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We investigate the small-mass asymptotics of a class of massive d-dimensional angular integrals. These
integrals arise in a wide range of perturbative quantum field theory calculations. We derive expressions
characterizing their behavior in the vicinity of the massless limit for all cases with up to two denominators.
The results established in this work are applicable to phase-space calculations where an integration over
virtuality including the massless limit is required.
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I. INTRODUCTION

Angular integrals [1–5] are ubiquitous to phase-space
calculations in perturbative quantum field theory [6–20].
Examples from QCD include theoretical predictions for the
Drell-Yan (DY) process [12,21–24], deep-inelastic scatter-
ing (DIS) [25,26], semi-inclusive deep-inelastic scattering
(SIDIS) [27,28], prompt-photon production [29], hadron-
hadron scattering [30], heavy-quark production [3], and
single-spin asymmetries [31,32].
When massless particles are present, the angular inte-

gration contains collinear singularities. To regularize these
divergencies, the calculations are performed in d ¼ 4 − 2ε
dimensions [33,34].
Following the notation from Refs. [4,5] we define the

angular integral with two denominators as

IðmÞ
j1;j2

ðv12;v11;v22;εÞ≡
Z

dΩk
1

ðv1 ·kÞj1ðv2 ·kÞj2
ð1Þ

with normalized d-vectors

k ¼ ð1;…; sin θ1 cos θ2; cos θ1Þ;
v1 ¼ ð1; 0d−2; β1Þ;
v2 ¼ ð1; 0d−3; β2 sin χ; β2 cos χÞ;

kinematic invariants vij ¼ vi · vj, and integration measure
dΩk¼dθ1 sin1−2ε θ1dθ2 sin−2ε θ2. The denominator powers
j1, j2 are assumed to be integers in the following.

The superscript m ¼ 0, 1, 2 characterizes the number of
nonzero masses v11, v22. For convenience, zero indices and
masses will be dropped from the notation, i.e., we will write

for example Ið1Þj1
ðv11; εÞ instead of Ið1Þj1;0

ðv12; v11; v22; εÞ and
Ið0Þj1;j2

ðv12; εÞ instead of Ið0Þj1;j2
ðv12; 0; 0; εÞ. By partial fraction

decomposition a wide range of phase-space integrals can be
cast into the form of Eq. (1) [5,25].
In this manuscript we investigate the asymptotic behav-

ior of integrals of the form IðmÞ
j1;j2

ðv12; v11; v22; εÞ in the limit
of one or both masses going to zero. In principle, the
expansion of all two-denominator angular integrals with
integer powers j1, j2 is known to all orders in the dimen-
sional regularization parameter ε [3–5]. However, these
expansions are not always sufficient, since in general the
ε-expansion does not commute with the massless limit.
As an illustration of the potential issue occurring

in the massless limit, let us look at the double-massive
angular integral with j1 ¼ j2 ¼ 1. It has the well-known
ε-expansion [1,3–5],

Ið2Þ1;1ðv12; v11; v22; εÞ ¼
πffiffiffiffi
X

p log

�
v12 þ

ffiffiffiffi
X

p

v12 −
ffiffiffiffi
X

p
�
þOðεÞ; ð2Þ

with X ¼ v212 − v11v22.
One readily sees that the massless limit v11 → 0 is ill-

defined at the level of the ε-expansion, since v12 −
ffiffiffiffi
X

p
approaches zero. This is a problem if we were to consider
an integral of the form,

Z
vmax
11

0

dv11v−1−ε11 Ið2Þ1;1ðv12; v11; v22; εÞ: ð3Þ

Here, we would like to replace Ið2Þ1;1ðv12; v11; v22; εÞ by its
ε-expansion under the integral and employ the distribu-
tional identity [35–37],
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v−1−nε11 ¼ −
1

nε
δðv11Þ þ

X∞
n¼0

ð−nεÞn
n!

�
lognv11
v11

�
þ
; ð4Þ

on v−1−ε11 . However, we cannot use the form of Eq. (2) due
to its divergence in the v11 → 0 limit. Instead, to properly
perform the integration one has to extract the asymptotic

behavior of Ið2Þ1;1ðv12; v11; v22; εÞ near v11 ¼ 0 beforehand,
resulting in additional powers of v−ε11 entering Eq. (4). It is
these v−ε11 terms which spoil the commutativity of the
ε-expansion with the massless limit.
The aim of this work is to provide ε-expansions for all

massive angular integrals with up to two propagators,
where the asymptotic behavior in the massless limit is
manifest and which are hence suitable for usage within
integrals of the form (3).
Using recursion relations derived from integration-by-

parts (IBP) identities, the powers j1 and j2 can always be
reduced to the cases j1;2 ¼ 0 or 1. The explicit form of the
required recursion relations can be obtained from Sec. 3.3.4
of [5]. Hence, it suffices to consider the master integrals

Ið1Þ1 ðv11; εÞ, Ið1Þ1;1ðv12; v11; εÞ, and Ið2Þ1;1ðv12; v11; v22; εÞ.
The remainder of this manuscript is organized as follows.

In Sec. II. we recall the two-point splitting lemma which we
subsequently use to establish the asymptotic behavior of
the master integrals in the massless limits v11, v22 → 0.
Section III. concludes the paper.

II. ASYMPTOTIC BEHAVIOR
IN THE MASSLESS LIMIT

The main tool for the extraction of the asymptotic
behavior will be the two-point splitting lemma [5].
Using the notation

Δkðvi; vjÞ≡ 1

vi · kvj · k
; ð5Þ

it states that for any two vectors v1 and v2, we can
choose any scalar λ and construct the linear combination
v3 ¼ ð1 − λÞv1 þ λv2 to obtain the identity,

Δkðv1; v2Þ ¼ λΔkðv1; v3Þ þ ð1 − λÞΔkðv2; v3Þ: ð6Þ

This allows us to express a given angular integral in
terms of other angular integrals where a new auxiliary
vector v3 has been inserted. By choosing appropriate values
for λ, the vector v3 can be given desirable properties, most
importantly being massless. This idea has been fruitfully
employed in reference [5] for the calculation of the all-
order ε-expansion of the double-massive integral.

A. Asymptotic form of the massive
one-denominator integral

We start with the investigation of the massive one-
denominator master integral

Ið1Þ1 ðv11; εÞ ¼
Z

dΩk
1

v1 · k
: ð7Þ

Its ε-expansion is [3–5]

Ið1Þ1 ðv11; εÞ ¼
πffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v11
p log

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v11
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p
�
þOðεÞ; ð8Þ

which is singular in the v11 → 0 limit.
To extract the massless limit from Eq. (7) explicitly, we

define the auxiliary “zero” vector v0 ¼ ð1; 0d−1Þ with
1=ðv0 · kÞ ¼ 1 and set v2 ¼ ð1 − λÞv0 þ λv1. Demanding
v2 to be massless, i.e., v22 ¼ 0, we find λ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p
.

We observe that v1 indeed approaches v2 in the limit
v11 → 0. A graphical illustration of this construction is
given in Fig. 1.
The two-point splitting lemma (6) provides us with the

identity

Δkðv0; v1Þ ¼ λΔkðv0; v2Þ þ ð1 − λÞΔkðv1; v2Þ: ð9Þ
Integrating Eq. (9) and substituting the value for λ we get

Ið1Þ1 ðv11; εÞ ¼
Ið0Þ1 ðεÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p −
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p Ið1Þ1;1ðv12; v11; εÞ:

ð10Þ

FIG. 1. Sketch illustrating the splitting of the massive one-
denominator integral in Eq. (9). The figure shows the slice x0 ¼ 1
of Minkowski space, the blue circle indicates the intersection
with the light-cone where v2 ¼ 0.
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Hence, we have transformed the massive one-denomi-
nator integral into the sum of a massless one-denominator
integral and a single-massive two-denominator integral,
where the coefficient of the latter vanishes in the massless
limit. It is Ið0Þ1 ðεÞ ¼ −π=ε and the ε-expansion of the single-
massive two-denominator integral is [3–5]

Ið1Þ1;1ðv12; v11; εÞ ¼
π

v12

�
v11
v212

�
ε
�
−
1

ε
− 2εðLi2ðωþ

12Þ

þ Li2ðω−
12ÞÞ þOðε2Þ

�
; ð11Þ

with ω�
12 ¼ 1 − v12=ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p Þ. For the one-
denominator kinematics we have v12 ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p
,

ωþ
12 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p
=ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v11
p Þ, and ω−

12 ¼ 0.
Plugging the ε-expansions into Eq. (10), we receive

Ið1Þ1 ðv11;εÞ ¼ −
πffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v11
p

�
1

ε
þ v−ε11

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v11

p 	
2ε

×

�
−
1

ε
− 2εLi2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v11

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v11
p

�
þOðε2Þ

�

:

ð12Þ

In this form the asymptotic behavior for v11 → 0 is explicit.

We observe that Ið1Þ1 ðv11; εÞ has a part constant in the
massless limit and a part proportional to v−ε11 . It is the latter
that causes the logarithmic divergence in Eq. (8). Note that
both parts have a 1=ε pole which cancels between the two
for finite v11.

B. Asymptotic form of the single-massive
two-denominator integral

The second master integral we look at, is the single-
massive two-denominator integral,

Ið1Þ1;1ðv12; v11; εÞ ¼
Z

dΩk
1

v1 · kv2 · k
: ð13Þ

We have already encountered its ε-expansion in Eq. (11).
We observe that the expansion is singular in the limit
v11 → 0 because the variable ω−

12 diverges.
To extract the asymptotic behavior of the single-massive

integral for small masses, we want to separate off its
massless limit. To this end we define the auxiliary vector
v3 ¼ ð1 − λÞv1 þ λv2. For v3 to be massless, i.e., v33 ¼ 0,
we set λ ¼ v11=ðv11 − 2v12Þ. A graphical illustration of the
splitting construction is given in Fig. 2.

Upon integration of the associated two-point splitting
identity, which is of the form of Eq. (6), we obtain

Ið1Þ1;1ðv12; v11; εÞ ¼
2v12I

ð0Þ
1;1ðv23; εÞ

2v12 − v11
þ v11I

ð1Þ
1;1ðv13; v11; εÞ
v11 − 2v12

;

ð14Þ

with the scalar products v13 ¼ v11v12=ð2v12 − v11Þ and
v23 ¼ 2v212=ð2v12 − v11Þ.
Hence, we have transformed the single-massive

two-denominator integral into the sum of a massless
two-denominator integral and a single-massive two-
denominator angular integral, where the coefficient of
the latter vanishes in the massless limit.
The ε-expansion of the massless two-denominator inte-

gral reads [3–5],

Ið0Þ1;1ðv12;εÞ¼π

�
v12
2

�
−1−ε

�
−
1

ε
−εLi2

�
1−

v12
2

�
þOðε2Þ

�
;

ð15Þ

for the expansion of Ið1Þ1;1ðv13; v11; εÞ we can again use
Eq. (11). Plugging these into (14), we receive

Ið1Þ1;1ðv12; v11; εÞ ¼ −
2π

v12

�
v−ε12 ð2νÞε

�
1

ε
þ ε

�
Li2

�
1 −

v12
2ν

��
þOðε2Þ

�

−v−ε11 ð2νÞ2ε
�
1

2ε
þ εðLi2ðωþ

13Þ þ Li2ðω−
13ÞÞ þOðε2Þ

�

; ð16Þ

FIG. 2. Sketch illustrating the splitting of the single-massive
two-denominator integral in Eq. (14). The figure shows the slice
x0 ¼ 1 of Minkowski space, the blue circle indicates the
intersection with the light cone where v2 ¼ 0.
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with ω�
13 ¼ ðv12ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v11

p Þ − v11Þ=ð2v12 − v11Þ and
the abbreviation ν ¼ 1 − v11=ð2v12Þ. In the massless limit
ω�
13 approaches v12 respectively 0, and ν goes to 1.
Again we have found a form of the ε-expansion, where

the asymptotic behavior for v11 → 0 is explicit. As for the
one-denominator integral, we have a finite part and a part
proportional to v−ε11 . Note that Eq. (16) trivially reduces to
Eq. (15) for v11 ¼ 0, something that could not be easily
seen from Eq. (11).

C. Asymptotic form of the double-massive
two-denominator integral

Finally, we consider the double-massive two-
denominator master integral,

Ið2Þ1;1ðv12; v11; v22; εÞ ¼
Z

dΩk
1

v1 · kv2 · k
: ð17Þ

We have already discussed the divergent behavior of its
ε-expansion in the introduction, see Eq. (2).
Using two-point splitting, the double-massive integral

can be expressed as a sum of single-massive integrals [5].
For the double-massive integral, we have to consider the
cases of one or both masses approaching zero. To treat both
limits together we will employ a splitting that treats v1 and
v2 symmetrically and directly extracts the double mass-
less limit.
We define two auxiliary vectors v3 ¼ ð1 − λÞv1 þ λv2

and v4 ¼ μv1 þ ð1 − μÞv2. Employing the two-point split-
ting lemma (6) first on Δkðv1; v2Þ inserting v3 and
subsequently on Δkðv2; v3Þ inserting v4, we obtain the
splitting

Δkðv1; v2Þ ¼ λΔkðv1; v3Þ þ μΔkðv2; v4Þ
þ ð1 − λ − μÞΔðv3; v4Þ: ð18Þ

To make v3 and v4 massless as well as coinciding with v1
respectively v2 in the respective massless limit, we choose

λ ¼ v12 − v11 −
ffiffiffiffi
X

p

2v12 − v11 − v22
; μ ¼ v12 − v22 −

ffiffiffiffi
X

p

2v12 − v11 − v22
; ð19Þ

with X ¼ v212 − v11v22. The scalar products of the auxiliary
vectors are v33 ¼ v44 ¼ 0, v13 ¼ −λ

ffiffiffiffi
X

p
, v24 ¼ −μ

ffiffiffiffi
X

p
,

and v34 ¼ 2X=ð2v12 − v11 − v22Þ. Note that both v13 and
v24 vanish in the respective massless limits. A graphical
illustration of the splitting is given in Fig. 3.
Upon integration of Eq. (18) we obtain,

Ið2Þ1;1ðv12; v11; v22; εÞ ¼
πffiffiffiffi
X

p ½v34Ið0Þ1;1ðv34; εÞ

− v13I
ð1Þ
1;1ðv13; v11; εÞ

− v24I
ð1Þ
1;1ðv24; v22; εÞ�: ð20Þ

This identity splits the double-massive integral into two
single-massive integrals and a massless integral. For these
we can use the ε-expansions from Eqs. (11) and (15),
resulting in the representation of the double-massive
integral,

Ið2Þ1;1ðv12; v11; v22; εÞ ¼
πffiffiffiffi
X

p
�
2

�
v34
2

�
−ε
�
−
1

ε
− εLi2

�
1 −

v34
2

�
þ ε2f0ðv34Þ þOðε3Þ

�

−v−ε11

�
v11
v13

�
2ε
�
−
1

ε
− 2εðLi2ðωþ

13Þ þ Li2ðω−
13ÞÞ þ ε2f1ðωþ

13;ω
−
13Þ þOðε3Þ

�

−v−ε22

�
v22
v24

�
2ε
�
−
1

ε
− 2εðLi2ðωþ

24Þ þ Li2ðω−
24ÞÞ þ ε2f1ðωþ

24;ω
−
24Þ þOðε3Þ

�

; ð21Þ

where ω�
ij ¼ 1 − vij=ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vii

p Þ. The kinematic variables X, v13, v24, and v34 are defined in the text above; they all
depend on v12, v11, and v22. Importantly v11=v13 → 2 for v11 → 0 and analogously v22=v23 → 2 for v22 → 0.

FIG. 3. Sketch illustrating the splitting of the double-massive
two-denominator integral in Eq. (18). The figure shows the slice
x0 ¼ 1 of Minkowski space, the blue circle indicates the
intersection with the light cone where v2 ¼ 0.
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The asymptotics of the double-massive integral is
manifest in Eq. (21), we have a part constant in both
massless limits, a part proportional to v−ε11 , and a part
proportional to v−ε22 . Note that the 1=ε poles cancel between
the parts if we expand in ε for finite v11 and v22. For
v22 ¼ 0 we immediately recover Eq. (16).
The full expressions for the functions f0;1 parametrizing

the order ε2 parts of the massless respectively single-
massive two-denominator integral can be found in the
Appendix. The order ε2 is included here, since applying the
expansion (4) for both v11 and v22 may result in a 1=ε2 pole.

In the limit v11 → 0, we have ωþ
13 → 1 and ω−

13 → 0.
Analogously, in the limit v22 → 0, it is ωþ

24 → 1 and
ω−
24 → 0. Hence, a double massless pole term

δðv11Þδðv22Þ=ε2 will receive a contribution from the ε2

coefficient function in the double massless limit. The
specific value required for f1 is f1ð1; 0Þ ¼ −2ζ3, where
ζ3 denotes Apéry’s constant ζ3 ¼

P∞
n¼1 1=n

3.
If one is interested in only a single massless limit, say

v11 → 0while v22 stays finite, we may expand v−ε22 allowing
for some explicit simplifications of logarithms. In this case,
we find the representation

Ið2Þ1;1ðv12; v11; v22; εÞ ¼
πffiffiffiffi
X

p
�
−
1

ε
− 2 log ð2νÞ þ log

�
2v12ðv12 þ

ffiffiffiffi
X

p Þ
v22

− v11

�
þ 2ε

�
Li2ðωþ

24Þ

þ Li2ðω−
24Þ þ Li2

�
1 −

2v12 − v11 − v22
X

�
þ 1

4
log2

�
v22
v224

��
þOðε2Þ þ v−ε11

�
1

ε
þ 2 log ð2νÞ

þ 2εðLi2ðωþ
13Þ þ Li2ðω−

13Þ þ log2ð2νÞÞ þOðε2Þ
�


; ð22Þ

with the abbreviation ν ¼ 1 − v11=ð2v14Þ, where v14 ¼ffiffiffiffi
X

p ðv12 − v11 þ
ffiffiffiffi
X

p Þ=ð2v12 − v11 − v22Þ. The asymptotic
form for v22 → 0 at finite v11 is the same upon interchang-
ing v11 ↔ v22.

III. CONCLUSION

We have established ε-expansions with manifest small-
mass asymptotics for all massive angular master integrals
with up to two denominators. The main results of this paper
are the asymptotic expansions of the following:

(i) Massive integral Ið1Þ1 in Eq. (12);

(ii) single-massive integral Ið1Þ1;1 in Eq. (16);

(iii) double-massive integral Ið2Þ1;1 in Eq. (21).
By means of recursion relations derived from IBP

identities these results extend to all two-denominator
angular integrals with integer coefficients. In the construc-
tion of the asymptotic expansion the two-point splitting
lemma proved to be an immensely useful tool. It allowed
for the extraction of the massless limits in terms of suitable
massless angular integrals.
The presented method based on the two-point splitting

lemma straightforwardly generalizes to angular integrals
with more than two denominators. In these cases, splitting
can be successively performed on pairs of denominators.
However, for massive angular integrals with three and more
linearly independent denominators, i.e., denominators that
are not reducible to two-denominator integrals by partial
fractioning, ε-expansions are not known in the literature at
present. Once these become available, the analysis pre-
sented in this work can be extended.
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APPENDIX: ORDER ε2 COEFFICIENTS OF THE
DOUBLE-MASSIVE INTEGRAL

The explicit form of the order ε2 coefficient functions f0
and f1 of the massless respectively single-massive two-
denominator integrals appearing in Eq. (21) are

f0ðvÞ¼Li3

�
1−

2

v

�
−Li2

�
1−

v
2

�
log

v
2
−
1

6
log3

v
2

ðA1Þ

and

f1ðωþ;ω−Þ ¼ 2S1;1;1ðωþ;ω−Þ − 2Li3ðωþÞ

þ 2Li3

�
ωþ

ωþ − 1

�
− 2Li2ðωþÞ logð1 − ωþÞ

−
1

3
log3ð1 − ωþÞ þ ðωþ ↔ ω−Þ; ðA2Þ

where S1;1;1 denotes the double Nielsen polylogarithm [5]

S1;1;1ðx; yÞ ¼
Z

1

0

dt
t
logð1 − xtÞ logð1 − ytÞ: ðA3Þ
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This generalized polylogarithm of weight 3 and depth 2 can be expressed in terms of classical polylogarithms [38,39]. For
0 < y < x < 1 it holds that,

S1;1;1ðx; yÞ ¼ −Li3ð1 − xÞ − Li3ð1 − yÞ þ Li3

�
y
x

�
þ Li3

�
1 − x
1 − y

�
− Li3

�
yð1 − xÞ
xð1 − yÞ

�
− Li2ðyÞ logð1 − xÞ

þ Li2ð1 − xÞ logð1 − yÞ þ Li2

�
y
x

�
log

�
1 − x
1 − y

�
−
1

2
log2ð1 − yÞ log

�
y
x

�
þ π2

6
logð1 − yÞ þ ζ3: ðA4Þ

The specific value needed for the double massless limit is S1;1;1ð1; 0Þ ¼ 0, which can be trivially read off from the integral
representation (A3).
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