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Asymptotic behavior of angular integrals in the massless limit
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We investigate the small-mass asymptotics of a class of massive d-dimensional angular integrals. These
integrals arise in a wide range of perturbative quantum field theory calculations. We derive expressions
characterizing their behavior in the vicinity of the massless limit for all cases with up to two denominators.
The results established in this work are applicable to phase-space calculations where an integration over

virtuality including the massless limit is required.
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I. INTRODUCTION

Angular integrals [1-5] are ubiquitous to phase-space
calculations in perturbative quantum field theory [6-20].
Examples from QCD include theoretical predictions for the
Drell-Yan (DY) process [12,21-24], deep-inelastic scatter-
ing (DIS) [25,26], semi-inclusive deep-inelastic scattering
(SIDIS) [27,28], prompt-photon production [29], hadron-
hadron scattering [30], heavy-quark production [3], and
single-spin asymmetries [31,32].

When massless particles are present, the angular inte-
gration contains collinear singularities. To regularize these
divergencies, the calculations are performed in d = 4 — 2¢
dimensions [33,34].

Following the notation from Refs. [4,5] we define the
angular integral with two denominators as

m 1
Iﬁl-;z(vu’vll’vzz;&.) E/ko (1)1 .k)/l (Uz.k)jz (1)

with normalized d-vectors

k=(1,...,8in0; cosB,,cosb,),
U = (1’01!—2’ﬂ1)7
vy = (1,043, fy siny, fp cos y),

kinematic invariants v;; = v; - v, and integration measure
dQ, =d6, sin'~2¢9,d0,sin"**0,. The denominator powers
Jj1» Jjo» are assumed to be integers in the following.
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The superscript m = 0, 1, 2 characterizes the number of
nonzero masses vy, V. For convenience, zero indices and

masses will be dropped from the notation, i.e., we will write
j
I;??jz (v12; €) instead of IE»?L»Z (v12,0,0; ). By partial fraction
decomposition a wide range of phase-space integrals can be
cast into the form of Eq. (1) [5,25].

In this manuscript we investigate the asymptotic behav-
ior of integrals of the form I;'I" 4 (012, 011, 03 €) in the limit
of one or both masses going to zero. In principle, the
expansion of all two-denominator angular integrals with
integer powers j;, j, is known to all orders in the dimen-
sional regularization parameter ¢ [3-5]. However, these
expansions are not always sufficient, since in general the
e-expansion does not commute with the massless limit.

As an illustration of the potential issue occurring
in the massless limit, let us look at the double-massive
angular integral with j; = j, = 1. It has the well-known
e-expansion [1,3-5],

for example 1 })(vl 15 €) instead of Iﬁ.ll?o(vlz, Vi1, Vs €) and

2 T
15,3(012’011, vy €) = —=log

v e
X

Uiy — \/)_() " 0(8), (2)

with X = v%z — V1100,

One readily sees that the massless limit v;; — 0 is ill-
defined at the level of the e-expansion, since v, — VX
approaches zero. This is a problem if we were to consider
an integral of the form,

vmax
1 —l-¢ (2) .
/ dvg oy 11,1(1112, V11, U2} €). (3)
0

. 2 .
Here, we would like to replace 1 (1,3(”127 Vi1, Vs €) by fits
e-expansion under the integral and employ the distribu-
tional identity [35-37],
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—1—ne _
I =

2

on v7{~¢. However, we cannot use the form of Eq. (2) due
to its divergence in the v;; — O limit. Instead, to properly
perform the integration one has to extract the asymptotic

behavior of I (123(1)12, V11, Uya; €) near vy = 0 beforehand,
resulting in additional powers of v|} entering Eq. (4). It is
these v]; terms which spoil the commutat1v1ty of the
e-expansion with the massless limit.

The aim of this work is to provide e-expansions for all
massive angular integrals with up to two propagators,
where the asymptotic behavior in the massless limit is
manifest and which are hence suitable for usage within
integrals of the form (3).

Using recursion relations derived from integration-by-
parts (IBP) identities, the powers j; and j, can always be
reduced to the cases j; , = 0 or 1. The explicit form of the
required recursion relations can be obtained from Sec. 3.3.4
of [5]. Hence, it suffices to consider the master integrals

1 1 2
1V (vy55€), 1) (012, v115€), and 1] (015, 011, 0303 ).

The remainder of this manuscript is organized as follows.
In Sec. II. we recall the two-point splitting lemma which we
subsequently use to establish the asymptotic behavior of
the master integrals in the massless limits v, vy, — O.
Section III. concludes the paper.

II. ASYMPTOTIC BEHAVIOR
IN THE MASSLESS LIMIT

The main tool for the extraction of the asymptotic
behavior will be the two-point splitting lemma [5].
Using the notation

1

A )=,
k(vl vj) Ui'kUj'k

(5)

it states that for any two vectors v; and v,, we can
choose any scalar 1 and construct the linear combination
= (1 = 2)v; + Av, to obtain the identity,

Ar(v1,v2) = A (vy, v3) + (1 = A)Ap(v2,v3).  (6)

This allows us to express a given angular integral in
terms of other angular integrals where a new auxiliary
vector v3 has been inserted. By choosing appropriate values
for A, the vector v5 can be given desirable properties, most
importantly being massless. This idea has been fruitfully
employed in reference [5] for the calculation of the all-
order e-expansion of the double-massive integral.

A. Asymptotic form of the massive
one-denominator integral

We start with the investigation of the massive one-
denominator master integral

1
Bone) = [ aou—. )

Its e-expansion is [3-5]

™ 1+VT-vy
() oo ®

which is singular in the »v;; — 0 limit.

To extract the massless limit from Eq. (7) explicitly, we
define the auxiliary “zero” vector vy = (1,0,_;) with
1/(vg-k) =1 and set v, = (1 — A)vg + Av;. Demanding
v, to be massless, i.e., vy, =0, we find A = 1//1 — vy;.
We observe that v; indeed approaches v, in the limit
v1; — 0. A graphical illustration of this construction is
given in Fig. 1.

The two-point splitting lemma (6) provides us with the
identity

1
1(1)(”11§€>:

Ar(vg, v1) = A (vg, v2) + (1 = A)Ap(vy, v3). (9)

Integrating Eq. (9) and substituting the value for 4 we get

\/1—7_)11
VAT

(0)
I, (e 1-—

Iﬂ(”lz, Vi1 €).

(10)

1.0r

0.5r

I 00f
-0.5r

-1.0r

-1.0 -0.5 0.0 0.5 1.0
Xd
FIG. 1. Sketch illustrating the splitting of the massive one-

denominator integral in Eq. (9). The figure shows the slice xy = 1
of Minkowski space, the blue circle indicates the intersection
with the light-cone where v> = 0.
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Hence, we have transformed the massive one-denomi-
nator integral into the sum of a massless one-denominator
integral and a single-massive two-denominator integral,
where the coefficient of the latter vanishes in the massless
limit. Itis / go) (¢) = —n /e and the e-expansion of the single-
massive two-denominator integral is [3-5]

(1) . 7 (o)1 —
1 018 =— | — ) |———2¢(Li
1,1(7)12 V113 €) . (”%2) { c e(Lir(w)3)

T Lip(wiy)) + 0<82>], (1)

with @ =1-wv,/(1£/T—wv). For the one-
denominator kinematics we have v, =1 —+/1 — vy,
Cl)i; = 2\/1 — 1)11/(] —+ \/] — ’Ull), and 0)1_2 =0.

Plugging the e-expansions into Eq. (10), we receive

1 T 1 e
I(l)(vll;8):— 1_1}11 {g—f—’[]ll(]—f— 1—’1)11)28

« [_é el (i\l/%) 4 0(82)] }
(12

In this form the asymptotic behavior for v;; — 0 is explicit.

We observe that 1 (11>(v1 1;€) has a part constant in the
massless limit and a part proportional to v7;. It is the latter
that causes the logarithmic divergence in Eq. (8). Note that
both parts have a 1/e pole which cancels between the two
for finite v;.

B. Asymptotic form of the single-massive
two-denominator integral

The second master integral we look at, is the single-
massive two-denominator integral,

1
IETI)(UIZlel;g):/kom. (13)

We have already encountered its e-expansion in Eq. (11).
We observe that the expansion is singular in the limit
v1; = 0 because the variable w7, diverges.

To extract the asymptotic behavior of the single-massive
integral for small masses, we want to separate off its
massless limit. To this end we define the auxiliary vector
v3 = (1 = A)v; + Av,. For v; to be massless, i.e., v33 = 0,
we set A = vy /(v — 2v1). A graphical illustration of the
splitting construction is given in Fig. 2.

|

1.0F 1
05F 1
T 00f 1
=~

o
—05Ff 1
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—1.0f 1
~10  -05 00 05 1.0

Xd

FIG. 2. Sketch illustrating the splitting of the single-massive
two-denominator integral in Eq. (14). The figure shows the slice
xo =1 of Minkowski space, the blue circle indicates the
intersection with the light cone where »> = 0.

Upon integration of the associated two-point splitting
identity, which is of the form of Eq. (6), we obtain

0 1
Im(” v E) = 21}1215’1)(1}23;6) ”1115,1)(7/137 113 €)
e 2v1 = vy vy — 20

(14)

with the scalar products v,3 = vy;v15/(2v, — v1;) and
Vg3 = 21’%2/(21)12 - vy).

Hence, we have transformed the single-massive
two-denominator integral into the sum of a massless
two-denominator integral and a single-massive two-
denominator angular integral, where the coefficient of
the latter vanishes in the massless limit.

The e-expansion of the massless two-denominator inte-
gral reads [3-5],

0 v\l 1 _ v
15,3(91225):ﬂ<212> {—8—£L12<1—212> —|—(’)(82)],
(15)

for the expansion of I(lfl)(vm,vn;s) we can again use
Eq. (11). Plugging these into (14), we receive

2 1
1w oie) = =2 Loy e(Lia(1-52) ) + 0@

V12

e

() [i T e(Lip(@fy) + Lip(wp)) + W)} } (16)
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with @5 = (v;2(1 £ /T —=wy;) —v11)/(2v1 = vy;) and
the abbreviation v = 1 — v;;/(2v}5). In the massless limit
w7, approaches vy, respectively 0, and v goes to 1.

Again we have found a form of the e-expansion, where
the asymptotic behavior for v;; — 0 is explicit. As for the
one-denominator integral, we have a finite part and a part
proportional to 7. Note that Eq. (16) trivially reduces to
Eq. (15) for v;; = 0, something that could not be easily
seen from Eq. (11).

C. Asymptotic form of the double-massive
two-denominator integral

Finally, we consider the double-massive two-
denominator master integral,
2
15,1)(”12,1}11, 022§E) = /dgk vy kvy -k (17)

We have already discussed the divergent behavior of its
e-expansion in the introduction, see Eq. (2).

Using two-point splitting, the double-massive integral
can be expressed as a sum of single-massive integrals [5].
For the double-massive integral, we have to consider the
cases of one or both masses approaching zero. To treat both
limits together we will employ a splitting that treats »; and
v, symmetrically and directly extracts the double mass-
less limit.

We define two auxiliary vectors v3 = (1 —4)v; + Av,
and vy = pv, + (1 — u)v,. Employing the two-point split-
ting lemma (6) first on A (v;,v,) inserting v; and
subsequently on Ay(v,,v3) inserting v,, we obtain the
splitting

Ar(v1,v2) = A (v1, v3) + (V2 v4)
+ (1 =24 = p)A(v3, v4). (18)

To make v; and v, massless as well as coinciding with v,
respectively v, in the respective massless limit, we choose

012—”11—\/)_( 012—1}22—\/)?

= , h=_———-, 19
201 — vy — U ( )

A =
201, — vy — U

2) 7

vag\ ¢ 1 .
15,1(”127011,02225)Z\/)—({Z(%> [—;—ehz

1.0r 1
0.5+ 1
1 L J
3 0.0

0l
-0.5+ 1

I ¥ =0
-1.0r 1
10 -05 00 05 10

Xd
FIG. 3. Sketch illustrating the splitting of the double-massive

two-denominator integral in Eq. (18). The figure shows the slice
xo =1 of Minkowski space, the blue circle indicates the
intersection with the light cone where »> = 0.

with X = 92, — v}, v2,. The scalar products of the auxiliary
vectors are vy = vy =0, vy3 = —AVX, vy = —uvVX,
and V34 = 2X/(2’U12 — U1 — 1)22). Note that both V13 and
vy4 vanish in the respective massless limits. A graphical
illustration of the splitting is given in Fig. 3.

Upon integration of Eq. (18) we obtain,

2 T 0
I<1,1)(012, V11, Ui €) = \/—}—([03415.1)(034%)

- ”131511)(”13’1}11§€)
(v vmie)]. (20)

B

- 1]241

This identity splits the double-massive integral into two
single-massive integrals and a massless integral. For these
we can use the e-expansions from Egs. (11) and (15),
resulting in the representation of the double-massive
integral,

<1 _ %) 4 2 fo(vs) + (9(83)]

ot (—) - [—3 —e(Lip(w) + Lis (@) + 1 (@, @5;) + 0<e3>]

V13 £
2e 1
03t (22) |4 - 2etlistof) + Lisws) + 1 @0z + 0@ J @)

where a)i =1-wv;;/(1£+/1—v;). The kinematic variables X, v;3, v54, and v, are defined in the text above; they all
depend on v;,, vy, and v,,. Importantly v;/v;3 — 2 for v;; = 0 and analogously v,,/v,3 — 2 for vy, — 0.
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The asymptotics of the double-massive integral is
manifest in Eq. (21), we have a part constant in both
massless limits, a part proportional to v}, and a part
proportional to v3%. Note that the 1 /¢ poles cancel between
the parts if we expand in ¢ for finite »;; and v,,. For
v5, = 0 we immediately recover Eq. (16).

The full expressions for the functions f,, ; parametrizing
the order & parts of the massless respectively single-
massive two-denominator integral can be found in the
Appendix. The order & is included here, since applying the
expansion (4) for both v, and v,, may resultin a 1/&> pole.

|

b/ 1
Iﬁ(UlZv Vi1, U3 €) = X {_Z_ 2log (2v) + log (

2015(v12 + \/)_()

20— vy — Uy

In the limit v;; - 0, we have wj; > 1 and wp; — 0.

Analogously, in the limit vy — 0, it is w;; > 1 and
wy — 0. Hence, a double massless pole term
5(v11)8(v)/€* will receive a contribution from the &
coefficient function in the double massless limit. The
specific value required for f; is f;(1,0) = —2{3, where
{5 denotes Apéry’s constant {3 = > 1/ n.

If one is interested in only a single massless limit, say
vy; — 0 while vy, stays finite, we may expand v,5 allowing
for some explicit simplifications of logarithms. In this case,
we find the representation

- U11> +2e (Liz(w;t)

>—I—;¥log2 <U—§2>> + O(*) + vyt E +2log (2v)

V4

+ 2e(Liy(w}3) + Lis(w73) + log?(2v)) + (9(82)] }, (22)

with the abbreviation v =1—-v;;/(2v4), where v, =
VX (v, = vy + VX)/(2v15 = vy; — v,). The asymptotic
form for vy, — 0 at finite »;; is the same upon interchang-
ing V11 <> Uy

III. CONCLUSION

We have established e-expansions with manifest small-
mass asymptotics for all massive angular master integrals
with up to two denominators. The main results of this paper
are the asymptotic expansions of the following:

(i) Massive integral / 51) in Eq. (12);
(i1) single-massive integral Iglf in Eq. (16);

(iii) double-massive integral 1 Ezl) in Eq. (21).

By means of recursion relations derived from IBP
identities these results extend to all two-denominator
angular integrals with integer coefficients. In the construc-
tion of the asymptotic expansion the two-point splitting
lemma proved to be an immensely useful tool. It allowed
for the extraction of the massless limits in terms of suitable
massless angular integrals.

The presented method based on the two-point splitting
lemma straightforwardly generalizes to angular integrals
with more than two denominators. In these cases, splitting
can be successively performed on pairs of denominators.
However, for massive angular integrals with three and more
linearly independent denominators, i.e., denominators that
are not reducible to two-denominator integrals by partial
fractioning, e-expansions are not known in the literature at
present. Once these become available, the analysis pre-
sented in this work can be extended.
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APPENDIX: ORDER ¢? COEFFICIENTS OF THE
DOUBLE-MASSIVE INTEGRAL

The explicit form of the order &> coefficient functions f,
and f| of the massless respectively single-massive two-
denominator integrals appearing in Eq. (21) are

. 2 . v v 1 v
fo(v) =Li; (1 —;> —le<1—§> 10g5—610g35 (A1)
and
fl(ery CU—) = 2S],1.](0)+, Cl)_) - 2L13(a)+)

+
1) —2Li(w™) log(l — »™)

2Li
o

~Slogl(l—w') 4 (@ s 07). (A2

where S; ;| denotes the double Nielsen polylogarithm [5]

Suaa(ey) = [ log(l —x)log(1 =y1).  (A3)
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This generalized polylogarithm of weight 3 and depth 2 can be expressed in terms of classical polylogarithms [38,39]. For

0 <y < x < 1 it holds that,

Si1.1(x,y) = —Li3(1 = x) — Liz(1 — y) + Lis <y> + Li; (%) —Li; <M> —Liy(y) log(1 —x)

X

) (Y —x 1, y P
+ Lip(1 = x)log(1 —y) + Li, . log = ——log?(1 —y)log . +glog(1—y)+§3.

x(1-y)

; (A4)

The specific value needed for the double massless limit is S; ; ;(1,0) = 0, which can be trivially read off from the integral

representation (A3).
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