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In previous works we derived equations for the average momentum of high-energy electrons
experiencing quantum radiation reaction in strong electromagnetic plane-wave background fields. In this
paper we derive similar equations for the momentum spectrum. We formulate the equations in terms of the
cumulative function and study the relation between the equations for the spectrum and the equations for the
moments, analyze the structure of the low-energy expansions, and finally explain how our formulation is
essentially in terms of a “Green’s function” which allows us to study the dynamics without choosing a
specific initial wave packet (or particle-bunch distribution).
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I. INTRODUCTION

Electrons and positrons can experience significant quan-
tum radiation reaction (RR) in high-intensity laser fields.
Standard methods to study this include using particle-in-
cell (PIC) codes, using kinetic equations [1–7], or rescaling
the RR term in the Landau-Lifshitz (LL) equation with the
so-called Gaunt factor. For reviews of RR and other
phenomena in strong field QED see [8–10]. While these
methods are standard, their precision has not been fully
checked against experiments, because there have so far
only been very few experiments [11–13], which actually
suggested there might be some discrepancies, at least in the
considered parameter regime.
Historically, spin and polarization have usually been

neglected. However, since [14–17] it has been realized
that not only is this often not negligible, but lasers can be
useful for generating polarized particle beams. Spin and
polarization have been included in PIC codes using Stokes
vectors in [17–21], and Stokes vectors and Mueller
matrices have recently been used in [7] to derive kinetic
equations.
In this paper we will derive RR directly from quantum

field theory. We started this in [22,23], where we derived
new equations for the average momentum and for the spin
transition probability. Here we will derive similar equations
for the momentum spectrum. The starting point is, as usual
in QFT, an expansion of the relevant probabilities in a
power series in α. Since we are interested in strong fields,

this is done in the Furry picture, where we keep the
exact dependence on the background field. Since the
background field is always accompanied by a factor of
the charge, but since this factor is not part of the expansion
in α, we rescale the background field as eFμν → Fμν. We
are interested in regimes where higher orders in α are
important, which means we have to resum the α expansion.
Given how difficult it is to calculate the exact coefficients
even without a background field and even for just quite low
orders, we are of course referring to a resummation of a
leading-order approximation of the α expansion. There
have been several other types of resummations of the Furry-
picture expansion for other regimes, quantities, and proc-
esses in recent papers [24–31].
Whether we are calculating the average momentum, spin

transitions, or the spectrum, in this approach we are always
calculating some inclusive probability. Here we have the
inclusive probability that an electron ends up with a certain
momentum and spin given some initial momentum and
spin, summed over the probabilities that this happens after
emitting 0; 1; 2;… photons. The probability that n photons
are emitted is itself given by an infinite sum over loops.
Clearly, one cannot calculate multiphoton emissions or
higher-order loops exactly, even after simplifying by
assuming the background field is a plane wave (for which
the solution to the Dirac equation is particularly simple).
In [32–34] we showed how the dominant contribution to
higher-orders-in-α processes can be approximated by
incoherent products of OðαÞ “strong-field-QED Mueller
matrices.” These incoherent products give the dominant
contribution when1 a0 ¼ E=ω and/or T are sufficiently
large, where E is the maximum field strength, ω a
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characteristic frequency scale, and T a (dimensionless)
pulse length (or number of cycles). For example, for the
probability to emit two photons at Oðα2Þ the incoherent
product scales to leading order in an 1=a0 ≪ 1 expansion
as ðαa0Þ2, while the leading correction scales as α2a0.
Similarly, a large T also favors the incoherent product,
which one can intuitively understand since in the incoher-
ent product the two photons can be emitted at any two
macroscopically separated points in (light-front) time,
which gives a factor of T 2, while in the correction both
photons have to be emitted in the same formation region.
The OðαnÞ loops that contribute to the same leading order
in large a0 and/or T can also be expressed as incoherent
products ofOðαÞ terms [34]. Even with this approximation,
we still have a nontrivial series in α, in the form of a sum
over all combinations of single photon emissions andOðαÞ
loops, e.g. (emission) (emission) (loop) (loop) (loop)
(emission) (loop) (emission), and this series needs to be
resummed since the effective expansion parameter αa0 or
αT is not small. One can expect this approximation to
break down when neither a0 nor T is large, but then one
can also expect higher orders in α to be negligible since
there is no large factor to compensate for α ≪ 1. In other
words, when this approximation breaks down, then we also
do not need it (to a first approximation). In [22,23] we
showed how to sum the individual probabilities and how to
actually evaluate the sum. The results are recursive and
integro-differential matrix equations. To summarize some
of the differences between ours and other approaches, we
do not introduce rates, our equations are formulated in
terms of a single electron rather than an electron bunch
described by a classical particle distribution, and we are not
restricted to the locally constant-field (LCF) regime.
As a motivation for considering plane waves, note that an

electron with sufficiently high energy will effectively see a
more general background field as if it were a plane wave,
which follows from a short Lorentz boost argument. There
are of course exceptions to this. For example, if, on the
trajectory of the electron, the only nonzero component of
the background field is an electric field parallel to the
electron momentum; see e.g. [35,36]. But in general one
can expect a plane wave to be a good approximation of a
general field.
In the literature it is common to simplify further by

treating the plane wave in a LCF approximation. This
additional step requires that a0 is sufficiently large. In
Secs. II and IV we derive general equations that are valid
beyond the LCF regime; see in particular e.g. (39), (50),
(122), and (130). The general Mueller matrices can also be
expressed compactly in terms of known special functions if,
instead of assuming large a0, one assumes that the field has
circular polarization and is sufficiently long, which allows
one to use a locally monochromatic field approximation;
see [34]. For different ways of treating the field as locally
monochromatic, see [37,38].

Another important parameter is χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

p
,

where pμ is the electron momentum. Quantum effects
can be neglected for sufficiently small χ. Here we are
interested in values of χ that are large enough for signi-
ficant quantum effects in RR, but small enough so that
we can neglect pair production. To lowest order the
probability of trident pair production scales as [39,40]
Pðe− → e−e−eþÞ ∝ expð−16=½3χ�Þ. In [22,23] we studied
the χ ≪ 1 expansions of the average momentum and the
spin transition probability, i.e. the first two moments of the
spectrum, and showed that they are asymptotic and can be
resummed with the Borel-Padé method. In Sec. III we show
how to obtain χ ≪ 1 expansions of the spectrum. We find
that the expansion parameter is

ffiffiffi
χ

p
, so there is significant

room for quantum effects in RR while pair production is
still negligible.

II. DERIVATION

Light-front coordinates are defined as

v� ¼ 2v∓ ¼ v0 � v3 ð1Þ

and v⊥ ¼ fv1; v2g, so that the background field is given
by a⊥ðϕÞ and a� ¼ 0, where ϕ ¼ kx ¼ ωxþ. We con-
sider general pulse shape and polarization. We are inter-
ested in the dependence on the light-front longitudinal
momentum, kP. Rather than considering the spectrum
directly, we consider instead a partially integrated spectrum
or a cumulative distribution function, which we define as
the probability that an electron which initially has longi-
tudinal momentum

b0 ≔ kp ð2Þ

emerges, after interaction with the background field, with
momentum

kp0 > ð1 − xÞkp; ð3Þ

where 0 < x < 1. We also consider general spin transition.
If we sum over the final spin and set x ¼ 1, then we obtain a
probability P ¼ 1 as we should. x ¼ 0 gives the probability
of electrons that have lost no or almost no longitudinal
momentum. Differentiating the final result with respect to x
gives the spectrum. As our starting point is the Furry-
picture expansion in α, we initially have the probability as a
Taylor expansion in α,

P ¼
X∞
n¼0

PðnÞ; ð4Þ

where each PðnÞ ¼ OðαnÞ is a nontrivial function of the
field strength (recall that we have absorbed a factor of e as
eE → E). We can write each term as a multiplication of the
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(4D) Stokes vectors,N0 andNf, for the initial and final spin
and a (4 × 4) Mueller matrix,

PðnÞ ¼ 1

2
N0 ·MðnÞ · Nf: ð5Þ

Note that we first calculate Mn or

M ¼
X∞
n¼0

Mn; ð6Þ

so we do not need to choose any specific initial or final spin
until the very end of the calculation, where we simply have
to project the result for M with the Stokes vectors,

P ¼ 1

2
N0 ·M ·Nf: ð7Þ

The initial state is described by a wave packet as

jini ¼
Z

d3p̃0fðp0Þb†ðp0; sÞj0i; ð8Þ

where

d3p̃ ¼ θðp−Þdp−d2p⊥
ð2πÞ32p−

ð9Þ

is the usual Lorentz-invariant integration measure, written
here in light-front coordinates, and

1 ¼ hinjini ¼
Z

d3p̃jfj2: ð10Þ

We consider first a wave packet which is sharply peaked,
and then in Sec. IV we show that the results for a sharply
peaked wave packet essentially give what can be thought of
as a Green’s function, from which one can afterwards
obtain the results for an arbitrary, wide wave packet. A
general spin can be written as

b†j0i ¼ cos

�
ρ

2

�
b†↑j0i þ sin

�
ρ

2

�
eiλb†↓j0i; ð11Þ

where ρ and λ are two real constants. To zeroth order we
hence find

Pð0Þ ¼
Z

d3p̃0θðkp0 − ½1 − x�kpÞjh0jbðp0; ρ1; λ1Þjinij2

¼
Z

d3p̃0θðkp0 − ½1 − x�kpÞjfj2 1
2
N0 ·N1

→
1

2
N0 ·N1; ð12Þ

where the Stokes vectors are related to the angles in (11) as

N ¼ f1; cos λ sin ρ; sin λ sin ρ; cos ρg: ð13Þ

In the last line in (12) we have assumed that the wave
packet is sufficiently narrow compared with the values of x
we consider. If we instead were to consider x too close to 0,
then the step function would essentially be θðkp0 − kpÞ and
we would find

Z
d3p̃0θðkp0 − kpÞjfðp0Þj2 ∼ 1

2
ð14Þ

as only about one-half of the peak of f would be integrated
over. For example, if we were to consider a Gaussian wave
packet proportional to

fðp0Þ ∝ exp

�
−
ðkp0 − kpÞ2

λ2

�
; ð15Þ

then for sufficiently small λ we would find

Pð0ÞðλÞ ∝ 1

2

�
1þ erf

�
xkp
λ

��
: ð16Þ

This is nonzero but exponentially suppressed for x < 0. A
nonzero λ gives a regularized step function for the cumu-
lative distribution and a regularized delta function for the
spectrum. However, until Sec. IV, we will assume that the
wave packet is sufficiently narrow so that we can always
approximate

Z
d3p̃0jfðp0Þj2hðp0Þ ≈ hðpÞ: ð17Þ

Thus, from (12) we have

Mð0Þ ¼ 1: ð18Þ

AtOðαÞwe have the loop correction to scattering without
emission and emission of one photon without loops, which
can be written as Mð1Þðb0; x;−∞Þ, where [33,34]

Mð1Þðb0;x;σÞ ¼
Z

∞

σ
dσ0

Z
1

0

dq½MLþ θðx−qÞMC�; ð19Þ

where σ ¼ ðϕ2 þ ϕ1Þ=2 is the average light-front time, with
ϕ2 being the light-front-time variable for the amplitude M
and ϕ1 for the complex conjugate M̄, q ¼ kl=kp ¼ kl=b0 is
the ratio of the longitudinal momentum of the photon and the
initial electron, and MC and ML are the OðαÞ Mueller
matrices for photon emission and the electron self-energy
loop. The reason for introducing the lower integration limit
for the light-front-time integral, θðσ0 − σÞ, will be explained
below. The step function θðx − qÞ is due to the restriction in
(3), which to this order and for this term can be rearranged
into an upper cutoff for the photonmomentum, q < x. There
is no such step function for ML because that q integral
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corresponds to a photon that is emitted and reabsorbed and
therefore does not change the final electron momentum.
For an arbitrary field, MC is given by Eqs. (24), (25),

(26), (27), and (29) in [33], and ML by Eqs. (67) to (71)
in [34], which we write here as2

MC;Lðb0; q; σÞ ¼
iα

2πb0

Z
dθ
θ
exp

�
ir
2b0

θM2

�
RC;L; ð20Þ

where θ ¼ ϕ2 − ϕ1, the integration contour goes above the
pole at θ ¼ 0, r ¼ ð1=sÞ − 1, s ¼ 1 − q is the ratio of the
longitudinal momentum of the electron after and before
emitting the photon, b0 ¼ kp, and M2 is an effective mass

M2 ¼ 1þ ha2iϕ − hai2ϕ; ð21Þ

where

hFiϕ ¼ 1

θ

Z
ϕ2

ϕ1

dϕFðϕÞ: ð22Þ

For photon emission, the 4 × 4 matrix is given by

RC ¼
� hRCi RC

1

RC
0 RC

01

�
; ð23Þ

where

hRCi ¼ κ

2

�
2ib0
rθ

þ 1þD1

�
− 1; ð24Þ

RC
0 ¼ q

�
1þ

�
1þ 1

s

�
k̂X

�
· V; ð25Þ

RC
1 ¼ q

s
f1þ ½1þ s�k̂Xg · V; ð26Þ

and

RC
01 ¼

q
s

�
k̂X − sXk̂ −

q
2
k̂ k̂

�

þ
�
2ib0
rθ

þD1

��
1⊥ þ κ

2
k̂ k̂

�
; ð27Þ

where κ ¼ ð1=sÞ þ s, D ¼ w1 · w2, 1⊥ ¼ 1 − k̂ k̂,
k̂ ¼ f0; 0; 1g,

X ¼ 1

2
ðw2 þ w1Þ; V ¼ 1

2
σ2 · ðw2 − w1Þ; ð28Þ

σ2 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; ð29Þ

and

w1 ¼ aðϕ1Þ − hai21; w2 ¼ aðϕ2Þ − hai21; ð30Þ

where a ¼ fa1; a2; 0g. Note that no special notation
has been used for outer products, so, for example,
ðk̂X · VÞj ¼ k̂jðX · VÞ. For the loop we have

RL ¼
� hRLi RL

1

RL
0 RL

01

�
¼

�−hRCi −RC
0

−RC
0 −hRCi1þRrot

01

�
;

ð31Þ
so some of the elements are identical to RC, while

Rrot
01 ¼ signðθÞ

�
q
2
ðYk̂− k̂YÞ−q

�
1þ 1

s

�
ðX ·VÞσ2

�
; ð32Þ

where Y ¼ w2 − w1, gives spin rotation. Note that

ðML þMCÞ · e0 ¼ 0; ð33Þ
where

e0 ¼ f1; 0; 0; 0g; ð34Þ
so if we sum over the final spin state and if we integrate
over all momenta, i.e. x ¼ 1, then Pð1Þ ¼ 0 for any initial
spin state. We also have Pðn>1Þ ¼ 0, so P ¼ Pð0Þ ¼
N0 · e0 ¼ 1, which is what it has to be due to unitarity.
To Oðα2Þ we have

Mð2Þ ¼
Z

∞

σ
dσ1

Z
1

0

dq1

Z
∞

σ1

dσ2

Z
1

0

dq2

×

�
MLðb0; q1; σ1Þ ·MLðb0; q2; σ2Þ

þMLðb0; q1; σ1Þ · θðx − q2ÞMCðb0; q2; σ2Þ
þ θðx − q1ÞMCðb0; q1; σ1Þ ·MLð½1 − q1�b0; q2; σ2Þ
þ θðx − q1ÞMCðb0; q1; σ1Þ

· θ

�
x − q1
1 − q1

− q2

�
MCð½1 − q1�b0; q2; σ2Þ

�
; ð35Þ

where, in the last term, we have used

θðkp0 − ½1 − x�kpÞ ¼ θðx − q1Þθ
�
x − q1
1 − q1

− q2

�
; ð36Þ

where (in this term) kp0 ¼ kp − kl1 − kl2 ¼ kp1 − kl2,
q1 ¼ kl1=kp, q2 ¼ kl2=kp1, and kp1=kp ¼ 1 − q1.

2When comparing the overall factor of 2 in Eq. (24) in [33],
note that here we get one extra factor of 2 when summing over the
photon polarization, and one factor of 1=2 has been factored out,
writing Pð1Þ ¼ ð1=2ÞN0 ·Mð1Þ ·Nf.
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Note that qj is the longitudinal momentum of the photon
emitted (or emitted and reabsorbed) at step n divided by the
longitudinal momentum of the electron immediately before
this step. Writing the step function as in (36) allows us to
obtain Mð2Þ from Mð1Þ by prepending ML and MC as

Mð2Þðb0; x; σÞ ¼
Z

∞

σ
dσ1

Z
1

0

dq1

×

�
MLðb0; q1; σ1Þ ·Mð1Þðb0; x; σ1Þ

þ θðx − q1ÞMCðb0; q1; σ1Þ

·Mð1Þ
�
½1 − q1�b0;

x − q1
1 − q1

; σ1

��
: ð37Þ

Note that if we replaceMð2Þ → Mð1Þ andMð1Þ → Mð0Þ ¼ 1,
thenwehave (19).Higher orders can beobtained recursively3

from

MðnÞðb0; x; σÞ ¼
Z

∞

σ
dσ0

Z
1

0

dq

×

�
MLðb0; q; σ0Þ ·Mðn−1Þðb0; x; σ0Þ

þ θðx − qÞMCðb0; q; σ0Þ

·Mðn−1Þ
�
ð1 − qÞb0;

x − q
1 − q

; σ0
��

: ð38Þ

Summing over n ≥ 1 and differentiating with respect to σ
gives

∂M
∂σ

¼ −
Z

1

0

dq

�
ML ·Mðb0; xÞ

þ θðx − qÞMC ·M

�
½1 − q�b0;

x − q
1 − q

��
; ð39Þ

where we have suppressed the light-front-time argument σ
as it is now the same in all terms. We have an “initial”
condition at σ → þ∞ rather than σ → −∞,

Mðσ → þ∞Þ ¼ Mð0Þ ¼ 1; ð40Þ

and then we integrate backwards in light-front time, where
the final result is given by Mðσ → −∞Þ.
An alternative form that might be illuminating is

obtained by using b0 ≔ ð1 − xÞb0 instead of x for the final
momentum, and by changing integration variable from q to
b ¼ ð1 − qÞb0,

∂

∂σ
Mðb0; b0Þ ¼ −

Z
b0

0

db
b0

fML ·Mðb0; b0Þ

þθðb − b0ÞMC ·Mðb; b0Þg: ð41Þ

As a check, for x ¼ 1, which means no restriction on the
final momentum, we have

∂

∂σ
Mðb0; 1Þ ¼ −

Z
1

0

dqfML ·Mðb0; 1Þ

þMC ·Mð½1 − q�b0; 1Þg; ð42Þ

which is the same equation as in [22,23].
For x ¼ 0, which means observing only electrons that

have lost no or very little longitudinal momentum, the
photon-emission term becomes negligible due to θðx − qÞ,
and we have

∂

∂σ
Mðx ¼ 0Þ ¼ −

Z
1

0

dqML ·Mðx ¼ 0Þ: ð43Þ

The solution is given by a light-front-time-ordered expo-
nential,

Mðx ¼ 0Þ ¼ 1þ
X∞
n¼1

Z
∞

σ
dσ1

Z
∞

σ1

dσ2 � � �
Z

∞

σn−1

dσn

×

�Z
1

0

dqMLðσ1Þ
�
� � �

�Z
1

0

dqMLðσnÞ
�

¼ T̄ exp

�Z
∞

σ
dσ0

Z
1

0

dqMLðσ0Þ
�
; ð44Þ

where T̄ means anti-light-front-time ordering. This agrees
with the result in [34]. As shown in [34], for a field with
linear or circular polarization, one can write the result in an
explicit form without a time-ordered exponential of a
matrix. Thus, in general, the new equation (39) interpolates
between the result in [34] for x ¼ 0 and the one in [22,23]
for x ¼ 1.

A. Moments

The spectrum is given by

S ≔
∂M
∂x

; ð45Þ

from which we can obtain the moments

hðkPÞni ¼ 1

2
N0 · M̃ ·Nf ð46Þ

as

M̃ðn; b0Þ ¼ bn0

Z
1

−∞
dx

∂M
∂x

ð1 − xÞn: ð47Þ3A recursive formula relating the probability Pn to emit n
photons to Pn−1 has also been derived in [41].
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The lower integration limit is not x ¼ 0 because then we
would miss the essentially delta-function-like peak at
x ¼ 0. The width of the wave packet determines the width
of this peak. For a sharply peaked wave packet the
probability for x < 0 is very small but it is nonzero. We
can avoid the x < 0 region by making a partial integration,

M̃ðb0Þ ¼ nbn0

Z
1

−∞
dxð1 − xÞn−1M

→ nbn0

Z
1

0

dxð1 − xÞn−1M; ð48Þ

where in the second step we have neglected the x < 0 part
since now the integrand has no delta-function-like peak and
is negligible for x < 0 (because we have assumed a sharply
peaked wave packet). We can integrate (39) over x before
solving it; i.e. we can express both sides of

nbn0

Z
1

0

dxð1 − xÞn−1 ð39Þ ð49Þ

entirely in terms of M̃. This is trivial for the first two
terms, while for third we change variable from x to x0 ¼
ðx − qÞ=ð1 − qÞ. We find

∂

∂σ
M̃ðb0Þ ¼−

Z
1

0

dqfML · M̃ðb0ÞþMC · M̃ð½1−q�b0Þg:

ð50Þ

We thus have the same equation for all n. n only appears in
the “initial” condition

M̃ðσ → þ∞; n; b0Þ ¼ bn01: ð51Þ

Note that (50) allows us to obtain each moment separately.
In other words, if we want, say, the second moment, then
we do not need to consider any other moments and we do
not need to obtain the spectrum. For n ¼ 0 we have
M̃ðn ¼ 0Þ ¼ Mðx ¼ 1Þ, and so (50) is the same equation
as (42). n ¼ 1 gives the expectation value hkPi which we
studied in [22]. Equation (50) together with (51) is what
one should expect by a generalization of the derivation for
n ¼ 1 in [22], but this indirect derivation of (50) from (39)
serves as a check of (48).
Apart from checking that these two sets of equations are

consistent, this also allows us to check the numerical results
obtained from them. After having obtained a numerical
solution of MðxÞ (for x > 0) we can check the result by
integrating it as in (48) for the first couple of moments and
comparing with the moments obtained by instead using
(50), which is much faster to solve since M̃ only has two
integration variables, σ and b0, while M also has x.
Thus, all the moments obtained fromMðb0; xÞ by solving

the new equation (39) and using (48) agreewith themoments
obtained using the approach in [22]. Two different

distributions can in principle have the same moments. We
would be dealing with the Stieltjes (Hausdorff) moment
problem for −∞ < x < 1 (0 < x < 1). However, in the
above derivation we did not need to assume that n is an
integer. If we let n be a continuous variable, then we
essentially have the Mellin transform of the spectrum. The
inverse would be given by an integral over n in the complex
plane. Or we could replace ð1 − xÞnbn0 in (47) with some
arbitrary function fð½1 − x�b0Þ. If fð0Þ is nonzero, then we
can simply deal with that constant separately, so we can
assume without loss of generality that fð0Þ ¼ 0. Now the
resulting M̃ is determined by the same equation as the
moments, i.e. (50), but with the “initial” condition
M̃ðσ → þ∞; b0Þ ¼ fðb0Þ1. Thus, the result is again what
wewould find if we instead startedwith the approach in [22].

B. Locally constant field approximation

For sufficiently large a0 we can use a LCF approxima-
tion. Here the θ integrals in (20) can be performed in terms
of Airy functions, Ai, Ai0, and

Ai1ðξÞ ¼
Z

∞

ξ
dtAiðtÞ; ð52Þ

and the Scorer function Gi,

AiðξÞ þ iGiðξÞffiffiffi
ξ

p ¼
Z

∞

0

dτ
π
exp

�
iξ3=2

�
τ þ τ3

3

��
: ð53Þ

From [34] we have

MC ¼ α

b0

�
−
�
Ai1ðξÞ þ κ

Ai0ðξÞ
ξ

�
e0e0

þ q
s
AiðξÞffiffiffi

ξ
p e0B̂þ q

AiðξÞffiffiffi
ξ

p B̂e0

− Ai1ðξÞð1⊥ þ ½κ − 1�1kÞ −
Ai0ðξÞ
ξ

ð21⊥ þ κ1kÞ
�

ð54Þ

and

ML ¼ α

b0

��
Ai1ðξÞ þ κ

Ai0ðξÞ
ξ

�
14

− q
AiðξÞffiffiffi

ξ
p ðe0B̂þ B̂e0Þ þ q

GiðξÞffiffiffi
ξ

p ðk̂ Ê−Ê k̂Þ
�
;

ð55Þ

where ξ ¼ ðr=χðσÞÞ2=3, χðσÞ ¼ ja0ðσÞjb0,

e0 ¼ f1; 0; 0; 0g; e1 ¼ f0; 1; 0; 0g;
e2 ¼ f0; 0; 1; 0g; e3 ¼ f0; 0; 0; 1g; ð56Þ
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the local directions of the electric and magnetic are defined
initially as 3D vectors as

ÊðσÞ ¼ a0ðσÞ
ja0ðσÞj ; B̂ðσÞ ¼ ÊðσÞ × k̂; ð57Þ

but made 4D trivially as

ÊðσÞ ¼ E1ðσÞe1 þ E2ðσÞe2 ð58Þ

and similar for B̂ðσÞ, k̂ ¼ e3, 14 ¼
P

4
j¼1 ejej, and

1⊥ ¼ Ê ÊþB̂ B̂ ¼ e1e1 þ e2e2; 1k ¼ e3e3: ð59Þ

The e0B̂ and B̂e0 terms lead to induced polarization
along the magnetic field direction, as a Sokolov-Ternov
effect, while the k̂ Ê−Ê k̂ term gives spin rotation,
including the effect of the anomalous magnetic moment
(cf. [42,43]). For a rotating field, we have in general
B̂ðσ1Þ · Êðσ2Þ ≠ 0, so all four components couple, and
an induced polarization along the local direction of the
magnetic field will later be along the electric field direction,
which undergoes spin rotation. However, for a linearly
polarized field, the e3 and Ê components decouple from the
e0 and B̂ components. When for such fields we consider
initial or final Stokes vectors with e3 ·N0;f ¼ Ê3 · N0;f ¼ 0,
then we drop the irrelevant components and use 2D Stokes
vectors and 2 × 2 Mueller matrices.

III. CONSTANT FIELD

The results in the previous sections are well suited for
numerical computations for various nonconstant fields. In
this section we are mainly interested in the mathematical
structure of the χ ≪ 1 expansion and how to obtain it. We
are especially interested in how many terms in the χ
expansion we need to calculate to obtain a good precision
when χ is not very small. To study these questions we
consider for simplicity a constant field. For a constant field
we have

Z
∞

σ
dσ1

Z
∞

σ1

dσ2 � � �
Z

∞

σn−1

dσn ¼
Δϕn

n!
; ð60Þ

so we have an effective expansion parameter

T ¼ αa0Δϕ: ð61Þ

We separate Tn from MðnÞ, changing notation slightly so
that

M ¼
X∞
n¼0

TnMðnÞ: ð62Þ

We also separate a factor of αa0 from ML;C, and then the
recursive formula simplifies

MðnÞðb0; xÞ ¼
Z

1

0

dq
n

�
MLðb0; qÞ ·Mðn−1Þðb0; xÞ

þ θðx − qÞMCðb0; qÞ

·Mðn−1Þ
�
ð1 − qÞb0;

x − q
1 − q

��
: ð63Þ

We can sum this into an integro-differential equation where
the “time” variable is T instead of σ used in (39),

∂M
∂T

¼
Z

1

0

dq

�
ML ·Mðb0; xÞ

þ θðx − qÞMC ·M

�
ð1 − qÞb0;

x − q
1 − q

��
; ð64Þ

with “initial” condition MðT ¼ 0Þ ¼ Mð0Þ. In contrast to
(39), where the physical result is only obtained by, in the
end, setting σ → −∞, all values of T in (64) give physical
results, and if we are interested in a field with e.g. T ¼ 10,
then we obtain the results for T < 10 as a by-product
because we integrate the equation starting with the initial
condition at T ¼ 0.
The results for χ ¼ 0.01 are shown in Fig. 1. For these

results we have used a step size ofΔT ¼ 0.1. This is smaller
thanwhat it might first seem because the naturalOð1Þ “time”
variable is actually χT [see (71)]. Figure 1 shows the results
for every tenth time step (or every 20th if one counts the
midpoints). For χ we have used an evenly distributed grid
from χ ¼ 0 to χ ¼ χmax ¼ 0.01withΔχ ¼ χmax=100.As can
be seen in the plot forM11 in Fig. 1, ∂M=∂x diverges atx → 0
for small T. Recall that this is because we have assumed a
sharply peaked wave packet and is why we work with the
cumulative distribution. While M is finite and all the
integrals converge, we want to avoid having to use a large
number of points in x in order to obtain a good interpolation
near x ¼ 0, because that would make the code much slower.
For small T we therefore use an evenly distributed grid in
y ¼ x1=3 instead of x, which is better because ∂M=∂y does
not diverge at y ¼ 0 and is easier to interpolate using fewer
points. We can illustrate this by looking at the part of the
integral in (64) with q > x,

Jðb0; xÞ ¼
Z

1

x
dqML: ð65Þ

Since this is independent of M, we have made a separate
interpolation of it so that we do not have to calculate it over
and over again when solving (64). Figure 2 shows that, as a
function of x, ∂J=∂x diverges as x → 0, but ∂J=∂y is finite
and therefore easier to interpolate. We have usedΔy ¼ 0.01.
As T increases beyond a certain finite point, M becomes
exponentially small near x ¼ 0, and then we no longer have
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the problem of a divergent ∂M=∂x. When this happens we
switch to using an even grid in x instead of y, with
Δx ¼ 0.01. Thus, at each point in T we make a cubic-
polynomial interpolation of the list ofMðχ; xÞ evaluated on a
100 × 100 size grid.
The results for S for χ ¼ 0.1 are shown in Fig. 3. The

spectrum is initially a delta-function-like peak (because we
have neglected the width of the wave packet), and then
becomes a relatively low and wide Gaussian peak, but as T
increases further the peak eventually starts to become
higher and narrower as it is squeezed toward the upper

limit x ¼ 1. This evolution of f1; 0g · S · f1; 0g is similar to
the time evolution of distribution functions found in Fig. 1
in [1] and Fig. 2 in [44], even though both methods and
setups are different; e.g. we consider a single electron with
a wave packet that is initially sharply peaked, while [1,44]
considered electron beam distributions and neglected spin.

A. Moments

The moments4 hða0kPÞmi can be obtained by solving

∂

∂T
M̃ðT; χÞ ¼

Z
1

0

dqfML · M̃ðT; χÞ

þMC · M̃½T; ð1 − qÞχ�g; ð66Þ

with “initial” condition

M̃ðT ¼ 0; χÞ ¼ χm1: ð67Þ

The derivation of this equation is a trivial generalization of
the m ¼ 0 and m ¼ 1 cases in [22,23]. Note that with this

FIG. 1. Cumulative momentum distribution, M11 ¼
f1; 0g ·M · f1; 0g and M21 ¼ f0; 1g ·M · f1; 0g for χ ¼ 0.01
and for T ¼ 0; 1; 2;…; 50.

FIG. 2. Integral f1; 0g · J · f1; 0g in (65), for χ ¼ 0.01.

FIG. 3. Spectrum S11 ¼ f1; 0g · S · f1; 0g and S21 ¼ f0; 1g · S ·
f1; 0g, for χ ¼ 0.1 and for T ¼ 0; 2; 4;…; 1000.

4We have included a factor of a0 here so that a0 only appears in
χ or T.
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approach we obtain the moments without calculating the
spectrum. We thus have two independent ways of calculat-
ing the moments: either by solving (66) or by first obtaining
the spectrum via (64) and then the moments by integrating
as in (48).
We have solved (66) numerically using the midpoint

method for the variable T, as described in [23]. At each
step in T we make an interpolation function for the χ
dependence, with 0 < χ < χmax, where χmax is themaximum
value of χ we want to consider. We have used an adaptive
grid for χ, i.e. adding points until a certain precision and
accuracy is reached, which results in more points where the
function has a larger curvature and fewer points where it is
flat. The interpolation between these points is done using
Mathematica’s built-in function “Interpolation” with cubic
polynomials.
M̃ in (66) already gives the resummation of all orders in

α. We can also obtain the moments by first calculating each
order in α separately by solving the recursive formula

M̃ðnÞðχÞ ¼
Z

1

0

dq
n
fML · M̃ðn−1ÞðχÞ

þMC · M̃ðn−1Þ½ð1 − qÞχ�g; ð68Þ
starting with

M̃ð0ÞðχÞ ¼ χm1; ð69Þ

and then resumming the α expansion at the end. Also in this
case we can make a numerical interpolation function for the
χ dependence for each step. After having obtained terms up
to e.g. n ¼ 10 or n ¼ 20, we can resum the α expansion
using Padé approximants as described in [22,23]. The
convergence of this resummation method is often fast.
Alternatively, we can expand each order in α as a power
series in χ. Then the χ expansion of M̃n is obtained by
inserting the χ expansion of M̃n−1 into (68) and expanding
the result in χ. After having obtained χ expansions for the
first e.g. n ¼ 10 orders in the α expansion, we first resum
the χ expansions for each order in α separately using
standard Borel-Padé resummation, and finally we resum
the α expansion using Padé approximants (this last step is
the same with or without using the χ expansion). A detailed
explanation for this double-resummation approach can be
found in [22,23]. It turns out to be quite fast.
As an example, we consider χ ¼ 0.1. The zeroth and first

moments look very similar to the results already presented
in [22,23]. Calculating also the second moment allows us to
obtain the standard deviation,

S2 ≔
hða0kPÞ2i

χ2
−
�ha0kPi

χ

�
2

: ð70Þ

In Fig. 4 we plot S obtained by using either the double
resummation approach or by integrating the cumulative

function as in (48). We find perfect agreement. Comparing
with the double-resummation approach serves as a quick
way to check the precision of MðxÞ, which takes a much,
much longer time to obtain. The shape of S is quite similar
to plots in Fig. 4 in [44], Fig. 3 in [45], or Fig. 9 in [6] for
the energy spread of an electron beam/bunch, i.e. first a
rapid increase and then a slower decrease after a maximum.
But, again, it should be noted that we are considering
somewhat different quantities.

B. Low-energy expansion of moments

We will now calculate the first quantum correction in a
low-energy expansion. χ ≪ 1 is the expansion parameter,
but we need to consider

u ≔
2

3
χT ð71Þ

as Oð1Þ to keep a nontrivial dependence on T.5 The zeroth
order is then given by

M̃ ¼ χm

ð1þ uÞm 1: ð72Þ

This is just the longitudinal-momentum component of the
solution to LL [47] to the power of m. The standard
deviation (70) vanishes atOðχ0Þ, as it has to in the classical
limit. To obtain the first nonzero correction we can solve
the recursive equation (68) approximately using the ansatz

M̃ ¼ χm
�

1
ð1þ uÞm þ δM̃χ

�
; ð73Þ

FIG. 4. The standard deviation (70) for χ ¼ 0.1 and
f1; 0g ·M · f1; 0g. The solid line is obtained using (68) and
the double resummation, and the dots are obtained by integrating
M11 as in (48) for every tenth time step. The corresponding ∂xM
is shown in Fig. 3.

5There can, however, be experimental signals in the spectrum
of the emitted photons even if u ≪ 1 [46].
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where δM̃ only depends on m but not on χ. With

δM̃ ¼
X∞
n¼0

unδM̃ðnÞ ð74Þ

the problem has been reduced to an algebraic recursive
equation for δM̃ðnÞ as a function of n. There are standard
methods to solve such recursive equations [48], but this is
most conveniently done using Mathematica’s “RSolve.”
The result for δM̃ðnÞ is not particularly illuminating. One
thing to note though is that it is an expression valid for all
orders in α, which we can obtain here because we only
consider the first two orders in the χ expansion. Contrast
this with the general case described above where we would
only be able to calculate the first e.g. 10 or 20 orders and
then use e.g. Padé resummation based on those finite
number of terms. Now for the low-energy approximation,
we have access to all coefficients in the α expansion and we
can resum this using Mathematica, for example. For the
average momentum, i.e. m ¼ 1, we find

δM̃ðm¼1Þ¼

0
B@

55½uþ2ð1þuÞlnð1þuÞ�
16

ffiffi
3

p ð1þuÞ3
3½u−lnð1þuÞ�

2ð1þuÞ2

−3lnð1þuÞ
2ð1þuÞ2

5½2u−9u2þ22ð1þuÞ lnð1þuÞ�
16

ffiffi
3

p ð1þuÞ3

1
CA:

ð75Þ

We recognize the f0; 1g · δM̃ · f1; 0g element from
Eq. (13) in [22], which corresponds to the difference in
the final momentum due to initial spin being either parallel
or antiparallel to the magnetic field and after summing over
the final spins. For m ¼ 2 we find

δM̃ðm ¼ 2Þ

¼

0
B@

55½3uþ4ð1þuÞ lnð1þuÞ�
16

ffiffi
3

p ð1þuÞ4
3½u−2 lnð1þuÞ�

2ð1þuÞ3

− 3 lnð1þuÞ
ð1þuÞ3

5½24u−9u2þ44ð1þuÞ lnð1þuÞ�
16

ffiffi
3

p ð1þuÞ4

1
CA: ð76Þ

If we sum over the final spin, then we find a standard
deviation that to leading order does not depend on the
initial spin,

S2 ¼ 55u

16
ffiffiffi
3

p ð1þ uÞ4 χ þOðχ2Þ: ð77Þ

Thus, the width of the spectrum goes to zero at both u ≪ 1
and u ≫ 1, which is also what we see in Fig. 3. If we expect
the spectrum to have a more or less symmetric peak around
the average momentum, then it is not surprising that S → 0
asymptotically, because the average momentum decreases
as 1=ð1þ uÞ and the light-front longitudinal momentum
kP > 0, so the lower half of the peak will be squeezed
between 1=ð1þ uÞ and 0, and hence the peak must become

narrower. However, even if we normalize the width by
dividing S by 1=ð1þ uÞ, the result still goes to zero. In [22]
we showed that the average momentum converges
to the classical LL momentum asymptotically, and now
we can also see that the standard deviation decreases
asymptotically.
We also note that the width scales as S ∼ ffiffiffi

χ
p

. So, if, say,
χ ¼ 0.01, then we would expect S ∼ 0.1, which corre-
sponds to 10% of the physical interval for this scaled
momentum variable (i.e., 0 to 1). Thus, even if χ is so small
that there is little difference between the average momen-
tum and its classical limit (the solution to LL), the width
can still be a significant fraction.
While it would be possible to extend the above approach

to include both higher powers of χ as well as higher
moments, it becomes inconvenient to solve the recursive
equations for the expansions in u and then resumming
them, so we have instead used the following approach for
higher orders. We change variable in (66) from T to u
in (71). We separate out the overall factor of χm in (73) as

M̃ðT; χ; mÞ ¼ χmWðu; χ; mÞ: ð78Þ

The integro-differential equation in terms of W is given by

∂

∂u
Wðu; χÞ ¼ 3

2

Z
1

0

dq
χ
fML ·Wðu; χÞ

þ ð1 − qÞmMC ·W½ð1 − qÞu; ð1 − qÞχ�g;
ð79Þ

with the same “initial” condition

Wðu ¼ 0; χ; mÞ ¼ 1 ð80Þ

for all moments. Note that, while (66) is local in T, Eq. (79)
is not local in u. The reason for making this change of
variables is to have a natural χ expansion right from the
start and to avoid expanding in u. This expansion can now
be written as

Wðu; χ; mÞ ¼
X∞
k¼0

wm;kðuÞχk: ð81Þ

To find the first couple of w’s, we insert (81) into (79) and
match the two sides order by order in χ. To do so we need a
suitable change of variable for the q integral. We have used
γ as defined by

q ¼ χγ

1þ χγ
: ð82Þ

After this change of variable, we can expand the integrand
before performing the integral. This results in the following
type of integrals:
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Z
∞

0

dγ γn
Aiðγ2=3Þ
γ1=3

¼ 3
1
2
þn

4π
Γ
�
1

3
þ n

2

�
Γ
�
2

3
þ n

2

�

¼
�
1

2
;

ffiffiffi
3

p

4
; 1;

35
ffiffiffi
3

p

16
; 20;

5005
ffiffiffi
3

p

64
;…

�
; ð83Þ

where the second line shows the explicit numbers for
n ¼ 0; 1; 2…,

Z
∞

0

dγγn
Ai0ðγ2=3Þ
γ2=3

¼ −
3

1
2
þn

4π
Γ
�
1

6
þ n

2

�
Γ
�
5

6
þ n

2

�

¼
�
−

ffiffiffi
3

p

2
;−

1

2
;−

5
ffiffiffi
3

p

8
;−4;−

385
ffiffiffi
3

p

32
;−140;…

�
; ð84Þ

Z
∞

0

dγ γnAi1ðγ2=3Þ ¼
3

1
2
þn

2πð1þ nÞΓ
�
5

6
þ n

2

�
Γ
�
7

6
þ n

2

�

¼
�

1

2
ffiffiffi
3

p ;
1

3
;

35

24
ffiffiffi
3

p ;
10

3
;
1001

32
ffiffiffi
3

p ;
1120

9
;…

�
: ð85Þ

These are the same integrals that we used in [22] to
calculate the χ expansion of each of the orders in α
separately. Now we instead work with (81), which is
already resummed in α (recall u ∝ α).
To zeroth order we find

w0
m;0ðuÞ ¼ −

m
1þ u

wm;0ðuÞ; ð86Þ

which implies

wm;0ðuÞ ¼
1

ð1þ uÞm ; ð87Þ

in agreement with (73) and what one should expect from
the solution to LL. wm;kðuÞ starts contributing at OðχkÞ in
the expansion of (79). At this order, wm;0ðuÞ to wm;k−1ðuÞ
also contribute. Moving all the wm;kðuÞ terms to the left-
hand side gives a differential equation on the following
form:

1

ð1þuÞmþk−1
d
du

½ð1þuÞmþkwm;kðuÞ� ¼F½wm;0;…;wm;k−1�:

ð88Þ

We find that wm;kðuÞ can be expressed in terms of linear
combinations of

Lr;sðuÞ ≔
lnrð1þ uÞ
ð1þ uÞs ; ð89Þ

where r and s are integers. Derivatives of Lr;s appear when
we replace u → ð1 − qÞu, change variable to γ, and expand
in χ, but

L0
r;sðuÞ ¼ rLr−1;sþ1ðuÞ − sLr;sþ1ðuÞ ð90Þ

so this class of functions is closed under differentiation. We
can integrate (88) using

Z
u

0

du0Lr;sðu0Þ ¼
r!

ðs − 1Þrþ1

−
1

ð1þ uÞs−1
Xr
j¼0

r!
ðr − jÞ!

lnr−jð1þ uÞ
ðs − 1Þjþ1

ð91Þ

and6

Z
u

0

du0Lr;1ðu0Þ ¼
ln1þrð1þ uÞ

1þ r
; ð92Þ

so this class of functions is also closed under integration.
For m ¼ 0 we find

w0;1 ¼
3

2

u
1þ u

�
0 1

0 − 5
ffiffi
3

p
8

�
; ð93Þ

which agrees with Eq. (10) in [23], and for m ¼ 1 and
m ¼ 2 we recover (75) and (76). At the next order in χ we
find, for example,

f1;0g ·w1;2 · f1;0g ¼−
uð22656þ 15736uþ 2155u2Þ

768ð1þuÞ5

þð−2368þ 369u− 288u2Þ lnð1þuÞ
128ð1þuÞ4

þ 3457ln2ð1þuÞ
192ð1þuÞ3 : ð94Þ

As we go to even higher orders we get more and more
terms, and the expressions become too large to write down
here. We will use them, though, in the next section to
determine integration constants in the derivation of an
analytical approximation of the spectrum.

C. Low-energy approximation of the spectrum

To obtain an analytical approximation for the spectrum,
we start by differentiating (64) with respect to x to obtain an
equation directly expressed in terms of S,

6Equation (92) can be obtained from (91) by treating s ¼ 1þ δ
as a continuous variable and expanding in jδj ≪ 1.
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∂S
∂T

¼
Z

1

0

dq

�
ML · Sðχ; xÞ

þ θðx − qÞ
1 − q

MC · S

�
ð1 − qÞχ; x − q

1 − q

��

þMCðχ; q ¼ xÞ ·M½ð1 − xÞχ; 0�: ð95Þ

The last term makes this an inhomogeneous equation. It is
given by the time-ordered exponential in (44). However, for
low energies it is exponentially suppressed and can be
neglected.
We know from (77) that the width of the peak in the

spectrum is Oð ffiffiffi
χ

p Þ. In the limit χ → 0 this would be an
increasingly narrow peak, centered at a point which we
denote x ¼ xclðuÞ, where we again use u in (71). In the
classical limit, we have hkPi=kp → 1=ð1þ uÞ (the solu-
tion to LL), so from (3) we have

xclðuÞ ¼
u

1þ u
: ð96Þ

If we were to plot SðxÞ for very small χ, it would be natural
to not plot it over the entire interval 0 < x < 1, because
then we would just see a very sharp peak. Instead we would
plot it over xcl − c1

ffiffiffi
χ

p
< x < xcl þ c2

ffiffiffi
χ

p
, where c1 and c2

are roughly ∼5–10 or so. Beyond this interval SðxÞ would
anyway be negligible. Similarly, in order to obtain an
analytic approximation, we also want to figure out how to
choose parameters such that they can be considered Oðχ0Þ.
Here we keep u as the “time” variable, but switch to

X ¼ x − xclðuÞffiffiffiffiffiffiffiffiffiffiffi
χλðuÞp ð97Þ

as a momentum parameter. λðuÞ is related to the standard
deviation and will be determined below. As an educated
guess, and after some trial and error, we take as an ansatz

S ¼ 1ffiffiffiffiffi
χλ

p EðX2Þ
X∞
n¼0

ρnðu; XÞχn=2: ð98Þ

The idea now is to insert this expansion into (95) to
determine the functions λ, E, and ρ. We again change
integration variable from q to γ as in (82), which allows us
to expand the integrand in a series in χ before performing
the integral. This expansion is done with u and X
considered as Oð1Þ parameters. In particular, for the
MC · S term, the replacements χ → ð1 − qÞχ and x →
ðx − qÞ=ð1 − qÞ lead to

X → X þ ðxcl þ ux0cl − 1Þ γχ
1=2ffiffiffi
λ

p

þ
�
3þ u

λ0

λ

�
Xγχ
2

þOðχ3=2Þ: ð99Þ

With

∂

∂T
SðT; xÞ ¼ 2χ

3

�
∂

∂u
þ ∂X

∂u
∂

∂X

�
Sðu; XÞ ð100Þ

and

∂X
∂u

¼ −
x0clffiffiffiffiffi
χλ

p −
Xλ0

2λ
ð101Þ

we see that the expansion of ∂S=∂T and hence also the
right-hand side of (95) start at Oðχ0Þ.
Rearranging (95) as RHS − LHS ¼ 0, we find at Oðχ0Þ

2

3λ
½ð1þ uÞx0cl þ xcl − 1�

�
2XE0ρ0 þ E

∂ρ0
∂X

�
¼ 0: ð102Þ

With initial condition xclð0Þ ¼ 0, Eq. (102) implies that xcl
is given by (96).
AtOðχ1=2Þwewould in general get derivatives on ρ0, but

as part of the ansatz we take ρ0 ¼ 1. We then find

�
1ffiffiffi
λ

p
�
1þ ð1þ uÞ λ

0

3λ

�
½E þ 2X2E0�

þ 55

24
ffiffiffi
3

p
λ3=2ð1þ uÞ4 ½E

0 þ 2X2E00�
�
1 ¼ 0: ð103Þ

This equation should hold for any values of u and X, and λ
(E) should only depend on u (X). If we first set X ¼ 0, then
we obtain a differential equation for λ, which we solve with
initial condition λð0Þ ¼ 0, which is motivated by the fact
that the standard deviation should go to zero at u ¼ 0, as we
found in (77). We find

λðuÞ ¼ −
E0ð0Þ
Eð0Þ

55u

8
ffiffiffi
3

p ð1þ uÞ4 : ð104Þ

Inserting (104) into (103) gives an equation that only
involves X,

X2E00ðX2Þ þ
�
1

2
−
E0ð0Þ
Eð0Þ X

2

�
E0ðX2Þ − E0ð0Þ

2Eð0Þ EðX
2Þ ¼ 0:

ð105Þ

The solution to this equation is

EðX2Þ ¼ Eð0Þ exp
�
E0ð0Þ
Eð0Þ X

2

�
: ð106Þ

At first it might seem like we have two integration constants
to determine, Eð0Þ and E0ð0Þ. However, from (97) and (104)
we see that the constants in the exponent actually cancel.
This is not surprising since we could have included any
Oð1Þ constant in the definition of X. We can therefore set
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E0ð0Þ ¼ −Eð0Þ so that the exponent is simply e−X
2

. The
remaining constant is determined by

Z
1

0

dxS ¼ Mðx ¼ 1Þ ¼ 1; ð107Þ

which to leading order implies

Z
∞

−∞
dXEðX2Þ ¼ 1: ð108Þ

Thus, expanding (95) to next-to-leading order [i.e.Oðχ1=2Þ]
has allowed us to determined S to leading order, and we
find that the width of the peak is determined by

λðuÞ ¼ 55u

8
ffiffiffi
3

p ð1þ uÞ4 ð109Þ

and the shape of the peak by

EðX2Þ ¼ 1ffiffiffi
π

p e−X
2

: ð110Þ

However, since the expansion parameter in (98) is onlyffiffiffi
χ

p
rather than e.g. χ, we expect the next couple of orders to

be important to obtain a precise approximation even for
χ ∼ 0.01, so we continue.
AtOðχÞ we find a differential equation for ρ1ðu; XÞ. This

equation contains terms that are linear in ρ1ðu; XÞ and
derivatives of ρ1ðu; XÞ with respect to u and X, and
terms without ρ1ðu; XÞ. After dividing away the overall
factor of e−X

2

, the terms without ρ1ðu; XÞ can be written
f1ðuÞX þ f3ðuÞX3. The solution is therefore on the form

ρ1ðu; XÞ ¼ ρ1;1ðuÞX þ ρ1;3ðuÞX3: ð111Þ

The equation for ρ1 thus separates into one part propor-
tional to X and another part proportional to X3. Both parts
have to be separately zero. Solving these equations gives

ρ1;1ðuÞ ¼
1ffiffiffi
u

p

0
B@

c1
u þ c2 −

ffiffiffiffi
55

pffiffi
2

p
31=4

h
1

1þu þ lnð1þ uÞ
i

c3 þ 6
ffiffi
2

p
31=4ffiffiffiffi
55

p lnð1þ uÞ

c4 þ 6
ffiffi
2

p
31=4ffiffiffiffi
55

p lnð1þ uÞ c5
u þ c6 −

ffiffiffiffi
55

pffiffi
2

p
31=4

h
1

1þu þ lnð1þ uÞ
i
1
CA ð112Þ

and

ρ1;3ðuÞ ¼
1ffiffiffi
u

p

0
B@− 2c1ð1þuÞ

3u þ
ffiffiffiffi
55

pffiffi
2

p
31=4

h
1

1þu −
2129
3025

i
0

0 − 2c5ð1þuÞ
3u þ

ffiffiffiffi
55

pffiffi
2

p
31=4

h
1

1þu −
2129
3025

i
1
CA; ð113Þ

where ci are some constants. We cannot determine these
constants by considering some initial conditions at u ¼ 0,
because our approximation breaks down when u becomes
too small. We can see this from Fig. 1, where the x
derivative diverges at x ¼ 0 for T below some finite point.
A diverging S is of course not approximated by (98). To
determine the constants ci we will instead compare with
the moments calculated with the method in the previous
section.
We will use the same method also for higher orders, and

we have found that ρnðu; XÞ is in general a polynomial in X.
To compare with the moments we consider

Z
∞

−∞

dXffiffiffi
π

p Xme−X
2
X∞
n¼0

ρnðu; XÞχn=2 ¼
Z

dxSXm

¼ 1

ðχλÞm=2

Z
dxS

�
1

1þ u
− ð1 − xÞ

�
m

¼ 1

ðχλÞm=2

Xm
k¼0

�
m
k

� ð−1Þk
ð1þ uÞm−k

X∞
l¼0

wk;lχ
l; ð114Þ

with w defined in (81). By matching the first and the last
lines for eachm and for each order in χ we obtain equations
that we can use to determine the constants in (112) and
(113), and other constants at higher orders.
By evaluating (114) withm ¼ 1 andm ¼ 3 and selecting

the term proportional to χ1=2 we are able to determine the
constants in (112) and (113) as c1 ¼ c3 ¼ c4 ¼ c5 ¼ 0 and

c2 ¼ c6 ¼
1681

55
ffiffiffiffiffiffiffiffi
110

p
31=4

: ð115Þ

In Fig. 5 we compare the approximation in (98) with a
numerical solution of (64). We have chosen χ ¼ 0.01,
which at first might seem like a quite small value. However,
the approximation is a series in

ffiffiffi
χ

p ¼ 0.1, so we should not
expect higher orders to be negligible. In Fig. 5 we see that,
while the leading order gives a decent approximation,
adding higher orders does indeed lead to a noticeable
difference. Even after adding the next-to-leading order
there is still a noticeable difference from the numerical
result. For f1; 0g · S · f1; 0g, it is only after adding the first
three terms that we obtain a result that is more or less
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indistinguishable from the numerical solution. For f0; 1g ·
S · f1; 0g we need the first four terms.
We have mostly considered the cumulative function as a

computationally convenient tool for in the end finding the
spectrum, but to obtain this low-energy approximation of
the spectrum we worked directly with S. If we wantM it is
now straightforward to integrate (98). We have found that
the ρ functions are in general polynomials in X. Regardless
of what sort of polynomial they are, we can always write
them as sums of Hermite polynomials, HmðXÞ. We can
therefore write (98) as

S ¼ e−X
2

ffiffiffiffiffiffiffiffi
χλπ

p
X∞
m¼0

hmðu; χÞHmðXÞ: ð116Þ

This is useful because integrating over X becomes trivial
using Rodrigues’ formula,

HmðXÞ ¼ ð−1ÞmeX2

∂
m
Xe

−X2

; ð117Þ

and we find

M ¼
Z

x

−∞
dx0Sðx0Þ

¼ 1

2
½1þ erfðXÞ�1 − e−X

2

ffiffiffi
π

p
X∞
m¼1

hmHm−1ðXÞ: ð118Þ

IV. FINITE WAVE PACKETS

So far we have focused on sharply peaked wave packets.
Now we consider wave packets with a finite width. In
principle we could consider a wave packet with two
different functions, f1ðpÞ and f2ðpÞ, for two different
spin states, but we will for simplicity consider just a single
function f. When we considered a wave packet sharply
peaked at b0, we found it natural to factor out b0 as in (3).
But now when we have an integral over the initial
momentum, we replace ð1 − xÞb0 → b0, so that we can
describe the final momentum without referring to the initial
momentum. To avoid confusion of the integration variable
kp0 with b0 we also replace kp0 → kpout. To generalize we
first note that each contribution to the cumulative function
involves momentum integrals on the form

Z
d3p̃outθðkpout − b0Þ

				
Z

d3p̃infðpinÞ

×
1

kþ
ð2πÞ3δ3−;⊥

�
pout þ

X
j

lðjÞ − pin

�
M

				
2

¼
Z

d3p̃injfðpinÞj2θðkpout − b0Þ jMj2
kpinkpout

; ð119Þ

where in the last line

pout
−;⊥ ¼ pin

−;⊥ −
X
j

lðjÞ−;⊥; ð120Þ

the sum is over all real photons emitted in this particular term,
and the factor of 1=kþ is just due to our normalization of the
amplitudeM. In this paper we only consider observables that
do not depend on the transverse momenta. After integrating
over the transverse momenta of the final-state particles, the
probabilities in plane waves no longer depend on the trans-
verse momentum of the initial particle. We write

Z
d3p̃jfðpÞj2hðkpÞ ¼

Z
∞

0

dðkpÞρðkpÞhðkpÞ; ð121Þ

where ρ now describes the initial longitudinal momentum
distribution. We thus find a simple relation between the
Mueller matrix Mðf; b0Þ for a wide wave packet and
Mðb0; b0Þ for a sharply peaked wave packet7:

FIG. 5. Comparison of the approximation in (98) and a
numerical solution to (64), for χ ¼ 0.01 and T ¼ 50. LO refers
to the n ¼ 0 term (98) only, and NkLO is the sum up to n ¼ k.
S11 ¼ f1; 0g · S · f1; 0g and S21 ¼ f0; 1g · S · f1; 0g. S21 is iden-
tically zero at LO. N2LO and N3LO for S11, and N3LO and N4LO
for S21, are basically indistinguishable on the scale of these plots.

7A similar incoherent relation for nonlinear Compton scatter-
ing in plane waves at OðαÞ has been used in [49,50] to study the
effects of wave packets.
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Mðf; b0Þ ¼
Z

∞

0

db0ρðb0ÞMðb0; b0Þ; ð122Þ

whereMðb0; b0Þ is determined by (41). Note that even if we
were only interested in a sharply peakedwave packet for only
onevalueofb0 ¼ B, to solve (41)weanywayneed toconsider
Mðb0; b0Þ for0 < b0 < B.Thus,oncewehave solved (41) for
a sharply peakedwave packet, there is very little extrawork to
performthe integral in (122) forvarious typesofwavepackets.
In other words, all the really nontrivial stuff is included in
Mðb0; b0Þ, which is obtained without having to choose spin
states orwave packets.We can therefore think ofMðb0; b0Þ as
a Green’s function.
Partly in order to compare with kinetic equations, we will

rewrite this in terms of the spectrum [this differs by a factor
of b0 compared to the previous definition (45)]

Sðb0Þ ¼ −
∂Mðf; b0Þ

∂b0
: ð123Þ

We begin by reexpanding as S ¼ P∞
n¼0 S

ðnÞðþ∞; b0Þ with
SðnÞ ¼ OðαnÞ. The zeroth order is Sð0Þ ¼ ρðb0Þ1. We obtain
higher orders from (19) and (35) by replacing

b0 → kpin ¼ b0 þ
X
j

klj ð124Þ

and writing the qj integrals in terms of klj. For example, in
the last term in (35) we have

dq1dq2MCðb0; q1; σ1Þ ·MCð½1 − q1�b0; q2; σ2Þ
→ dkl1dkl2M̃Cðb0 þ kl1 þ kl2; kl1; σ1Þ
· M̃Cðb0 þ kl2; kl2; σ2Þ; ð125Þ

where

M̃Cðkp; klÞ ¼
1

kp
MCðkp; klÞ; ð126Þ

where the first argument is for the momentum of the
electron before emitting the photon. In (35) and (37) we
noted thatMð2Þ can be obtained by prependingML andMC

toMð1Þ. From (125) we see that Sð2Þ can instead be obtained
by appendingML andMC to Sð1Þ. We can do this if we also
replace

Z
dσ1

Z
∞

σ1

dσ2 →
Z

dσ2

Z
σ2

−∞
dσ1: ð127Þ

Higher orders can be obtained in the same way. Thus, we
find

SðnÞðσ; b0Þ ¼
Z

σ

−∞
dσ0

Z
∞

0

dðklÞ

× fSðn−1Þðσ0; b0Þ · M̃Lðσ0; b0; klÞ
þ Sðn−1Þðσ0; b0 þ klÞ · M̃Cðσ0; b0 þ kl; klÞg;

ð128Þ
where

M̃Lðkp; klÞ ¼
1

kp
θðkp − klÞML: ð129Þ

Summing over n and differentiating with respect to σ gives

∂S
∂σ

ðb0Þ ¼
Z

∞

0

dklfSðb0Þ · M̃Lðb0; klÞ

þ Sðb0 þ klÞ · M̃Cðb0 þ kl; klÞg; ð130Þ

with initial condition

Sðσ ¼ −∞; b0Þ ¼ Sð0Þ ¼ ρðb0Þ1: ð131Þ

If one is only interested in a definite initial Stokes vector,
then one can projectN0 · ð130Þ before integrating and solve
for N0 · S with initial condition N0 · Sð−∞Þ ¼ ρN0. On the
other hand, ð130Þ ·Nf does not give an equation for S · Nf.
For (41) we can instead project, before integration, with Nf

but not with N0.
In contrast to the equations for cumulative function M

and the moments [see e.g. (41)], which we integrate
backwards in light-front time from σ ¼ þ∞ to −∞,
Eq. (130) is integrated forward from σ ¼ −∞ to þ∞.
We can understand this difference as follows. For Sðf; b0Þ
the earliest step is special due to the appearance of the
initial wave packet, while the subsequent steps are obtained
recursively by appending ML and MC, which gives an
equation that should be integrated forward in σ. For the
moments M̃ðn; b0Þ it is instead the last step that is special,
because there we have an additional factor of kPn in the
integral for the final electron, while the preceding steps are
obtained recursively by prepending ML and MC and there
is no nontrivial distribution in the first step, which gives
equations that should be integrated backwards in σ.
Equation (130) holds as long as the field is sufficiently

strong or long, i.e. not just in the LCF regime. If we restrict
to the LCF regime, then we can compare with kinetic
equations in the literature [1–7]. If we replace

S · M̃C;L → ðf1; 0g · S · f1; 0gÞðf1; 0g · M̃C;L · f1; 0gÞ
ð132Þ

and identify f1; 0g · S · f1; 0g with an electron bunch (i.e.
multiparticle) distribution, then we find perfect agreement
with Eq. (2) in [4]. Spin effects have recently been included
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in kinetic equations in [7] using the LCF Mueller matrices
from [34].
As an example we have considered a Gaussian wave

packet,8

ρðχÞ ¼ 1ffiffiffi
π

p
σ
exp

�
−
ðχ − χ0Þ2

σ2

�
ð133Þ

with χ0 ¼ 0.07 and σ ¼ 0.007. These values have been
chosen so that the wave packet is contained in 0 < χ < 0.1,
so that we can compare with the results we obtained for
Fig. 3. Figures 6 and 7 show perfect agreement between
the results obtained from (130) and the “Green’s function
approach” (122).

V. CONCLUSIONS

We have derived recursive and integro-differential matrix
equations for the momentum spectrum for electrons in a
plane wave. This is formulated in terms of what can be
thought of as a Green’s function, Mðb0; b0Þ, which gives a
complete description of RR and spin transition. After
Mðb0; b0Þ has been calculated one obtains the result for
particular initial and final electron states by projecting with
the initial and final Stokes vectors for the spin,N0 ·M ·Nf,
and integrating over the initial longitudinal momentum, b0,
weighted by the absolute square of the wave packet, as
in (122).
Due to the singularity at b0 ¼ b0 during early light-front

times, we have found it convenient to work with the
cumulative distribution function, Mðb0; b0Þ, rather than
the spectrum itself. The spectrum is then obtained at the end
of the calculation by differentiation, ∂b0Mðb0; b0Þ.
By integrating the resulting spectrum we find agreement

with moments calculated using a generalization of the
approach in [22,23], where we considered the zeroth and
first order moments. With the second moment we can
calculate the standard deviation, and we find that it scales asffiffiffi
χ

p
and is therefore relatively large even for small χ.

We have derived a low-energy expansion of the spectrum
for a constant field and found that it takes the form of a
Gaussian multiplied by a power series. To zeroth order this
tells us how the momentum is distributed around the
solution to LL [47]. We find that the expansion parameter
is proportional to

ffiffiffi
χ

p
, so even for χ ¼ 0.01 we need to go

beyond the leading order and sum the first 3 or 4 orders
in the χ ≪ 1 expansion in order to obtain a precise
approximation.
For the numerical results of this paper, we have chosen a

constant field. We do not actually expect it to be more
difficult to solve (39) in the LCF approximation for a
nonconstant field compared to (64) for a constant field.
Indeed, both equations are in the form ∂M=∂t ¼ F,
where t ¼ σ or t ¼ T, and whether F only depends on t
via M, as in the constant field case, or also has an explicit
dependence on t, as in the nonconstant case, we could still
use the same method (e.g. the midpoint method) when
integrating over t. In fact, we did so in [51] for the all-order
probability of trident. The issue is instead that for the
spectrum we have an additional parameter, x, compared to
the equations in [22,23,51], so it takes a much longer time
to compute an interpolation function of Mðχ; xÞ at each
point in “time.”While this is an issue for both (39) and (64),
the time parameter in (64) is a physically relevant param-
eter, so when we integrate from T ¼ 0 to e.g. T ¼ 100, all
the intermediate time steps give physical results. In con-
trast, for (39) we integrate from σ ¼ þ∞ to σ ¼ −∞, but it
is only the final result at σ ¼ −∞ that gives something
physical. Moreover, in order to check the numerical results
by comparing with analytical approximations, we have to
generalize the low-energy approximations to nonconstant

FIG. 7. Same as in Fig. 6 but with N0 ¼ f0; 1g to see the
dependence on the initial spin.

FIG. 6. Spectrum for a Gaussian wave packet (133) and a
constant field, with N0 ¼ Nf ¼ f1; 0g. Solid lines are obtained
by solving (130) with the initial condition in (131). The rightmost
curve is the initial wave packet, and the other curves correspond
to T ¼ 10; 20;…; 100. The black dashed lines for T ¼ 10, 30, 50
have been obtained using (122).

8Strictly speaking, ρ should be identically zero for χ < 0, but
this Gaussian is anyway exponentially small there.
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fields. We expect the approximations for a constant field to
serve as a useful guide for generalizing to nonconstant
fields. Thus, we leave a numerical study of different
nonconstant fields and generalization of the approximation
of the momentum spectrum for future studies.
Moreover, our generalmethods are not restricted to theLCF

regime, but work as long as the field is sufficiently strong or

long. So, one could use for example a locally monochromatic
field approximation, which we also leave for future studies.
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