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In this paper we study the universal properties of the baryon chemical potential Fourier coefficients in
quantum chromodynamics. We show that by following a well-defined strategy, the Fourier coefficients can
be used to locate Yang-Lee edge singularities associated with chiral phase transition (and by extension with
the Roberge-Weiss) in the complex chemical potential plane. We comment on the viability of performing
this analysis using lattice QCD data.
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I. INTRODUCTION

Due to the sign problem, the lattice Monte Carlo
methods cannot directly probe QCD thermodynamics at
nonzero real values of the baryon chemical potential. One
thus has to utilize indirect approaches.1 One of them is the
evaluation of QCD thermodynamics at imaginary chemical
potential with the goal of either analytic continuation [4,5],
to the real axis or studying the analytic structure of the
QCD equation of state in the complex chemical potential
plane [6]. In this paper, we follow the latter path.
Consider the QCD equation of state at zero chemical

potential above the possible chiral critical point but below
the Roberge-Weiss (RW) phase transition [7,8], that is, at
temperatures in the range ðTc; TRWÞ. For physical quark
masses, the equation of state in this regime shows a
smooth transition from hadrons to quark and gluon
degrees of freedom. This transition is colloquially referred
to as the “QCD crossover.” The apparent smoothness of
the QCD crossover obscures nontrivial critical behavior at
complex values of the baryon chemical potential, where
the remnants of the critical point reside, known by the
name of Yang-Lee edge (YLE) singularities [9,10]. These
singularities are continuously connected to the associated
critical points [11–14]; when two YLE singularities merge
and pinch a physical axis of the corresponding

thermodynamic variable (for the case of the chiral critical
point, the baryon chemical potential), the critical point
with corresponding critical scaling emerges. Thus, locat-
ing and especially tracking the Yang-Lee edge singular-
ities as a function of temperature may reveal the existence
and the location of the QCD critical point.2 These
singularities can be treated as standard critical points,
with the exception that in contradistinction to standard
criticality, there is only one (not two) relevant variable,
and thus, there is only one independent critical exponent;
the edge critical exponent σYLE ¼ 1

δYLE
. The bootstrap

approach provides the most accurate estimate for the
value of the critical exponent σYLE ¼ 0.085ð1Þ [15]. It is
independent of the symmetry of the underlying univer-
sality class.
In this paper, using the universal properties of the YLE

singularities, we predict the asymptotic behavior of the
Fourier coefficients of the baryon chemical potential. In
contrast to the study in Ref. [16], our analysis is focused
on the crossover region Tc < T < TRW. Moreover, we
generalized and extended the earlier model study of
Ref. [17]. Our study utilizes a different and generic
technique supplemented by the information on the uni-
versal structure in the crossover region without reliance on
a particular model; in particular, this enabled us to
unambiguously identify the exact power-law suppression
factor of the Fourier coefficients. In the mean-field
approximation, our leading order result reduces to that
of Ref. [17].
Using this asymptotic result as a fitting prior allows us to

locate the YLE singularities in a low-energy QCD model.
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1Despite the recent developments in complex Langevin and
contour deformation methods (see e.g., Refs. [1–3]), direct
calculations at nonzero real baryon chemical potential are still
not practical.

2Mere presence of the YLE singularities does not necessitate
the existence of a critical point at finite temperature. For instance,
there are YLEs in the classic one-dimensional Ising model, but no
critical point for T > 0.
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The model calculations are done in both mean-field
approximation (in the mean field, σYLE ¼ 1

2
) and by

accounting for fluctuations in the local potential approxi-
mation of the functional renormalization group (FRG)
approach (in this case, the resulting critical exponent
σYLE ¼ 1

5
approximate better the actual value).

The outline of the paper is as follows. In Sec. II, we
discuss the Fourier coefficients and their asymptotic
behavior based on the universal properties. In Sec. III,
we apply our analysis to the low-energy model and
demonstrate that even with a limited number of the
Fourier coefficients, the position of the closest YLE
singularity to the imaginary axis can be accurately
extracted. We conclude with Sec. IV. Moreover, in
Appendixes, we discuss the finite size effects, the required
precision of calculating the baryon number at imaginary
values of the chemical potential to extract kth order Fourier
coefficient, and, finally, we comment on the numerical
quadrature method in computing the Fourier coefficients on
the available lattice QCD data.

II. FOURIER COEFFICIENTS

The QCD partition function along with thermodynamic
quantities derivable from it is periodic in baryon chemical
potential μ̂ ¼ μ=T,

Zðμ̂þ 2πiÞ ¼ Zðμ̂Þ: ð1Þ

This is why analyzing the data obtained for purely imagi-
nary values of baryon chemical potential is natural in terms
of the corresponding Fourier coefficients [7,8,18–22].
Specifically, from a lattice QCD perspective, it is conven-
ient to compute the Fourier transformation of the baryon
number density nB ¼ V−1

∂μ̄ lnZðμ̄Þ,

bk ¼
1

iπ

Z
π

−π
dθn̂Bðμ̂ ¼ iθÞ sin ðkθÞ; ð2Þ

where we explicitly took into account the symmetry
property of the baryon density nBðμ̂Þ ¼ −nBð−μ̂Þ and
introduced n̂B ¼ nB=T3.
In actual lattice QCD, the coefficients bk suffer not only

from statistical error originating from the Monte Carlo
nature of the simulation3 but also from the discretization
errors of the numerical integration in Eq. (2). In our
analysis, we assume that an effort is taken to minimize
both types of errors and ignore them. We review the effect
of finite volume Appendix A and effect of the statistical
errors in Appendix B. We propose a specific numerical
quadrature for the evaluation of Eq. (2) in Appendix C.

The question is, then, what can we learn from analyzing
the Fourier coefficients? The answer is quite a bit. Consider
the integral (2) in the complex plane, as illustrated in Fig. 1.
In this figure, we took into account the presence of the YLE
singularities associated with the chiral and Roberge-Weiss
phase transitions. Since the continuous deformation of the
contour does not change the value of the integral as long as
it does not cross the singularities, one can reduce the
integration to that over both sides of the cuts, as shown
in Fig. 1.
To proceed further it is convenient to consider just a single

singularity in the right half-plane of the complex baryon
chemical potential. We do this in the next subsection.

A. Asymptotic behavior of the Fourier coefficients
for a function with a branch point

Consider an odd function nBðμ̂Þ periodic in an imaginary
argument having brunch points in the complex plane
located at �μ̂br, where μ̂br ¼ μ̂brr þ iμ̂bri . Here, we assume
that near the branch point μ̂ → þμ̂br,

n̂Bðμ̂Þ ¼ Aðμ̂ − μ̂brÞσð1þ Bðμ̂ − μ̂brÞθc þ…Þ

þ
X∞
n¼0

anðμ̂ − μ̂brÞn;

with σ > −1 and θc > 0. In the context of the YLE
singularity, θc is the confluent critical exponent (not to
be confused with θ). The regular part of the function is
encoded in the coefficients an. Our goal is to find the
asymptotic behavior of the Fourier coefficients for such a
function.
From the definition of the Fourier coefficients,

bk ¼
−i
π

Z
π

−π
dθ n̂Bðμ̂ ¼ iθÞ sin ðkθÞ; ð3Þ

where instead of Imn̂Bðμ̂ ¼ iθÞ we use a more appropriate
−in̂Bðμ̂ ¼ iθÞ. Next, using the property n̂Bðμ̂Þ ¼ −n̂Bð−μ̂Þ
we further simplify,

�

FIG. 1. Complex chemical potential plane with the chiral and
RW YLE. The integration path along the imaginary chemical
potential axis can be deformed to the integration around the
branch point singularities and the associated cuts (Stokes lines).

3Here, we assume that the continuum and thermodynamic
limits are properly taken.
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bk ¼
−1
2π

Z
π

−π
dθn̂Bðμ̂ ¼ iθÞðeikθ − e−ikθÞ

¼ 1

π

Z
π

−π
dθn̂Bðμ̂ ¼ iθÞe−ikθ: ð4Þ

This is the form convenient for our analysis. To compute
the integral, we deform the contour as shown in Fig. 2. In
the figure, we assume that the rightmost points are extended
to the infinity, i.e., Reμ → ∞. The contribution of the
segments ðabÞ and ðghÞ cancel each other due to the
periodicity of the integrand and the opposite direction of
the segments. The contributions from ðbcÞ and ðfgÞ is zero
due to the exponential decay of expð−ikθÞ ¼ expð−kμ̂Þ for
any k > 0. The integral around the branch point ðdeÞ is
vanishing due to σ > −1. Thus, the only nontrivial con-
tribution is due to the segments on both sides of the cut ðcdÞ
and ðefÞ as demonstrated in the figure. To evaluate the
contribution of these segments, we consider the paramet-
rization for the segment iθ ¼ sþ μ̂br,

1

π

Z
ðefÞ

dθn̂Bðμ̂ ¼ iθÞe−ikθ

¼ 1

iπ
e−μ

brk

Z
∞

0

dsn̂Bðμ̂ ¼ sþ μ̂brÞe−ks: ð5Þ

Now for an arbitrary power p > −1,
Z

∞

0

ds spe−ks ¼ Γðpþ 1Þ
kpþ1

: ð6Þ

Therefore, we get

1

π

Z
ðefÞ

dθ n̂Bðμ̂ ¼ iθÞe−ikθ

¼ e−μ
brk

iπ

�
A
Γð1þ σÞ
k1þσ

�
1þ B

kθc
Γð1þ σ þ θcÞ

Γð1þ σÞ þ…

�

þ
X∞
n¼0

an
Γð1þ nÞ
k1þn

�
: ð7Þ

In the second line, the contribution is due to the ana-
lytic part.

The integral over the segment ðcdÞ is identical to the
expression above except for the 2π rotation around the
branch point and an extra minus sign due to the direction of
the segment,

1

π

Z
ðcdÞ

dθn̂Bðμ̂ ¼ iθÞe−ikθ

¼ −
e−μ

brk

iπ

�
A
Γð1þ σÞ
k1þσ e2πσ

�
1þ B

kθc
e2πθc

Γð1þ σ þ θcÞ
Γð1þ σÞ

þ…

�
þ
X∞
n¼0

an
Γð1þ nÞ
k1þn

�
: ð8Þ

Adding both integrals together cancels the analytic part to
yield,

bk ¼
e−μ

brk

iπ
A
Γð1þ σÞ
k1þσ

�
1 − ei2πσ þ B

kθc
½1 − ei2πðσþθcÞ�

×
Γð1þ σ þ θcÞ

Γð1þ σÞ þ � � �
�
: ð9Þ

Absorbing k independent factors into constants A and B we
finally have

bk ¼ Ã
e−μ

brk

k1þσ

�
1þ B̃

kθc
þ � � �

�
: ð10Þ

Now we are ready to generalize our result for two branch
points corresponding to RW and chiral YLE singularities.

B. Asymptotic behavior of the Fourier coefficients
in QCD

Generalizing the result obtained in Sec. II A to the case
when both YLE and RW singularities are present and
accounting for the analytical properties of the partition
function (singularities comes in complex conjugate pairs)
we obtain,

bk ¼ ÃYLE
e−μ̂

YLEk

k1þσ

�
1þ B̃YLE

kθc
þ � � �

�

þ ÃRW
e−μ̂

RWk

k1þσ

�
1þ B̃RW

kθc
þ � � �

�
þ c:c:: ð11Þ

Here the coefficients ÃYLE;RW and B̃YLE;RW are complex
numbers in general.

�

a b

cd

e f

gh

FIG. 2. Computation of the Fourier coefficient for the function
with one singularity in the right half-plane of complex chemical
potential.
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Taking into account that Imμ̂RW ¼ π, we have

bk ¼ jÃYLEj
e−μ̂

YLE
r k

k1þσ

�
cosðμ̂YLEi kþ ϕYLE

a Þ

þ jB̃YLEj
kθc

cosðμ̂YLEi kþ ϕYLE
b Þ þ � � �

�

þ jÂRWjð−1Þk
e−μ̂

RW
r k

k1þσ

�
1þ jB̂RWj

kθc
þ � � �

�
; ð12Þ

where ϕa and ϕb are phases due to nontrivial phases of
ÃYLE and B̃YLE and trivial real factors were absorbed into
jÂRWj and jB̂RWj. This is the final expression. Note that
coefficients, bk, are exponentially sensitive to the imagi-
nary values of the positions of the YLE singularities.

FIG. 3. Illustration of the positions of the singularities under
the scaling assumptions in QCD. The stars (dots) indicate the
positions of RW (chiral) YLE. Numerical labels indicate the
corresponding temperatures in MeV. The horizontal dashed lines
indicate Imμ̂ ¼ π=2 and π.

FIG. 4. Illustration of different qualitative behavior of the Fourier coefficients. Note that although we plotted the coefficients at
small values of k, Eq. (13) is only formally valid for asymptotically large k. (a) T = 120 MeV, (b) T = 140 MeV, (c) T = 160 MeV,
(d) T = 170 MeV, (e) T = 180 MeV, (f) T = 200 MeV.
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The confluent critical exponent θc ¼ νcω ¼ σþ1
3
ω is

about 0.64 and thus leads to an appreciable suppression
of the corrections. It is thus safe to drop them,

bk ¼ jÃYLEj
e−μ̂

YLE
r k

k1þσ cosðμ̂YLEi kþ ϕYLE
a Þ

þ jÂRWjð−1Þk
e−μ̂

RW
r k

k1þσ : ð13Þ

When the chiral YLE singularity approaches Imμ̂ ¼ π=2,
the sign of bk starts to change very rapidly. Indeed for a
special case of μ̂YLEi ¼ π=2 and zero phase, one get cos πk

2
,

which is zero for any odd k, positive for k ¼ 0; 4; 8; :: and
negative k ¼ 2, 6, 10. In this case it is convenient to
multiply bk by ð−1Þk to get

ð−1Þkk1þσbk ¼ jÃYLEje−μ̂YLEr k cosððπ − μ̂YLEi Þk − ϕYLE
a Þ

þ jÂRWje−μ̂RWr k: ð14Þ

This shifts the frequency of the oscillations to lower values.
To illustrate the behavior of the Fourier coefficients, we

consider the scaling assumption for the position of the Yang-
Lee edge singularities. For that we use the input from
Refs. [24–26] on the universal locations, well-known critical
exponents for Z(2) and O(4) universality classes and
approximation for the scaling variables z ¼ z0t=h1=βδ with

t ¼ TRW − T
TRW

; h ¼ μB − iπ
iπ

for RW; ð15Þ

t ¼ T − Tc

Tc
þ κB2

�
μ

T

�
2

;

h ¼ mu;d

ms
for chiral phase transition: ð16Þ

The nonuniversal coefficients (TRW, Tc, κB2 , and z0 for both
transitions) are taken from lattice QCD parametrizations
(see Ref. [27]).
Using this asymptotic formula and the scaling

assumption for the locations of the singularities (the
position is displayed in Fig. 3) we plotted the qualitative
behavior of the Fourier coefficients in Fig. 4, see also a
detailed description of the approach in application to the
chiral phase transition in Ref. [28].
Let us examine the figures. Consider Fig. 4(a), the

period of the oscillations (sign changes in k) is about
Pk ¼ 4; we thus can easily estimate the value of μ̂YLEi to be
π=Pk ¼ π=4. This estimate is close the input value of
μ̂YLEi ≈ 0.24π. Similarly for Fig. 4(b), we get an estimate of
π=3 to be compared with the input value of μ̂YLEi ≈ 0.312π.

In Fig. 4(d), we multiplied the Fourier coefficient by ð−1Þk,
as we explained before it helps to lower the frequency
of the sign change. In this case we need to adjust our
estimate, as the period of the sign change is related to the
imaginary value of the YLE chemical potential trough
π − μ̂YLEi ¼ π=Pk, we thus have an estimate 3π=4 for μ̂YLEi .
This is to be compared to the input value of 0.74π. For
higher temperatures, the sign change is absent in ð−1Þkbk
demonstrating the fact that the singularities are on the
line μ̂i ¼ π.
The real value of the location of the YLE singularity (at

smaller T) and RW singularity (at larger T) can be read off
from the slopes in the figures. We thus see that a simple
analysis of the Fourier coefficients provide a good estimate
for the location of the singularities.

III. MODEL RESULTS

In this section we perform the calculations of the Fourier
coefficient in quark-meson model in both mean-field
approximation and by accounting for fluctuations in the
local potential approximation of the FRG approach [for the
later, the critical exponent at YLE singularity is numerically
closer to the actual one (see Introduction)]. We demonstrate
that the analysis of a limited number of Fourier coefficients
complemented by the asymptotic expression derived in the
previous subsection is sufficient to extract the location of
the Yang-Lee edge singularity with a good precision.
The models that are considered below have one limita-

tion; the chiral transition YLE is always closer to the
imaginary axes and thus dominates in the Fourier expan-
sion coefficients. In QCD it does not have to be this way,
and the behavior of the Fourier coefficients can be much
richer, see Fig. 4.

A. Mean-field quark-meson model

In this section, we follow the notation of Ref. [29]. The
Euclidean action for a quark-meson model with Nf ¼ 2

degenerate quark flavors and Nc ¼ 3 colors is given by

SQM ¼
Z

β

0

dx0

Z
d3x

�
ψ̄

�
γμ∂μ þ

1

2
hτϕþ γ0μ

�
ψ

þ 1

2
ð∂μϕÞ2 þUðϕ2Þ − hσ

�
: ð17Þ

γμ are the Euclidean gamma matrices, τT ¼ ð1; iγ5τ⃗Þ with
the Pauli matrices τ⃗, μ is the quark chemical potential,
and ϕT ¼ ðσ; π⃗Þ is the Oð4Þ meson field. Uðϕ2Þ is the
effective meson potential. An explicit symmetry breaking is
introduced through the source h to get massive pions in the
low-temperature phase.
Assuming a homogeneous mean field with the nonzero

expectation value for the isosinglet meson (σ̄) we obtain the
following thermodynamic potential:

4Here we used the value from five-loop ε expansion [23],
ω ≈ 1.6.
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Ω̄QMðT; μ; σ̄Þ ¼ Uðσ̄2Þ − hσ̄ −
T
V
ln det MQMðσ̄; μÞ; ð18Þ

where

T
V
ln detMQMðσ̄;μÞ ¼ 2NfNc½J0ðσ̄Þþ JT;μðσ̄Þþ JT;−μðσ̄Þ�:

ð19Þ

Here
R
q ¼

R d3q
ð2πÞ3 and we define the thermal contribution to

the quark determinant as

JT;μðσ̄Þ ¼
1

2π2

Z
∞

0

dq q2T ln½1þ e−ðEqðσ̄Þ−μÞ=T �: ð20Þ

The vacuum contribution J0 is ultraviolet divergent. Its
finite piece depends on the meson field (see Ref. [30]),

Jϵ0ðσ̄Þ ¼
h4σ̄4

29π2
ln

�
h2σ̄2

4Λ2

�
: ð21Þ

For the O(4)-symmetric part of the meson potential we use,

Uðϕ2Þ ¼ λ

4
ðϕ2 − ν2Þ2; ð22Þ

which allows for spontaneous symmetry breaking.
Following the logic of the mean-field approximation,
physical results are extracted the minimum of the thermo-
dynamic potential, that is

Ω̄QMðT; μÞ ¼ Ω̄QMðT; μ; σ̄0Þ; ð23Þ

where σ̄0 is the solution of the equation of motion

∂Ω̄QMðT; μ; σ̄Þ
∂σ̄

����
σ̄0

¼ 0: ð24Þ

Further details of the model can be found in Ref. [30].
We used the following input values to fix the parameters of
the modelmσ ¼ 600MeV,mπ ¼ 140 MeV, fπ ¼ 93 MeV,
and the Yukawa coupling is fixed to be g ¼ 3.6.
Figure 5 summarizes our results. The data was fitted

using Eq. (13). The results of the fit are as follows. The fit
yields μ̂fitYLE ¼ 0.441ð2Þ þ i0.325ð3Þ [μ̂fitYLE ¼ 0.1156ð6Þ þ
i0.9952ð5Þ] for T ¼ 150ð180Þ MeV. The actual loca-
tion of the singularity is μ̂YLE ¼ 0.412884þ i0.342187
(μ̂YLE ¼ 0.118657þ i1.00256) for T ¼ 150ð180Þ MeV.
The fit reproduces the location within 7% precision. The
fits are performed starting from b5 and do not require going
to asymptotically large Fourier modes. Note that the
imaginary part of the chemical potential can be estimated

FIG. 5. Mean-field Fourier coefficients b̃k ¼ k1þσbk (σMF ¼ 1=2) for T ¼ 150 MeV (left) and T ¼ 180 MeV (right) and the
corresponding fits.

FIG. 6. LPA FRG Fourier coefficients b̃k ¼ k1þσbk (σLPA ¼ 1=5) and the corresponding fits for T ¼ 150 MeV (left) and
T ¼ 180 MeV (right).
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easily without performing the fits and visually extracting the
period of the sign change; for example, for T ¼ 180 MeV,
the sign changes every three points, this leads to
μ̂YLE ≈ π=3 ≈ 1.05, which is very close to the actual value.

B. Quark-meson model in LPA FRG

The ingredients of themodel are similar to those described
in the previous subsection. The model is computed using
FRG in the local potential approximation. This approxima-
tion leads to σYLE ¼ 1=5, which is closer to the actual value.
The model is described in detail in Ref. [31]. We used the
samevalues formσ,mπ , fπ , and g as in themean-fieldmodel.
Additionally, we fixed the UV cutoff (a new ingredient
required by the FRG approach) to 1200 MeV.
Figure 6 summarizes our result. The fit yields μ̂fitYLE ¼

1.483ð7Þ þ i0.446ð6Þ½μfitYLE ¼ 0.949ð8Þ þ i0.675ð11Þ� for
T ¼ 150ð180Þ MeV. The actual location of the singularity
is μ̂YLE ¼ 1.553þ i0.4794 (μ̂YLE ¼ 0.9445þ i0.6618) for
T ¼ 150ð180Þ MeV. Although we could not reliably
extract the Fourier coefficient for k > 22 (and thus are
limited to relatively modest values of k), the fit accuracy is
sufficiently high as they reproduce the locations within 5%
precision. As for the mean-field model, the fits start from
b5. Again, a straightforward visual inspection of the plot
allows us to establish the period of the sign change and thus
estimate the location for the YLE singularity. Consider
T ¼ 150 MeV; the period is between 6 and 7. Let us
approximate it by 6.5. Thus, μ̂YLE ≈ π=6.5 ≈ 0.48; this is
amusingly close the actual value.

IV. CONCLUSIONS

In this paper, we derived the asymptotic behavior of the
Fourier coefficients in the crossover regime. Our result
differs from the one obtained in Ref. [16], where the
authors used the Riemann-Lebesgue lemma and where, we
believe, the critical exponents and the amplitudes at YLE
singularities in the crossover region were misidentified.
The difference is both in the power-law dependence on the
coefficient order and in the oscillatory phase shifts. When
applied to the mean-field approximation, our results
coincide with Ref. [17]. In this manuscript, we analyzed
the behavior of the coefficients and concluded that the
position of the YLE (closest to the imaginary axis)
singularity can be extracted knowing about 20 Fourier
coefficients. Applying our analysis to lattice QCD has two
caveats. First, finite size effects alter the asymptotic
behavior of the coefficients. This is straightforward to
account for, as we demonstrated in Appendix A. Second,
lattice QCD calculations come with unavoidable statistical
errors. They might significantly alter the higher-order
Fourier coefficients. In Appendix B, we estimated the
upper bound on the error to extract the required coefficient
order. A dedicated effort might make achieving this level of
accuracy feasible. In Appendix C we propose a specific

numerical method, which seems most appropriate for our
purpose.

All data from our calculations, presented in Figs. 3–7 of
this paper, can be downloaded from Ref. [32].
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APPENDIX A: FINITE VOLUME EFFECTS

In a finite volume, the singularity and the branch cut are
replaced by a countable number of zeros. The first zero
approximates the location of the branch cut singularity in
the infinite volume limit (the distance from the first zero
to the singularity is proportional to V−ð1þσÞ−1 [13]). Going
to the thermodynamic limit, the density of zeros close to the
edge can either diverge or tend to zero, subject to the sign of
the critical exponent σ. The behavior of the density can be
approximated by gðμÞ ∼ ðμ − μYLEÞσ since σ > 0 for three-
dimensional systems, the density of zeros approaches zero
close to the edge. For the Fourier coefficients, this means
that the closest zero (the zero with the smallest absolute
value of the real part) is the dominant contributor, with the
corrections suppressed exponentially. This is especially
significant for smaller volumes as the distance between the
first and the second zero scales as∼V−σ=ð1þσÞ. This compels
us to consider a finite volume system. For the baryon
number density, we will have simple poles in the complex
μ-plane located at μl, l ¼ 1; 2;…. Performing similar math
as in Sec. II A and completing it with complex conjugate
zeros, we get

bk ¼
X
l

Ale−ReðμlÞk cosðImðμlÞkþ ϕlÞ ≈ A1e−Reðμ1Þk

× cosðImðμ1Þkþ ϕ1Þ; ðA1Þ
where in the last part, we neglected distant zeros. This
shows that for small volumes, the power-law part of the
decay of the Fourier coefficients is gone, and only
exponential decay remains. Note that using the behavior
of the density of zeros, the equality of Eq. (A1) reduces to
its infinite volume limit.
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APPENDIX B: MODELING STATISTICAL
ERRORS OF QCD MONTE CARLO

SIMULATIONS

In the main body of the paper, we assumed that the
Fourier coefficients can be determined with high precision.
Computing Fourier coefficients using lattice QCD methods
leads to unavoidable statistical error (needless to mention
systematic errors). Here, we estimate the naive requirement
in accuracy for the input data (baryon number), when we
attempt to access higher-order Fourier coefficients by
means of the standard discrete Fourier transformation
(DFT). To model statistical error, we assign an uncorrelated
Gaussian error to each value of the baryon number density
n̂BðθnÞ → n̂BðθnÞ þ ξn, where ξn have the same variance of
σξ. We want to determine the upper limit on this quantity,
i.e., where the relative error becomes as large as 100%.
Here, we consider a uniformly distributed θn range from

0 to π, as it is required in the standard DFT. Thus, for the
Fourier coefficients, we obtain

bw=errork ≈
X
n

ðn̂BðθnÞ þ ξnÞ sinðθnkÞ ¼ bk þ χk; ðB1Þ

where χk is a Gaussian random number with the variance
given by σ2χ ¼ σ2ξ

P
n sin

2ðθnkÞ. The upper limit on σξ is
then

σξ <
jbkj

ðPnsin
2ðθnkÞÞ1=2

: ðB2Þ

For any integer k and uniformly samples θn, the sum in the
denominator can be easily analytically computed and is k
independent

P
N
n¼0 sin

2ðθnkÞ ¼ N
2
, where N is the number

of sampled points in θ. We thus obtain that

σξ <

ffiffiffi
2

p jbkjffiffiffiffi
N

p : ðB3Þ

To extract bk, one has to have N ¼ k at least. Thus, we can
get a better estimate,

σξ <

ffiffiffi
2

p jbkjffiffiffi
k

p : ðB4Þ

Thus, to extract, say b10, assuming that b10 ∼ 10−3, the
uncertainty in computing the baryon number divided by T3

has to be of order 10−3 − 10−4. We note that there exist
much more appropriate methods to compute the Fourier
coefficients, as we emphasize in Appendix C.

APPENDIX C: ON THE NUMERICAL
CALCULATION OF THE FOURIER

COEFFICIENTS

During the last decade, much progress was made in
numerical techniques for highly oscillatory integrals [33].
While the standard method for the numerical calculation of
the coefficients bk, defined in Eq. (2), is still the DFT, it has
two severe limitations; the numerical error grows with the
index k of the Fourier coefficient and the number of
accessible coefficients is limited by the number of sup-
port points. It is thus tempting to investigate one of the
newer methods which are asymptotically correct, i.e., by
construction the numerical error decreases with k. In
particular, the piecewise Filon-type quadrature is making

use of N þ 1 function values n̂ð0ÞB;j ≡ n̂BðiθjÞ at support
points fiθj∶ j ¼ 0;…; Ng, as well their first few deriva-

tives n̂ðsÞB;j ≡ ∂
sn̂Bðμ̂BÞ=∂μ̂sBjμ̂B¼iθj

, for s ¼ 1;…; S. The

philosophy is to perform a polynomial (Hermite) interpo-
lation on each subinterval Ij ¼ ½iθj; iθjþs�. The quadrature
weights can than be calculated exactly and, most impor-
tantly, one can show that the methods becomes asymptoti-
cally exact, in the sense that the asymptotic expansion of
the error in 1=k starts at order Oðk−S−2Þ. This method is
directly applicable on the lattice QCD data that is available
from simulations at imaginary chemical potentials [6].

FIG. 7. Comparison of the Fourier coefficients from the plain piecewise Filon quadrature on N subintervals with the exact results for
the case of the mean-field quark-meson model at T ¼ 150 MeV.

BRYANT, SCHMIDT, and SKOKOV PHYS. REV. D 109, 076021 (2024)

076021-8



However, we note that the error is only decaying poly-
nomially in 1=k, while the absolute value of the Fourier
coefficients are expected to decay exponentially, i.e., the
relative error nevertheless starts to grow above a cer-
tain order.
Here we test the plain piecewise Filon quadrature for

N ¼ 10, 20 and S ¼ 1 for the case of the mean-field quark-
meson model at T ¼ 150 MeV, as discussed in Sec. III A.
In Fig. 7 (left) we compare the results with the exact

Fourier coefficients, and in Fig. 7 (right) we show the
decadic logarithm of the absolute value of the error
log10jbexactk − bFilonk j. The expected asymptotic behavior of
the quadrature is indicated by the solid line. Despite the fact
that the absolute value of the error decays as expected, we
find that the period of the Fourier coefficients is obscured
already at OðNÞ. We note that more advanced extended
Filon-type quadrature methods do exist, which we leave for
future investigations.
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