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Thermalization of heavy quarks in the quark-gluon plasma is one of the most promising phenomena for
understanding the strong interaction. The energy loss and momentum broadening at low momentum can be
well described by a stochastic process with drag and diffusion terms. Recent advances in quantum computing,
in particular, quantum amplitude estimation (QAE), promise to provide a quadratic speedup in simulating
stochastic processes. We introduce and formalize an accelerated quantum circuit Monte Carlo (aQCMC)
framework to simulate heavy quark thermalization. With simplified drag and diffusion coefficients connected
by Einstein’s relation, we simulate the thermalization of a heavy quark in isotropic and anisotropic mediums
using an ideal quantum simulator and compare that to thermal expectations. With Grover-like QAE, we
calculate physical observables with quadratically fewer resources, which is a boost over the classical MC
simulation that usually requires a large sampling number at the same estimation accuracy.
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I. INTRODUCTION

Thermalization is one of the most important common
features of a nonequilibrium system. An open system that
undergoes quantum decoherence by rapidly exchanging
information with the environment usually tends to thermal-
ize conventionally and classically. Heavy quark thermal-
ization in the background of quark-gluon plasma (QGP)
produced in relativistic heavy-ion collisions (HICs) is such
an open system that heavy quarks have distinguished
separation of scales compared to the soft QGP medium.
With the shear viscosity over entropy density ratio η=s
characterizing the speed of hydrodynamization and temper-
ature T as the only scale, the thermalization time of the
QGP is characterized by a scale of τh ≃ 4πη=ðTsÞ [1].
Compared to the soft QGP, the relaxation of the heavy
quark is prolonged by its heavy mass τR ≃mHQτh=T. With
a typical charm quark mass of ≃1.5 GeV, and the QGP
medium temperature of 300–500 GeV in HICs, a heavy
quarks undergo a time of thermalization caused and
dominated by a thermal environment. This is more extreme
for the bottom quark with ≃4.5 GeV mass, that the
thermalization process is not even finished in a 10 fm of

the QGP phase. Eventually, the hadronized heavy flavors
measured in the detector are not thermalized, and the
characterization of the heavy quark spectra tells us the
medium property of the QGP.
The heavy masses of heavy quarks not only delay the

thermalization in the QGP medium but also make the heavy
quarks less relativistic compared to the almost massless
partons in the QGP. This leads to a well-established
thermalization description for heavy quarks based on a
stochastic process with low-momentum random kicks from
the medium [2–11]. The thermalization in this description
is controlled by two competing effects, the energy loss from
a drag term and a diffusion from a stochastic term. The
energy loss tends to reduce the momentum of a heavy
quark while the diffusion tends to broaden the momentum
distribution. The competing contributions eventually ther-
malize the heavy quark to a certain distribution controlled
by a fluctuation-dissipation theorem, known as Einstin’s
relation. In a nonrelativistic or static limit, the thermal
distribution is given by a classical Maxwell-Boltzmann
distribution. For more discussions on heavy quark thermal-
ization in HIC phenomenology, see reviews [12–14].
Notably, this stochastic process is so generic that it is
not limited to the description of a heavy quark thermal-
ization but is broadly utilized in many research topics, such
as the Black–Scholes model in quantitative finance, which
in part inspired our work.
Quantum computing technology, using laws of quantum

mechanics, has already been extensively applied in many
areas of nuclear physics [15–28], where the strength
of quantum computing is usually exploited from its
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exponential state space, local Hamiltonian simulation, and
near-term variational algorithms. Recently, novel gate-based
quantum finance strategy [29–32] with the quantum ampli-
tude estimation (QAE) [33] exhibits a promising quadratic
speedup over the classical Monte Carlo (MC) method. In
much the same spirit as Grover’s algorithm [34,35], the QAE
allows efficient estimation of the amplitude of the designated
quantum state. The main contribution of this work is the first
application of an accelerated quantum circuit Monte Carlo
(aQCMC) strategy using the QAE techniques for heavy
quark thermalization. Different events are simulated as
quantum state evolution with sufficient quantum shots,
and the physical observables are efficiently extracted with
amplitude estimation. With the constant improvements in the
QAE algorithms [36,37], the aQCMCmay expect to become
a more standard approach, especially in future large-scale
quantum simulations.
This paper is organized as follows. In Sec. II, we review

the heavy quark thermalization formulated as a stochastic
differential equation and its standard classical simulation
strategy with the MC method. In Sec. III, we discuss the
aQCMC strategy utilized in this work to speed up the
computation. In Sec. IV, we present our simulation results in
isotropic and anisotropic mediums using Qiskit. In Sec. V,
we summarize and discuss future avenues of this work.

II. HEAVY QUARK THERMALIZATION

A. Stochastic description of heavy quark thermalization

The heavy quark thermalization can be characterized by
a stochastic differential equation known as the Langevin
equation [2], evolving in full position-momentum phase
space x⃗, p⃗ with evolution time t,

dxi ¼
pi

Eðp⃗Þ dt; i ¼ x; y; z;

dpi ¼ −Aðx⃗; p⃗; tÞpidtþ σijðx⃗; p⃗; tÞdWj; ð1Þ

where the random force that sampled as a Wiener process
dW ∼N ð0; dtÞ has correlation hdWidWji ¼ δijdt. The
drag coefficient Aðx⃗; p⃗; tÞ and the diffusion coefficient
σijðx⃗; p⃗; tÞ in HICs may be calculated from either
quantum chromodynamics (QCD) [38–46], or QCD-like
theories [47–54] with a heavy quark interacting with the
medium. Applying Ito’s lemma, the Langevin equation,
Eq. (1), can be reformulated as a Kolmogorov-forward
equation, known as the Fokker-Planck equation, presenting
the time evolution of the heavy quark nonequilibrium
distribution fðx⃗; p⃗; tÞ as

∂

∂t
fðx⃗; p⃗; tÞ ¼ ∂

∂pi
½Aðx⃗; p⃗; tÞpifðx⃗; p⃗; tÞ�

þ ∂
2

∂pi∂pj
½Bijðx⃗; p⃗; tÞfðx⃗; p⃗; tÞ�; ð2Þ

with the diffusion coefficient Bijðx⃗; p⃗; tÞ ¼ σikðx⃗; p⃗; tÞσjk
ðx⃗; p⃗; tÞ=2. There is no general solution to the Fokker-
Planck equation, Eq. (2), and the evolution would depend
on the initial condition. However, the solution to the
Fokker-Planck equation would be an attractor toward the
thermal limit. This transition from various ordered initial
conditions to a unique chaotic limit is the thermalization of
heavy quarks within a medium. These transport coefficients
are generally medium profile dependent, but in a thermal
and homogeneous medium, we may drop the spatial x⃗ and
time t dependencies. The perturbative QCD calculation
suggests the drag coefficient Aðp⃗Þ to be almost a constant at
low momentum p≲ 2M [44].
With an approximately constant drag coefficient, one

may simplify the Langevin equation in the nonrelativistic
limit at a small momentum p, which may be further
rescaled by the heavy quark mass M. Keeping diagonal
terms only in the diffusion term, these simplifications lead
to a dimensionless Langevin equation,

dqi ¼ −qidt̃þ dW̃i: ð3Þ

In the above equation, we have used dimensionless
momentum qi ¼ pi=M, time dt̃ ¼ Adt, and anisotropic
stochastic terms dW̃i ∼N ð0; 2Tdt̃=ðMχ2i ÞÞ with proper
Einstein’s relation A ¼ σ2iiχ

2
i =ð2MTÞ. See Appendix A

for details of the derivations, and also Refs. [44,53–57]
for recent discussions on hard probes in anisotropic
medium. Notice that in the heavy quark relaxation time
τR ≃ 1=A, the value of dt̃ represents the speed of energy
loss and thermalization. Thus, a realistic simulation would
favor the dt̃ to be as small as possible, and a value of
dt̃ ≃ 1=Nt takes about Nt steps to thermalize (thermal-
ization will also be delayed by a large momentum, for
instance, a heavy quark jet). Another relevant scale is
the temperature over heavy quark mass ratio T=M in the
variance σ̃2i dt̃ ¼ 2Tdt̃=ðMχ2i Þ. The dimensionless Fokker-
Planck equation corresponding to Eq. (3) reads

∂

∂t̃
fðq⃗; t̃Þ ¼ ∂

∂qi
½qifðq⃗; t̃Þ� þ

1

2
σ̃2ii

∂
2

∂q2i
½fðq⃗; t̃Þ�: ð4Þ

The thermal distribution in terms of these dimensionless
quantities reads

feqðq⃗Þ ∝ exp

�
−
q2x
σ̃2x

−
q2y
σ̃2y

−
q2z
σ̃2z

�
: ð5Þ

This stochastic process is usually simulated with the
MCmethods, by sampling theWiener process for each time
step. The trajectory of a heavy quark contributes to an
event, and a collection of these events provides a time series
of the heavy quark distribution toward thermalization.
On a modern digital computer, this MC simulation is
straightforward: one starts with whatever heavy quark
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initial distribution fðq⃗; t̃0Þ and samples the heavy quark

initial momentum ðqt̃0x ; qt̃0y ; qt̃0z Þ accordingly. Similarly, the
values of the stochastic variables ðdWt̃

x; dWt̃
y; dWt̃

zÞ can be
uncorrelatedly sampled with a set of independent normal
distributions fN ð0; 2Tdt̃=ðMχ2i ÞÞg with i ¼ x, y, z for
each time in a diagonalized form. The increment of the
momentum follows the Langevin equation, Eq. (3), and
the momentum at the next step can be calculated with the
forward-Euler method as

qt̃þdt̃
i ¼ qt̃i − qt̃idt̃þ dW̃t̃

i: ð6Þ

Iterating the above algorithm for large enough Nt steps
from t̃0 to t̃0 þ Ntdt̃ gives a time series of one heavy quark
momentum,

QT ¼
n
qt̃0i ; q

t̃0þdt̃
i ;…; qt̃0þNtdt̃

i

o
; ð7Þ

and repeating for a total of Nevent events produces an
emergent phenomenon of heavy quark thermalization,
which leads to a thermal distribution,

n
Qt̃0þNtdt̃

1 ;Qt̃0þNtdt̃
2 ;…;Qt̃0þNtdt̃

Nevent

o
∼ feqðq⃗Þ; ð8Þ

with Ntdt̃ ≫ 1. Then, for any physical quantity Fðq⃗Þ at
time t̃, its expectation value would be

hFðq⃗Þi ¼ 1

Nevent

XNevent

i¼1

FðQt̃
iÞ: ð9Þ

The MC simulation on a modern computer is straightfor-
ward but often requires large computational resources for
reasonable precision. By encoding the stochastic process
on the quantum circuit and accelerating with the QAE
algorithms, one may reduce the inherent problem complex-
ity faced in classical simulations and obtain a quadratic
quantum speedup compared to the classical method to the
same precision.

III. QUANTUM STRATEGY

In this section, we formulate the quantum strategy, the
quantum circuit Monte Carlo (QCMC) to simulate the
heavy quark thermalization in a stochastic description. For
the QCMC simulation, we encode the particle’s momenta
qi in each direction as a quantum state. With a generic
n-qubit quantum register, one has, in principle, N ¼ 2n

possible modes for the heavy quark momenta q. By
restricting the momentum q∈ ½−qmax; qmaxÞ, we discretize
q into N values with δq ¼ 2qmax=N. Then, we further shift
the physical momentum q to the positive momentum q̄ by a
constant qmax so that q̄ ¼ qþ qmax ∈ ½0; 2qmaxÞ and impose
a periodic boundary condition, i.e., q̄ ¼ q̄ mod ð2qmaxÞ.

The use of non-negative dimensionless momenta q̄makes a
straightforward binary mapping onto the corresponding
quantum states, which can be extended to all three spatial
dimensions x, y, and z.
To thermalize with approximately Nt steps, reasonable

values of the coefficients for the simulation scale as dt̃ ≃
1=Nt with Nt > 1. The variance in the stochastic term is
chosen to be σ̃2i dt̃ ¼ 2Tdt̃=ðMχ2i Þ ≃ dt̃=ð2χ2i Þ according to
scales of heavy quark mass M and temperature T in HICs.
Since generic quantum multiplication and divisions are
complicated [58], we pick dt̃ ¼ 1=2d with positive integer
d in practical simulations, which can be realized on the
quantum circuit by shifting the quantum state with d qubits
using a sequence of CX gates.
In general, for each of the i ¼ x, y, z directions, we

prepare quantum register Si to encode the particle’s
momentum qi and quantum register Wi to encode the
diffusion term dW̃i. Each register is represented by a set of
qubits. The numbers of qubits nS; nW in registers Si, Wi
are not necessarily the same. The increments at each time
step t̃ ¼ ndt̃ contributed from the drag term −qidt̃ and the
diffusion term −dW̃i are implemented as unitary quantum
operators UAn

i
following Eq. (6) so that

UAn
i
jdW̃n

i iWn
i
⊗ jqni iSn

i
⊗ j0iSnþ1

i

¼ jdW̃n
i iWn

i
⊗ jqni iSn

i
⊗ jqni − qni dt̃þ dW̃n

i iSnþ1
i

¼ jdW̃n
i iWn

i
⊗ jqni iSn

i
⊗ jqnþ1

i iSnþ1
i
: ð10Þ

Here, UAn
i
¼ UA is time independent with a constant drag

coefficient A, though it is not required. Now, we introduce
the quantum gates used in the circuit:
(1) Distribution loading gates (UL) are responsible for

loading the initial momentum distribution on the
quantum register S for the system. In principle,
one can start with either a single momentum or any
momentum distribution for the heavy quark and
evolve it on the circuit. Here, we initialize an
arbitrary single momentum each time using X gates.

(2) Stochastic Wiener gates (UW) provide the stochastic
contribution to the quantum circuit for the Wiener
process dW. Here, we sample normal distribution
N ð0; σ ¼ 2Tdt̃=ðMχ2i ÞÞ exactly, and subsequent
circuit transpilation automatically builds the
quantum gates for the distribution. In other words,
UW j0i¼

P
q̄

ffiffiffiffiffiffiffiffiffiffi
Pðq̄Þp jq̄=δqiwith probabilityPðq̄Þ ¼

ð1=
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Þ expð−q̄2=ð2σ2ÞÞ.

(3) Quantum evolution gates (UA) are the main building
blocks of the QCMC, where we follow Eq. (10) to
construct the evolution gates. Specifically, we imple-
ment and utilize the quantum adders and multipliers
(see Appendix B for a brief review) to build the
stochastic Langevin evolution at each time step. One
additional constant quantum adder is included to
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remedy the momenta from q to non-negative q̄ per
each step. Notably, these quantum arithmetic gates
correspond directly to the classical arithmetic oper-
ations, though one still needs to manually manipu-
late these operations at the quantum-register level for
today’s quantum computers. Since quantum Fourier
transforms are innate to most arithmetic operations,
it may be more efficient to use Fourier basis as the
encoding basis to abbreviate consecutive operations.

In principle, one could simulate the MC process on the
quantum circuits as efficiently as on a classical computer.
Nevertheless, since at each time step the Wiener process
dW needs to be uncorrelated and the quantum arithmetic
operations are on the register level, the quantum circuit
would require additional sets of registers S andW for each
time iteration, making the total qubit number scales as
Oðð2Nt − 1ÞnÞ assuming nQ ¼ nW ¼ n. To circumvent
this towerlike quantum circuit, one may include reset
gates to economically reuse the quantum registers repeat-
edly for different time steps, as in Fig. 1(a), leading to only
Oð3nÞ qubits.

The quantum circuit Monte Carlo (QCMC) method
can be accelerated by taking advantage of the quantum
amplitude estimation [33] (QAE), a generalized version of
Grover’s search algorithm [34,35]. Suppose an operator AF
acts on nþ 1 qubits,

AFjψinj0i¼
ffiffiffiffiffiffiffiffiffiffi
1−a

p
jψ�

0inþ1þ
ffiffiffi
a

p jψ�
1inþ1¼jψ�inþ1; ð11Þ

where jψ�
0i ¼ jψ0inj0i, jψ�

1i ¼ jψ1inj1i, and a∈ ½0; 1�
is the desired expectations of interests. Specifically, a ¼
hψ jnFjψin is the expectation of any physical quantity F in
terms of heavy quark momentum, whose distribution is
represented by the quantum state jψin. Using Grover
operator Q ¼ AFS0A

†
FSψ1

with Sx sign-flipping operator
on the state x, the QAE allows for high-probability
estimation of a in Nq queries of AF with error
ϵ ¼ Oð1=NqÞ. This represents a quadratic speedup over
classical MC [33]. Intuitively, one can consider Grover’s
operator Q ∼ Rψ�Rψ�

0
as sequence of two reflection oper-

ators Rψ� , Rψ�
0
. This operator successively reflects about the

“bad” state jψ�
0inþ1 and the “mean” state jψ�inþ1, such that

the amplitude of the “good” state jψ�
1inþ1 is amplified.

See Appendix C for more technical details. In principle,
one may use the standard quantum phases estimation
(QPE) with extra auxiliary qubits [33,59] to retrieve the
amplitude where the estimation success rate is quickly
boosted close to unity.
In practice, the QAE approach is usually difficult for

two reasons: First, universal oracle implementation for
the expectation function F is nontrivial; second, the QPE,
the key to extract amplitude, requires expensive auxiliary
qubits and substantial multiqubit gates [33]. Fortunately,
operators UF involving piecewise linear functions can be
approximated via Taylor expansion and implemented using
controlled RY gates [30,60], so we are capable of inves-
tigating momentum and absolute momentum expectation
of the particle, i.e., FðqÞ ¼ q and FðqÞ ¼ jqj. Alternative
loading methods to reduce the circuit complexity that one
may consider include quantum generative adversarial net-
works [61] and approximate quantum compiling [62].
On the other hand, the complexity of the QPE

can be circumvented using novel QPE-free algorithms
[36,37,63–67], which are mostly based on selected Grover
iterations QkAF to estimate the quantum amplitude effi-
ciently, and the same quadratic speedup can be obtained [65].
In particular, we focus on the Iterative QAE (IQAE)
algorithm in our simulation result, which proves most
economical in estimation accuracy and confidence
level [36] for our simulation resources. Alternatively,
one may also consider using variational QAE with con-
stant-depth circuits [68]. Nonetheless, it is crucial to point
out that by having Grover operators in the QAE we cannot
use the nonunitary reset gates directly, and consequently,

(a)

(b)

FIG. 1. The schematic quantum circuits of the QCMC and the
aQCMC involving Nt time steps in direction i constructed
using S and W registers (a) with reset gates in the depth-
oriented QCMC and (b) with QAE in the breadth-oriented
aQCMC. Quantum gates UL, UW , and UA are used to represent
the initial distribution loading, stochastic diffusion, and quan-
tum evolution, respectively.
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we regress to the towerlike quantum circuit in Fig. 1(b)
when the QAE is involved.

IV. SIMULATION RESULTS

With the theory of heavy quark thermalization and its
quantum strategy described above, we present the numerical
simulation results of 1D and 2D heavy quark thermalization,
including both isotropic and anisotropic mediums. While
one can use real quantum computers to simulate the heavy
quark thermalization, these devices are still limited today by
their short coherence time. Therefore, for the purpose of
our investigation, we use the QASM simulator provided by
Qiskit to mimic ideal quantum devices. Regarding the
physical scales we choose in Eq. (3), the heavy quark with
a mass M ¼ 1.5 GeV in a typical plasma temperature in
heavy-ion collisions T ≃ 300–500 MeV gives a range of the
variance σ̃2i dt̃¼2Tdt̃=ðMχ2i Þ around 2dt̃=ð5χ2i Þ–2dt̃=ð3χ2i Þ.
For simplicity, we may just consider σ̃2i dt̃ ≃ dt̃=ð2χ2i Þ.
We first study the heavy quark thermalization using the

QCMC approach in a one-dimensional medium, following
the quantum circuit in Fig. 1(a). In general, we can simulate
the stochastic process with any system size and time step;
however, in practice, we are limited by the classical
simulation resources. Here, for practical purposes, we
consider a small system of nS ¼ nW ¼ 4 qubits and
q∈ ½−qmax;−qmaxÞ ¼ ½−2; 2Þ with momentum resolution
δq ¼ 0.25 and time interval dt̃ ¼ 1=2d ¼ 0.5. Together
with registers to store the intermediate quantum states, a
total of 12 qubits and 8192 shots are used. We present the
numerical simulation results in Fig. 2. The upper panel of
Fig. 2 shows a collection of heavy quark momentum q
trajectories as an attractor toward thermal expectation.
Simulation with two different parameters χ ¼ 1 and
χ ¼ 2 are used. Similarly, the lower panel of Fig. 2 shows
a collection of heavy quark momentum absolute value jqj
trajectories. In addition, we also present the large time
momentum distribution at t̃ ¼ 3 from the simulations with
χ ¼ 1, 2 compared to thermal 1-D distributions feqðqÞ in
Eq. (5) with σ̃2 ¼ 1=ð2χ2Þ ¼ 1=2; 1=8. The comparison is
shown in Fig. 3. The simulations agree with the expect-
ations with small discrepancies caused by both momentum
and time lattice effects. We also observe that the thermal-
ization with a larger anisotropic parameter χ leads to
thermal distribution with a narrower collection of momen-
tum, characterized by a smaller value of variance σ̃2.
To speed up the QCMC, we implement the QAE to

directly extract the expectation hqi and hjqji, following the
aQCMC circuit in Fig. 1(b). In particular, we focus on
Iterative QAE (IQAE) for its economical complexity in the
calculation [36] and present the simulation results1 for the

(a)

(b)

FIG. 2. Quantum simulation using the QCMC method in a
one-dimensional system. Panels (a) and (b) show the expect-
ations of hqi and hjqji for differential initial momenta (marked
in colored lines).

FIG. 3. Probability density distribution for quantum simulation
with an anisotropic medium at late time t̃ ¼ 3, compared with
analytical thermal equilibriums distribution feqðqÞ in Eq. (5).

1Here, we only considered initial q̄=δq ¼ ½0; 1; 2;…; 14� and
omitted q̄=δq ¼ 15 for the simulation to avoid boundary effects
due to quantum integer division (see Appendix B).
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early time steps in Fig. 4. Without using the reset gates,
the qubit number grows linearly with the number of time
steps, so we simulate to a maximum step of 3, taking up a
total of 20 qubits, with an additional ancilla qubit for QAE.
We can see that both the aQCMC results agree with
the QCMC results within the uncertainty band obtained
from 10 simulation batches. Specifically, we used IQAE
with an estimation accuracy ϵ ¼ 0.01, a confidence level
ð1 − αÞ ¼ 95%, and Nshots ¼ 30 shots per iteration [36]. In
total, we used Nq ≈ 1000� 240 shots per each data point
for aQCMC,2 which agrees well with the QCMC results
using a large number shots (81, 920 shots).
To show the quantum advantage using the aQCMC

approach with the IQAE, we present the estimation accuracy
versus the number of oracle queries Nq in Fig. 5. The
estimation accuracy is evaluated as the absolute error
of the measured momentum to analytical expectation
ϵ ¼ jhqi − hqianalyticalj, where for convenience we start with
q0 ¼ 0, and thus hqianalytical ¼ 0. We estimate the absolute
error in both direct measurement (DM) and the IQAE using
the same total number of shots at t̃ ¼ 0.5. The DM is
equivalent to the classical strategy of statistical measurement
while the IQAE is its quantum counterpart. We observe the
estimation accuracy ϵ follows exactly theOð1=NqÞ, offering
a quadratic boost to classical strategy with Oð1= ffiffiffiffiffiffi

Nq
p Þ.

Notably, our results are within the theoretical upper bound
Nq;max ¼ ð50=ϵÞ log½ð2=αÞ logðπ=ð4ϵÞÞ� [36]. The same
quadratic quantum speedup is also found for the maximum
likelihood QAE [37].

The quantum simulation strategy introduced in this
work, both the QCMC and the aQCMC, can also be
applied to two-dimensional heavy quark systems with both
isotropic and anisotropic mediums. Here, we consider an
isotropic medium with χx ¼ χy ¼ 1 thus σ̃2xx ¼ σ̃2yy ¼ 1=2,
and an anisotropic medium with χx ¼ 1, χy ¼ 2 thus
σ̃2xx ¼ 1=2, σ̃2yy ¼ 1=8. Due to the large amount of total
qubits required for a complete two-dimensional circuit, the
simultaneous calculation of the x, y directions in one circuit
is not practical with the current hardware. Instead, since the
heavy quark dynamics in x, y directions are decoupled with
diagonal coefficients, we can simulate x and y directions
separately and pair the events randomly to perform the
calculation in two dimensions. With uniformly distributed
heavy quarks as the initial condition, we present the heavy
quark thermalization over time in Fig. 6. We can see that
different thermalization patterns reflect accordingly for the
different medium properties, isotropic and anisotropic.
In both cases, the collections of heavy quarks reach the
thermal distributions provided by Eq. (5).
In the anisotropic medium, one may further evaluate

the buildup of the elliptic flow v2, which characterizes the
anisotropization due to the medium profile,

v2 ¼
R
fðq; cosðϕÞ; tÞ cosð2ϕÞdϕR

fðq; cosðϕÞ; tÞdϕ ¼thermal
I1
�

1
2q2 j 1

σ̃2x
− 1

σ̃2y
j
�

I0
�

1
2q2 j 1

σ̃2x
− 1

σ̃2y
j
� ;

ð12Þ

where the v2 in the thermal equilibrium is a ratio of
modified Bessel functions I1ðxÞ and I0ðxÞ. In Fig. 7,
we calculate v2 using the simulation result. Despite the
discrepancy between the simulated v2 at a late stage
compared to the analytical thermal limit due to insufficient
lattice, we observe a gradual buildup of the v2 for heavy
quarks in an anisotropic medium that approaches the limit.

(a) (b)

FIG. 4. Quantum simulation using the aQCMC with Iterative
QAE [36] (in shaded area) compared to QCMC with direct
measurement to evaluate expectations (a) hqi and (b) hjqji for the
earlier time steps.

FIG. 5. Quantum advantage using the aQCMC approach with
Iterative QAE [36] to estimate physical observable with quad-
ratically less resources.

2Fluctuations in the total shots Nq are not statistical, but only
due to the iterative process by nature of the IQAE algorithm [36].

XIAOJIAN DU and WENYANG QIAN PHYS. REV. D 109, 076025 (2024)

076025-6



V. CONCLUSION AND OUTLOOK

In this work, for the first time, we present a quantum
strategy for stochastically simulated heavy quark thermal-
ization with the QCMC and the aQCMC algorithms on the
circuit. Specifically, we simulate the heavy quark thermal-
ization with both the QCMC with a longer evolution time
step and the aQCMC with a shorter evolution time step
but boosted with amplitude estimation. With these algo-
rithms, we study heavy quark thermalization in both one-
dimensional and two-dimensional mediums, as well as
isotropic and anisotropic mediums. We show their thermal-
ization patterns and late-time behaviors compared to the
analytical expectations. We also calculate the buildup of
the elliptic flow for heavy quarks in an anisotropic
medium. Remarkably, with Grover-like quantum amplitude
estimation, we can estimate physical observables with

quadratically a smaller number of simulation shots, com-
pared to classical Monte Carlo methods, which prepares for
quantum advantage in future fault-tolerant simulation.
Notably, the quantum strategies utilized in the work, the

QCMC and aQCMC algorithms, are generic for simulating
stochastic processes in even broader contents in physics,
where the aQCMC has the potential to speed up the
calculation in comparison to classical methods. For in-
stance, with proper modeling of the quark coalescence, this
framework can be extended to study quarkonium dissoci-
ation and recombination in a medium. Furthermore, real-
time dynamics of heavy quark/quarkonium simultaneous
production involving many heavy quark/antiquark pairs
will benefit from the quantum boost that significantly
reduces the number of samples in such stochastic simu-
lation. The classical Wiener process may be replaced by a
quantum random walk, which eventually gives quantum
statistics instead of classical statistics, and a stochastically
quantum thermalization of a heavy quark, or spin-chain
system might be achieved on a quantum circuit. We leave
these for future studies.

ACKNOWLEDGMENTS

We are grateful to João Barata, Shanshan Cao, Oscar
Garcia-Montero, Meijian Li, Tan Luo, Alberto Manzano,
Aleksas Mazeliauskas, Carlos A. Salgado, Sören
Schlichting, Juan Santos Suárez, Bin Wu, Jianhui Zhang,
and Kai Zhou for their helpful and valuable discussions. We
acknowledge the use of IBM Quantum services for this
work. The views expressed are those of the authors and do
not reflect the official policy or position of IBM or the IBM
Quantum team. This work is supported by the European
Research Council under project ERC-2018-ADG-835105
YoctoLHC, by the Spanish Research State Agency under
project PID2020–119632GB-I00, by Xunta de Galicia

(a)

(b)

FIG. 6. Momentum distribution with (a) isotropic and (b) anisotropic mediums for two-dimensional heavy quark thermalization. The
vertical axis represents qy; the horizontal axis represents qx. Heat maps at times t̃ ¼ 0, 0.5, 1.0, 1.5, 3.0 are presented.

FIG. 7. Elliptic flow over time steps using quantum simulation,
compared with analytical thermal equilibrium limit in Eq. (12).

ACCELERATED QUANTUM CIRCUIT MONTE CARLO … PHYS. REV. D 109, 076025 (2024)

076025-7



(Centro singular de investigacion de Galicia accreditation
2019-2022), and by European Union ERDF. W. Q. is
also supported by the Marie Sklodowska-Curie Actions
Postdoctoral Fellowships under Grant Agreement
No. 101109293.

APPENDIX A: NONRELATIVISTIC LIMIT
OF HEAVY QUARK THERMALIZATION

In the relativistic case, the Langevin dynamic, Eq. (1),
thermalizes the heavy quark, which results in a Boltzmann
distribution feqðx⃗; p⃗Þ ∝ expð−Eðp⃗Þ=TÞ with relativistic
dispersion relation Eðp⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

p
upon the coeffi-

cients satisfying Einstein’s relation,

Aðx⃗;p⃗;tÞpi¼
1

Eðp⃗Þ
�
Bijðx⃗;p⃗;tÞ

T
−
∂Bijðx⃗;p⃗;tÞ

∂Eðp⃗Þ
�
pj: ðA1Þ

In the nonrelativistic limit, one has a decomposition of the
kinetic energy and the mass termsEðp⃗Þ ≃ p⃗2=ð2MÞ þM, as
well as a simplified Einstein’s relation Api¼Bijpj=ðMTÞ
which results in a Maxwell-Boltzmann distribution feqðp⃗Þ ∝
expð−p⃗2=ð2MTÞÞ.
The realistic diffusion coefficients in multidimensional

space are complicated due to nontrivial off-diagonal terms
σxy, σxz, σyz. A set of diagonalized diffusion coefficients
σij ¼ diagðσxx; σyy; σzzÞ may be found with a simplified
medium profile. In this case, one has diagonalized coef-
ficient Bij ¼ 1

2
diagðσ2xx; σ2yy; σ2zzÞ as well. However, one

might still be interested in an anisotropic medium such that
σ2xx ≠ σ2yy ≠ σ2zz, which leads to an anisotropic Langevin
equation but with diagonalized terms only,

dpi ¼ −Apidtþ σiidWi; i ¼ x; y; z: ðA2Þ

With a proper choice of Einstein’s relation augmented by a
set of anisotropic parameters χ2x; χ2y; χ2z ∈Rþ such that

A ¼ σ2xxχ
2
x

2MT
¼ σ2yyχ

2
y

2MT
¼ σ2zzχ

2
z

2MT
; ðA3Þ

the Langevin equation, Eq. (A2), approaches a generic
anisotropic thermal distribution at the nonrelativistic limit,
in terms of the momentum p⃗, heavy quark mass M,
temperature T, and the anisotropic parameters χ2i ,

feqðp⃗Þ ∝ exp

�
−
χ2xp2

x þ χ2yp2
y þ χ2zp2

z

2MT

�
: ðA4Þ

One may rescale the above equation into dimensionless
variables to simplify the discussions and simulations. By
dividing the Langevin equation, Eq. (A2), by heavy quark
mass M and use Einstein’s relation Eq. (A3), we can
reformulate the evolution as

dqi ¼ −qidt̃þ dW̃i; i ¼ x; y; z; ðA5Þ
with new and dimensionless momentum qi ¼ pi=M, time
dt̃ ¼ Adt, and stochastic term dW̃i ∼N ð0; 2Tdt̃=ðMχ2i ÞÞ.

APPENDIX B: QUANTUM ARITHMETIC GATES

We show the basic quantum arithmetic gates used in
constructing the quantum circuits for Monte Carlo simu-
lations in Fig. 8:
(a) Quantum adder/subtractor U�

addjyi ⊗ jxi ¼ jyi ⊗
ðjxi � jyiÞ on arbitrary states jxi and jyi,

(b) Quantum adder/subtractor U�
add;cjxi ¼ jx� ci on a

state jxi and a constant integer c,
(c) Quantum multiplier or bit-shifting unitaryU�

shift;djxi ¼
jx=2�di on a state jxi and a shift integer d.

Note all these three gates follow the integer module N ¼ 2n

arithmetics where n is the number of qubits for register jxi,
and they are responsible for constructing UA gates in
Eq. (10). To compensate for float-number quantum multi-
plication, we find it necessary to prepend the bit-shifting
gate with integers and then average. In the case of
d ¼ 1, jx=2i≡ ðUþ

shift;1jxi þ Uþ
shift;1jxþ 1iÞ=2.

APPENDIX C: QUANTUM AMPLITUDE
ESTIMATION CIRCUITS

We review traditional techniques to perform quantum
amplitude estimation (QAE) using quantum phase estima-
tion (QPE) [33,59] with auxiliary qubits and the QPE-free
estimation methods without extra qubits [36,37,64]. In the
simulation of heavy quark thermalization, the system at
time t̃ is characterized as a momentum state jψin stored in a
register with a number of n qubits,

jψin ¼
X2n−1
i¼0

ffiffiffiffiffiffiffiffiffi
PðiÞ

p
jiin;

X2n−1
i¼0

PðiÞ ¼ 1: ðC1Þ

The desired quantum amplitude is then loaded by an oracle
AF∶ jiinj0i → jiinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðiÞp j0i þ ffiffiffiffiffiffiffiffiffi

FðiÞp j1iÞ acting on
the state and an ancilla qubit,

FIG. 8. Schematics of quantum arithmetic gate for (a, b)
additions and (c) multiplications.
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AFjψinj0i ¼
X2n−1
i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðiÞ

p ffiffiffiffiffiffiffiffiffi
PðiÞ

p
jiinj0i

þ
X2n−1
i¼0

ffiffiffiffiffiffiffiffiffi
FðiÞ

p ffiffiffiffiffiffiffiffiffi
PðiÞ

p
jiinj1i

¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p X2n−1
i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − FðiÞÞPðiÞp
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p jiinj0i

þ ffiffiffi
a

p X2n−1
i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðiÞPðiÞp

ffiffiffi
a

p jiinj1i

¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
jψ0inj0i þ

ffiffiffi
a

p jψ1inj1i
¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
jψ�

0inþ1 þ
ffiffiffi
a

p jψ�
1inþ1

¼ jψ�inþ1; ðC2Þ

where a ¼ P
2n−1
i¼0 PðiÞFðiÞ ¼ hFi is the expectation value

of certain physics quantity F that we are interested in, and
new basis jψ�

0inþ1 and jψ�
1inþ1 are used. Notably, although

the function F is not restricted to a domain ½0; 2n − 1�
and an image of [0, 1], one can always rescale the target F
to be within [0, 1], by applying affine transformation that
preserves collinearity.
To estimate this a, Grover’s operator is defined as Q ¼

AFS0A
†
FSψ1

where the sign-flipping operators are S0 ¼
I − 2j0inþ1h0jnþ1 and Sψ1

¼ I − 2jψ�
1inþ1hψ�

1jnþ1. We can
also rewrite Grover’s operator as applications of two
unitaries,Q ∼Uψ�Uψ�

0
, in a similar way as Grover’s search,

such that,

Q ¼ ð−Rψ�Þð−Rψ�
0
Þ ¼ Rψ�Rψ�

0

¼ ð2jψ�inþ1hψ�jnþ1 − Inþ1ÞRψ�
0

¼ AFð2jψinj0ih0jhψ jn − Inþ1ÞA†
F|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Diffusion

Rψ�
0|{z}

Phase

; ðC3Þ

where the first part Rψ�
0
¼ 2jψ�

0ihψ�
0j − I is the phase/

reflection oracle, and the second part is the diffusion
oracle. With a geometrically increasing powers of Qk on

m ancilla qubits, one can amplify and estimate the
desired amplitude a using the QPE circuit [Fig. 9(a)] as
ā ¼ yπ=ð2mÞ for y∈ f0; 1;…; 2m − 1g on the measured
qubits. The estimation of ā has an error ϵ ¼ ja − āj ¼
Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1 − aÞp
=ð2mÞÞ [36].

The amplitude can also be estimated by applying QkAF
operations, without the need for ancilla qubits. Let
a ¼ sin2ðθaÞ, and we observe that

QkAFjψinj0i ¼ cosðð2kþ 1ÞθaÞjψ0ij0i
þ sinðð2kþ 1ÞθaÞjψ1ij1i; ðC4Þ

where the probability of measuring j1i gives
sin2ðð2kþ 1ÞθaÞ. By selecting different values of k and
combining their outcomes, one could also find the
estimated value of a with the same estimation error as
the QPE. The specific choice of k varies in each algorithm
[36,37,63–65], and we provide a general circuit in Fig. 9(b)
for those QPE-free approaches.
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