threshold to achieve the same significance as HL. In other
words, the advantage of increased lnBS;G in larger detector
networks is offset by the higher detection thresholds due to
the increased probability of false alarms in the background.
This explains why the efficiency curves are comparable
between the HL and HLV networks.
From Fig. 6, we can also see that SNRnet affects

detectability. The top right quadrant contains events with
overall higher SNRnet compared to the other quadrants.
That is, events with higher SNRnet and hence higher lnBS;G

are more likely to be detected by both HL and HLV. The
remaining IS1 events with lower SNRnet are distributed
across the other three quadrants where they fall short of at
least one of the HL or HLV detectability thresholds, as
indicated by the orange and blue dashed lines respectively.
This is true for all PFA. We discuss the cases where events

FIG. 5. BW efficiency curves constructed using IS1 for the HL
(blue) and HLV (orange) networks. The shaded bands with
matching colors are the 1-σ Poisson uncertainty regions for
PFA, same as in Fig. 3. The region where PFA ≤ 0.4 is shaded
green to indicate astrophysical relevance.

FIG. 6. Log signal-to-glitch Bayes factor, lnBS;G of the HLV
network versus the HL network for IS1. The color bar shows
SNRnet in HLV for each injection. The diagonal line indicates
equal lnBS;G for both networks. The dashed lines at
lnBS;GðHLÞ ¼ 18.1 and lnBS;GðHLVÞ ¼ 34.2 indicate the
thresholds for PFA ≤ 0.2 with the respective networks. Gaus-
sian-noise-like events with lnBS;G ¼ −500 are excluded in
this plot.

8The HL and HLV network SNRnet are equally representative
of the ensemble SNRnet of IS1 (see Fig. 1). Thus we show only
the HLV network SNRnet in Fig. 6 to avoid clutter.
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are only detected by one of the two configurations. For
events detected only by HLV (orange shaded region), it is
straightforward to argue that adding Virgo increases the
sensitivity of the network to the signal that are too low to be
detected by HL. Consequently, this increases lnBS;G and
boosts the detection significance past the required thresh-
old. For the less intuitive case where events are detected
only by HL (blue shaded region), we need to justify for two
scenarios: (i) where lnBS;G for HLV is higher than HL and
(ii) vice versa. The former is discussed above. The latter
suggests that the removal of Virgo boosts the signal
evidence. This occurs when the addition of Virgo intro-
duces non-Gaussian noise artifacts across the network
which outweighs the sensitivity gain for the signal.
These effects matter most for low SNRnet injections.
In summary, the efficiency curves in Fig. 5 show that

BW’s overall burst detection performance with the HL and
HLV networks are comparable in the nominal astrophysi-
cally relevant range PFA ≤ 0.4. This is because the noisier
detector background of the HLV offsets the advantage of
increased lnBS;G, as revealed by the granular event analysis
in Fig. 6. Additionally we note that for low-SNRnet injec-
tions at any given significance, adding an extra detector may
tip them over or under the detection threshold unpredictably,
due to a hard-to-quantify trade-off between the added noise
and added sensitivity. High-SNRnet injections, on the other
hand, are more likely to be detected by both networks.

VI. BAYESWAVE DETECTION SIGNIFICANCE OF
O3 GW EVENTS

The analysis with IS1 inferred that the overall detection
efficiency of BW is comparable between the HL (two-
detector) network and HLV (three-detector) network. Using
IS2 described in Sec. III B 2, we conduct a consistency test
for the results of IS1 by comparing BW’s detection
significance of O3 GW events between the two network
configurations.
The off-source injections in IS2 correspond to 18

independent O3 GW events. The final column of Table I
shows the number of off-source waveforms available for
each event. In order to measure the detection significance of
these GW events according to BW, we first quantify the
significance for each off-source injection. This is done by
comparing the recovered lnBS;G in HL and HLV with the
corresponding background measurements in Fig. 3. To
obtain a single-valued significance measurement for each
GW event, we take the median9 PFA of the corresponding
off-source waveforms. Figure 7 shows the median HLV
PFA versus that of HL. We use the interquartile range

FIG. 7. PFA of the HLV network versus the HL network for O3 GWevents in IS2. Each point represents a single GWevent as shown in
the legend and is color coded by the HLV SNRnet. The PFA and SNRnet shown are the medians of the off-source injections of the
corresponding event; the horizontal (vertical) gray bars span the interquartile range of the HL (HLV) PFA measurements. The diagonal
line indicates equal PFA for both networks.

9We show the median PFA instead of the mean, because the
median value excludes any biases introduced by the Gaussian-
noise like events with PFA ¼ 1, due to their arbitrarily low
detection statistic lnBS;G ¼ −500.
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(IQR), that is the range encompassing the middle 50% of
the off-source PFA within each GW event, to represent
the uncertainty in our measurements. The horizontal
and vertical gray bars show the IQRs for the HL and
HLV PFA measurements respectively. We find that all
data points are within close proximity of the diagonal
line where PFA is equal for HL and HLV. The size of the
HL and HLV IQRs are also comparable. This suggests
that BW’s detection significance of O3 GW events are
similar for both networks, further confirming that BW’s
burst detection performance with the HLV network does
not exceed HL when the detector backgrounds are taken
into account.
We also note that the median PFA increases with

decreasing SNRnet, because the colors of the points
darkens as one moves from the bottom left to the top
right of the plot. According to Fig. 2, GWevents with low
network match filter SNR have low SNRnet off-source
injections that are generally more consistent with
Gaussian noise. Therefore the median PFA of GW events
in the top right of Fig. 7 approaches unity. This obser-
vation is consistent with Fig. 6, where events with low
SNRnet and hence low lnBS;G are only detectable by both
HL and HLV when higher PFA are tolerated. Furthermore,
the size of the IQRs are within the same order of
magnitude as the median PFA viz. the PFA measurement
uncertainties are larger for events with lower SNRnet off-
source injections (top right corner) compared to those with
higher SNRnet (bottom left corner). The wider IQRs
suggest that the increased presence of Gaussian-noiselike
injections not only reduces the astrophysical significance,
but also increases the uncertainty in the significance
measurements for GW events with low network match
filer SNR.
Altogether IS2 shows that significance measurements

with BW is comparable for the HL and HLV networks,
consistent with the findings of the IS1 efficiency curve
analysis. We also find that PFA and the uncertainty in its
measurement increases with decreasing network match-
filter SNR.

VII. CONCLUSION AND DISCUSSION

A. Summary of results

In practice, the source-agnostic BWalgorithm is used in
conjunction with other search pipelines to enhance detec-
tion confidence of GW transients. In this work, however,
we study the stand-alone performance of BW with
expanded detector networks. Detection confidence of
BW is assessed using the algorithm’s detection statistics,
the log signal-to-glitch Bayes factor lnBS;G, which mea-
sures the extent of supporting evidence for the signal
model over the glitch model. A previous study shows that
lnBS;G increases with increasing number of detectors, I ,
in a network of GW interferometers [66]. However, the

study did not account for the increase in glitch occurrence
and the associated increase in false alarm detections, as
more detectors are added to the network. This paper
extends Ref. [66] with the goal of determining whether
BW’s overall burst detection performance is enhanced or
reduced as I increases, when the detector noise back-
ground is taken into account. This is done by measuring
the noise backgrounds produced by BW and comparing
the efficiency curves between the HL (two-detector) and
HLV (three-detector) networks.
We obtain the noise backgrounds measurements

of BW for the HL and HLV networks by analyzing
nonastrophysical triggers, downselected from the cWB
analysis of the O3a time-slide background data. The
background measurements show that per-trigger false
alarm probability PFA is higher in the HLV network than
in HL, throughout the astrophysically relevant range
lnBS;G ≥−20. This is due to the increased likelihood of
background triggers with an additional detector. We
reiterate that the cWB algorithm is only used to down-
select triggers for BW’s background measurements, we do
not investigate cWB’s background and/or detection effi-
ciency in this paper.
For the efficiency curve analysis, we implement BWon

a population of nonprecessing and nonspinning phenom-
enological BBH waveforms (IS1) sampled from a param-
eter space detectable by the Advanced LIGO and
Advanced Virgo detectors. IS1 is injected into segments
of HL and HLV data spread out across all of O3a, to
ensure comparability of the detection statistics with the
background measurements. The efficiency curves plots
detection efficiency, Pdet, of IS1 events as a function of
the per-trigger false alarm probability, PFA, to character-
ize BW’s performance over a range of significance
thresholds. We find similar efficiency curves for the
HL and HLV networks within a nominal significance
range with plausible astrophysical implications i.e.,
PFA ≤ 0.4. In other words, there are no major differences
between BW’s overall performance with HL and HLV.
This counterintuitive finding is justified by event-wise
comparison of lnBS;G between the HL and HLV IS1
injections in Fig. 6. The plot reveals that the advantage of
increasing lnBS;G with I is offset by the increased PFA.
Adding more detectors to the network increases the
likelihood of noise events (i.e. false alarms). Therefore,
events in larger detecter networks are required to satisfy
higher detection thresholds to achieve the same signifi-
cance as smaller networks. Additionally, the detectability
of events by the HL and HLV networks at any given
significance threshold (PFA) scales with SNRnet. For
events with low SNRnet, the lnBS;G and hence PFA in
each detector network are more sensitive to subtle
changes in detector noise variation. Therefore, the addi-
tion of Virgo can unpredictably tip an event over or under
the HL or HLV significance threshold.
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To check for consistency with the efficiency
analysis, we separately analyse a set of O3-like CBC
waveforms (IS2), otherwise referred to as off-source
injections. Parameters of off-source injections are
sampled from the match-filter posteriors of 18 GWevents
from O3. We use PFA to quantify BW’s significance for
each GW event. This is evaluated by comparing the
lnBS;G of their respective off-source injections with the
O3a background measurements. The comparison of PFA
between HL and HLV reveals that BW recovers all 18
events with similar significance from both networks. This
result is consistent with the IS1 detection efficiency
analysis.
Altogether, this study investigates the impact of

glitches on the detection significance (PFA) and the
overall performance of BW, as a function of I . From
two independent analyses with IS1 and IS2, we conclude
that there are no significant differences between BW’s
overall burst detection performance with the HL and HLV
networks. Despite the improvement in detection statistic
with the addition of Virgo, the associated increase in
nonastrophysical background triggers raises the detection
statistic threshold which the HLV network need to attain
in order to achieve the same per-trigger PFA as HL.
Therefore the HLV configuration, despite having more
detectors, does not have an advantage over HL in terms of
detection efficiency. Our findings are consistent with
previous studies [38,90]. Although expanded detector
networks improve accuracy of reconstruction and sky
localization of the GW signal, Refs. [38] and [90] suggest
that HL rejects glitches more efficiently compared to HLV
and is therefore preferred in unmodeled burst searches to
maximise detection efficiency. This is because HL com-
prises only of the co-aligned LIGO detectors with similar
sensitivities to GW polarization components from all
directions, therefore it poses more stringent constraints on
signal coherence across the network. On top of that, the
overall strain sensitivity of Virgo is lower than the two
LIGO detectors in O3a, as shown in Fig. 2 of Ref. [9].
This could be another reason why the larger (HLV)
network does not significantly outperform the HL
network.

B. Future work

With the recently approved commissioning of LIGO-
India with design sensitivity planned to match the LIGO
detectors [45], it would be worthwhile for prospective
studies on BW’s detection efficiency to consider network
configurations with three or more detectors of equal
sensitivities.
Furthermore, we use trigger lists generated by the cWB

algorithm from the LVK O3 all-sky burst search [38] to
downselect triggers for BW background measurements in
this study. However, Ref. [90] conducted the same search
using the cWB algorithm enhanced by machine-learning

(ML) which shows improved overall search sensitivity
compared to the standard cWB. We therefore suggest a
complementary study to follow-up on whether the BW
background measurements can be improved if the triggers
are downselected from the ML-enhanced cWB trigger list
instead.
While BW targets a broad range of unmodeled GW

bursts, this study considers only CBC waveforms as they
are the only source category detected in the LVK observing
runs to date. One can generalize this study to alternative
transient sources like supernovae and generic white noise
bursts, but the analysis presented in this work is limited to
comparing the overall trends of BW’s independent perfor-
mance between the HL and HLV networks. We did not
study the sensitivity of BW to specific types of burst signal
because BW is not used independently in practice, but
rather to follow-up cWB triggers to enhance detection
confidence. With promising outlooks for the ML-enhanced
cWB [90] and O4 in progress, future work should consider
assessing the joint performance of the ML-enhanced cWB
algorithm with BW for different types of burst sources as
in Ref. [44].
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APPENDIX A: BW CONFIGURATION

To assist with reproducibility, we detail the BW settings
for the background measurements and injection analyses.
The following settings are adapted from the BW analysis
used in the O3 all-sky burst search [38].
To down-select candidates from the cWB trigger list for

BW’s background measurements, we specify the signifi-
cance threshold, ρthreshold ¼ 7, as a first cut. We further
reduce the dataset by keeping only a fraction of triggers
satisfying ρ > ρthreshold. This fraction is denoted by X in
the main text.
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For the signal injections, we use the O3a calibrated
strain data for the LIGO Hanford (H1), LIGO Livingston
(L1) and Virgo (V1) detectors [85]. The frame calibration
includes a noise subtraction procedure detailed in
Ref. [91]. The Advanced LIGO (H1 and L1) noise
subtraction targets noise from beam jitter, detector cali-
bration lines and the main power grid line (at 60 Hz) [61].
For Advanced Virgo, we use low-latency (online) strain
data which includes subtraction of frequency noise from
the input laser, Michelson noise from displacement of the
beam splitter mirrors, amplitude noise from auxiliary
modulation and scattered light noise [92].
For all analyses, we set the low frequency cutoff at 20 Hz

by convention [93]. The sampling rate is set at 2048 Hz to
achieve a Nyquist frequency of 1024 Hz. For PSD
estimation, i.e., to construct the model N , we employ
the BayesLine algorithm. The BW analysis segment length
is set to 4 seconds, even though GW burst signals
(especially CBCs) are typically shorter. This is to ensure
that detector noise is relatively stationary in analysis
segment for accurate prediction of the noise spectral
density with BayesLine. Altogether, our search targets
GW bursts signals with duration of milliseconds up to a
few seconds, with frequencies in the 20–1024 Hz frequency
band of Advanced LIGO and Advanced Virgo at O3a
sensitivities.

APPENDIX B: POISSON NOISE BACKGROUND

The Poisson process models a series of randomly
occurring events where the average time between events
are known, but not the exact time of arrival of each event.
Events modeled as Poisson process are expected to have a
probability mass function given by

Pðn; λÞ ¼ λnexp−λ

n!
: ðB1Þ

Otherwise known as the Poisson distribution,
Equation (B1) measures the probability P of n number
of events occurring within a population for a given rate
parameter, λ > 0. In this context, “population” refers to a
group of events in a fixed temporal or spatial interval. By
definition, λ is the expected number of events in a given
population, independent of the type of interval specified i.e.
it is dimensionless.

1. PFA vs. FAR in modeling Poisson noise

The noise background of the Advanced LIGO and Virgo
detectors are modeled as a Poisson process in the standard
LVK GW transient searches [8,9,11]. In modeling a
Poisson noise background, PFA and FAR play an analogous
role of representing the rate of noise events, which directly
influences the rate parameter λ. In the case of FAR where
rate is measured in units of time, the time of observation

Tobs is the interval required to obtain the expected number
of noise events in the background, λ ¼ Tobs × FAR.
Conversely, PFA measures the noise occurrence rate in
units of events. Therefore λ ¼ Nobs × FAR, where the
interval is now given by the total number of events
observed Nobs. One can then show the relationship between
PFA and FAR as PFA ¼ ðNobs=TobsÞ × FAR.

2. Poisson uncertainty regions of PFA

Since the background triggers used for BW’s back-
ground measurements in Sec. IVare subsets of the cWB all-
sky analysis of the full O3a time-shifted background of the
LIGO-Virgo network, we can thereby assume the triggers
obey the Poisson distribution. Consequently, we can use the
standard deviation (σ) of Eq. (B1) to represent the error
margins of our PFA measurements. We show the derivation
as follows.
In the background measurements shown in Fig. 3, PFA

(on the vertical axis) is computed as the fraction of
background triggers recovered by BW with lnBS;G exceed-
ing the corresponding threshold, lnB�

S;G (on the horizontal
axis) viz.

PFA ¼ nðlnBS;G ≥ lnB�
S;GÞ

ntot
; ðB2Þ

where ntot is the total number of triggers in the background
dataset (the population). The numerator is essentially the
expected occurrence of events exceeding lnB�

S;G, hence
λ ¼ nðlnBS;G ≥ lnB�

S;GÞ. One can then derive the 1-σ error
margin for counting the number of events n exceeding
lnB�

S;G from the variance of the Poisson distribution:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xλ
n¼1

ðn − λÞ2Pðn; λÞ
vuut ¼

ffiffiffi
λ

p
: ðB3Þ

Combining Eqs. (B2) and (B3), the 1σ Poisson uncertainty
region of PFA for a given lnB�

S;G is bounded by

λ −
ffiffiffi
λ

p

ntot
≤ PFA ≤

λþ ffiffiffi
λ

p

ntot
; ðB4Þ

as indicated by the shaded regions in Figs. 3 and 5.
To check for viability, we plot the cumulative number of

triggers against PFA in Fig. 8 and the shaded regions show
the 1-, 2- and 3-σ PFA Poisson uncertainty regions. We
compare our plots to the O3 backgrounds in Ref. [38]
measured with inverse FAR. Even though we use a
difference quantity to measure significance, the relative
extent of the shaded regions are comparable. It is therefore
appropriate to use the Poisson uncertainty described above
as the error margins for our PFA measurements.
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