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Exact and leading order radiative effects in semi-inclusive deep inelastic scattering
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Radiative effects in semi-inclusive hadron leptoproduction of unpolarized particles are calculated within
the leading order approximation. The contributions of the infrared-free sum of the effects of real and virtual
photon emission as well as the contribution of the exclusive radiative tail are considered. It is demonstrated
how the obtained formulas in the leading log approximation can be obtained using the standard approach of
the leading log approximation as well as from the exact expressions for the radiative correction of the
lowest order. The method of the electron structure function is used to calculate the higher order corrections.
The results are analytically compared to the results obtained by other groups. Numeric illustrations are
given in the kinematics of the modern experiments at Jefferson Laboratory.
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I. INTRODUCTION

Modern experiments on semi-inclusive deep inelastic in
e p-scattering (SIDIS) provide information about the multi-
dimensional structure of the nucleon that is not accessible in
inclusive DIS. Current and planned experiments in several
laboratories, such as JLab, BNL, and CERN have precision
that necessitates consideration and implementation of radi-
ative corrections (RC). The main contribution to RC in
SIDIS comes from the emission of real photons by the initial
and final electrons. The radiated photon is not detected in
the detector by the design of SIDIS measurements; there-
fore, the observed cross sections have to be integrated with
respect to the phase space of the radiated photons. The
integration in the soft photon region (i.e., when the photon
energy is small) cannot be completed because of the infrared
divergence that cancels in the sum with the contributions of
loop diagrams (e.g., the vertex function in the lowest order).
A special procedure of covariant extraction and cancellation
of the infrared divergence developed by Bardin and
Shumeiko [1] is usually applied. An attractive property
of the approach is the lack of simplifying assumptions that
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make the obtained formulas nonexact and dependent on
artificial parameters, such as A, minimal photon energy in
the Mo and Tsai formalism [2]. An additional contribution
to RC is the radiative tail from the exclusive peak (or
exclusive radiative tail) that is characterized by the radiated
photon and a single hadron in the unobserved hadronic
state. This process contributes to RC to SIDIS when the
invariant mass of the radiated photon and unobserved
hadron equals the mass of the unobserved hadronic state
in the base SIDIS process. The complete set of Feynman
diagrams that are needed to be considered to calculate the
lowest order RC is shown in Fig. 1.

The original formalism for RC in SIDIS in the simple
quark-parton model was suggested in [3,4], which was
later implemented in POLRAD 2.0 as a patch SIRAD [5].
The formulas allowed for calculating RC for the three-
dimensional SIDIS cross section averaged over polar angle
and transverse momentum of the final hadron. The formal-
ism was then generalized in [6] to allow the calculation for
the five-dimensional SIDIS cross section in the scattering of
unpolarized particles. The exclusive radiative tail was first
shown calculated (to the best of our knowledge) in [7].

The general calculation of RC for polarized particles was
recently performed in [8], and the code for numeric
calculation of RC to the SIDIS cross section of electron
scattering arbitrary polarized particles was created. This
calculation provides the so-called exact computation of RC.
By “exactly” calculated RC we understand the estimation
of the lowest order RC contribution with any predetermined
accuracy. The structure of the dependence on the electron
mass in the RC cross section is

Published by the American Physical Society
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FIG. 1. Feynman graphs (a)—(d) for the contributions to the
lowest order RC from semi-inclusive processes and (e) and (f) for
the exclusive radiative tail.

URC:Alm+B+O(m2/Q2), (1)

where 1,, = log(Q?/m?) and A and B do not depend on the
electron mass m. If only A is kept in the formulas for RC,
this is the leading log approximation that evaluates the
contributions of photons radiated collinearly to the initial or
final electrons. If both contributions are kept (i.e., contained
A and B), this is the calculation with the next-to-leading
accuracy, practically equivalent to the exact calculation.
The leading log approximation for the calculation of RC
was first suggested in QCD by Dokshitzer [9], Gribov-
Lipatov [10], and Altarelli-Parisi [11]. How the approxima-
tion can be applied for the lepton current was demonstrated
by De Rdjula, Petronzio, and Savoy-Navarro [12]. The
QCD-based approach was adapted for real photon emission
at the first order O(al,,) by Bliimlein [13], second order
O((al,,)?) by Kripfganz, Mohring, and Spiesberger [14],
third order O((al,,)?) by Skrzypek [15], and second order

subleading term (a?l,) and fifth order O((al,,)) by
Bliimlein and Kawamura in [16] and [17], respectively.

On the other side the leading log formulas can also be
extracted from the exact formulas. Traditionally, such a
calculation represents a reasonable step in obtaining the
formulas for RC [e.g., exact [18] and leading log [19]
formulas for the RC to deep virtual Compton scattering
cross section] because the obtained formulas are compact
and provide an actually leading contribution of RC to the
Ccross section.

At last, a complete resummation of the leading log terms
in all orders with respect to a has been performed by
Kuraev and Fadin in their seminal work [20]. In collabo-
ration with Merenkov they showed how subleading terms in
all order of a have to be accounted for in their resummation
scheme [21]. Such a scheme was applied for polarized
DIS [22,23] and for initial state QED radiation aspects in
data analyses of future e™e™ colliders [24].

Thus, three approaches to extract the leading log con-
tributions for the SIDIS cross section (i.e., to calculate A)
include the following: (i) extract the poles that correspond to
radiation collinear to initial and final electrons, integrate
over angles, and find the factorized form traditional for
leading log calculations; (ii) use our exact formulas, collect
all terms that result in a leading log after integration over
photon angles, combine them into the final expression; and
(iii) use the method of the electron structure functions [22].
All these approaches are applied and discussed in our paper.
Recently, a new factorized approach to SIDIS was sug-
gested which treats QED and QCD radiation equally [25].
The approach is similar to the methods of electron structure
functions, and the results obtained provide analytical
comparison with our formulas.

We introduce the set of kinematical variables and
calculate the Born cross section in Sec. II. The calculations
of RC using the three approaches are presented in Sec. III.
Both SIDIS RC and the contribution of the exclusive
radiative tail are studied in the leading and next-to-leading
approximations. Numeric estimates in the kinematical
conditions of modern experiments at JLab are presented
in Sec. V. The leading, next-to-leading, as well as higher
order corrections obtained using the electron structure
functions are numerically compared. Section VI contains
discussion of the obtained results, computational tricks, role
of the results in data analyses of SIDIS experiments, and
comparison with the results obtained in [25].

II. BORN CROSS SECTION
The SIDIS process

I(ki) +n(p) = U(kz) + h(pp) + x(p.) (2)

(ki =k =m? p>=M?* pi=m}) is traditionally
described by the set of kinematical variables
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¢ . _ar

- x> y_ 5
2qp kip

.:M, r= (q_Ph)z’ -
Pq
(3)

Here g = k; — ko, ¢, is the angle between (k;,k,) and
(q. pn) planes.

In most analyses the transverse momentum of the
detected hadron p, or its square is used instead of r.
Their relationship is presented below in Eq. (6). Formally,
the p, is the orthogonal part of the three-vector py, with
respect to q in the lab frame.

The set of additional quantities are used to describe the
Born cross section. So, the invariants dependent on lepton
momenta are identical to those used in DIS:

S =2pk,, 0% =—-¢°, X =2pk,, S, =5-X,
A =8> —4m’M?, Ay =X>—4m’*M>,
S,=S+X, Ay=S2+4M>*Q
A = QX (SX = M>Q%) —m* )y,
W2 =(p+q)*=S,— Q>+ M, (4)

whereas involvement of the detected hadron generates a set
of new invariants:

N[ =

Via =2kiapp, 1% (Vi +V3),

+

Vo= (V= Va) =3 (mf = 0% 1),

S =2k(p+q—py)=S-0*-Vy,

X' =2k (p+q—py) =X+ 0Q*=V,,
pi=(p+qg—p)* =M +1+(1-2)S,,

Ny = 8% —am?p?, My = X" — dm?p2. (5)

N =

Noninvariant variables, such as the energy pj, longi-
tudinal p;, and transverse p, (k;) three-momenta of the
detected hadron (the incoming or scattering lepton) with
respect to the virtual photon direction, in the target rest
frame are expressed in terms of the above invariants:

_ 28
Pno = M’
B 282 —4M?V_ B 282+ 2M? (1 + Q> — m3)
="y, 2M Ay ’
Pi = \/Pio — PT — mj,
A
— 6
=y (©)

As a result the quantities V', can be written through
cos ¢, and other variables defined in Egs. (3)-(6) as

FIG. 2. Feynman graph for the lowest order SIDIS.

S piu(SS, +2M*0Q?)

V= Prog; MVT —2p.k;cos ¢y,
X  pi(XS, - 2M*Q?
V, = PhOM - l< M\//Ty ) —2p.k,cos ¢y,. (7)

From the other side

Spr(ZQ2 + V—) - A'YVJr
2p Ay
The lowest order QED (Born) contribution to SIDIS is

presented by the Feynman graph in Fig. 2. The cross
section for this process reads

(8)

cos ¢y, =

B (4na)?
2804

dop W, (q. p. py)LYy dlg, 9)

where the phase space is parametrized as

&k, &p,
(2”)32k20 (2”)32Ph0
1 S.dxdyS.dzdp?dg,
“42n) 2 aMp,

dly = (2z)*

(10)

The leptonic tensor can be presented as

v 1 A k
L’é = zTr[(k2 + m)yﬂ(kl +m)y,]

— QKRS + 2KAKY — Qg (11)

According to [8] the hadronic tensor can be written in the
covariant form

4
W, (q.p.pi) = > Wi(q. p. pi)H,
i=1

= —gi M1 + i piHa + pispin Hs

+ (P Piny + Pigu Py Y Ha- (12)
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Here g, = g,, — 4,4,/4% for any four-vector a; = a,+

aqq,/ Q.
Finally, we find the Born contribution in the form

UB(S, st X, Z, p[a Cos ¢h)
__ dop
"~ dxdydzdp?de,

P ey -
= — 98 Sa s Ve Ko )
4MQ4p1S; P (S, x,¥,2, p,cos dy)

x H;(Q* x,z.p,), (13)

Hi = Ci[Fyur - Foy "',
4C1
H
2T 2p
H3 2Cl FCOSZW’
t
2Cl 08 2¢, CoS ¢
Hy =~ o —5 RS Fyy™ + pOVAyFyy™],
YHPt

where C; = 4Mp,(Q* + 2xM?)/Q* A, = V2 + m; Q% and A; =

where 67 = Liwi, /2,
= Q?,
93 (SX — M2Q?))2,
0 = (V\V, - m0°)/2,
0F = (SV, + XV, = z0°S,)/2. (14)

The generalized structure functions can be expressed in
terms of another set of the structure functions [26] Fyy 7,

COS Py, cos 2¢, .
Fyyr, Fyy™"s and Fyp™":

[AYP’ Q*Fyyy + BSUFG" + Fyur) = dy(Fuvr — Fuy™) +28 /13PtQ\/7FCOb¢h},

(15)

V_ + zQ?. The Born cross section (13) expressed in the

terms of these structure functions has a rather simple structure,

za® y

Op

where y = 2Mx/Q and ¢ is the ratio of the longitudinal and
transverse photon fluxes,

 l=y=yH/4 17
8_1_ 2/ 2y2/4° ( )
y+Y/24+77y/

III. THREE APPROACHES FOR LEADING
LOGARITHMIC EXTRACTION

The QED RC come from three principal contributions:
loop diagrams [Figs. 1(a) and 1(b)]; emission of the
unobserved real photon in semi-inclusive [Figs. 1(c)
and 1(d)]; and exclusive [Figs. 1(e) and 1(f)] processes.
The calculation of the loop diagrams involves the pro-
cedure of subtraction of the ultraviolet divergence which is
based on the idea of the electric charge renormalization.
After that the integral over the loop momentum still
contains the infrared divergence that cancels in the sum
with the contribution of the real photon emission in a semi-
inclusive process. The contribution of the exclusive

:?1 (1+2 >{FUUT+€FUUL+\/WCOS¢]1FCOS¢;1 +€C082¢hFC052¢h},
X —&

(16)

radiative tail does not contain the infrared divergence
because of kinematical restrictions and can be calculated
separately from other contributions.

As it was mentioned in the Introduction there are three
approaches to extracting leading log contributions. In this
section we describe each of them.

A. Extraction of the collinear poles

The contribution of real photon emission

(ki) +n(p) = l(ky) + h(py) +x(px) +y(k)  (18)

(k> = 0) from the lepton leg shown in Figs. 1(a) and 1(b)
can be presented as a convolution of the leptonic tensor
with the real photon emission whose structure is well-
known:
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v 1 7
LY = —ETr[(kz + m)[y (ky +m)T (%)

e _ Kk - rky®  ytky*
kky  kk, 2kk,

2kky
1:‘ZI/Qoz - }/()Fl[g,}/o
ki K vk ky¥
_ la _ "2a 7/]/ _ YV KY o _ VoY : (19)
Kk, kk, 2k, 2kk,

and the hadronic tensor (12),

(4na)? v
40" = 5t — ¢ W (a = kP L ATy, (20)
where
Pk bl &
Ty = (21)* ; o

(2”)32k0 (2”)32k20 (2”)32Ph0
1 SS,dxdyS.dzdp?de, d*k
T80t 2VZ 4Mp, ko

Integration over the photon angles can result in the
leading log term. For example,

doy _ / a9,
kk] El |kl ‘ COSG

(21)

E k 4E2
o g7 1+| il 2 log . (22)
T Ek| —|ki| EE,
Similarly, integration of the terms with (kk;)~? results in
(kk))?  E2 ) (E,—|k,|cos®,)? - E2E} m?

Since the squared propagators appear with a factor of m?,
i.e., as m?/(kk,)? and m?/(kk,)?, such terms do not result
in the leading log terms. Thus, the procedure of extraction
of the leading log term in the standard leading log
approximation [12-14,19,27] contains the following steps.
In each convolution of leptonic tensor L% with the tensor
structures WL,, in the hadronic tensor, the electron mass can
be neglected everywhere in the numerators. Then, the terms
containing 1/kk, and 1/kk, have to be extracted, i.e., the
convolutions have to be presented in the form of two terms
that are historically known as s- and p-peaks

LEwi,(q =k, p.pp)Hi(g — k)

_ Gi(k....)Hi(q — k)
kk,
Gi(k, ...)H;(q — k)
0 . (24)

We note that the convolutions can have the terms with
1/(kk kk,) that can be decomposed as

1 1 1 1 1 1 25
kkykky, — k(k; — ko) kk; * k(ky — ky) kky (25)
The term k(k, — k,) is regular (i.e., not equaling zero
for any peak) and can be included with a respective
G ,(k,...). Since G , are regular functions of the momen-
tum k, this momentum (as well as all kinematical variables
containing k) can be taken in the respective peaks in G, pas
well as in arguments of structure functions H,;. The four
arguments of structure functions H; come from the four
scalar products pq, pp;, g%, and gp,,. Only the vector ¢ has
to change if the photon is radiated ¢ — g — k. Therefore,
we can write for (24)

Lwi(q =k, p.pn)Hi(q - k)

(g — k)?
_ Gé(ksv”')Hi(q_kx) Gi’(kp"")Hi(q_kp)
T (= k) Kk, (q— &, Pk, (26)

In the standard leading log approximation the substitutions
of the vector k in the s- and p-peaks are performed by the
introduction of dimensionless variables z; and z, that reflect
the remaining degree of freedom, i.e., photon energy, as
follows k — k , where

ke = (1=z1)ki. k, = (23" = 1)k, (27)

for s- and p-peaks, respectively. The possibility to substitute
k in Gﬁ_p is justified by the fact that the difference
Gi(k,...) = Gi(ky,...) is exactly zero in the peak, and
therefore, respective integration of this difference divided by
kky does not result in the leading log RC.

The integration of (26) over angular variables can be
formally presented as

Pk 1 &Pk 1 dz,
—2al,dzy, e —op, 2 (28
Y ko ok M2 (28)
where
2
L, = logQ—z. (29)
m

The above procedure can be formalized in terms of
leptonic tensor (19), which splits in two respective parts in
the leading log approximation:
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1+z22 1
)22 1 MU
=——————I5(ky » z1k;),
Rs Zl(l Zl)klk B( 1 1 1)

, 1+ 1,
Ly, = -2, aUé (ky = ka/22). (30)

The convolution with the hadronic tensor is

LYW, (q=k.p.py) = LW, (g = k. p. pi)
+ LR, Wu(g=ky, popy). (31)

This approach has a useful geometric interpretation. We
see that the matrix element squared is calculated as the
convolution of the Born leptonic tensor with a shifted
momentum of an initial (or final) electron for s- (and p-)
peaks. This means the parametrization (27) allows one o
write collinear bremsstrahlung in terms of the Born cross
section but in a so-called shifted born condition

2ki +p =ky+ pp+ Py
ki +p=ky/zo + pp + px- (32)

The kinematics of the process is sketched in Fig. 3.
The momentum transfer ¢ = k; — k, is chosen along the
axis z, and vectors kj, k, constitute the x, z-plane. This
fixes the coordinate system. In the leading approximation
k— (1 =2z))k; or k= (1/z, — 1)k, lies entirely in the
xz-plane.

After substitution of (21), (30), and (27) into (20) and
taking into account the angular integration of the first order
poles (28), one can find that the leading order approxima-
tion of the real photon emission to s- and p-peaks can be

k, Z 4
q8
q,
0, Py
k,
y
©h

X

FIG. 3. The momenta of the particles of SIDIS process (2) in
the lab frame; ¢ and ¢, are the momenta of the virtual photon in
the original and shifted kinematics.

expressed through the Born contribution o5 (13) with so-
called shifted variables in the following way:

1 +Z% plssi
1=z pi(zS —X)2

X UB(ZISv ZlQ29xs’ Zg» Pis» COS ¢hs)’

. a
dGllnz = Zlmdzl

: a 1423 Pi,S?
damp _ —lde 2 p
IL " 2n 221 —2) p(S=X/z)?
X UB(S, ZEIQZyxpa Zp» ptpacos¢hp)‘ (33)

The quantities with the subscripts s and p read:

<] Q2 ZSx

Xy = ) s = 7T o o
C (ziS-X) (218 =X)
Ays = (1S = X)* + 4z, M>Q?,

Sz S = X) = 2M*(z,V, - V)

pls ZM\/E k)
2¢Q2
12°8%
pIS: 4M2_p125_m%9
1
= [(z;S+X)(22,25.0?
Cos¢hs 4lets\/m[(zl + )( 1% xQ
+ (218 = X) (21 V1 = V2)) = Ay (21 Vi + V2)],
0? zS,
p =7 e v\ =T —Iyy’
(228 — X) (S-23'X)
dyp = (S—23'X)? + 4, M Q%

_28,(S—z3'X) —2M* (V| - 23'V)
Pip 2M iy,

9’

2 [(S+2'X)(225'28, 02

CcoS ¢hp — 74%]) /lyp/ll
+(S="X)(Vi—23'V2)) = Ay, (Vi + 23" Vo))
(34)

The expressions (33) are infrared divergent at z;, — 1.
This infrared divergence is canceled in the sum with the
contribution from the vertex function presented by the
Feynman graph in Fig. 1(a).

In the leading log approximation the incorporation of
the vertex function contribution and respective cancella-
tion of the infrared divergence is implemented using the
electron splitting function, which was originally suggested
for use in QCD [9-11] and then was adapted for real
photon emission [13,14]. The splitting function is defined
through the so-called (+)-operator,

076028-6
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1+ 22

(I-2),;

and is used to replace the factor (1 +z%)/(1—z) in the
leading log formulas. This (+)-operator is defined as

P(z) =

(35)

1 1

/dzP(z)f(z) =/ ks (f(Z> f(1)
_f(l)/dz lltz;. (36)

The application of the splitting function to Eq. (33)
leads to

2= 1= (P%

1

2
s _ % /d pa)— PuSi
UlL 2n_m 21 (Zl)pl(zls_x)z
21i

X GB(ZIS’ Z1Q2’xs’ Zs» Prs» COS ¢hs)’

1
Ginp o il dZZ
L2 | 23

22i

X UB(S, Zgl QZ, xp, ZF’ p[pv Ccos ¢h[))'

plpS2

P )PI(S X/z5)?

(37)

The lowest limits of integration can be found through the
SIDIS pion threshold

- M3)/S,

1

i =

(1+ (pi = M3)/X')

(38)

Here My, is the minimal value of the invariant mass of the undetected hadrons p, for the SIDIS process, e.g.,

My, = M + m, when the detected hadron is the pion.

The final expression for the RC in SIDIS in the leading log approximation is

i a in
ot = |14 2500 ulS. @ x2 i) + ol + ol

= l:l + gﬁ{,ac(Qz)] 63(57 QZ,X, <5 Pt» ¢h)

1
a l—l-zl P1sS2
—1 dz,

+ 277.' m/ 1 —z ll)

0
! 2

ST REE | EERITE

2w 1—z2 75 PiSip
0

Here we added the contribution of vacuum polarization by
electron [Fig. 1(b)] in leading approximation which is
external to the approach involving the splitting function and
has to be added separately:

5ac(Q?) =21, (40)

A direct proof that the splitting function works for SIDIS is
presented in Appendix (A).

A similar calculation can be applied for extracting the
leading approximation from the exclusive radiative tail
depicted in Figs. 1(e) and 1(g):

|: i1 —<% pSXGB(le ZlQ xvvzsfptvCOSQ’)hs)_aB(S Q X, Z, p,,COS¢h):|
[Pxs

GB(S7 ZEI QQ’xgw va ptp’ CosS ¢hp) - GB(S’ sz X, Z, Py, COS ¢h):| . (39)

I(ky) +n(p) = U(ky) + h(pp) +u(p,) +r(k), (41)

where p, is the four-momentum of a single undetected
hadron (p2 = m2). This process gives the contribution to
SIDIS because the mass square of the undetected particles
(pu + k)? can exceed the pion threshold M3, for the rather
hard photon emission. As a result the exclusive radiative
tail does not contain infrared divergence. Moreover, since
the fifth SIDIS variable z is fixed by the energy of the
emitted photon in leading approximation photonic varia-
bles z;, are also fixed. The explicit expression for the
exclusive radiative tail in the leading approximation is
presented below by Eq. (88) of Sec. IV.
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B. Extraction leading log correction
from exact equations

The expression for the lowest order RC calculated
exactly in [8] is

1 + - (5VR + 5vac + 5fflac) 08(57 Qz’x7 2 Pr» ¢h>

+og + oMM, (42)

Two quantities, 6%,. (6*MM), do not contribute to RC in the
leading approximation, since &”,. is independent of the
electron mass and 6AMM is proportional to it. The expres-
sions for Syg and &%, in the leading approximation are
presented in Eqgs. (A7) and (40), respectively.

The exact expression for o-£ is defined by Eq. (43) of [8]
through the integration over three photonic variables

R = 2kp, t=kq/kp, ¢, (43)

where ¢, is an angle between (k;, k,) and (k, q) planes

3SS2 T mﬂx
dr | dp, | dr
R T T 30 Mpias/Ay / T/ ¢k/

Sl 3k

’“:1

i(Q* + 7R, %, 2, p,)0), R/
(Q* +R)?

9' [ s Ny Ky
_ R Hi(Q° %2 P | (44)
RO

Here the variables with tildes are defined as
. Q*+1R .8,
X = £ Z:—7

S,—R S,—R

2Q2 2 2
- 7782 (z8,(S,—R)—-2M*(2V_—uR
5 5SS mR) LRV —pR)? L

4M?  AMP((S,—R)*+4M2(Q*+1R))

and have meaning of the usual SIDIS variables in the
shifted kinematics. The limits of integrations are

- M? +
max — T > Tmax / min — M ’ (46)
l+7—p 2M
where
_kpn _ o pi(2tM?* = S,,)
kp M M+\/2y

- T) (T - Tmin>. (47)

~2Mp, cos(d + ¢k>\/ (e p»

After replacing variable R by

R = (14+7—u)R, (48)
the region of integration transforms into cuboid

_MZ

R = / 1+T— (49)

max

that allows us to perform the integration over R’ as external.

The quantities 9?]- (i=1,...,4and j=1,...,3)in (44)
are defined in Appendix B of [8]. They result from
convolution of the leptonic tensor (19) with hadronic
structures wL,,. These quantities contain the terms corre-
sponding to s- and p-peaks, which are localized in (B.5)
of [8] and can be presented in our notation as

b R 1/R R
7 Akk kk, 7 \2kk, 2kk,)’

po_ R R
T 2kk, | 2kk,’
R? R?
in - bl (50)
4kk% 4kk%
with
2k k
— = q; + bcos ¢y, (51)
R
where
0%S, + (S8, + 2M*Q?)
a, = ﬂ,y N
_0%S, + (XS, -2M*Q?)
a2 - /1Y )
h—=— 2M\/(Tmax - T) (T - Tmin)/ll (52)
Ay '

The integration of these terms over ¢ give (n =1, 2)

2r

/ d¢k - 2
a,+bcosg, /C,’
0

2

d¢k 2ﬂa,,
= , 53
/ (an+beosd )~ O (53)
0

with
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Sz(T - T\w)z + 4m2M2(7: - Tmin)(Tmax B T)

= ‘ ’
1 ﬁY
C2 _ XZ(T — Tp)2 + 4m21‘//112(7 - Tmin)(Tmax - T) . (54)
Y

Because of the smallness of the lepton mass the expres-
sions for C| , have a sharp peak for 7 — 7, = —0?/S and
= (Q°/X, respectively. Note the quantities 7y p Can
also be obtained from 7 = kqg/kp by the replacement
k = k, , from (27).

The integration over 7 of expressions (53) can be
performed analytically,

T—>Tp

Tmax 2z

/df/al#'ﬁcosqsk

Tmin

ﬂ'\/iLs,

Tmax

depy
= 2n\/AyL
/ /a2+bcos¢k TV ArEx

Tmin

Tmax 2z

dr/ dey _ 2y
(a; + bcos ¢y)? m>
0

(55)

Tmin

Tmax

Tmin

Tmax

Tmin

where G(z, ¢ ) is a regular function of 7 and ¢. The second
terms in the right-hand side of these transformations do not
include the leading terms and vanish in our approximation.

Following Eq. (57) the quantities 9% from (44) can be
decomposed as

90 = 9;] + 95 erest (58)
Y ay + bcos ¢y a2+bcos¢k v

where the quantities 6}; and 9,’.} contain the terms propor-
tional to 1/kk; and 1/kk, and are independent of the
integration variables 7 and ¢. They are obtained in the limit
m — 0, ¢ =0,and 7 — 7, and 7 — 7, for s- and p-peaks,
respectively. The quantity p at the peaks become y —
us=Vy/Sand p — pu, =V,/X. The last term in Eq. (58),
95?5‘, does not give the contribution to the leading
approximation.

2r
G(z.¢
d d 7—2 7/ AyL ,0) +
T/ ¢ka + b cos ¢y, s9(7,
0

2
(z
——————— =2x+\/AyL
dr/d(pkaz—i—bcosqbk g xG(7.0)
0

with

1 S+ 2s
Ly =——1
ST Vs CS— /s
o) +o(5)
[ Som? 02
. 1 X+\//T,}
S/ S

1 XZ 2
=% {lm + log QZMZ} + 0<Q2> (56)

We see that only the first order poles (1/k;k and 1/k,k)
contribute to RC in the leading approximation.

Actually, the integrand in (55) depends on 7 and ¢; not
only in 9 but also in arguments of structure functions H;,

the photomc propagator squared (Q? +7R)72, and the
factor (1 + 7 — p) that appeared after the substitution of
the integration variable R — R’ in Eq. (49). All these
functions are regular (i.e., equivalent to neither zero nor
infinity in the integration region). Therefore, we can make
the identical transformation for extraction of the leading
and next-to-leading terms:

Tmax 2z
9(z. i) — 9(2,.0)

dr/dgbk ay + bcos ¢y
Tmin 0
T G - GR 7,0

T, k) — 9Tp9

dT/ e a, + b cos ¢y, ’ (57)

Tmin 0

The quantities 6; and 6}, are expressed in terms of
respective Born 6% defined in Eq. (14)

S,p 38, B
Gij”—djpﬁi, (59)
where
2
dS‘ = _4S, dS _4’dS P=r)
! S
2
df = —4X, dé’ = 4,df = e (60)

Then the sums over j can be explicitly calculated:
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i R j_2d~\j o (S/ _R/)z + 2
j=1 T4z, = ! S'R ’
(1 + Ts _/’ts) s S
Y Ay
-Z R/ j—2dP _ (X/ + R/)Z +X/2
St -l XR
(1+7,—u, X'
TR g e, (61)

where we used 1+ 7
X'/X.

Substitution of the decomposition (58) into (44) results
in the separation of ¢k into two parts corresponding to
s- and p-collinear singularities. Integration over R’ can be
further replaced by z; and z, for these two parts using the
substitutions R — (1 —z;)S" and R’ - (3! = 1)X":

—py=25/S and 1+7,—p,

pi—-M3, 1

/ dR/—’S//dZI,

where the lowest limits of integration over variables z; , are
defined by Eq. (38). The expressions from the right-hand
side (rhs) of Eq. (61) are reduced as

(S/ —R/)2 + S/2 1 +Z%
S'R’ T 1-z
(X'+R)?+X?  1+7 (63)
X'R' Cn(l-z)

The obtained equations are combined as follows resulting
in final expressions in the leading log approximation. The
substitution of Eq. (58) into (44) with dropped &} splits the
expression ok into two parts that correspond to s- and
p-peaks according to the upper index in the first and second
terms of 6;; in the rhs of Eq. (58): 6 = 0% + o+ . Integration
over 7 and ¢y 1s performed using (57) in which the second
terms in the rhs have to be dropped. The arguments of the
structure functions H,(Q* + 7R, X, Z, p,) are transferred into

Hi(le29xs’stpts) or Hi(ZEIszxp,vaptp) for s- or

0 p-peaks, respectively, where the quantities with the sub-
P2 | scripts s and p are defined by Eq. (38). Finally, the
IR Z 0 representation of HS *?in the form of (59) and (60) allows
/ / _% (62) us to perform summatlon over j as it was shown in Eq. (61)
and to obtain the final expressions in the form
|
o TS / ) i [1 + A Hi(010% %020, p)0F L, OFHi(Q% x 2, p,)]
“8Mpis ) -z 770t (I-z)o* [
oF — a352 /dZQi[ 1 +Zz zHi(ZEIQZ’xP’ZP’pIP)Q? _2918Hi(Q27x’ <5 pt):| (64)
P 8Mp,S b — 22(1 = 22) 0! (1-2)0* ‘

20

Using Eq. (13) we represent the products of 67 and H,;
through the Born cross section in the shifted kinematics for
s- and p-peaks, respectively,

Hl‘(Z] QZ’ -xsv ZS’ pl?)ng
70!
4M2pl‘vs
B mgl?(zlsv Zleny, s> ptsvcos¢h5)’
1S=
Z%H,’(Zngzvxlw Zp? Ptp)efg
Q4

4M?p,,S _
- m%(s’ 231 Q% X 2y Pip COS By,

and obtain the expressions (A3) and, after cancellation of the
infrared divergence, (A6). Finally, the expressions in the
leading log approximation (39) can be obtained from (A6)
using the integral representation for dyy that is defined by
Eq. (A7). Indeed, the difference between (A3) and (39) is
exactly a/zdygro®:

1 210

Im
5VR:? /d21(1+21)—/d21
21 0
22i
—/de

1
2+, +723
0

1+z3
1—21

1+z3
l_Zl '

+ / dZ2
2

22i

| IS
—~
(@)
(@)}
=
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D(z,,0°) D(z,,0°)

FIG. 4. The cross section in the methods of the electron
structure functions.

C. Electron structure function method

Up to now the lowest order RC to SIDIS in the leading
approximation have been considered. The second order
RC to the cross section of unpolarized inclusive DIS within
leading order were first estimated by Kripfganz, Mohring,
and Spiesberger in [14] and were generalized to polarized
DIS by our group [28]. The approach to summing up the
leading logarithmic RC of all orders over a that involves
the electron structure function was suggested by Fadin,
Merenkov, and Kuraev in [20,21]. This method was applied
for polarized inclusive DIS in [22]. The main features of
the method of the electron structure functions as well as the
detailed comparison between different approaches for the
calculation of RC to polarized inclusive DIS are presented
in [23].

The cross section of SIDIS within the method of the
electron structure functions (illustrated in Fig. 4) reads

1 1

82 dz
o == / dzD (2. 0) / =D, 0)

2

21i 22i

- 102 & os oA 5
Z Ohard(215,5 212 ,X,Z, Py COS
sz(_le) Piohara (215, 2127 Q P, c0s ¢y,

22 (ZIS_X/ZZ)2 7
(67)
where z;; is defined by Eq. (38) and
2 ! 27 =1
. pi—(1—-2)8 - My
2 |: X - V2 + Z1Q2 ( )

The electron structure function D(z; ,, Q%) contains three
terms

D=D'+D§¢ +D§*°, (69)

where D7 describes the contribution of photon radiation,
and D§ ¢ and D$' ¢ correspond to the process of the

electron pair production in nonsinglet (by the single photon
mechanism) and singlet (by the double photon mechanism)
channels, respectively [20-23]. The explicit expressions for
the components of electron structure function D(z;,, Q%)
are presented in Eqgs. (5)—(7) of [22]. The coefficient r* in
the integrand in Eq. (67) results from resummation of the
vacuum polarization by leptons (40),

o)=Y (%&M(Qz))i— {1 —%c%ac(QZ)] "0

i=0

and represented in the form of the running coupling
constant.

The hard cross section, oy,4, in (67) is the radiative
corrected SIDIS cross section excluding the leading log
term [22],

Ohad = Op + 0" — o1} (71)

Here o and o'} are defined by Egs. (42) and (39),
respectively. This cross section is generalized to all orders
of a as

Ohard = Op + E o

=) i—
i=1 Jj=

1 ) 2
Ciilth + 0(%), (72)

0

where the coefficients C;; do not depend on the electron
mass and are responsible for subleading contributions in
each order of a'. The formula (67) with oy, given by
Eq. (72) is the best approximation of RC from continuous
spectrum (i.e., excluding the exclusive radiative tail) in
SIDIS processes.

The expressions for the shifted variables in (67) represent
the extension of such variables defined by Eq. (40):

Z]Q2 ZSX
21228 = X’ 7S -23'X

Ay = (218 — 23'X)? + 42,25 M2 02,
L S(@S = 5'X) = 2MP (5 V, = 5'Vy)

_f(: 2:

’

Di = )
2M /Ay
2Q2
Rt A
p12:4M§_p12_m%’

~ X N
cos ¢y, = Z—zA KzlS —l—Z—) (ZE—IZSXQ2
421151\//1)//11 2 2
X \%
+ (z]S——> <11V1 ——2))
Ve Ve

Ay (zm + Z—j)] . (73)
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We note that the expression for the cross section in
the leading log approximation in Eq. (39) is reproduced
from (67) by keeping the first order (nontrivial) terms in
series over a of the electron structure function [29], r(Qz),
and oy,,,4:

D(z.0%) = 6(1=2) + 5 1,P().
r(Q%) = 1+ 26 (Q%),
Ohard = OB- (74)

IV. APPLYING LEADING LOG RESULT
TO EXCLUSIVE RADIATIVE TAIL

The exact contribution calculated in [8] reads

Tmax 2r
a’SS?
ex _ _ X d
7k 272'M PiAs\ Ay P
Tmin
xizwyr%%mwmzwﬂ
i=1 j=1 l+7- )(Q2 +TRex) ,
where
2 2
pi—m .
Rex :ﬁ’ W%x = Wz_(l +TRex)’
foy =1+ Rex(iu - T)' (76)

The leading log terms can be extracted from 9?]. using
methods of Sec. III B. For these analyses it is necessary to
keep in mind that only angular integrations, i.e., over 7 and
¢, have to be performed for the exclusive tail. However, in
the present section we will use results of Egs. (37) and (67).

Similar to SIDIS the Born cross section of the exclusive
process,

I(k) + n(p) = l(ky) + h(py) +u(p,) (77

(p%2 = m2), can be presented in the form of convolution
leptonic and hadronic tensors (9)

o (4ma)?
do§ = 250"

Wi(q. p. pn)Ly dTg". (78)

L% was defined earlier by Eq. (11), whereas

4
=> wi(g.p.p)HE (79)

i=1

Wii(q. p.pn)

and the quantities w , have the same structure as in (12). As
it was presented in Appendix A of [7], the exclusive
structure functions H¢* can be expressed through the

standard set of the twofold cross sections do; /dQ,
dGT/dQ, dGLT/dQ, and dGTT/dQ.
The phase space can be expressed through dI'g (10) as

dp
dre = dly————2% & ki —k, —p;, — . 80
B B 272w (p+ki—ky—py—pu). (80)
As a result
dog' 1 Vaypi
S W2 2
dxdydzdpldg,  (2x)3 ( + W2 i, —m

2S.(S,+2M?)\  za?s?
_ (2M2 >4MQ4 Z Byen
pl =1
=8(z0 — 2)55°(S, Q%, x, p?,cosgy,), (81)

where

M(VAypi+ M(W? + mj — my))

S, (S, +2M?) (82)

0 =

Here and below the symbol ' is used to denote the
fourfold cross section of exclusive processes, and the
original symbol ¢¢* is kept to represent the fivefold
contribution of exclusive processes to RC to the SIDIS
Cross section.

After tensor convolution and integration over z using the
o-function, the Born cross section of the exclusive process
reads

dGE.X
G5 (S. 0%, x, p.cos ) = Wgzdm
t
a’MS,

T 16220%Spi(S, + 2M?)

4
x Y HE(QL WA n0E. (83)
i=1
Here for the exclusive process

pi = P — P —mj,
S (W2 +m? —m2) —2V_(S, +2M?)
P = IMTy )
W2+m%l—m§—2V_
2M '

Pno = (84)

The general leading log formulas are given by expres-
sions (37). These formulas are applicable for the contri-
bution of the exclusive radiative tail to the SIDIS process in
which the fivefold cross section (81) has to be used for o
in (37). However, the cross section (81) contains the
o-function because of the fixed mass of the unobserved
hadronic state. This d-function is used to integrate over z;
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or z,, so the final expressions do not contain the integration as in (39) and expressed in terms of the fourfold born cross
section of exclusive process (83). We demonstrate the derivation of the leading log formulas for the exclusive radiative tail
by obtaining the formulas for the cross section (81) in s- and p-peaks (i.e., in the shifted kinematics) and analytic integration

using the S-function.

The phase space in the shifted kinematics for s- and p-peaks is

&p
drgs = dl'y ———&" ki = ko = i = P
B B 272)2pus (p+ 21k —ky—pp—pu)
1
= )y dUys(M? +m2 —m2 — 28, + 7,8 + V, — X),
drexp P dpu 54 k k
= Bm (p+ki—ka/za—pn—Pu)
= SO(M? +m} —ml — 28, + SV, —X/z,), (85)
(27;)

where dI';” are the phase spaces for SIDIS Born processes in the shifted kinematics.

As a result

doy 1
dx,dy,dz,dptdg,, —(2n)°

do” 1 s,
3 = 3 O6(M? + m,
dx,dy,dz,dp;,d¢,, (2n)

After the substitution of (86) into Eq. (37) taking
into account that for the exclusive process M3 incoming
into (38) is equal to the undetected hadron mass square 7

after integration over z; ,, we can obtain that

S(M?> +m3 —m2—zS, + 7,8 + V,

—m2 =S, +S-V,=X/z)

ra?(z;8 — X)? B
_X 7_{(!,X7
) 4Z3MQ4PIS Z "

i=1
24

> oEHE. (86)

i=1

o (S —X/2)
4MQ4plx

and z > (M? +m2 —m2 + 2,8 + V, = X)/S, for o5,
and (i) z, > 22, and z—> (M?+m? —m2+ X'/z25.+
S—V,)/S, for o7}’

The generahzatlon on the high orders is performed
similarly to (67). This formula is applicable to the case

il = ofp + oy, (87) of the exclusive radiative tail; however, again, the o},
in (67) has to be presented through the product of the
where fourfold cross section and respective o-function. This
5 5 o-function is then used to integrate over one of two
ooxs — & l, 1421, Pise Sk 1 4 1 integration variables z; or z,:
L 22 1—z, p1 S |21.5—X ' 2M?
X 5%)((2]65" ZleQZ’ xse’ plSE’ COos ¢hse)’
2 2
exp a 1 + 250 plpe Sx 1 1 A A d3p
- _x + ex __ u 4 _ — —
oL o "= Ze D) X' |S _X/ZZe 2M2 dI13 ﬁB 7(2ﬂ)32pu05 (p + Zlkl kz/zz Phn pu)
X 55(S, 0%/ 22e+ X per Piper COS P ) (88) 1 .
B erper Pipe pe =GP dUgd(M? + m3 — m2 — zS,

and the quantities z; ,, are defined using Eq. (38) as
212 = Zl,2i<Mt2h — my). (89)

The variables with the indexes se (pe) are calculated from
Eq. (34) using the following replacements: (i) z; — zj,

_Z1Z51Q2+ZI(S—V1)+Z51<V2—X)). (90)

We can use (67) with Mth = m2. As a result,
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1 1
52 dz
OiL :p—l/leD(Zl,Q2)/Z—22D(ZZ,Q2)

2
Lle
1
x r? <Z1 ]5(M2+m%l
22

2e
1
2
Q) [zls X/2, oM

-m2 =78, — 721550  + 71(S = V) + 51 (V2 - X))

X6EX<Z157§_1Q235C’IA7[7COS$}1)’ (91)
2

and the shifted quantities are defined by Eq. (73).

Because of the functional relationship between z; and z,
induced by the o-function, the integration area in (91) is the
solid curve shown in Fig. 5. The integrand has two sharp
peaks in the areas when z; and z, are cclose to 1 which
come from the functions D(z;, Q%) and D(z,, 0?) and are
interpreted as s- and p-peaks, respectively. There are two
ways to remove the o-function in (91) performing inte-
gration over either z; or z,; however, it is natural to split
the integration region by the point C with coordinates
(Zyn»Zm) (crossing the integration area and the line z; = z,;
Fig. 5), thus isolating s- and p-peak peaks in separate
contributions,

ZvaZ (22 Q)
X - V2+Z]Q2

w5l

— 2 s A ~
X G}e;;rd <Z1S7gQ > X2, p[2,C05¢h2> +

1 1
~ex
X P [A S—X/2, 2M2] Ohard (Zl

where
2= (1-2)8 — m2]-!
22:[1+p =z) > } ,
X—V2+21Q
2 / 2
R +(1-1 X' —m;
Zl:]_ ( /ZZ) (94)

S—V,-0%z

The shifted variables in (93) are defined by Eq. (73) with
the transformations (i) z, = %, and z — (M2 + m2 — m2 +
21(S=Vy) 4+ (X =V,)/%2,)/S, for the integrand over z;
in (93), and (ii) z; = 2, and z > (M?> +m3 —m2 + 2,
(S=V)+ (X =V,)/z,)/S, for the integrand over z,.
The cross section 6y, in (93) is the cross section of the
exclusive process with the lowest order RC excluding the

&)
1
p-peak
o &%
)
Z2e
P
W
. z z
oon le m g
2

FIG. 5. Integration area (blue line) in the plane (z;,z,). The
quantities z; 5, and z,, are defined by Eqgs. (38), (89), and (92).

I = (S, +m2 — p2—2V_

2(S-Vy)

+ \/(p§ =S, —mp +2V_ )2 +4(S-V)(X - V).

(92)
The result of this integration is
(60)re =
22 b Z1S - X/22 2M?
@D(ﬁlv Q2)D(Z2’ Qz) 2 (2_1 Q2>
5 S=Vi-0%n 2
s ol o a A
S,éQZ,xl, Pa.cos ¢h1>:|» (93)

leading log terms. The use of this cross section in (93)
instead of o allows one to account for subleading effects
in the RC of higher order. Formally,

~exX — =eX ~ex ~ex
Ohard = O + ORc — O (95)

where 6. is the cross section of exclusive processes
with the lowest order RC that is given by Eq. (55) of [30].
We rewrote this cross section in terms of the variables that
are used in this analysis, i.e., do/(dW?dQ%*dQ,) —
do/(dxdydp2dd,):
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_ox / / <y
sex. —
RC ™ 798 4(5 +2M2 )SQ?

9 Hex 90H€x0
X 4FIR = :|
Z [Q4 (p1—v/2M~\/Ty) P
+ ; <6<fo + 6Vac)6g’x’ (96)
where
v, 3
Sr=(U,—1)lo X —|—§lm -2
S/ M2Q2 7[2
—Elogzerle[l Iy ]_E’
S 2M?>
v, = W2 +m? i—Lmh. (97)

Similarly, the leading order terms are obtained from (58)
of [30] and have the form in terms of the variables x, y, p?,
and ¢:

_ a _
w[i - ;5éac(Q2)5f3X<S’ sz X, P, COS ¢h)

as? 1 |
dz,P _
+2fcpS' /Zl (Zl)Lls—XﬂLzMZ}

Zim

—~ 2
X plsaiix(zl‘& ZlQ > Xss pthOSd)hs)

1
as? dz, 1 1
] —~=p -
+ 2ap X " / 2 (z2) {S -X/z + ZMJ
22m

X plp(_’fi‘x(s’ QZ/ZZa xp’ ptp’ COs ¢hp)? (98)

where 8%,.(0Q?) is defined by Eq. (40), and the lowest limits
of integration has a form

Am = 1 - vm/S,9
m = (] + Um/X/)_l’ (99)

and the splitting function P(z) is defined by Egs. (35)
and (36).

V. NUMERICAL RESULTS

The main characteristics used in the RC procedure of
experimental data analysis is the RC factor defined as a
ratio of the radiative corrected cross section to the Born
contribution

S= Oobs
Op

(100)

For numerical estimates we applied the parametrization of
the SIDIS structure functions in the Wandzura-Wilczek—
type approximation [31]. The exclusive structure functions
are expressed through the twofold cross sections do; /dQ,
dor/dQ, dopr/dQ, and dopp/dQ using MAID2007 para-
metrization [32]. p,-dependence of the RC factor, &,
constructed from the Born and observed cross sections of
semi-inclusive 7t electroproduction averaged over ¢, is
presented in Fig. 6. The solid lines show the total correction,
and the dashed lines represent the correction excluding the
exclusive radiative tail. The difference between exact and
leading RC increases with growing z and p,. The ¢,-
dependence of the RC factor constructed from completely
differential cross sections are presented in Fig. 7. The RC
factor reaches its maximum value at the region near ¢, =
180° and small z. In certain cases the curves for the RC
factor are not smooth, e.g., for angles ¢, = 160/200° and
¢, = 110/260° in the right column plots in Fig. 7. This
reflects the contributions of the exclusive radiative tail that is
not small in these kinematic regions. The RC factor can be
both higher and lower than one. The calculated (observed)
RC factor is always a trade-off between (i) the exclusive
radiative tail contribution that is always positive, (ii) the
semi-inclusive RC that can be negative because of the
contribution of the vertex function, and (iii) the vacuum
polarization contribution that is always positive. The blue
lines in Figs. 6 and 7 represent the RC factors calculated
using the exact equations (42) and (75). The red and black
curves show the RC factor in the leading log approximation
in the lowest order (39) and (87) and in all orders with
respect to a (67), (93), respectively. In all cases dashed and
solid lines show the pure semi-inclusive RC and total RC,
where the total RC additionally includes the contribution of
the exclusive radiative tails. When estimating the high order
effects we restrict our consideration only to the leading
orders terms; i.e., in (67) and (93) we put o},,,q = op and
Gina = 05", respectively. The integrand in Egs. (67) and
(93) contains the cross section of hard photon radiation is
the result of numeric multidimensional integration over the
kinematics of the photon, so the implementation of
Egs. (67) and (93) to our codes for numeric evaluation
of RC would require a new level of results in the software
development and will be a subject of a separate analysis.

For purposes of numerical analysis we had to modify the
cross sections in (100) to provide a clear and well
interpreted comparison of the exact and leading log RC.
This is because the difference between the exact and leading
log RC comes not only because of the difference in exact
and leading log formulas for o;,, which is one of the main
focuses of the numerical analysis, but also because of a quite
strong effect from the contribution from the vacuum
polarization induced by u- and z-leptons and hadrons
[see Fig. 1(b)] that are not included in the leading log
formulas. The latter contribution [denote it as 872 (Q?)] is
trivial and is not of interest for the numerical comparison, so
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FIG. 6. The p,-dependence of the RC factor for the cross sections of semi-inclusive zt electroproduction averaged over ¢, with the
lepton beam energy equal to 10.65 GeV. Solid lines show the total RC factor, and dashed lines represent the RC factor calculated
excluding the exclusive radiative tail. The blue, red, and black lines show the RC factor calculated exactly, using the methods of the
leading log approximation in the lowest order in respect of @ and the method of the electron structure functions, respectively.

we added 572 (Q?) to 8l,.(Q?) in Eq. (39) and multiplied
the integrand in (67) on 1 + ad"2(z,0?/z,)/x to mask its
effects on the difference between exact and leading log
formulas.

VI. DISCUSSION AND CONCLUSION

In this paper we presented the analytic expressions for
RC to the SIDIS cross section derived analytically in the
leading log approximation that have a simple analytic form
and were not explicitly presented and derived for SIDIS.
We demonstrated three distinct approaches allowing for the
derivation of the expressions based on different theoretical
and computational approaches. The ways in which the
results are derived clarify a quite complicated structure of
the exact formulas in [8] and further convince theoreticians
and experimentalists dealing with practical data analyses in
modern SIDIS measurements to use these results in data
analyses and Monte Carlo generators.

Specifically, we calculated RC in the leading log
approximation using three different approaches. First,
we applied the standard approach in the leading log
approximation [9-14,27] and calculated the RC from
scratch. In this approach the only terms contributing to
the cross section in the leading log approximation are
extracted and kept, i.e., the poles that correspond to
radiation collinear to initial and final electrons (i.e., the

terms that contain 1/kk, and 1/kk, and do not include the
electron mass in the numerator). Integration over the photon
angles can be performed analytically. Then, all these terms
are combined resulting in the factorized form traditional for
leading log calculations, i.e., the Born cross section in the
so-called shifted kinematics depicted in Fig. 3 for which the
three-vector of the virtual photon is shifted in the scattering
plane and the angle of this shift is determined by the photon
energy (or equivalent variable z;, for the photon emitted
collinear to the initial or final electron line), so there is a
remaining one-dimensional integration variable in the final
leading log formulas. This calculation resulted in an exact
expression for the term A in (1). The infrared divergence is
canceled in the usual way so the final formula (39) is
infrared-free. The second approach is based on the explicit
extraction of the leading log contribution from the exact
formulas presented in [8] by collecting all terms contributi-
ing to the RC in the leading log approximation after
integration over photon angles, and combined them into
the final expression exactly coinciding with the expression
obtained in the first approach. Third, we used the method of
the electron structure functions [20-22]. In this approach the
QED radiative corrections to the corresponding cross
sections can be written as a convolution of the two electron
structure functions corresponding to multiple real photon
emission along with the initial and final electron and the
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FIG. 7. The ¢),-dependence of the RC factor for semi-inclusive z" electroproduction for the lepton beam energy equal to 10.65 GeV.
Solid lines show the total RC factor, and dashed lines represent the RC factor calculated excluding the exclusive radiative tail. The blue,
red, and black lines show the RC factor calculated exactly, using the methods of the leading log approximation in the lowest order in
respect of a and the method of the electron structure functions, respectively.
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Born cross section with shifted kinematics. Traditionally,
these RC include effects caused by loop corrections and soft
and hard collinear radiation of photons and e* e~ pairs. This
method can be improved by including effects due to
radiation of one noncollinear photon. The corresponding
procedure results in a modification of the hard part of the
cross section, which takes the lowest order correction into
account exactly and allows going beyond the leading
approximation [23].

Recently, Liu et al. [25] proposed a QCD-like factori-
zation to take into account the QED RC to the exper-
imentally measured cross sections of both inclusive and
semi-inclusive lepton-nucleon DIS. This approach is
similar to the approach for RC calculations involving
the formalism of electron structure functions [20-23].
Since this approach is one of the three approaches we
used in this paper, the resulting formula in the leading
approximation (67) has to be comparable to Eq. (3.30)
obtained by Liu er al. [25]. We note, however, that the
comparison deserves some comments.

First, the lowest limits of integration in [25], &, and
Cmin» are given by Eqs. (2.24a) and (2.24b) and are identical
for both inclusive and semi-inclusive RC. The expressions
for &, and £y, are calculated ignoring the restriction of the
photon phase space by the pion threshold. The formulas for
the lower limits of integrations z;,, and z,,, are given by
Eq. (11) (and subsequent formula) of [22] for the inclusive
case and Egs. (38) and (68) in the present paper. The
formulas for z;,, and z,,, are not identical for DIS and
SIDIS. This is expected because they can depend on x and y
for the DIS case and on all five variables (3) that describe the
kinematics of the SIDIS process. These formulas for the
inclusive case contain the term zy, and reproduce &,.,;, and
Cmin When this term tends to zero.

We believe that the pion threshold is necessary for both
DIS and SIDIS RC to appropriately separate the contribu-
tions of the parts of the total RC with a single hadron and a
continuum of particles in the final unobserved hadronic
state. These two types of the contributions to RC require
different models of hadronic structure (e.g., DIS/SIDIS
structure functions for the continuum of unobserved par-
ticles and form factors for the elastic radiative tail or
exclusive structure functions for the exclusive radiative tail)
and different models for the phase of space of unobserved
particles (a fixed invariant mass of the final hadronic state
reduces the number of integrations over the photon kin-
ematical variables by one). Ignoring the pion threshold in
the formula for RC implies that the elastic radiative tail for
DIS RC and exclusive RC for SIDIS RC can be obtained
from the expressions for RC for the continuum of particles
by their extrapolation through the pion threshold and
applying the obtained approximate formulas for the RC
with one hadron in the final unobserved hadronic state. This
approximation is poor and is not used since the seminal
paper of Mo and Tsai [2] for the calculation of RC in DIS.

Second, the expressions for the electron structure func-
tions that are constructed and used in the formalism of the
electron structure functions [20-23] are not identical to the
lepton distribution and lepton fragmentation functions
obtained by Liu er al. [25]. The standard formula for the
electron structure functions, D, includes three terms pre-
sented by Eq. (69). The functions D in the formalism of the
electron structure functions that correspond to the initial and
final state radiation are identical, but respective functions
obtained and used in [25] (they are refereed as the universal
lepton distribution and lepton fragmentation functions) are
not due to the difference in the factor under the leading log
in (2.18) and (2.20) of [25]. We note that this difference does
not affect the leading log part of the total RC. Furthermore,
the functions D presented in [25] are not complete because
they do not include the effects of collinear electron pair
production (i.e., Df\;f_ =0 and Df;fe— = 0), and the effects
of multiple photon emission are presented in the lowest
order only, i.e., the function D? contains only the term with
the d-function and the first term in the sum over k in Eq. (8)
of [22].

Finally, several contributions are unavoidable when we
calculate the total RC exactly or when those in the leading
log approximation are not presented in the formulas of
Ref. [25]. These include the elastic and exclusive radiative
tails for inclusive and semi-inclusive RC (as we partly
discussed above) and the effect of vacuum polarization for
both processes.

The availability of both exact and leading log formulas
allowed us to perform a detailed comparison of RC
calculated using both approaches. We found that generally
the leading log approximation gives the main contribution in
the kinematics of modern JLab measurements. The factor
log Q?/m? is of order 15 for JLab energies, so the leading
log approximation provides a reasonable approximation
in the broad range of kinematics. However, we also detected
the regions where the next-to-leading correction cannot be
avoided, e.g., at the region near ¢, = 180° and small z. The
role of the next-to-leading terms is expected to be more
important in the case of the polarization measurement. For
asymmetries the leading log terms are (partly) factorized, so
they can have a tendency for cancellation in the numerator
(spin-dependent part of the cross section) and denominator
(unpolarized part of the cross section).

We note that formula (1) gives an idea on how to extract
the leading log results numerically using the available code
for exact RC computation. We need to obtain the results for
orc calculated for an artificial value of the electron mass nm
(where n is an arbitrary value, e.g., mass nm, n = 10) in
addition to the results calculated using the regular value of
m. Since both A and B are independent of the electron mass,
the value of A can be obtained as ojc — opc = (log(Q?/
n*m?) —log(Q*/m?))A = —log(n?)A. This approach pro-
vides a tool allowing us to test both leading log codes and
codes that are based on the exact formulas.
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APPENDIX: TREATMENT OF THE INFRARED
DIVERGENCE

According to the Bardin-Shumeiko approach [1] the
infrared divergence in (33) has to be extracted using an
identical transformation:

daﬁp = do{fp - dail}p + da?},, = a’o{]7 + do?fp,

(A1)

where

of =of —of

1
pIsS2

a 1427 T
:—l d S, 21 ’ ’ ’ -
o m/ <1 (1 -z pl(ZlS_X)z O-B(Zl ZIQ Xs>Zss Pis Cos¢hs

S

4

1

1 &k
do® = % dop— X
O T2 B L= )kky ko
Bk
do® = 2 o, 2 CX A2
7P T2 B = )k, ko (42)

The transformation (A1) is performed in the dimensional
regularization. The terms do? , obtained as the result of the
subtraction of (A2) are infrared-free, and can be further
dealt with in the regular four-dimensional space. The
methods described in Sec. III A allow one to represent
these terms in the form

05(S.0% x,2, p—,cos ).

a dz, 1+Z% plpS)zc 12 2 2 >
=—1, | — S, Xy 2, ,COS ——0p(S,04,x,z, p,,cos R A3
e [ (P 00(8.55 @ty ppcosthy) — 2 on(S. Qxz pcost) ). (A

where the lowest limits of integration are defined
by Eq. (38).

The remaining terms do}', are infrared divergent, so all
further manipulations with them have to be performed in
the dimensional regularization. Using the methods of
Appendix C of [8] we obtain the resulting expressions
in the leading order

a
GLR + GLR = ;5IRGB(S7 Qz’x’ 2, Py, COS ¢h)

a m (P)zc _ Mt2h>2
=—1[,(2P 2log— + log—————
ju |:m< IR+ Ogy + 0og S/X/

1
+l%n:| op(S, Q. x.2. pr. cos By). (A4)

2

Both the infrared divergence P term and the term
containing the square of /,, cancel in the sum with the
corresponding vertex contribution that can be obtained
from Eq. (50) of [8] in the limit m — O:

3 m 1
5vert = lm <§ - 2PIR - 210g;) - 5 131 (AS)

-2

Summing up of, defined by Eq. (A3), o,
a/7byer0 (S, Q% X, z, py» €08 ¢, ), and vacuum polarization
a/nd . (0*)og(S, Q2. x, z, p,. cos ¢,), we can find that the
radiative corrected cross section in the leading approxima-

tion reads

p a
GllnL = |:1 +;(5VR + 6{/aC(Q2)) UB(S7 szx’ 2y Pt ¢h)

+of + o},

(A6)
where

(P% - Mtzh)z 3

6VR = 6IR + 5verl = lm 1Og X )

and &%,.(Q?) is defined by Eq. (40).
The expression for o} can be explicitly presented in
terms of the splitting function (35):
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2w

i ® a (53
ol = {1 +;5éac(Q2):|JB(S’ 0% %, 2. pnty) + 5=y /dzlp(zl)p(pli
l

1

P Y-
+/dzz (122) Pip
7 pi(S—X/z

m
)

The explicit expression for oiI"L is given in Eq. (39).

)2 GB(Sv Q2/227xp7 Zpa pt;wcos ¢hp) .

203(Z1S, Zlevxsv Zss Prs» COS ¢hs)
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