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We address a general problem in the evaluation of triangle loops stemming from the consideration of the
range of the interaction involved in some of the vertices, as well as the energy dependence of the width of
some unstable particles in the loop. We find sizeable corrections from both effects. We apply that to a loop
relevant to the Dþ

s → πþπ0η decay, and find reductions of about a factor of 4 in the mass distribution of
invariant mass of the πη in the region of the a0ð980Þ. The method used is based on the explicit analytical
evaluation of the q0 integration in the d4q loop integration, using Cauchy’s residues method, which at the
same time offers an insight on the convergence of the integrals and the effect of form factors and cutoffs.
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I. INTRODUCTION

Triangle loops, with three intermediate propagators, are
often encountered in the study of hadronic processes. A
peculiar type of triangle loops are those that develop a
triangle singularity [1,2] in which the three intermediate
particles can be placed simultaneously on shell, are
collinear and the process can occur at the classical level
(Coleman Norton theorem [3]). A recent review of this
issue is given in [4] and a practical method to see when a
diagram develops a triangle singularity is given in [5].
An interesting case of triangle mechanism was discussed

in [6,7] for the interpretation of the Dþ
s → πþπ0η reaction

measured by the BESIII collaboration [8]. In the experi-
ment of [8] it was claimed that the reaction proceeds via
quark annihilation with an abnormally large rate for that
decay mode. However, both in [6,7] it was shown that the

process could be obtained via the triangle mechanism in
which the Dþ

s decays to ρþη, proceeds via external
emission and is Cabibbo favored. The ρþ decays further
into πþπ0 and πþη or π0η produces the a0ð980Þ through
rescattering of these mesons, which is the origin of the
a0ð980Þ in the chiral unitary approach [9–12]. Prior to these
theoretical works, the mechanism of internal emission was
shown to give a perfect reproduction of the experimental
data, although the absolute branching ratio could not be
evaluated there [13].
One difference between the work of [6,7] is the use of the

πη → πη amplitude from the chiral unitary approach in [7],
which gives rise to the a0 effective propagator, while an
empirical a0 propagator is used in [6]. In addition, it was
also shown in [7] that the triangle mechanism
Dþ

s → K�K̄ → KπK̄, followed by rescattering of KK̄ to
produce the a0ð980Þ, KK̄ being one of the coupled
channels considered in the chiral unitary approach to
produce the a0ð980Þ, is also important in the process
and even has larger strength than the triangle loop through
ρþ decay.
In both works of [6,7], fourfold

R
d4q loop integrations

were carried out using tools of Feynmann integrals. Our
purpose here is to show that when dealingwith triangle loops
that involve some strong interaction, like πη → πη or
KK̄ → πη, the range of the interaction introduces corrections
in the loops resulting in sizeable reductions of the loop
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strength. The implementation of these corrections is easily
done if one performs the q0 integration analytically using
Cauchy integration. The procedure also allows to take into
account corrections stemming from the energy dependence
of the ρwidth in the loop (a constant Γρ is used in [6,7]). The
purpose of the work is not to get a new picture for theDþ

s →
πþπ0η decay, but to show a technical method to evaluate
accurately triangle loops involving a strong hadron-hadron
interaction in some vertices. Concerning the Dþ

s → πþπ0η
reaction, the reduction that we find in the triangle mecha-
nisms, indicates the relevance of the findings of [13] with the
internal emissionmechanism, stressing the conclusion of [7]:
The triangle loopmechanism fromexternal emission, and the
mechanism of [13] with internal emission are both at work in
the Dþ

s → ηπþπ0 and one does not need the quark annihi-
lation mechanism.

II. FORMALISM

The loop that we are considering is given in Fig. 1.
In [7], the detailed structure of the weakDþ

s decay to ρþη
is taken into account including form factors for the different
terms. Since our purpose is to show the effect of the range
of the strong interaction in the loop, we find sufficient to
take a p-wave vertex for the Dþ

s → ρþη decay, and a weak
form factor associated to the momentum q in Fig. 1. One
could take the form factor associated to the ρ momentum
with the same conclusions. We take a Dþ

s → ρþη vertex of
the type,

tDs;ρη ≡ CϵμðρÞðPþ qÞμ; ð1Þ

and a form factor from [7]

FðqÞ ¼ 1

1 − aðq2=m2
Ds
Þ þ bðq4=m4

Ds
Þ ; ð2Þ

with a ¼ 0.69 and b ¼ 0.002. The ρþ decay to πþπ0 can be
obtained from the standard Lagrangian,

L ¼ −igh½P; ∂μP�Vμi; ð3Þ

with g ¼ MV
2f , MV ¼ 800 MeV, f ¼ 93 MeV, where P, V,

are the pseudoscalar and vector SU(3) matrices, respec-
tively, representing the qq̄ written in terms of mesons [14].
The ρþ → πþπ0 decay vertex is given by,

−it ¼ −ig
ffiffiffi
2

p
ϵμðρÞðpπþ − pπ0Þμ

¼ −ig
ffiffiffi
2

p
ϵμðρÞð2kþ q − PÞμ: ð4Þ

The loop function corresponding to Fig. 1 is readily
written as,

−it ¼ Cg
ffiffiffi
2

p
tπ0η;π0ηðMinvÞ

Z
d4q
ð2πÞ4

ϵμðρÞðPþ qÞμϵνðρÞð2kþ q − PÞν
ðq2 −m2

η þ iϵÞððP − qÞ2 −m2
ρ þ iϵÞððP − q − kÞ2 −m2

π0
þ iϵÞ ; ð5Þ

where, since Minv is the external π0η invariant mass, tπ0η;π0η, can be taken out of the integral. Then, summing over the ρ
polarizations,

X
pol

ϵμðρÞϵνðρÞ ¼ −gμν þ
ðP − qÞμðP − qÞν

M2
ρ

; ð6Þ

we obtain,

t ¼ iCg
ffiffiffi
2

p
tπ0η;π0ηðMinvÞ

Z
d4q
ð2πÞ4

1

ðq2 −m2
η þ iϵÞððP − qÞ2 −m2

ρ þ iϵÞððP − q − kÞ2 −m2
π0
þ iϵÞ

×

�
−ðP0 þ q0Þð2k0 þ q0 − P0Þ þ q⃗ · ð2k⃗þ q⃗Þ þ 1

M2
ρ
ðP2 − q2Þ½ðP0 − q0Þð2k0 þ q0 − P0Þ þ q⃗ · ð2k⃗þ q⃗Þ�

�
: ð7Þ

FIG. 1. Triangle loop diagram for the Dþ
s decay to πþπ0η. The

momenta of the particles are shown in parenthesis.
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We should implement the form factor of Eq. (2) there.
These form factors in weak interactions are meant to
introduce some q dependence when the ρþη particles are
off-shell. The eventual poles generated by them are not
physical. With this view, we shall consider the FðqÞ factor
for the values of q2 obtained with the Cauchy integration
with the structure of the three propagators in Eq. (7).
There is another factor to take into consideration. In

Eq. (7), we have factorized the tπ0η→π0η amplitude on-shell
outside of the integrand, when we should have used the half
off shell amplitude. It is shown in [15] that the unitary
approach with the G function regularized with a sharp
cutoff in the three momentum is equivalent to the use of a
potential,

Vðq⃗; q⃗0Þ ¼ Vθðqmax − jq⃗jÞθðqmax − jq⃗0jÞ; ð8Þ

which automatically reverts into,

Tðq; q0Þ ¼ Tθðqmax − jq⃗jÞÞθðqmax − jq⃗0jÞ; ð9Þ

where q, q0 are the initial or final momenta in the rest frame
of πη in the present case. In this way, the tπ0η;π0η matrix in
Eq. (7) contains a factor inside of the loop, θðqmax − jq⃗⋆jÞ,
with q⃗⋆ the momentum q⃗ in the rest frame of π0η. This is
given by

q⃗⋆ ¼
��

ER

Minv
− 1

�
q⃗ · k⃗

k⃗2
þ q0

Minv

�
k⃗þ q⃗; ð10Þ

with MR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

inv þ k⃗2
q

, and q0 given by the value of this

variable in the Cauchy q0 integration by residues. The same
can be said about the value of q2 ¼ q02 − q⃗2 in the form
factor of Eq. (2).
It is important to distinguish between qmax in Eqs. (8)

and (9), and the cutoff used in effective theories. In Eqs. (8)
and (9), qmax is giving the range of the potential in
momentum space, and this is a physical quantity, unlike
the cutoff used in effective theories. Indeed, the potential
that we obtain comes from using chiral Lagrangians
introducing the range of the interaction. This range is
obtained in the following way: As shown in Appendix A of
Ref. [16], the lowest order chiral Lagrangian can be
obtained from a more general framework, the local hidden
gauge approach [17–20], exchanging low lying vector
mesons, and neglecting q2 in the ½q2 −m2

V �−1 vector
propagator. Then, we adopt the point of view that the real
potential is the one coming from the exchange of vector
mesons and keep the range of the potential, using also the
full ½q2 −m2

V �−1 propagator. After that, we convert that
potential into the separable one of Eq. (8). Then, this qmax
should reflect the range of the interaction and be close to
mρ. Actually, when the potential is fine tuned to the low

lying scalar mesons, we obtain qmax ≃ 600 MeV, which is
the value we use here.
This cutoff value should not be confused with the one

used in effective theories (see Ref. [21]) for a clear and
pedagogical discussion). In effective theories one takes a
Lagrangian (or approximate potential as in Ref. [21]) and
regularizes it with a cutoff, qcut. Since one is omitting part
of the interaction, it is necessary to introduce appropriate
counterterms which depend on the choice of qcut. Then, the
counterterm parameters are fitted to some observables.
Thus, one can change qcut and refit the parameters of the
counterterms to the observables. Indeed, at low energies,
one finds that the results are qcut independent.
In our procedure, qmax has nothing to do with qcut, since

the former one measures the range of interaction. Eq. (8)
and the T-matrix of Eq. (9), in this case, is what in the work
of [21] would be the “exact calculation” to which the
different “effective theory” expressions are compared.
Alternatively, one can adopt a different point of view.
Since the qmax chosen reflects approximately the ρ
exchange, one can view the fine tuning done as a way
of choosing a qcut in the effective theory approach that
eliminates the contact counterterm that would account for
the residual ρ exchange interaction and higher order terms.
Let us then perform the Cauchy q0 integration analyti-

cally. For this, we need to know the pole structure of the
three propagators. At this point, let us write any meson
propagator as,

1

q2−m2
¼ 1

2ωðqÞ
�

1

q0−ωðqÞþ iϵ
−

1

q0þωðqÞ− iϵ

�
: ð11Þ

The first term in Eq. (11) is the one of positive energy, and
the second corresponds to the negative energy part.
In the process of Fig. 1, the Dþ

s can decay physically to
ρþη. With the direction of the arrows in the figure, the η
propagator is largely dominated by the positive energy part
of the propagator which develops a pole at q0 ¼ ωðqÞ, the
on-shell η energy in the physical Dþ

s decay to ρþη. The
same can be said about the ρ propagator. However, we
cannot say that about the internal π0 propagator in the loop.
In the a0ð980Þ region for π0η, the πþ carries 771 MeV of
energy, which leaves little energy for the π0, which is
largely off-shell. Then, for the π0 in the loop, we keep the
two terms of the propagator of Eq. (11). Performing the
Cauchy integration on the semicircle above or below the
real axis, we find,

t ¼ t1 þ t2; ð12Þ

where t1 corresponds to the ½2ωðq0 − ωþ iϵÞ�−1 part of the
π0 propagator, and t2 to the −½2ωðq0 þ ω − iϵÞ�−1 part. We
then find the residues at q0 ¼ ωηðqÞ, for t1, and at q0 ¼
P0 − ωρðqÞ for t2, and,
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t1 ¼C
ffiffiffi
2

p
gtπ0η;π0ηðMinvÞ

Z
d3q
ð2πÞ3

θðqmax− jq⃗⋆jÞP1Fðq2Þ
8ωηðqÞωρðqÞωπðk⃗þ q⃗ÞðP0−ωηðqÞ−ωρðqÞþ iϵÞðP0−ωηðqÞ−k0−ωπðk⃗þ q⃗Þþ iϵÞ

t2 ¼C
ffiffiffi
2

p
gtπ0η;π0ηðMinvÞ

Z
d3q
ð2πÞ3

θðqmax− jq⃗⋆jÞP2Fðq2Þ
8ωηðqÞωρðqÞωπðk⃗þ q⃗ÞðP0−ωηðqÞ−ωρðqÞþ iϵÞðk0−ωρðqÞ−ωπðk⃗þ q⃗Þþ iϵÞ

; ð13Þ

where P1 and P2, are given by,

P1 ¼ M2
Ds

−m2
η þ 2k⃗ · q⃗ − 2k0ðMDs

þ ωηðqÞÞ þ
1

M2
ρ
ðM2

Ds
−m2

ηÞ½2k0ðP0 − ωηðqÞÞ −M2
Ds

−m2
η þ 2P0ωηðqÞ þ 2k⃗ · q⃗�

P2 ¼ 2MDs
ωρðqÞ −m2

ρ − 2k0ð2MDs
− ωρðqÞÞ þ 2k⃗ · q⃗þ 1

M2
ρ
ð2MDs

ωρðqÞ −m2
ρÞð2k0ωρðqÞ −m2

ρ þ 2k⃗ · q⃗Þ: ð14Þ

Note that Fðq2Þ in t1 is Fðm2
ηÞ, but Fðq2Þ in t2

is FððP0 − ωρðqÞÞ2 − q⃗2Þ ¼ FðM2
Ds

þm2
ρ − 2MDS

ωρðq⃗ÞÞ.
Hence, the weak form factor does not reduce the degree of
divergence of the loop of t1 but it does so in the loop of t2.
Interestingly, we see that, omitting the θð·Þ and Fðq2Þ
factors, t1 is convergent, but t2 is logarithmically divergent.
Indeed,P1 in Eq. (14) is linear in q, at large q, t1 behaves asR
d3qq−4. However, P2 in Eq. (14), is quadratic in q and t2

behaves as
R
d3qq−3 at large q. The form factor for t1 is

Fðq2Þ ¼ Fðm2
ηÞ and, hence, t1 is still convergent in the

absence of the θð·Þ function. Nevertheless, upon inclusion
of Fðq2Þ in t2 [Fðq2Þ ¼ M2

Ds
þm2

ρ − 2MDs
ωρðqÞ], the t2

amplitude behaves as
R
d3qq−5, and is convergent in the

absence of the θð·Þ function. Yet, the factor θðqmax − jq⃗⋆jÞ
will reduce both loop functions and we shall see how this
occurs.
There is also an issue that we can address now. In

both [6,7], the width of the ρ meson is taken constant.
However, for a ρ off-shell, thewidth is energy dependent, as,

ΓρðMinv;ρÞ ¼ ΓρðmρÞ
m2

ρ

M2
inv;ρ

�
q
qon

�
3

; ð15Þ

with q ¼ λ1=2ðM2
inv;ρ;m

2
π ;m2

πÞ
2Minv;ρ

θðMinv;ρ − 2mπÞ, and qon being

given by the same expression, but changing Minv;ρ by mρ.
We can evaluateM2

inv;ρ ¼ ðP0 − q0Þ2 − q⃗2 using theCauchy
integration, since q0 ¼ ωρðqÞ, for t1 and q0 ¼ P0 − ωρðqÞ
for t2. We show the results of the consideration of these
issues in the next section.

III. RESULTS

In what follows, we remove the tπ0η;π0ηðMinvÞ amplitude
since it factorizes outside the integral. What we show below
corresponds to taking Ctπ0η;π0ηðMinvÞ ¼ 1.
In the upper panel of Fig. 2, we show the results of Ret1

with or without the θð·Þ function using in both cases Γρ

fixed. We observe a drastic reduction of the amplitude by

including the effect of the θð·Þ function tied to the range of
the strong interaction. Except in the peak of this amplitude,
the consideration of the θð·Þ function even changes the sign
of the amplitude. The peak is due to the opening of the π0η
channel. It is further enhanced by the near presence of a
triangle singularity, as one can see applying the rules of [5].
However, we should note that this amplitude must be
multiplied by tπ0η;π0ηðMinvÞ, which peaks around the
a0ð980Þ, and its strength around 700 MeV is very small.
Thus, one should not expect to see much of this structure in
the actual experiment.
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FIG. 2. Real and imaginary parts of the amplitude t1 in Eq. (13)
with and without the θð·Þ function.
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Next, we show in the lower panel of Fig. 2, Imt1. There
are contributions to this imaginary part from two cuts in the
diagram, the one placing the η and ρþ on-shell, and the one
of the η and π0 on-shell. We see that below the π0η
threshold, the imaginary part of t1 is very small and it grows
very fast from the threshold on. The largest part of Imt1
comes from the π0η cut. Below threshold, Imt1 is affected a
bit by the θð·Þ function, but this function is 1 for the π0η cut
and hence, we see no effect of it in Imt1.
In the upper panel of Fig. 3, we show Ret2, with and

without the effect of the θð·Þ function. Once again, we see a
strong reduction of this amplitude due to the consideration
of the θð·Þ function. We should note that, while Ret1 and
Ret2 have similar strength without the θð·Þ function, when
including it, the strength of Ret2 becomes smaller than that
of Ret1.
In the lower panel of Fig. 3, we show Imt2 with or

without the θð·Þ function. We see that this imaginary part is
about one order of magnitude smaller than Ret1. This is
because, in this case, the only source of imaginary part
comes from ηρþ being on-shell. The other cut correspond-
ing to placing ρþ and π0 on-shell [see second denominator
in Eq. (13)] does not give imaginary part because the
process π → πρ is not allowed. In any case, we see that the
consideration of the θð·Þ function reduces the strength of
the imaginary part (note that we have θðqmax − jq⃗⋆jÞ, and

not, θðqmax − jq⃗jÞ, although, given its small strength, it
does not have any relevant consequence.
Next, we look into the effect of considering the energy

dependence of the ρ width in Ret1. We see this in the upper
panel of Fig. 4. We show the effects of only this energy
dependence, and thus, in both cases, we have removed the
effect of the θð·Þ function. In this case, we observe that in
the region of Minv ∼ 1000 MeV, where the a0ð980Þ gives
its maximum strength, the consideration of the energy
dependence of the ρ width increases the value of Ret1.
In the lower panel of Fig. 4, we show the effect of the

energy dependent ρ width. In this case, the consideration of
the energy dependence reduces the strength of Imt1. We
refrain from showing this effect in Ret2 and Imt2, because
in this case, q0 ¼ P0 − ωρðqÞ, and hence, M2

invðρÞ ¼
ðP0 − q0Þ2 − q⃗2 ¼ ωρðqÞ2 − q⃗2 ¼ m2

ρ. Hence, the use of
the on-shell Γρ width for this case is justified.
In Fig. 5, we show the ratio of R ¼ jt1 þ t2j2½with θð·Þ�=

jt1 þ t2j2½without θð·Þ�, considering the elements discussed
above. This should give us an idea, by looking around
Minv ≃ 1000 MeV, of the relevance of the corrections in the
Ds → πþπ0η decay width evaluated in [7]. The continuous
curve corresponds to the ratio R with energy dependent
width of the ρ in both, numerator and denominator. We
observe a drastic reduction of the magnitude jt1 þ t2j2 from
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FIG. 3. Real and imaginary parts of the amplitude t2 in Eq. (13)
with and without the θð·Þ function.
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without the θð·Þ function, taking a ρ width energy dependent or
constant, see Eq. (15).
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the consideration of the θð·Þ function by a factor of about
0.15. The dashed curve, where the reduction is smaller than
before, corresponds to the same ratio but with a constant
width of the ρ meson of 150 MeV. Finally, the intermediate
dot-dashed line, corresponds to putting Γρ constant in the
denominator with no θð·Þ function, and the energy depen-
dent ρ width in the numerator with the θð·Þ function. This
curve shows the combined effect of the two ingredients
discussed in this work with respect to the calculation of [7].
The reduction factor is about 0.25 around 1000 MeV. Note
that

ffiffiffiffiffiffiffiffiffi
0.25

p ¼ 0.5, and therefore, one would expect a
reduction of about a factor of two in t1 þ t2 on the results
of [7], which would still leave this mechanism with a
sizeable strength. We note that in the dimensional regu-
larization scheme of [7], one can use different subtraction
constants in the two-pion one-loop function and in the
three-point one-loop function. As a result, is not so
surprising to see the reduction by a factor of four. In other
words, the method proposed in this work is more consistent
in the case where on-shell UChPTamplitudes are part of the
triangle diagram.
Finally, we would like to see the effect of considering the

ρ dependent width in dΓ
dMinvðπ0ηÞ, the magnitude measured in

the experiment. For this, we use the formula,

dΓ
dMinvðπ0ηÞ

¼ 1

ð2πÞ3
1

4M2
Ds

pπþ p̃ηjt1 þ t2j2; ð16Þ

where,

pπþ ¼ λ1=2ðM2
Ds
; m2

π;M2
invðπ0ηÞÞ

2MDs

p̃η ¼
λ1=2ðM2

invðπ0ηÞ; m2
π0
; m2

ηÞ
2Minvðπ0ηÞ

ð17Þ

The results are shown in Fig. 6, comparing the invariant
mass distribution above, with an energy dependent width of
Eq. (15), or constant, Γρ ¼ 150 MeV.
We refrain from comparing to data (recall that we also

omitted tπ0η→π0η in the calculations), for which we would
need an absolute normalization, and consider also the
triangle diagram analogous to Fig. 1, exchanging π0 and
πþ. This is done in detail in Refs. [7,13]. We simply show
here the effect of considering the energy dependent width
of the ρ in the mechanism that produces the a0ð980Þ
excitation in the π0η mass distribution.

IV. CONCLUSIONS

We have discussed some important issues concerning
triangle loops and how to solve them technically.
Concretely, we have addressed the problem of taking into
account the range of the interaction which enters in
scattering amplitudes in some loop mechanisms that
involve one strong interaction transition matrix element.
This is usually not done in works that use Feynman
diagrammatic techniques to evaluate the loop integral.
Another issue that we have addressed is the one of the
energy dependent width of unstable particles in the loop,
which again is taken constant in the Feynman integral
methods. The way we have addressed the problem is by
performing the q0 integration of the d4q integral analyti-
cally. This is done with the Cauchy residues method which
renders the value of q0 at which the residue has to be
evaluated and allows to incorporate the corrections men-
tioned above in a simple way. The method also allows us to
have an insight into the convergence of the diagrams when
cutoffs or form factors are used, and prevents us from
getting spurious contributions related to the poles implicit
in some form factors which have no physical meaning.
In particular, we have considered the triangle loop that

appears in the Dþ
s → ρþη decay, followed by ρþ → πþπ0

and rescattering of the π0η producing the a0ð980Þ
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FIG. 5. Ratio R ¼ jt1 þ t2j2½with θð·Þ�=jt1 þ t2j2½without θð·Þ�,
using a constant ρ width (continuous line) in both, numerator and
denominator, an energy dependent width (dashed line), and, with
a constant ρ width in the denominator and an energy dependent
width in the numerator (dot-dashed line).
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FIG. 6. dΓ=dMinvðπ0ηÞ as a function of Minvðπ0ηÞ, with
constant and energy dependent Γρ. The jtηπ;ηπj2 coming from
the scattering amplitude should also multiply both expressions,
but it is also omitted here to show the relative effects, as done in
the other figures.
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resonance. The method proposed in this work is particu-
larly suitable when the on-shell unitary chiral amplitudes
are used to describe hadron-hadron interactions, such as the
πη → πη and KK̄ → πη interactions. We have investigated
independently the effects due to the range of the strong
interaction in the π0η scattering and the effects of consid-
ering the energy dependence of the rho width inside the
loop. We find that both effects are important resulting in
sizeable changes. When all effects are considered together,
we find a reduction of the strength of the decay width
around the π0η invariant mass in the a0ð980Þ region of
about a factor 4. This is sizeable and important to consider
if one wishes to have accurate results. Concerning the
previous work done in the subject, these effects could
reduce the strength of the amplitudes by about a factor of
two, which still would make them relevant, but it leaves
more room for another mechanism previously claimed,
based on internal emission, different than the triangle
mechanism proposed as an alternative method to explain
the experimental data. We shall stress that the work of
Ref. [7] was done using realistic weak couplings and form
factors, which would allow one to get absolute mass
distributions should one use the accurate method to
evaluate the loops. Since a good agreement with experi-
ment was found in [7], and now the strength is appreciably
reduced, one can only conclude that there is room for a

relevant contribution of the internal emission mechanism
discussed in Ref. [13]. The work done here shows also an
accurate and practical method to evaluate triangle loops in
related physical processes.
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