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Following our previous study of the recursive structure of Baikov representations, we discuss its
application in the integration-by-parts reduction of Feynman integrals. We combine the top-down reduction
approach with the recursive structure, which can greatly simplify the calculation for each sector in many
cases. We introduce a new concept called the top-sector irreducible scalar product reduction, which
generalizes the maximal-cut reduction by retaining the subsector information. After subtracting the top-
sector components, we provide a general method to transform the remaining integrand explicitly to
subsectors, such that the reduction procedure can be carried out recursively. In this work, we use the
intersection theory to demonstrate our method, although it can be applied to any implementation of the
integration-by-parts reduction.
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I. INTRODUCTION

Feynman integrals (FIs) are building blocks of pertur-
bative scattering amplitudes in quantum field theories. In
the calculation of a particular scattering amplitude, one
often encounters a huge number of FIs. To compute them,
one reduces them to a basis called master integrals. The
number of master integrals is much smaller. They can then
be calculated using various methods, in particular, the
method of differential equations [1–3].
In practice, the reduction of FIs usually proceeds by

solving integration-by-parts (IBP) relations among different
integrals. These relations form a linear system that can be
solved by the Laporta algorithm [4,5]. This IBP reduction
procedure has been implemented in several public packages
such as Reduze [6], LiteRed [7], FIRE [8], and Kira [9]. Recently,
a novel method, the intersection theory [10–19], has been
proposed to perform the integral reduction using the
language of twisted cohomology groups. This regards
IBP equivalence classes of Feynman integrals as elements
in a cohomology group and uses a concept called inter-
section numbers to compute the reduction coefficients.

The IBP systems can become very large in cutting-edge
applications. Generating and solving the relations is often a
major bottleneck in multiloop calculations. It is therefore
desirable to reduce the size of the IBP system as much as
possible. For example, packages like NeatIBP [20,21] and
Blade [22,23] have been developed to achieve this goal by
preselecting a smaller set of IBP relations before perform-
ing the full reduction. Another way to reduce the size of the
IBP system is to split it into smaller subsystems, which can
be solved separately and glued together for the final results.
To this end, generalized unitarity cuts of Feynman integrals
provide a powerful tool. Under a certain cut, a lot of
integrals vanish and drop out of the linear relations,
effectively making the system smaller. In the literature,
there are two kinds of approaches to take advantage of cuts:
the “bottom-up” approach and the “top-down” approach. In
the bottom-up approach, one chooses a set of “spanning
cuts” that is a minimal set of cuts necessary to recover the
full information. The reduction is performed under each cut
in the set, and the full results are then assembled from these
partial ones.
The top-down approach [24], on the other hand, starts

from the top-sector containing the maximal number of
propagators in a given integral family. By imposing the
maximal cut, i.e., localizing all propagator denominators to
the mass shells, it is easy to compute the reduction
coefficients in the top sector. One then subtracts the top-
sector components from the integrals to be reduced, and
move to subsectors with fewer propagators. Recursively
applying the above procedure down to the lowest sectors,
one achieves the full reduction of the integrals.
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In a recent work [25], we have explored the recursive
structure of Feynman integrals, which is particularly appar-
ent in the Baikov representations [26,27]. The Baikov
representations of Feynman integrals amount to a change
of integration variables from loop momenta to propagator
denominators. As a result, it is rather straightforward to
study cuts of integrals in these representations. Imposing a
cut is simply taking the residue at the origin for a variable
[28–30]. IBP relations can also be studied in the Baikov
representations [20,24,31–33]. Evidently, the top-down
approach of reduction is naturally related to the recursive
structure of Baikov representations. In this work, we utilize
this relationship to demonstrate how the recursive structure
can be used to simplify the top-down reduction procedure.
The contents are organized as follows. In Sec. II, we

briefly review the recursive structure of the Baikov repre-
sentations presented in [25]. In Sec. III, we establish an
algebraic framework for separating the system of Feynman
integrals into disjoint subsystems using cuts. This provides
a unified view on the different reduction approaches. In
Sec. V, we show how the recursive structure combined with
the intersection theory can help us perform top-down
reductions. We summarize in Sec. VI.

II. A BRIEF REMINDER OF THE
RECURSIVE STRUCTURE

In this section, we briefly introduce the Baikov repre-
sentations and their recursive structure. For detailed der-
ivations we refer the readers to [25].
A Feynman integral family consists of scalar integrals of

the form

Iða1;a2;…;aN ;dÞ¼
Z

ddl1ddl2 �� �ddlL
ðiπd=2ÞL

1

xa11 xa22 �� �xaNN
; ð1Þ

where L is the number of loops and d ¼ 4 − 2ϵ is the
dimension of spacetime, N ¼ LðLþ 1Þ=2þ LE is the
number of independent scalar products involving loop
momenta, and E is the number of independent external
momenta (the number of external legs is thus Eþ 1). The
variables xi are propagator denominators if ai > 0 and
irreducible scalar products (ISPs) if ai ≤ 0. For the above
integrals, we can write down the standard Baikov repre-
sentation

Iða1;…; aN ; dÞ ¼ Cðp1;…; pE; dÞ
Z
C

dx1 � � � dxN
xa11 � � � xaNN

× ½PL
Nðx1;…; xNÞ�ðd−K−1Þ=2; ð2Þ

where K ¼ Lþ E, and Cðp1;…; pE; dÞ is an unimportant
prefactor for our purpose, which will often be suppressed
later. The integration contour C is determined by the
polynomial

PL
Nðx1;…; xNÞ ¼ Gðq1; q2;…; qKÞ; ð3Þ

where fq1; q2;…; qKg denotes fl1;…; lL; p1;…; pEg, and
G represents the Gram determinant

Gðq1; q2;…; qnÞ≡ det

0
BBBBB@

q21 q1 · q2 � � � q1 · qn
q2 · q1 q22 � � � q2 · qn

..

. ..
. . .

. ..
.

qn · q1 qn · q2 � � � q2n

1
CCCCCA:

ð4Þ

The standard Baikov representation works for all inte-
grals within the family. However, for integrals in a given
subsector, it is usually possible to integrate out some of the
ISP variables. This leads to Baikov representations with
fewer integration variables, which often coincide with the
so-called loop-by-loop (LBL) representations. These rep-
resentations (including the standard one) take the generic
form Z

C

dx1 � � � dxn
xa11 � � � xann ½P1ðxÞ�γ1 � � � ½PmðxÞ�γm; ð5Þ

where we use x to denote the sequence of variables
x1;…; xn with n ≤ N, and P1;…; Pm are Baikov poly-
nomials that are raised to noninteger powers γ1;…; γm.
These various representations form a treelike recursive
structure starting from the standard one.
An ISP variable to be integrated out must appear

quadratically in one of the Baikov polynomials PjðxÞ,
but it is absent in the other polynomials (we refer to it as a
“quadratic variable”). Denoting this variable as z, we may
write PjðxÞ as

PjðxÞ ¼ −ðAz2 þ Bzþ CÞ ¼ −Aðz − c1Þðz − c2Þ; ð6Þ

where A, B, and C are polynomials of the remaining
variables in x. We can then integrate z out using the
recursion formulaZ

c2

c1

zn½−Aðz − c1Þðz − c2Þ�γdz

¼ ð−AÞγðc2 − c1Þ1þ2γ Γð1þ γÞ2
Γð2ð1þ γÞÞ

×

�
c1 þ c2

2

�
n

2F1

�
−
n
2
;
1 − n
2

;
3

2
þ γ;

�
c1 − c2
c1 þ c2

�
2
�
;

ð7Þ

where n ≥ 0. Note that the above hypergeometric function
is actually always a polynomial of its last argument. The
above procedure can be repeated for another quadratic
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variable if it exists, and we arrive at representations with
even fewer integration variables.

III. THE TOP-DOWN REDUCTION AND ITS
ALGEBRAIC STRUCTURE

Integral reduction is one of the bottlenecks in multiloop
multileg calculations. For cutting-edge problems it involves
a large number of linear relations. One way to efficiently
generate and solve these relations is the so-called top-down
approach emerging naturally from generalized unitarity
method and integrand reduction [14,34–38]. The idea is
very simple. Given an integral to reduce, one first finds its
top-sector components by solving the linear relations under
the maximal cut. The maximal cut significantly reduces the
number of variables and the number of equations, making
the reduction much simpler. One then subtracts the top-
sector components from the integral and transform the
resulting integrand into subsectors (which is the most
nontrivial part of this method). We can then employ the
recursive structure of Baikov representations to arrive at
lower representations, and repeat the above procedure by
working with the maximal cut for the subsectors.
In this section, we briefly review the basic idea of the

top-down reduction and the graded structure of the vector
space of Feynman integrals. We will use the language of
intersection theory [13,14,19,39], although in practice one
may employ any method suitable for solving the linear
system at hand.

A. The cohomological formulation
of cuts for Feynman integrals

We first discuss the general algebraic structure of
Feynman integrals, applicable within any representation
where a Feynman integral takes the form

I ¼
Z
C
uφ; ð8Þ

where u is a multivalued function on CN , C is an integration
contour, and φ is a single-valued N form that will be
referred to as an “integrand.” The u function vanishes on
the boundary of C, i.e., uj

∂C ¼ 0. The N-form φ may have
singularities on ∂C, where the integral is regularized by the
u function. We call these regularized singular points as
“twisted boundaries” [12]. In the same time, φ may also
have singularities at places other than fu ¼ 0g. We call
these singular points as “relative boundaries.” We will
assume that the relative boundaries are given by the set
fD ¼ 0g≡ ∪n

i¼1 fDi ¼ 0g with n ≤ N, where the Dis are
functions on CN (which will be identified with propagator
denominators). These relative boundaries are removed from
the integration contour, and hence φ is holomorphic
within C.

Using Stoke’s theorem, we have

0 ¼
Z
C
dðuξÞ ¼

Z
C
u∇ωξ; ð9Þ

where∇ω ≡ dþ ω ∧, ω≡ d logu, and ξ is a single-valued
holomorphic (N − 1) form. The above equation generates
IBP identities among different integrals, which are used for
integral reduction. Formally, the IBP equivalence can be
encoded in the Nth twisted cohomology group

HNðX;∇ωÞ ¼
ker ∶ ΩNðXÞ → ΩNþ1ðXÞ
im∶ ΩN−1ðXÞ → ΩNðXÞ ; ð10Þ

where X ≡ CNnðfu ¼ 0g ∪ fD ¼ 0gÞ. An elements ofHN

is the equivalence class of integrands that give the same
integral, hφj∶ φ ∼ φþ∇ωξ. The number of independent
integrals, i.e., the dimension of HN , is finite [40].
Moreover, in dimensional regularization, HN is usually
the only nontrivial cohomology group, as all other Hk≠N

vanish [41]. Using the complex Morse theory, one can
obtain ν ¼ dimðHNÞ by counting the number of critical
points from the u function [13,42]. One may then choose a
basis heij (i ¼ 1;…; ν), and decompose any integral hφj as
hφj ¼ P

ν
i¼1 ciheij. This is just the IBP reduction procedure.

To compute the coefficients ci, one needs to solve a large
linear system using, e.g., the intersection theory. In the
intersection theory, one introduces the space of dual forms
jφi∈HNðX;∇−ωÞ, and defines a pairing between dual
forms and Feynman integrands called intersection numbers
[11,13,14]. The intersection number between hφLj and jφRi
is given by

hφLjφRi≡ 1

ð2πiÞN
Z
X
φL ∧ φc

R; ð11Þ

where φc
R is IBP equivalent to φR but has compact support.

To perform computations in the presence of relative
boundaries fD ¼ 0g, one usually introduces additional
regularizations to convert them into twisted boundaries.
The simplest regularization is to multiply the u function by
factors such as Dρ

i , where ρ will be taken to zero in the
end [12–14]. Although this technique is valid in many
practical cases, there is no general proof that the ρ → 0
limit is guaranteed to give the correct results. Recently,
there arises a new technique based on the concept of twisted
relative cohomology [16,17]. This bypasses the introduc-
tion of regularizations for relative boundaries, removing the
ambiguities and extra efforts in the calculations.
A key step in the works [16,17] is the decomposition of

the full cohomology of dual integrands into subspaces
corresponding to different cuts of Feynman integrands.
Motivated by that, we suggest that one can achieve a similar
decomposition of the cohomology of Feynman integrands,
which provides a natural language to rigorously describe
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the top-down and bottom-up approaches for the reduction
of Feynman integrals. In the top-down approach, the
introduction of extra regularizations can also be avoided,
which simplifies the computation significantly.
To perform the decomposition, we utilize the following

short exact sequence of Feynman integrands [43]:

0 ← HN−1ðDðiÞnfD≠i ¼ 0gÞ←δ
�
i HNðYnfD ¼ 0gÞ

←
ι�i HNðYnfD≠i ¼ 0gÞ ← 0; ð12Þ

where Y ≡ CNnfu ¼ 0g, DðiÞ ≡ Y ∩ fDi ¼ 0g, and
fD≠i ¼ 0g≡ ∪j≠i fDj ¼ 0g. The full cohomology of
Feynman integrands is just HNðYnfD ¼ 0gÞ, while
HNðYnfD≠i ¼ 0gÞ contains those integrands that have
no singularity on fDi ¼ 0g. The map ι�i is the natural
embedding. The cohomology HN−1ðDðiÞnfD≠i ¼ 0gÞ con-
tains (N − 1) forms that live inside fDi ¼ 0g, which
correspond to the integrands after we impose cut on Di.
The map δ�i simply corresponds to this operation of cut.
Given the short exact sequence, the following isomor-

phism holds:

HNðYnfD ¼ 0gÞ ≅ HN−1ðDðiÞnfD≠i ¼ 0gÞ
⊕ HNðYnfD≠i ¼ 0gÞ: ð13Þ

To discuss integral reduction, we need to look further into
this isomorphism. While HNðYnfD≠i ¼ 0gÞ is naturally
embedded into HNðYnfD ¼ 0gÞ by ι�i , we need to define a
map σi as a pullback of HN−1ðDðiÞnfD≠i ¼ 0gÞ. This map
acts as “undoing a cut” and allows us to rewrite the
isomorphism as an identity:

HNðYnfD ¼ 0gÞ ¼ σiðHN−1ðDðiÞnfD≠i ¼ 0gÞÞ
⊕ ι�i ðHNðYnfD≠i ¼ 0gÞÞ: ð14Þ

The pullback map σi satisfies δ�i◯σi ¼ id and is only
unique modulo kerðδ�i Þ ¼ imðι�i Þ. Intuitively, the above
decomposition is simply categorizing the integrands
according to whether Di appears in the denominator.
In principle, σi can be constructed in any representation.

However, its construction is particularly straightforward in
the Baikov representations, where Di ≡ xi themselves are
integration variables. Hence, fDi ¼ 0g is simply a coor-
dinate hyperplane. Consider a hψ j∈HN−1ðDðiÞnfD≠i¼0gÞ
given by

ψ ¼ ψ̂dx1 ∧ � � � ∧ cdxi ∧ � � � ∧ dxN; ð15Þ

where ψ̂ is a function, and cdxi means that this factor is
absent. We can naturally assign σiðhψ jÞ ¼ hφj where

φ ¼ ψ̂

xi
dx1 ∧ � � � ∧ dxi ∧ � � � ∧ dxN: ð16Þ

The above procedure can be repeated to decompose
HN−1ðDðiÞnfD≠i ¼ 0gÞ. For that we choose the next
relative boundary fDj ¼ 0g. The short exact sequence is
then given by

0 ← HN−2ðDði;jÞnfD≠i;j ¼ 0gÞ ← HN−1ðDðiÞnfD≠i ¼ 0gÞ
← HN−1ðDðiÞnfD≠i;j ¼ 0gÞ ← 0; ð17Þ

where Dði;jÞ ≡DðiÞ ∩ DðjÞ. This tells us that

HN−1ðDðiÞnfD≠i ¼ 0gÞ
≅HN−2ðDði;jÞnfD≠i;j ¼ 0gÞ⊕HN−1ðDðiÞnfD≠i;j ¼ 0gÞ:

ð18Þ

Similarly, the second term in Eq. (13) can be decomposed as

HNðYnfD≠i ¼ 0gÞ ≅ HN−1ðDðjÞnfD≠i;j ¼ 0gÞ
⊕ HNðYnfD≠i;j ¼ 0gÞ: ð19Þ

Recursively applying the decomposition, we can finally
arrive at

HNðYnfD ¼ 0gÞ ≅ ⨁
I⊆f1;…;ng

HN−jIjðDðIÞÞ; ð20Þ

where jIj denotes the cardinality of the subset I,
DðIÞ≡ ∩i∈ I DðiÞ, and Dð∅Þ ≡ Y. Intuitively, HN−jIjðDðIÞÞ
is the cohomology of integrals that survive after cutting all
Di for i∈ I, and vanish when cutting any further propa-
gators. In other words, it is “the top-sector of a subsector.”
Note that, after the decomposition, there are no relative
boundaries in each component. Hence, no additional
regularization is required to perform the calculation. This
provides the algebraic framework of the top-down reduc-
tion approach.
Note that the direct-sum decomposition of the full space

can be used to count the dimension (i.e., the number of
master integrals) by adding together the dimensions of the
subspaces. Namely,

dimðHNðYnfD¼ 0gÞÞ¼
X

I⊆f1;…;ng
dimðHN−jIjðDðIÞÞÞ: ð21Þ

When computing each dimðHN−jIjðDðIÞÞÞ, there is no
need to introduce extra regulators. By the same reasoning,
we can consider the cohomology corresponding to a
subsector:

HN−jIjðDðIÞnfD∉I ¼ 0gÞ ≅ ⨁
J⊇I

HN−jJjðDðJÞÞ; ð22Þ
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and count the number of master integrals in a similar way.
Hence, the decomposition provides us a general and
rigorous way to calculate the dimension of the space of
integrals at any level between the maximal cut and the full
family (see relevant discussions in [12]). In the literature, an
alternative way to count the number of master integrals in a
subsector is to work in the full space with regulators applied
for the propagator denominators in that subsector. It is not
entirely clear whether it always yield correct results. It is
worthwhile to investigate further the relationship between
the two counting methods.

B. Reduction approaches in the
cohomological language

We now move to discuss the different reduction
approaches in the cohomological language in the previous
subsection. In particular, we consider the three approaches
to decompose Feynman integrals by intersection theory
described in [14]: straight, bottom up, and top down.
The straight decomposition is conceptually the simplest.

One just directly computes intersection numbers in the
space HNðYnfD ¼ 0gÞ, i.e., without imposing any cut.
Due to the existence of relative boundaries, one must
introduce regulators for all propagator denominators.
The bottom-up decomposition proceeds by choosing a

list of spanning cuts. Each cut in the list corresponds to an
Ii ⊂ f1;…; ng, and one computes intersection numbers in
the subspace

HN−jIijðDðIiÞnfD∉Ii ¼ 0gÞ ≅ ⨁
J⊇Ii

HN−jJjðDðJÞÞ; ð23Þ

which contains all integrands that survive the cut. The
calculation within this subspace is simpler than in the full
space, because fewer integration variables are involved.
Nevertheless, one still needs to introduce regularizations
for the remaining propagator denominators D∉Ii .
Finally, we discuss the top-down reduction approach

in some detail. Suppose that we want to reduce
hφj∈HNðYnfD ¼ 0gÞ as a linear combination of a basis
ofHNðYnfD ¼ 0gÞ. According to Eq. (20), we know that it
can be decomposed as a sum of components belonging
to each of the subspace in the direct sum. In particular, there
is a component hφMj∈HN−nðDð1;…;nÞÞ. This is simply
the top-sector component under the maximal cut. Within
HN−nðDð1;…;nÞÞ, we can compute the intersection numbers
over N − n variables, which is in practice very easy since
N − n is usually a small number. We also emphasize again
that one does not need to introduce extra regularizations
here due to the absence of relative boundaries (there are in
fact no propagators remaining). We assume that by com-
puting the intersection numbers, hφMj can be reduced as

hφMj ¼ c1he1j þ � � � þ cνheνj; ð24Þ

where ν ¼ dimðHN−nðDð1;…;nÞÞÞ and fheijg is a basis of
HN−nðDð1;…;nÞÞ. We may then pullback hφMj to the original
space and subtract it from hφj:

hφrj≡ hφj − σðhφMjÞ
¼ hφj − c1σðhe1jÞ − � � � − ckσðhekjÞ; ð25Þ

where σ is the composition of all n pullback maps σi when
going through the decompositions as in Eq. (14). For
notational convenience, we will often make the σ maps
implicit in the following.
Now we know that hφrj must belong to the subspace

whereHN−nðDð1;…;nÞÞ is removed from the direct sum (20),
i.e.,

hφrj∈ ⨁
I⊂f1;…;ng

HN−jIjðDðIÞÞ; ð26Þ

where the subspacesHN−jIjðDðIÞÞ are implicitly pulled back
or embedded into the full space through the σ and ι� maps.
However, it is highly nontrivial to find a representative φr
that explicitly takes the form of subspace integrands.
Nevertheless, from the above we know that the existence
of such a representative is guaranteed. In later sections, we
demonstrate how to systematically find it via intersection
theory.
Given a suitable representative φr, the next step is to

apply the procedure recursively. We know that hφrj may
have components in the following n subspaces:

HN−nþ1ðDð2;…;nÞÞ; HN−nþ1ðDð1;3;…;nÞÞ;…;

HN−nþ1ðDð1;…;n−1ÞÞ: ð27Þ

In each subspace, we again apply maximal cut and repeat
the above procedure, until we arrive at the lowest sub-
sectors. We emphasize that in the whole process of
computation, there is no relative boundary involved and
hence no need for regularization.
At first sight, it seems that, for a subsector with m

propagators, we need to compute intersection numbers over
N −m variables (see, e.g., examples in [14]). In lower and
lower subsectors, this becomes more and more compli-
cated. This is where the recursive structure of Baikov
representations comes into play. In subsectors, we can
employ the recursion formula (7) to integrate out some
ISPs. As a result, we arrive at a representation with N0 < N
variables. We then only need to compute intersection
numbers over N0 −m variables, which is in practice very
easy. In particular, for one-loop reductions we actually do
not need to compute any intersection number. This is in
contrast to the top-down approach outlined in [14], and
shows the advantage of our approach.
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IV. INTEGRAND REDUCTION FOR THE
TOP-DOWN APPROACH

From the discussions in the previous section, we see that
the top-down approach avoids the regularization of relative
boundaries, and significantly reduces the complexity of the
intersection numbers required for the reduction. However, a
key step in this approach is to transform the top-sector
subtracted integrand [i.e., hφrj in Eq. (25)] into a form that
explicitly belongs to subsectors. In [14], this is done by
introducing an ansatz that takes the desired form, with
coefficients to be determined by IBP relations. In this
section, we provide a systematic method to achieve that
transformation, and demonstrate our method with several
examples.

A. Top-sector ISP reduction
in the Baikov representations

From Eq. (5), we see that the Baikov representations take
exactly the form of Eq. (8) studied in the previous section.
In particular, the relative boundaries Di ¼ 0 simply corre-
spond to the vanishing surfaces of the propagator denom-
inators. To setup the notation, we will focus on one sector
with propagator denominators xprop ¼ fx1;…; xng, and
ISPs xisp ¼ fxnþ1;…; xNg. We also use x to denote the
union of xprop and xisp. The integrals in this sector
(including subsectors) can then be written as

Iða1;…; aNÞ ¼
Z
C
uφ

¼
Z
C
dnxpropdmxispuðxÞ

YN
i¼1

x−aii ; ð28Þ

where m¼N−n, and we have suppressed the unimportant
prefactors.
Consider an integrand φ in the top sector, i.e., with all

a1;…; an being positive. Recall from Eq. (24) that the first
step in top-down reduction is to decompose the integral hφj
as a linear combination of the top-sector masters up to
subsector components. Here, we use a slightly different
notation:

hφj ¼ c1he1j þ � � � þ cνheνj þ subsector integrals; ð29Þ

where fhe1j;…; heνjg is the pullback of a basis of the
subspaceHN−nðDð1;…;nÞÞ. In other words, let heM;ij¼δ�heij,
where δ� is the composition of the mappings δ�i defined in
Eq. (12), which simply corresponds to the maximal cut.
Then fheM;1j;…; heM;νjg is a basis of HN−nðDð1;…;nÞÞ,
The coefficients ci can be computed as intersection

numbers in the full space HN , i.e., without any cut.
Nevertheless, it is much simpler to work in the subspace
HN−nðDð1;…;nÞÞ, which is the main benefit of the top-down
approach. We can compute the intersection numbers under

the maximal cut, i.e., taking the residues at the origin with
respect to all propagator denominators, and only integrating
over the ISPs in the formula (11). To be more precise, for
the dual space of HN−nðDð1;…;nÞÞ, we find a dual basis
fjdM;1i;…; jdM;νig which satisfies heM;ijdM;ji ¼ δij. The
coefficients are then given by ci ¼ hφMjdM;ii, where
hφMj ¼ δ�hφj.
After obtaining the coefficients, we go back to the full

space HN . We define the top-sector subtracted integrand of
φ as

φr ¼ φ −
Xν
i¼1

ciei; ð30Þ

where ei is an arbitrary representative of heij. In general, φr
may still contain top-sector terms with all a1;…; an being
positive in the integrand level, although hφrj has no top-
sector component in the integral level. We are now going to
discuss how to bring φr into a form that explicitly has no
top-sector term. Before that, we first introduce two useful
concepts.
The first concept is the regular form of Feynman

integrals in Baikov representations. For a given integral
Iða1;…; aNÞ, its integrand can be written in many equiv-
alent ways. In particular, we can use IBP transformation
to make the powers of all propagators to be 1 in the
denominator, at the price of higher power terms of ISPs in
the numerator. Defining the partial differentiation operator

Da⃗ ¼ 1Q
n
i¼1 ΓðaiÞ

�
∂

∂x1

�
a1−1 � � �

�
∂

∂xn

�
an−1

; ð31Þ

with a⃗ ¼ ða1;…; anÞ, we can write the regular form of an
integral as

Iða1;…; aNÞ ¼
Z
C
dnxpropdmxisp

uðxÞ
x1 � � � xn

� YN
j¼nþ1

x
−aj
j

�

×
Da⃗uðxÞ
uðxÞ : ð32Þ

It is convenient to perform the maximal cut in this form,
which boils down to the replacement 1=xi → δðxiÞ for
i ¼ 1;…; n. Note that the u function takes the form

uðxÞ ¼ ½P1ðxÞ�γ1 � � � ½PmðxÞ�γm; ð33Þ

with noninteger powers γ1;…; γm. Hence, the combination
Da⃗uðxÞ=uðxÞ generally contains polynomials P1;…; Pm in
the denominator. As a result, Eq. (32) belongs to the so-called
generalized Baikov representations [44]. Nevertheless, there
is no problem to study their IBP relations using intersection
theory.
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The second concept is the top-sector ISP reduction of an
integral within the intersection theory. We note that the
coefficients in Eq. (29) are computed under the maximal
cut. That is, we take the residues of e1;…; eν and φ at
xprop ¼ 0, before doing the computations. We now propose
to compute a different set of intersection numbers, where
xprop are regarded as external parameters instead of being
taken to zero. Precisely speaking, we are considering the
IBP relations among ISP-integrated partial integrals in the
regular form

Ĩða1;…; aNÞ≡
Z
C̃
uφ̃

¼
Z
C̃
dmxisp

uðxÞ
x1 � � � xn

� YN
j¼nþ1

x
−aj
j

�
Da⃗uðxÞ
uðxÞ :

ð34Þ

The original integrals defined in Eq. (28) can be obtained
by further integrating over xprop from the above.
The equivalence classes of integrals of the above form

belongs to a cohomologygroupHN−nðCN−nnfu¼0g;xpropÞ,
where xprop are regarded as external parameters. It should
be noted that the dimension ν̃ of this space is not
necessarily the same as the dimension ν of the maximal
cut space HN−nðDð1;…;nÞÞ. Assuming that a basis is given
by fhẽ1j;…; hẽν̃jg (which should always contain the
x1 � � � xn factor in the denominator), we can decompose
any element hφ̃j as

hφ̃j ¼
X̃ν
i¼1

c̃iðxpropÞhẽij; ð35Þ

which is defined as the top-sector ISP reduction. The
coefficients c̃iðxpropÞ can again be computed as N − n
variable intersection numbers. We can expect that in the
limit xprop → 0, the set of coefficients fc̃1;…; c̃ν̃g must be
related to the set of coefficients fc1;…; cνg in Eq. (29).
One possible complication is that ν̃ can be larger than ν.
However, in this case it happens that in the limit xprop → 0,
some of the integrals in fhẽ1j;…; hẽν̃jg become reducible,
and fc̃1;…; c̃ν̃g indeed becomes fc1;…; cνg after appro-
priate recombinations. The simplest method to account for
this is to define ei from ẽi, and ci from c̃i. In this way, there
will be redundant integrals in the set fhe1j;…; heν̃jg, which
can be taken care of later by a further reduction. Hence, in
the following we will assume ν ¼ ν̃ and

ci ¼ c̃iðxprop ¼ 0Þ; ði ¼ 1;…; νÞ: ð36Þ

Here, we have implicitly assumed that the limit
c̃iðxprop → 0Þ exists. We believe that this is always the
case whenever ν ¼ ν̃. When ν̃ > ν, on the other hand, some
of the c̃i coefficients may become singular in that limit.

This is not a problem since, after the recombinations
mentioned above, these singular behaviors will disappear.
We will encounter such situations in Sec. V.
We now want to study the top-sector subtracted inte-

grand (30). For simplicity, we first deal with the situations
where a1 ¼ � � � ¼ an ¼ 1 in φ, i.e., all powers of propa-
gators are unity:

φ ¼ φ̂dnxpropdmxisp ¼
QðxispÞ
x1 � � � xn

dnxpropdmxisp; ð37Þ

where Q is a polynomial of xisp. The integrands for a top-
sector basis can be chosen as

ei ¼ êidnxpropdmxisp

¼ QiðxispÞ
x1 � � � xn

dnxpropdmxisp; ði ¼ 1;…; νÞ: ð38Þ

We introduce a constant factor D0 (hereafter, “constant”
means only depending on ϵ and external momenta), and
define

N0ðxispÞ ¼ D0

Xν
i¼1

ciQiðxispÞ: ð39Þ

We can then write the top-sector subtracted integrand as
φr ¼ φ̂rdnxpropdmxisp, with

φ̂r ¼ φ̂ −
Xν
i¼1

ciêi

¼ QðxispÞ
x1 � � � xn

−
N0ðxispÞ

D0x1 � � � xn
¼ QðxispÞD0 − N0ðxispÞ

D0x1 � � � xn
: ð40Þ

The expression of D0 is arbitrary at this point since it will
be canceled in the expression. It can be chosen for the
convenience of calculation, as we will see later.
We now note that from the same φ̂ and fêig, we can

define integrands for Eq. (34):

φ̃ ¼ φ̂dmxisp; ẽi ¼ êidmxisp: ð41Þ

From the top-sector ISP reduction (35), we know that the
following subtracted integrand gives vanishing results after
integration over xisp:

φ̂ −
Xν
i¼1

c̃iðxpropÞêi ¼
QðxispÞD1ðxpropÞ − N1ðxisp; xpropÞ

D1ðxpropÞx1 � � � xn
;

ð42Þ
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where we have again introduced a polynomial factor
D1ðxpropÞ, which may also depend on ϵ and external
momenta. The numerator N1ðxÞ is defined as

N1ðxisp; xpropÞ ¼ D1ðxpropÞ
Xν
i¼1

c̃iðxpropÞQiðxispÞ: ð43Þ

The vanishing of the integral is not affected if we rescale
Eq. (42) by any factor independent of xisp (but maybe
dependent on xprop). Hence,

0 ¼
Z
C̃
dmxisp uðxÞC0

QðxispÞD1ðxpropÞ − N1ðxisp; xpropÞ
D0x1 � � � xn

;

ð44Þ

where we have replaced D1ðxpropÞ in the denominator with
D0, and C0 is another constant factor to be determined later.
Now, we can subtract the above integrand from φ̂r

without altering the outcome of the integral, i.e.,

Ir ¼
Z
C
uφr

¼
Z
C
dnxprop dmxispuðxÞ

QðxispÞ½D0 − C0D1ðxpropÞ� − ½N0ðxispÞ − C0N1ðxisp; xpropÞ�
D0x1 � � � xn

: ð45Þ

On the other hand, we can deduce from Eqs. (36), (39), and
(43) that

N0ðxispÞ
N1ðxisp; xprop ¼ 0Þ ¼

D0

D1ðxprop ¼ 0Þ : ð46Þ

Choosing C0 to be the above ratio, we find that the
numerator of (45) vanishes when xprop → 0. Since this
numerator is a polynomial of xprop, it follows that each term
of it must be proportional to some xi in xprop. This will
cancel the factor of xi in the denominator, leading to an
integrand belonging to subsectors.
In the above, all propagators in φ are chosen to be power

1 in φ. We now perform a similar analysis for a general φ
with powers of propagators being a⃗ ¼ ða1;…; anÞ. In the
regular form, it can be written as

φ̂ ¼ QðxispÞDa⃗uðxÞ
x1 � � � xnuðxÞ

: ð47Þ

Taking the top-sector basis as in Eq. (38), we can write the
top-sector subtracted integrand as

φ̂r ¼ φ̂ −
Xν
i¼1

ciêi

¼ QðxispÞD0Da⃗uðxÞ − N0ðxispÞuðxÞ
D0x1 � � � xnuðxÞ

: ð48Þ

where the definitions of N0ðxispÞ and D0 are the same as in
(40). By exploiting the top-sector ISP reduction in the same
way, we can transform the subtracted integrand into
the form

Ir ¼
Z
C
uφr ¼ Ið0Þr þ Ið1Þr ;

Ið0Þr ¼
Z
C
dnxprop dmxisp

ðDa⃗uðxÞÞQðxispÞ½D0 − C0D1ðxpropÞ�
D0x1 � � � xn

¼ ð−1Þjaj−n
Z
C
dnxprop dmxispuðxÞQðxispÞDa⃗ D0 − C0D1ðxpropÞ

D0x1 � � � xn
;

Ið1Þr ¼ −
Z
C
dnxprop dmxispuðxÞ

N0ðxispÞ − C0N1ðxisp; xpropÞ
D0x1 � � � xn

; ð49Þ

where jaj ¼ P
n
i¼1 ai. Here we note that, for Ið0Þr , we have

applied integration by parts to move the derivatives from
uðxÞ to the rest of the integrand. This guarantees that the
integrand explicitly corresponds to a Feynman integral, i.e.,
without polynomials in the denominator. Setting C0 as in

(46), we again find that some of the xis denominator for
1 ≤ i ≤ nmust be canceled by factors in the numerator, and
the integrand degenerates to subsectors.
Finally, it is also possible to choose master integrals with

higher powers of propagators. Let us assume
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êi ¼
QiðxispÞDb⃗ðiÞuðxÞ
x1 � � � xnuðxÞ

; ð50Þ

where b⃗ðiÞ ¼ ðbðiÞ1 ;…; bðiÞn Þ. The top-sector subtracted inte-
grand can then be written as

Ir ¼ Ið0Þr þ
X
i

IðiÞr ;

Ið0Þr ¼ ð−1Þjaj−n
Z
C
dnxprop dmxispuðxÞQðxispÞ

×Da⃗ D0 − C0D1ðxpropÞ
D0x1 � � � xn

;

IðiÞr ¼ ð−1ÞjbðiÞj−nþ1

Z
C
dnxprop dmxispuðxÞQiðxispÞ

×Db⃗ðiÞ N
ðiÞ
0 − C0N

ðiÞ
1 ðxpropÞ

D0x1 � � � xn
; ð51Þ

where jbðiÞj ¼ P
n
j¼1 b

ðiÞ
j , and

NðiÞ
0 ¼ ciD0; NðiÞ

1 ðxpropÞ ¼ c̃iðxpropÞD1ðxpropÞ: ð52Þ

The constant C0 is then chosen as

C0¼
D0

D1ðxprop ¼ 0Þ¼
NðiÞ

0

NðiÞ
1 ðxprop ¼ 0Þ

; ði¼ 1;…;νÞ; ð53Þ

and everything follows.

B. General one-loop reduction

As the first application of the formalism, we consider the
one-loop case, which is simple but illustrating. At one-loop,
all ISPs (inherited from supersector representations) can be
integrated out. Therefore, for each sector, we can always
choose a representation with no ISPs. This representation
involves only one Baikov polynomial PðxÞ ¼ PðxpropÞ.
The u function is simply given by PðxÞγ, where γ ¼
ðd − n − 1Þ=2 with n being the number of propagators.
In each sector, there is at most one master integral.
We first discuss the reducible sectors, which do not have

a master. This happens when Pðx ¼ 0Þ ¼ 0, i.e., the
Baikov polynomial vanishes under maximal cut. It is easy
to transform integrands in this sector to subsectors by
dimensional recurrence relations [4,5,27]. Roughly speak-
ing, we write

PðxÞγ 1

x1 � � � xn
¼ PðxÞγ−1 PðxÞ

x1 � � � xn
: ð54Þ

Since there is no constant term in the polynomial PðxÞ,
each term in the numerator must cancel some propagator in
the denominator. This leads to subsector integrals in a

shifted dimension, which can then be brought back to
4 − 2ϵ dimensions via dimensional recurrence relations.
We refer the readers to Appendix A for details. The
dimension shift can also be performed using LiteRed [7].
We now discuss the normal sectors where Pð0Þ ≠ 0.

Consider an integrand in the regular form

φ̂ ¼ Da⃗PðxÞγ
x1 � � � xnPðxÞγ

≡ NðxÞ
x1 � � � xnDðxÞ ; ð55Þ

where DðxÞ ¼ PðxÞja⃗j and NðxÞ is the corresponding
numerator after canceling the common factors of PðxÞ.
Choosing the master integral in this sector as ê1 ¼
1=ðx1 � � � xnÞ and performing the maximal cut, we find
the top-sector reduction coefficient of hφj onto he1j as

c1 ¼
Nðx ¼ 0Þ
Dðx ¼ 0Þ : ð56Þ

Note that here we do not need to compute any intersection
numbers. We can now subtract the top-sector component at
the integrand level:

φ̂r ¼ φ̂ − c1ê1 ¼
NðxÞDðx ¼ 0Þ −DðxÞNðx ¼ 0Þ

x1x2…xnDðxÞDðx ¼ 0Þ : ð57Þ

The numerator vanishes when x → 0, hence it contains no
constant term. This means that the above subtracted
integrand automatically have the subsector form. We can
then perform the reduction recursively in the subsectors.
To summarize, for one-loop reduction we do not need to

compute any intersection numbers at all, and we also do not
need to perform the top-sector ISP reduction. The only
operations are the transformations of the integrands to the
regular form, which are as simple as taking a couple of
derivatives. Everything else then follows directly.
For illustration purposes, we show the example of the

one-loop massless box family, which has also been used to
demonstrate the top-down reduction in [14]. The propaga-
tor denominators are given by

x1 ¼ l21; x2 ¼ ðl1 − p1Þ2; x3 ¼ ðl1 − p1 − p2Þ2;
x4 ¼ ðl1 − p1 − p2 − p3Þ2; ð58Þ

and the kinematic configuration is

p2
i ¼ 0; ði ¼ 1; 2; 3; 4Þ;

ðp1 þ p2Þ2 ¼ s; ðp1 þ p3Þ2 ¼ t: ð59Þ

The Baikov polynomial PðxÞ is given by
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PðxÞ ¼ −s2x22 þ 2tx1ðx3ð2sþ tÞ þ sðt − x4Þ − sx2Þ
− ðsðx4 − tÞ þ tx3Þ2
þ 2sx2ðx4ðsþ 2tÞ þ st − tx3Þ − t2x21: ð60Þ

Now suppose that we want to reduce Ið3; 2; 1; 1Þ in this
family. We first transform the integrand of Ið3; 2; 1; 1Þ to
regular form:

φ̂ ¼ Da⃗PðxÞγ
x1x2x3x4PðxÞγ

; ð61Þ

where

γ ¼ 5− d
2

; a⃗¼ ð3;2;1;1Þ; Da⃗ ¼ 1

2

∂
2

∂x21

∂

∂x2
: ð62Þ

The master integrals can be chosen the same as in [14]:

ê1 ¼
1

x1x2x3x4
; ê2 ¼

1

x1x3
; ê3 ¼

1

x2x4
; ð63Þ

where ê1 is in the top sector and ê2; ê3 are subsector
masters. We would like to know the coefficients ci in the
decomposition

hφj ¼ c1he1j þ c2he2j þ c3he3j: ð64Þ

Performing the maximal cut, it is straightforward to obtain

c1 ¼
ðd − 7Þðd − 6Þðd − 5Þ

2s2t
: ð65Þ

We then subtract the top-sector component to get
φ̂r ¼ φ̂ − c1=ðx1x2x3x4Þ. From the discussions before,
we know that the integrand φ̂r must automatically take
the subsector form. Indeed, after taking into account the
symmetries x1 ↔ x3 and x2 ↔ x4, the integrand can be
recasted into the form

φ̂r ≃
Nr1ðx1; x3Þ
x1x2x4PðxÞ3

þ Nr2ðx2; x4Þ
x1x2x3PðxÞ3

þ � � � ; ð66Þ

where Nr1ðx1; x3Þ and Nr2ðx2; x4Þ are polynomials, and
“≃” means equivalence after integration. The ellipsis
denotes terms belonging to zero sectors that vanish after
integration. We discuss the identification of zero sectors in
Appendix A. We will always drop these zero-sector terms
in the following.
We can now employ the recursion formula (7) to

integrate out x3 for the first term and x4 for the second
term, respectively. The resulting expression automati-
cally degenerate to subsectors f0; 1; 0; 1g and f1; 0; 1; 0g.
That is,

φ̂r ≃
Nð1Þ

r1 ðx1Þ
x2x4P3

124

þ Nð1Þ
r2 ðx2Þ

x1x3P3
123

; ð67Þ

where P124 is the Baikov polynomial in the representation
for sector f1; 1; 0; 1g and P123 is for f1; 1; 1; 0g. We can
then further integrate out x1 and x2, respectively, for these
two terms, and arrive at

φ̂r ≃
2t2ð2sþ dt − 8tÞðd − 7Þðd − 5Þðd − 3Þ

ðd − 8Þs2P3
24

þ 2s2ðd − 7Þðd − 5Þðd − 3Þ
tP3

13

; ð68Þ

where P24 is the Baikov polynomial for sector f0; 1; 0; 1g
and P13 is for sector f1; 0; 1; 0g. Their expressions are

P24 ¼ t2 þ x22 þ x24 − 2tx2 − 2tx4 − 2x2x4;

P13 ¼ s2 þ x21 þ x23 − 2sx1 − 2sx3 − 2x1x3: ð69Þ

Performing maximal cut in these two subsectors, we find

c2 ¼
2ðd − 7Þðd − 5Þðd − 3Þ

s4t
;

c3 ¼
2ðd − 7Þðd − 5Þðd − 3Þð2sþ dt − 8tÞ

ðd − 8Þs2t4 : ð70Þ

Hence, we see that the complete reduction is achieved
without computing any intersection numbers.

C. The unequal-mass sunrise family

We now turn to a two-loop example which involves the
top-sector ISP reduction. This is the unequal-mass sunrise
family depicted in Fig. 1. The propagator denominators are
given by

x1 ¼ l21−m2
1; x2¼ðl1− l2Þ2−m2

2;

x3 ¼ðl2−pÞ2−m2
3; x4¼ l22; x5¼ðl1−pÞ2; ð71Þ

and the kinematic configuration is p2 ¼ s. The u function
is uðxÞ ¼ PðxÞ−ϵ with the Baikov polynomial

FIG. 1. Unequal-mass sunrise family.

XUHANG JIANG, MING LIAN, and LI LIN YANG PHYS. REV. D 109, 076020 (2024)

076020-10



PðxÞ ¼ ss1s2 þ ss2s3 þ ss1s3 þ s1s2s3 − s2s2 − ss22

− s21s3 − s1s23 þ ðs − s1Þðs2 − s3Þx4
− ðs1 − s2Þðs − s3Þx5 þ ðsþ s1 þ s2 þ s3Þx4x5
− ðx4 þ x5Þx4x5; ð72Þ

where xprop ¼ fx1; x2; x3g and xisp ¼ fx4; x5g. For later
convenience, we define si ≡ xi þm2

i .
To demonstrate our method, we consider the reduction of

Ið1; 1; 1;−3; 0Þ in this family. The integrand is already in
the regular form:

φ̂ ¼ x34
x1x2x3

: ð73Þ

There are four master integrals in the top sector
f1; 1; 1; 0; 0g. The number of master integrals is the same

for both the maximal-cut reduction and the top-sector ISP
reduction. We choose the following basis:

ê1 ¼
1

x1x2x3
; ê2 ¼

x4
x1x2x3

;

ê3 ¼
x5

x1x2x3
; ê4 ¼

x24
x1x2x3

: ð74Þ

We now perform the top-sector ISP reduction for φ̂, which
amounts to computing intersection numbers with xprop
kept as constant. These twofold intersection numbers are
straightforward to calculate, and we arrive at

hφ̃j ¼ c̃1hẽ1j þ c̃2hẽ2j þ c̃3hẽ3j þ c̃4hẽ4j; ð75Þ

where

c̃1 ¼
1

3ϵ − 5
½s2ðs1ðϵ − 2Þ − s2ϵÞ þ sðs21ðϵ − 2Þ þ s2ð2s3 − s2ϵÞ þ 2ðs2 þ s3Þs1Þ

þ s3ð−s21ϵþ s1ð2s2 − s3ϵÞ þ s2ðs2 þ s3Þðϵ − 2ÞÞ�;

c̃2 ¼
1

3ϵ − 5
½−s2ðϵ − 2Þ þ sðs1ð9 − 5ϵÞ þ s2ð7 − 3ϵÞ þ 2s3ðϵ − 2ÞÞ − s21ðϵ − 2Þ

− s22ϵ − s23ϵþ 2s1s2ðϵ − 2Þ þ s1s3ð7 − 3ϵÞ − 5s2s3ϵþ 2s22 þ 2s23 þ 9s2s3�;

c̃3 ¼ −
2ðs1 − s2Þðs − s3Þðϵ − 1Þ

3ϵ − 5
;

c̃4 ¼
ðsþ s1 þ s2 þ s3Þð4ϵ − 7Þ

3ϵ − 5
: ð76Þ

The maximal cut xprop ¼ 0 corresponds to s1 ¼ m2
1; s2 ¼ m2

2; s3 ¼ m2
3. The limits of c̃i can be smoothly taken, and we

recover the usual reduction coefficients as in Eq. (36):

ci ¼ c̃iðxprop ¼ 0Þ; ði ¼ 1; 2; 3; 4Þ: ð77Þ

We can then subtract the top-sector components of hφj and use (45) to reduce the integrand to subsectors. We have

φ̂r¼ φ̂−
X4
i¼1

ciêi≃
Nr1ðx3;x4;x5Þ

x1x2
þNr2ðx1;x4;x5Þ

x2x3
þNr3ðx2;x4;x5Þ

x1x3
: ð78Þ

The last two terms can be obtained from the first one by the substitutions:

m2
1 ↔ m2

3; m
2
2 ↔ s; x1 → x3; m2

1 ↔ s;m2
2 ↔ m2

3; x2 → x3: ð79Þ

Therefore it is enough to consider the first term. The explicit expression for the numerator can be written as

Nr1ðx3; x4; x5Þ ¼
1

3ϵ − 5
½2m2

1sþ 2m2
2s −m4

1ϵ − 2m2
3m

2
1ϵþm4

2ϵþ 2m2
2m

2
3ϵ

þ 2m2
2m

2
1 − 2m4

2 − 4m2
2m

2
3 − ð3m2

1ϵþ 5m2
2ϵþ 2m2

3ϵ − 7m2
1 − 9m2

2 − 4m2
3 − 2sϵþ 4sÞx4

þ ð−2m2
2 −m2

1ϵþm2
2ϵÞx3 þ 2ðm2

1 −m2
2Þðϵ − 1Þx5 − ðϵ − 2Þx3x4 þ ð4ϵ − 7Þx24�: ð80Þ
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By integrating out x3, x4, and x5, the first term in Eq. (78)
can be directly reduced to the subsector f1; 1; 0; 0; 0g.
There is only one master integral in this subsector, which
we choose as e5 ¼ Ið1; 1; 0; 0; 0Þ. The corresponding co-
efficient c5 can be easily obtained from maximal cut, and is
given by

c5 ¼ −
2m2

1ðϵ − 1Þð2m2
2ϵþm2

3ϵ − 3m2
2 − 2m2

3 − sϵþ 2sÞ
ðϵ − 2Þð3ϵ − 5Þ :

ð81Þ
Using the substitutions in (79), the other two terms in (78)
can be reduced to the master integrals e6 ¼ Ið0; 1; 1; 0; 0Þ
and e7 ¼ Ið1; 0; 1; 0; 0Þ. The corresponding coefficients are

c6 ¼−
2m2

3ðϵ−1Þðm2
1ϵ−m2

2ϵ−2m2
1þ2m2

2þ2sϵ−3sÞ
ðϵ−2Þð3ϵ−5Þ ;

c7 ¼−
2sðϵ−1Þð−m2

1ϵþm2
2ϵþ2m2

3ϵþ2m2
1−2m2

2−3m2
3Þ

ðϵ−2Þð3ϵ−5Þ :

ð82Þ

This completes the reduction. The reduction coefficients
ci; ði ¼ 1;…; 7Þ can be compared to the results from Kira,
and we find complete agreement.
Integrals with higher powers of propagators can be

reduced similarly. We use Ið1; 1; 3; 0; 0Þ as an example.
Furthermore, we choose the master integrals to be

ê1 ¼
1

x21x2x3
; ê2 ¼

1

x1x22x3
;

ê3 ¼
1

x1x2x23
; ê4 ¼

1

x1x2x3
; ð83Þ

which also exhibit higher powers in the denominators. To
proceed, we first transform all the integrands to regular
form defined in (32). They become

φ̂¼ 1

2x1x2x3PðxÞ−ϵ
∂
2PðxÞ−ϵ
∂
2x3

;

ê1 ¼
1

x1x2x3PðxÞ−ϵ
∂PðxÞ−ϵ
∂x1

; ê2¼
1

x1x2x3PðxÞ−ϵ
∂PðxÞ−ϵ
∂x2

;

ê3 ¼
1

x1x2x3PðxÞ−ϵ
∂PðxÞ−ϵ
∂x3

; ê4¼
1

x1x2x3
: ð84Þ

Performing the top-sector ISP reduction, we get

hφ̃j ¼ c̃1hẽ1j þ c̃2hẽ2j þ c̃3hẽ3j þ c̃4hẽ4j;

c̃i ¼
NðiÞ

1 ðxpropÞ
D1ðxpropÞ

: ð85Þ

The explicit expression of D1 is

D1 ¼ s3ðs4 − 4ðs1 þ s2 þ s3Þs3 þ ð6s21 þ 4ðs2 þ s3Þs1
þ 6s22 þ 6s23 þ 4s2s3Þs2
− 4ðs31 − ðs2 þ s3Þs21 − ðs22 − 10s3s2 þ s23Þs1
þ ðs2 − s3Þ2ðs2 þ s3ÞÞs
þ ðs21 − 2ðs2 þ s3Þs1 þ ðs2 − s3Þ2Þ2Þ; ð86Þ

andNðiÞ
1 can be found in Appendix B 1. Taking the maximal

cut, i.e., setting si to m2
i , we have

D0 ¼ D1ðxprop ¼ 0Þ; NðiÞ
0 ¼ NðiÞ

1 ðxprop ¼ 0Þ: ð87Þ

The ratios ci ¼ NðiÞ
0 =D0 are essentially the reduction

coefficients in the usual IBP reduction. Applying (51),
we find that the top-sector subtracted integrand can be
transformed into three subsectors:

φr ≃
Nr1ðx1; x2; x3Þ

D0x21x
2
2

þ Nr2ðx1; x2; x3Þ
D0x21x

3
3

þ Nr3ðx1; x2; x3Þ
D0x22x

3
3

: ð88Þ

After integrating out the ISPs in each subsector, we can
perform the reductions under maximal cuts. The master
integrals for these subsectors can be chosen as Ið1; 1; 0; 0; 0Þ,
Ið0; 1; 1; 0; 0Þ, and Ið1; 0; 1; 0; 0Þ, respectively. The reduc-
tion coefficients are

c5 ¼
ð1 − ϵÞ2ðm4

1 − 2m2
1s − 2m2

2sþ 2m2
3s − 2m2

2m
2
1 þ 2m2

3m
2
1 þm4

2 − 3m4
3 þ 2m2

2m
2
3 þ s2Þ

D0

;

c6 ¼
ð1 − ϵÞ2ð2m2

1s − 2m2
2s − 2m2

3s − 3m4
1 þ 2m2

2m
2
1 þ 2m2

3m
2
1 þm4

2 þm4
3 − 2m2

2m
2
3 þ s2Þ

D0

;

c7 ¼
ð1 − ϵÞ2ðm4

1 − 2m2
1sþ 2m2

2s − 2m2
3sþ 2m2

2m
2
1 − 2m2

3m
2
1 − 3m4

2 þm4
3 þ 2m2

2m
2
3 þ s2Þ

D0

; ð89Þ
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where

D0 ¼ m2
3ðm4

1ð4m2
2ðm2

3 þ sÞ þ 4m2
3sþ 6m4

2 þ 6m4
3 þ 6s2Þ

− 4m2
1ð−m2

2ð−10m2
3sþm4

3 þ s2Þ −m4
2ðm2

3 þ sÞ
þ ðm2

3 − sÞ2ðm2
3 þ sÞ þm6

2Þ
− 4m6

1ðm2
2 þm2

3 þ sÞ þ ð−2m2
2ðm2

3 þ sÞ
þ ðm2

3 − sÞ2 þm4
2Þ2 þm8

1Þ: ð90Þ
Again, the reduction coefficients agree perfectly with the
usual IBP reduction from Kira.

D. The equal-mass sunrise family

It is interesting to study the equal-mass case of the above
sunrise family, where m2

1 ¼ m2
2 ¼ m2

3 ¼ m2. This case is
simpler with degenerate kinematics, and it may appear that
one can easily obtain the results by taking the limit from the
more general unequal-mass case. However, we will show
that one needs to be careful regarding the increased
symmetry of the degenerate case.
In the previous subsection, we have employed two kinds

of bases for the unequal-mass family, Eqs. (74) and (83). In
the equal-mass limit, there is a symmetry with respect to the
exchange among the three propagators. One can see that the
basis in Eq. (83) explicitly encodes this symmetry, such that
je1i ¼ je2i ¼ je3i in the degenerate limit. The same is true
for the subsectormaster integrals introduced belowEq. (88).
Therefore, it is straightforward to take the limit and obtain
the reduction result for the equal-mass sunrise family:

jφi ¼ ðc1 þ c2 þ c3Þje1i þ c4je4i
þ ðc5 þ c6 þ c7Þje5i: ð91Þ

On the other hand, if we take the basis of Eq. (74), the
degenerate symmetry is somewhat hidden. In fact, we can
see that je2i ¼ je3i in the equal-mass limit, and obtain

jφi ¼ c1je1i þ ðc2 þ c3Þje2i þ c4je4i
þ ðc5 þ c6 þ c7Þje5i: ð92Þ

However, in this limit, the integral je4i is also related to the
other master integrals and is hence reducible. The reduc-
ibility of je4i has a connection to the increased symmetry,
but the reduction coefficients cannot be easily seen.
Therefore, the lesson to be learned here is that one needs

to choose the basis carefully to maximally exploit the
symmetries of the integral family.

E. The three-loop banana integral family

The method extends to higher loop orders as well. We
study in this section the three-loop banana integral family.
The topology is depicted in Fig. 2, with the propagator
denominators given by

x1 ¼ k21 −m2
1; x2 ¼ k22 −m2

2;

x3 ¼ ðk1 − k3Þ2 −m2
3; x4 ¼ ðk2 − k3 − pÞ2 −m2

4;

x5 ¼ k23; x6 ¼ ðk1 − pÞ2; x7 ¼ ðk2 − pÞ2;
x8 ¼ ðk3 − pÞ2; x9 ¼ ðk1 − k2Þ2; ð93Þ
wherep2¼s, xprop¼fx1;x2;x3;x4g, xisp¼fx5;x6;x7;x8;x9g.
We start from the standard representation with ustd ¼

Gðk1; k2; k3; pÞ, whose explicit expression is too cumber-
some to be shown in the paper. We sequentially integrate
out x9, x6 and x8 to arrive at a loop-by-loop representation
for the top sector, where the u function is given by (up to an
irrelevant constant factor)

uLBL ¼ xϵ5x
ϵ
7λðx5; s1; s3Þ−1=2−ϵλðx5; x7; s4Þ−1=2−ϵ

× λðx7; s; s2Þ−1=2−ϵ; ð94Þ
where si ≡ xi þm2

i , and λðx; y; zÞ is the Källén function
defined as

λðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2yz − 2zx: ð95Þ
We consider the integral Ið1; 1; 1; 1; 0;−1; 0; 0; 0Þ,

whose integrand in the loop-by-loop representation (94)
can be obtained by integrating out x9, x6, and x8, starting
from the standard one x6=ðx1x2x3x4Þ. The result is given by

φ̂ ¼ 1

x1x2x3x4

Nφ

4x5x7
;

Nφ ¼ sx25 − s2x25 þ ss1x5 − s1s2x5 − ss3x5 þ s2s3x5 − ss4x5 þ s2s4x5 þ 5sx7x5

þ 5s1x7x5 − s2x7x5 − s3x7x5 − s4x7x5 þ s1x27 − s3x27 þ ss1x7

− s1s2x7 − ss3x7 þ s2s3x7 − s1s4x7 þ s3s4x7 − ss1s4 þ s1s2s4 þ ss3s4 − s2s3s4 þ x7x25 þ x27x5: ð96Þ

FIG. 2. Three-loop unequal-mass banana integral family.
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Note that, comparing to Eq. (47), the integrand here
contains extra factors (i.e., x5 and x7) in the denominator.
This is common when working with nonstandard Baikov
representations at multiloop levels. These factors are
present in the u-function above, and hence correspond to
twisted boundaries. To reconcile this kind of integrands

with the derivations following Eq. (47), it is enough to
extend the function Q in (47) to rational functions of x,
whose singularities only live on twisted boundaries.
There are 11 master integrals in the top sector [45]. The

number is the same for top-sector ISP reduction. We choose
the master integrals to be

e1∶Ið1; 1; 1; 1; 0; 0; 0; 0; 0Þ; e2∶Ið2; 1; 1; 1; 0; 0; 0; 0; 0Þ; e3∶Ið1; 2; 1; 1; 0; 0; 0; 0; 0Þ;
e4∶Ið1; 1; 2; 1; 0; 0; 0; 0; 0Þ; e5∶Ið1; 1; 1; 2; 0; 0; 0; 0; 0Þ; e6∶Ið2; 1; 1; 2; 0; 0; 0; 0; 0Þ;
e7∶Ið2; 1; 2; 1; 0; 0; 0; 0; 0Þ; e8∶Ið1; 2; 1; 2; 0; 0; 0; 0; 0Þ; e9∶Ið1; 2; 2; 1; 0; 0; 0; 0; 0Þ;
e10∶Ið1; 1; 2; 2; 0; 0; 0; 0; 0Þ; e11∶Ið1; 1; 1; 3; 0; 0; 0; 0; 0Þ: ð97Þ

Performing the top-sector ISP reduction, we get

hφ̃j ¼
X11
i¼1

c̃ihẽij; ð98Þ

where c̃i are functions of ϵ, s, and si, whose explicit
expressions are given in Appendix B 2. Taking the limit
si → m2

i , we get the maximal-cut reduction coefficients ci:

c̃i ≡ NðiÞ
1

D1

; c̃ijsi→m2
i
¼ ci ≡ NðiÞ

0

D0

: ð99Þ

We can now construct the top-sector subtracted integrand
according to Eq. (51). At this point, we note that one
prominent feature of the above reduction coefficients is

D1 ¼ ð−1þ ϵÞ2 ¼ D0; ð100Þ

which means that Ið0Þr in (51) vanishes. This is important
since, according to the discussions below Eq. (96), there are
extra factors of 1=x5 and 1=x7 in the Q function inside the

definition of Ið0Þr . If Ið0Þr is not 0, then these 1=x5 and 1=x7
factors will remain in the subtracted integrand φ̂r. We will
encounter this kind of situations in Sec. V, and discuss
methods to deal with these more complicated cases. In the
current case, the subtracted integrand can be transformed
into four subsectors:

φr ≃
Nr1ðx2; x3Þ
x1x22x

2
3

þ Nr2ðx2; x3; x4Þ
x1x22x

3
4

þ Nr3ðx2; x3; x4Þ
x1x23x

3
4

þ Nr4ðx1; x2; x3; x4Þ
x22x

2
3x

3
4

: ð101Þ

These four terms can be dealt with in four different
representations. They can be obtained sequentially inte-
grating out variables as following:

uLBL⟶
integrating out x4;x5;x7 ur1ðx1; x2; x3Þ;

uLBL⟶
integrating out x3;x5;x7 ur2ðx1; x2; x4Þ;

uLBL⟶
integrating out x2;x7;x5 ur3ðx1; x3; x4Þ;

uLBL⟶
integrating out x1;x5;x7 ur4ðx2; x3; x4Þ:

The four subsector master integrals can be chosen as

e12 ¼ Ið1; 1; 1; 0; 0; 0; 0; 0; 0Þ;
e13 ¼ Ið1; 1; 0; 1; 0; 0; 0; 0; 0Þ;
e14 ¼ Ið1; 0; 1; 1; 0; 0; 0; 0; 0Þ;
e15 ¼ Ið0; 1; 1; 1; 0; 0; 0; 0; 0Þ: ð102Þ

The reduction coefficients can be easily obtained from
maximal cuts and are given by

c12¼−
1

6
; c13¼−

1

6
; c14¼−

1

6
; c15¼

3

2
: ð103Þ

We see that the top-sector ISP reduction for the
banana family is more complicated than the sunrise family.
However, after subtracting the top-sector components, the
reductions in the subsectors are almost trivial for both
families. This is of course a special feature of the banana
and sunrise families, since the subsectors are all products of
one-loop tadpoles. This simplicity should not be expected
in general multiloop families, as we will see in the next
section.

V. TOP-SECTOR ISP REDUCTION
FOR MORE GENERAL CASES

In this section, we discuss the top-sector ISP reduction
for more general multiloop families. We use the massless
and massive double-box families as examples. We dem-
onstrate that our method still works when the number of
master integrals in top-sector ISP reduction is larger than
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the maximal-cut case. We also discuss some complications
when performing the recursive reduction in subsectors.

A. The massless double-box family

This family is depicted in Fig. 3, and the propagator
denominators are given by

x1 ¼ l21; x2 ¼ ðl1 − p1Þ2; x3 ¼ ðl1 − p1 − p2Þ2;
x4 ¼ ðl1 − l2Þ2; x5 ¼ ðl2 − p1 − p2Þ2;
x6 ¼ ðl2 − p1 − p2 − p3Þ2; x7 ¼ l22;

x8 ¼ ðl2 − p1Þ2; x9 ¼ ðl1 − p1 − p2 − p3Þ2; ð104Þ

where the kinematic configuration is

p2
i ¼ 0; ði ¼ 1; 2; 3; 4Þ;

ðp1 þ p2Þ2 ¼ s; ðp2 þ p3Þ2 ¼ t: ð105Þ

Starting from the standard representation, we integrate out
x9 to arrive a loop-by-loop representation. The u function is

u ¼ Pϵ
1P

−1=2−ϵ
2 P−1=2−ϵ

3 ;

P1 ¼ −4Gðl2; p1; p2Þ=s; P2 ¼ 16Gðl2; p1; p2; p3Þ;
P3 ¼ 16Gðl1; l2; p1; p2Þ: ð106Þ

The three polynomials are complicated functions in terms
of the variables xi. To simplify the expressions, we
introduce a set of new variables (hinted by the form of
the Gram matrices):

z1≡ x1; z2≡ x1− x2; z3≡ sþ x2 − x3;

z4≡ x1 − x4þ x7; z5≡ s− x5þ x7;

z6≡−sþ x5 − x6; z7≡ x7; z8≡ s− x5þ x8: ð107Þ

The top-sector ISP reduction involves intersection numbers
over the ISP x8, while keeping x1;…; x7 fixed. This can be
turned into intersection numbers over the new variable z8,
while keeping z1;…; z7 fixed (since they do not depend on
x8). This kind of variable changes can often greatly
simplify the expressions and accelerate the calculations.

To simplify further, we set s ¼ 1 and recover it in the end
by dimension counting. The explicit expressions of the
polynomials are then given by

P1 ¼ z7 − z5z8 þ z28;

P2 ¼ t2z25 − 4t2z7 − 2tz5z6 − 4tz7 þ z26
þ 2z8ðtz5 þ 2tz6 þ z6Þ þ z28;

P3 ¼ z24 − 2z3z5z4 þ z23z
2
5 − 4z1z7 þ 4z2z3z7

þ ðz22 þ 2z3z2 þ z23 − 4z1Þz28
− 2ðz5z23 − z4z3 þ z2z5z3 þ z2z4 − 2z1z5Þz8: ð108Þ

We now consider the reduction of the integral

φ ¼ Ið1; 1; 1; 1; 1; 1; 1;−2; 0Þ;

φ̂ ¼ x28
x1x2x3x4x5x6x7

; ð109Þ

in this family. The number of master integrals in the top
sector is 2, which can be obtained by computing the
dimension under maximal cut. However, the dimension
of the cohomology group is 5 in the top-sector ISP
reduction. This is a new phenomenon that did not happen
in the sunrise and banana families. We will show that our
method still works in this situation, as mentioned below
Eq. (35).
We choose the following ISP-integrated integrals as the

basis for top-sector ISP reduction:

ẽ1 ¼ Ĩð1; 1; 1; 1; 1; 1; 1; 0; 0Þ;
ẽ2 ¼ Ĩð1; 1; 1; 1; 1; 1; 1;−1; 0Þ;
ẽ3 ¼ Ĩð2; 1; 1; 1; 1; 1; 1; 0; 0Þ;
ẽ4 ¼ Ĩð1; 1; 2; 1; 1; 1; 1; 0; 0Þ;
ẽ5 ¼ Ĩð1; 1; 1; 1; 2; 1; 1; 0; 0Þ: ð110Þ

It is clear that after fully integrating over the remaining
variables xprop, three of the above basis become reducible.
For the choice of basis, we have employed the symmetries
under exchanges of variables, such that after full integra-
tion, he3j ¼ he4j ¼ he5j. They can then be reduced as

he3j ¼
1þ 2ϵ

s
he1j þ subsector integrals; ð111Þ

which can be easily obtained under maximal cut.FIG. 3. Massless double box family.
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We transform the integrands in (110) to the regular form:

ê1 ¼
1

x1x2x3x4x5x6x7
; ê2 ¼

x8
x1x2x3x4x5x6x7

;

ê3 ¼
�
−
1

2
− ϵ

�
∂x1P3

P3

1

x1x2x3x4x5x6x7
;

ê4 ¼
�
−
1

2
− ϵ

�
∂x3P3

P3

1

x1x2x3x4x5x6x7
;

ê5 ¼
�
ϵ
∂x5P1

P1

þ
�
−
1

2
− ϵ

�
∂x5P2

P2

þ
�
−
1

2
− ϵ

�
∂x5P3

P3

�

×
1

x1x2x3x4x5x6x7
: ð112Þ

We then perform the top-sector ISP reduction for hφ̃j and
obtain

hφ̃j ¼ c̃1hẽ1j þ c̃2hẽ2j þ c̃3hẽ3j þ c̃4hẽ4j þ c̃5hẽ5j; ð113Þ

where c̃i ¼ NðiÞ
1 =D1 and

D1 ¼ ð−1þ 2ϵÞQ1Q2Q3Q4:

Q1 ¼ ðs − x5 þ 2x6 − x7Þ;
Q2 ¼ ðs2 − 2sx1 − 2sx3 þ x21 þ x23 − 2x1x3Þ;
Q3 ¼ ðsx7 þ sx6 − x27 þ x5x7 þ x6x7 − x5x6Þ;
Q4 ¼ ðx1x2 − x3x2 þ x5x2 − x7x2 − x1x4

þ x3x4 þ x1x5 − x3x7Þ: ð114Þ

The numerators NðiÞ
1 are complicated and we do not list

their explicit expressions here. We now need to take the
maximal-cut limit xprop → 0. It turns out that only c̃2 has a
well-defined multivariate limit:

c2 ¼ lim
xprop→0

c̃2 ¼
tþ 3sϵ
1 − 2ϵ

: ð115Þ

For the remaining coefficients, we note that he3j, he4j, and
he5j are reducible to he1j under maximal cut. Therefore, we
only need to consider the limit of the combination

c1 ¼ lim
xprop→0

�
c̃1 þ

1þ 2ϵ

s
ðc̃3 þ c̃4 þ c̃5Þ

�

¼ −
stϵ

1 − 2ϵ
: ð116Þ

We have checked that c1 and c2 correctly reproduce the
reduction coefficients of hφj onto he1j and he2j.
We now proceed to perform the top-sector subtraction,

and transform the subtracted integrand to subsectors. For
this we would like to apply Eq. (51). However, since
D1ðxprop → 0Þ ¼ 0, the C0 in (51) and (53) is not well

defined. To get around this, we introduce a new function
D0

0ðxpropÞ to replace D0 in (51), and define C0 as the
maximal-cut limit of D0

0=D1. Ideally speaking, we would
like D0

0 to satisfy two conditions: (1) it should be a
monomial of the Baikov variables, as it appears in the
denominator of (51), and we do not want to introduce extra
polynomial factors there; (2) the limit xprop → 0 of D0

0=D1

exists. However, in general these two conditions cannot be
satisfied simultaneously. So we weaken the second con-
dition, and only require the existence of the directional limit
along a particular path.
There is some freedom in the choice of the path. The

final result is independent of the path, as long as the same
one is taken everywhere. To be concrete, we choose to take
x1, x3, x4, x5, x6 to 0 first, and then take x2 and x7 to 0. We
can see that

D1→
ðx1;x3;x4;x5;x6Þ→0 ð1 − 2ϵÞs2ðs − x7Þ2x2x27: ð117Þ

Therefore, we can choose

D0
0 ¼ ð1 − 2ϵÞs4x2x27; ð118Þ

and define

C0 ¼ lim
x2;x7→0

D0
0

D1ððx1; x3; x4; x5; x6Þ → 0Þ ¼ 1;

NðiÞ
0

0 ¼ NðiÞ
0

D0

D0
0 ¼ NðiÞ

0 s4x2x27; ð119Þ

where D0 ¼ 1–2ϵ. We can now replaceD0; N
ðiÞ
0 in Eq. (51)

by D0
0 and NðiÞ

0

0, and obtain

Ir ¼ Ið0Þr þ
X
i

IðiÞr ;

Ið0Þr ¼ ð−1Þjaj−n
Z
C
dnxprop dmxispuðxÞQðxispÞ

×Da⃗ D
0
0 −D1ðxpropÞ
D0

0x1 � � � xn
;

IðiÞr ¼ ð−1ÞjbðiÞj−nþ1

Z
C
dnxprop dmxispuðxÞQiðxispÞ

×Db⃗ðiÞ N
ðiÞ
0

0 − NðiÞ
1 ðxpropÞ

D0
0x1 � � � xn

: ð120Þ

To show that the above integrand indeed belongs to the
subsectors, we need to demonstrate that
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Að0Þ ¼ D0
0ðx2; x7Þ −D1ðxpropÞ

D0
0ðx2; x7Þ

;

AðiÞ ¼ NðiÞ
0

0ðx2; x7Þ − NðiÞ
1 ðxpropÞ

D0
0ðx2; x7Þ

ð121Þ

will cancel some denominator factor xi. By construction,
we see that Að0Þ takes the form

Að0Þ ¼ 2sx7 − x27
s2

þ Fðx1; x3; x4; x5; x6; x2; x7Þ; ð122Þ

where thefunctionFvanishes in the limitðx1;x3;x4;x5;x6Þ→0.
Hence, each term in F must cancel at least one of x1, x3, x4,
x5, x6 in the denominator, while the first term of Að0Þ

cancels x7 in the denominator. Hence, the integrand Ið0Þr

belongs to the subsectors. The integrands IðiÞr are similar.
Therefore, we have demonstrated that in this more com-
plicated example, our method still works.

B. Double-box families with massive propagators

The discussions in the previous subsection can also be
extended to double-box families with massive propagators.
In Fig. 4, we depict the outer-massive double-box topology
where the thick lines represent massive propagators with
the same massm. There are three master integrals in the top

sector. For the top-sector ISP reduction, we can borrow a lot
from the massless case. We choose the variables xi to be the
same as Eq. (104), and the u function is hence unchanged.
The propagator denominators are now

x1 −m2; x2 −m2; x3 −m2; x4;

x5 −m2; x6 −m2; x7 −m2: ð123Þ

With the above denominators, we take the integrand basis
êi for the top-sector ISP reduction according to (110). From
the exchange symmetry, we still have he3j ¼ he4j ¼ he5j,
but they are now independent of he1j in the outer-massive
case. Hence, we can choose the top-sector master integrals
to be he1j; he2j; he3j.
The top-sector ISP reduction is actually not affected by

introducing the internal masses, since the propagators only
serve as overall factors of the integrals. Therefore, the
reduction coefficients c̃i are the same as in Eq. (113).
However, the maximal-cut limit now becomes

x4 → 0; ðx1; x2; x3; x5; x6; x7Þ → m2: ð124Þ

The reduction coefficients c1, c2, and c3 are given by the
limits of c̃1, c̃2 and c̃3 þ c̃4 þ c̃5, respectively. The
results read

c1 ¼
−2m4sþ 2m2s2 þ 6m2stþ 8m2t2 − s2t − 2st2

2sð1 − 2ϵÞ þ ϵð6m4sþ 8m4t −m2s2 þ 4m2stþ 8m2t2 − 2s2t − 2st2Þ
sð1 − 2ϵÞ ;

c2 ¼
−8m2sϵþ 2m2s − 8m2tϵþ 3s2ϵþ st

sð1 − 2ϵÞ ;

c3 ¼
ð4m2 − sÞðsþ 2tÞð4m2sþ 4m2t − stÞ

2sð1 − 2ϵÞ : ð125Þ

The situation is slightly more complicated for the inner-
massive double-box family, depicted in Fig. 5. There are
four master integrals in the top sector. However, with the
integrands in (110), I3 ¼ I4 are reducible to I1 under
maximal cut:

he3j ¼ he4j ¼
1þ 2ϵ

s
he1j þ subsector integrals: ð126Þ

Hence, the integrands in (110) are not enough to serve
as a basis for the maximal-cut reduction. This can be

FIG. 4. The outer-massive double-box family. Thick lines are
massive propagators with the same mass m.

FIG. 5. The inner massive double box. Thick lines are massive
propagators with the same mass m.
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easily remedied by introducing a different integrand
basis, e.g.:

ẽ1 ¼ Ĩð1; 1; 1; 1; 1; 1; 1; 0; 0Þ;
ẽ2 ¼ Ĩð1; 1; 1; 1; 1; 1; 1;−1; 0Þ;
ẽ3 ¼ Ĩð1; 1; 1; 1; 1; 1; 1;−2; 0Þ;
ẽ4 ¼ Ĩð1; 1; 1; 1; 1; 1; 1; 0;−1Þ;
ẽ5 ¼ Ĩð1; 1; 1; 1; 1; 1; 1;−1;−1Þ: ð127Þ

C. The reduction in the subsectors
of the massless double-box family

We now consider the reduction in the subsectors of the
massless double-box family, after subtracting the top-sector
components. Unlike the sunrise and banana families whose
subsectors simply consist of products of one-loop integrals,
the subsectors of double-box families are nontrivial. Here,
new difficulties may arise which require extra treatment
before applying the top-down reduction recursively.
Let us demonstrate the situation using a simple example.

Take Eq. (127) as the basis for the massless double-box
family. Their integrands in the regular form are

ê1 ¼
1

x1x2x3x4x5x6x7
; ê2 ¼

x8
x1x2x3x4x5x6x7

;

ê3 ¼
x28

x1x2x3x4x5x6x7
; ê4 ¼

1

x1x2x3x4x5x6x7

N
2P1

;

ê5 ¼
x8

x1x2x3x4x5x6x7

N
2P1

; ð128Þ

where the polynomial P1 in the denominator is defined in
Eq. (106). It comes from integrating out x9 from the
standard representation. The explicit expression for the
numerator N is (s has been set to 1 for simplicity)

N ¼ tz2z5z8 − 2tz2z7 − z4ð−tz5 þ ð2tþ 1Þz8 þ z6Þ
þ z3ð−tz25 þ z5ððtþ 1Þz8 þ z6Þþ2tz7 − z8ðz6 þ z8ÞÞ
þ 2z1z28 − z2z28 − 2z1z5z8 þ 2z2z5z8 þ z2z6z8 þ 2z1z7

− 2z2z7; ð129Þ

where the variables zi are defined in Eq. (107).
Suppose that we now want to reduce the integral

Ið1; 1; 1; 1; 1; 1; 1;−3; 0Þ, whose integrand is φ̂ ¼ x38=
ðx1x2x3x4x5x6x7Þ. Performing the top-sector ISP reduction
and subtracting the top-sector components, we arrive at the
subtracted integrand of the form

φ̂r ¼ −
x8½2ðx1 − 2sÞx48�
s2P1x2x3x4x5x6x7

þ � � � : ð130Þ

Apparently, the first term in the above belongs to the sub-
sector f0; 1; 1; 1; 1; 1; 1; 0; 0g, but with an extra polynomial

P1 in the denominator. Since x1 is now an ISP in this
subsector, we may integrate it out and arrive at a lower
representation defined by

un1 ∝P−ϵ
11P

−1=2þϵ
12 P−1=2−ϵ

13 ;

P11 ¼ 4Gðl1−p1; l2−p1;p2Þ; P12 ¼−4Gðl2−p1;p2Þ;
P13 ¼ 16Gðl2;p1;p2;p3Þ; ð131Þ

where un1 denotes the u function obtained by integrating
out x1. This new representation has one variable less and is
easier for calculating intersection numbers. However, the
denominator P1 is still present in φ̂r after integrating out x1.
The regulator for P1 [which is present in u of (106)] is now
absent in un1, since all three factors P11, P12, P13 are
different from P1. This means that P1 becomes a relative
boundary in this new representation, which destroys one of
the benefits of our top-down approach. This is a common
problem of our approach in the top-down reduction at two
loops and beyond. To proceed, we need to get rid of the
denominator P1 before integrating out x1. This can be
achieved by IBP relations at the level of the representation
(106). It is an interesting question to find an efficient way to
perform this kind of transformations.

VI. CONCLUSION AND OUTLOOK

In this paper, we have further surveyed the recursive
structure of Baikov representations [25], focusing on its
application to the reduction of Feynman integrals. We have
outlined a systematic approach to perform the top-down
reduction using intersection theory of Feynman integrals.
Our method completely avoids the introduction of extra
regulators for relative boundaries. We also employ the
recursive structure to minimize the number of integration
variables involved in the intersection theory. These two
improvements significantly simplify the computation of
intersection numbers. In particular, we find that, for one-
loop reductions, there is no need to compute any inter-
section number at all. We also demonstrate our method
using the two-loop sunrise and the three-loop banana
families.
A key point in the top-down reduction method is to

transform the top-sector subtracted integrands to the sub-
sectors. To this end we have introduced the concept of the
top-sector ISP reduction. Roughly speaking, we keep the
propagator denominators unintegrated, and treat them as
constants when performing the IBP reduction. This is used
to construct integrands which are IBP equivalent to zero,
but when adding them to the top-sector subtracted inte-
grands, the results are manifestly subsector integrals. In this
work, we perform the top-sector ISP reduction within the
framework of intersection theory, but the idea can be easily
adopted in other IBP frameworks.
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Our method may also be applied as intermediate steps in
the construction of canonical bases using the method of
intersection theory [44,46]. In particular, a common com-
plication in both the top-down reduction and the canonical-
bases construction is how to transform the integrands with
polynomial denominators to ones without, as explained in
Sec. V. Only those integrands without extra denominators
other than those from propagators explicitly correspond to
Feynman integrals. The presence of these extra denomi-
nators also spoils the naive application of the recursive
reduction approach. It is an interesting question deserving
further investigations in the future.
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APPENDIX A: REDUCIBLE SECTORS
AND ZERO SECTORS

In Eq. (54), we rewrite a one-loop integral in a reducible
sector as subsector integrals with a modified u function,
PðxÞγ → PðxÞγ−1, corresponding to a shifted dimension
d → d − 2 (recall that γ ¼ d=2þ � � �). We then need to
bring these integrals back to d dimensions. The dimen-
sional recurrence relations are well understood and are
implemented in LiteRed [7]. To be self-contained, we show
here how to construct the necessary relations without
resorting to external tools. In the meantime, we also show
how to identify zero sectors in which all integrals vanish.
Recall that the one-loop Baikov polynomial PðxÞ is

a a quadratic polynomial of Baikov variables: PðxÞ≡
Gðl1; p1;…; pEÞ. For reducible sectors, we have
Pðx ¼ 0Þ ¼ 0. This means that the constant term is zero
in this polynomial. If the linear terms of x are also absent,
PðxÞ becomes a homogeneous polynomial and this sector
can be identified as a zero sector. The reason is that any
integral in this sector has an overall scaling behavior under
the transformation x → λx:

I ¼
Z

PðxÞγ
Yn
i¼1

dxi
xaii

→ λ2γþn−
P

n
i¼1

ai I; ðA1Þ

where λ is a nonzero constant. Since γ depends linearly on
the dimensional regulator ϵ, the power of λ is nonzero for
any set of integer powers faig. Hence one can conclude
that I is a scaleless integral that vanishes in dimensional
regularization.
We can now consider a PðxÞ with some linear terms.

Without loss of generality, we assume that the linear term of
x1 is nonzero, and write PðxÞ as

PðxÞ ¼ x1

�
cþ d1x1 þ

Xn
i¼2

dixi

�
þ � � � ; ðA2Þ

where terms in the ellipsis are independent of x1. We then
consider the dimensional recurrence relations. For integrals
with a raised power of PðxÞ (e.g., in dþ 2 dimensions), we
can trivially rewrite them as

Z
PðxÞγþ1

Yn
i¼1

dxi
xaii

¼
Z

PðxÞγ
�
PðxÞ

Yn
i¼1

dxi
xaii

�
: ðA3Þ

The right-hand side is an integral in d dimensions with
numerators. Integrals with a lowered power of PðxÞ [e.g., in
d − 2 dimensions, as we encountered in Eq. (54)], are
slightly more difficult to deal with. We consider the integral

I1 ¼
Z

PðxÞγ−1
Yn
i¼1

dxi
xaii

: ðA4Þ

Using integration by parts with respect to x1, we have

Z
PðxÞγ

�Yn
i¼2

dxi
xaii

�
dx1

∂

∂x1

1

xa11

þ γ

Z
PðxÞγ−1

�Yn
i¼1

dxi
xaii

��
cþ 2d1x1 þ

Xn
i¼2

dixi

�
¼ 0:

ðA5Þ

From the above we can solve I1 as

I1 ¼
a1
cγ

Z
PðxÞγ dx1

xa1þ1
1

Yn
i¼2

dxi
xaii

−
1

c

Z
PðxÞγ−1

�Yn
i¼1

dxi
xaii

�

×

�
2d1x1 þ

Xn
i¼2

dixi

�
: ðA6Þ

The first term is an integral ind dimensions, while the second
term consists of integrals in d − 2 dimensions but with a
reduced power of propagators. Applying the above pro-
cedure recursively for the second term, one can transform it to
a sum of d-dimensional integrals and (d − 2)-dimensional
subsector integrals. These subsector integrals can be dealt
with similarly, after integrating out the ISPs. In the end, we
can write I1 as a linear combination of d-dimensional
integrals, as promised.

APPENDIX B: EXPLICIT EXPRESSIONS
FOR SUNRISE AND BANANA FAMILIES

In this appendix, we provide explicit expressions for
certain integrands and reduction coefficients appeared
in Sec. V.
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1. The unequal-mass sunrise family

Here we list the explicit expressions for NðiÞ
1 in Eq. (85):

Nð1Þ
1 ¼ ð2ϵ − 1Þðs − s1Þs1ðs2 − 2ðs1 þ s2 þ s3Þsþ s21 þ s22 þ s23 þ 6s2s3 − 2s1ðs2 þ s3ÞÞ;

Nð2Þ
1 ¼ ð2ϵ − 1Þðs − s2Þs2ðs2 − 2ðs1 þ s2 þ s3Þsþ s21 þ ðs2 − s3Þ2 − 2s1ðs2 − 3s3ÞÞ;

Nð3Þ
1 ¼ −

s4ϵ
2

þ s3ð2s1ϵþ 2s2ϵþ 4s3ϵ − s3Þ
þ s2ð−3s21ϵ − 2s2s1ϵ − 6s3s1ϵ − 3s22ϵ − 9s23ϵ − 6s2s3ϵþ 2s3s1 þ 3s23 þ 2s2s3Þ
þ sð2s31ϵ − 2s2s21ϵ − 2s22s1ϵ − 2s23s1ϵþ 32s2s3s1ϵþ 2s32ϵþ 8s33ϵ − 2s2s23ϵ − s3s21

− 6s2s3s1 − 3s33 − s22s3Þ þ
1

2
ð−s41ϵþ 4s2s31ϵþ 4s3s31ϵ − 6s22s

2
1ϵ − 10s23s

2
1ϵ

− 4s2s3s21ϵþ 4s32s1ϵþ 12s33s1ϵ − 28s2s23s1ϵ − 4s22s3s1ϵ − s42ϵ − 5s43ϵþ 12s2s33ϵ

− 10s22s
2
3ϵþ 4s32s3ϵþ 2s23s

2
1 − 4s33s1 þ 12s2s23s1 þ 2s43 − 4s2s33 þ 2s22s

2
3Þ;

Nð4Þ
1 ¼ 1

2
ð2ϵ − 1Þð3ϵ − 2Þðs3 − 3ðs1 þ s2 þ s3Þs2 þ ð3s21 þ 2ðs2 þ s3Þs1 þ 3s22 þ 3s23 þ 2s2s3Þs

− s31 þ s21ðs2 þ s3Þ − ðs2 − s3Þ2ðs2 þ s3Þ þ s1ðs22 − 10s3s2 þ s23ÞÞ: ðB1Þ

2. The three-loop banana family

The coefficients c̃i in (98) are

c̃1 ¼
1

12ð−1þ ϵÞ2 ½30sϵ
2 − 18s1ϵ2 − 6s2ϵ2 − 6s3ϵ2 − 6s4ϵ2 − 53sϵþ 23s1ϵþ 7s2ϵþ 7s3ϵ

þ 7s4ϵþ 24s − 6s1 − 2s2 − 2s3 − 2s4�;

c̃2 ¼
ð−5þ 6ϵÞðs − s1Þs1

6ð−1þ ϵÞ2 ;

c̃3 ¼
s2ð2sϵ − 4s1ϵ − 2s2ϵ − 4s3ϵ − 4s4ϵ − sþ 4s1 þ s2 þ 2s3 þ 2s4Þ

6ð−1þ ϵÞ2 ;

c̃4 ¼
s3ð2sϵ − 4s1ϵ − 4s2ϵ − 2s3ϵ − 4s4ϵ − sþ 4s1 þ 2s2 þ s3 þ 2s4Þ

6ð−1þ ϵÞ2 ;

c̃5 ¼
−1

12ð−1þ ϵÞ2 ½s
2ϵ − 2s1sϵ − 2s2sϵ − 2s3sϵ − 6s4sϵþ s21ϵþ s22ϵþ s23ϵþ 5s24ϵ − 2s1s2ϵ

− 2s1s3ϵþ 6s2s3ϵþ 6s1s4ϵþ 14s2s4ϵþ 14s3s4ϵþ 2s4s − 2s24 − 8s1s4 − 4s2s4 − 4s3s4�;

c̃6 ¼ 0; c̃7 ¼ 0; c̃8 ¼
s2s4ðsþ s1 − s2 − 3s3 − s4Þ

3ð−1þ ϵÞ2 ;

c̃9 ¼
s2s3ðsþ s1 − s2 − s3 − 3s4Þ

3ð−1þ ϵÞ2 ; c̃10 ¼
s3s4ðsþ s1 − 3s2 − s3 − s4Þ

3ð−1þ ϵÞ2 ;

c̃11 ¼
−s4

6ð−1þ ϵÞ2 ½s
2 − 2s1s − 2s2s − 2s3s − 2s4sþ s21 þ s22 þ s23 þ s24 − 2s1s2 − 2s1s3

þ6s2s3 − 2s1s4 þ 6s2s4 þ 6s3s4�: ðB2Þ

XUHANG JIANG, MING LIAN, and LI LIN YANG PHYS. REV. D 109, 076020 (2024)

076020-20



[1] A. V. Kotikov, Phys. Lett. B 254, 158 (1991).
[2] J. M. Henn, Phys. Rev. Lett. 110, 251601 (2013).
[3] J. M. Henn, J. Phys. A 48, 153001 (2015).
[4] S. Laporta, Phys. Lett. B 504, 188 (2001).
[5] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).
[6] A. von Manteuffel and C. Studerus, arXiv:1201.4330.
[7] R. N. Lee, J. Phys. Conf. Ser. 523, 012059 (2014).
[8] A. V. Smirnov and F. S. Chuharev, Comput. Phys. Commun.

247, 106877 (2020).
[9] J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch,

Comput. Phys. Commun. 266, 108024 (2021).
[10] S. Mizera, Phys. Rev. Lett. 120, 141602 (2018).
[11] P. Mastrolia and S. Mizera, J. High Energy Phys. 02 (2019)

139.
[12] S.Mizera, Proc. Sci.MA2019 (2019) 016 [arXiv:2002.10476].
[13] H. Frellesvig, F. Gasparotto, M. K. Mandal, P. Mastrolia, L.

Mattiazzi, and S.Mizera, Phys. Rev. Lett. 123, 201602 (2019).
[14] H. Frellesvig, F. Gasparotto, S. Laporta, M. K. Mandal, P.

Mastrolia, L. Mattiazzi, and S. Mizera, J. High Energy Phys.
03 (2021) 027.

[15] S. Weinzierl, J. Math. Phys. (N.Y.) 62, 072301 (2021).
[16] S. Caron-Huot and A. Pokraka, J. High Energy Phys. 12

(2021) 045.
[17] S. Caron-Huot and A. Pokraka, J. High Energy Phys. 04

(2022) 078.
[18] G. Fontana and T. Peraro, J. High Energy Phys. 08 (2023)

175.
[19] V. Chestnov, H. Frellesvig, F. Gasparotto, M. K. Mandal,

and P. Mastrolia, J. High Energy Phys. 06 (2023) 131.
[20] J. Böhm, A. Georgoudis, K. J. Larsen, H. Schönemann, and

Y. Zhang, J. High Energy Phys. 09 (2018) 024.
[21] Z. Wu, J. Boehm, R. Ma, H. Xu, and Y. Zhang, Comput.

Phys. Commun. 295, 108999 (2024).
[22] X. Liu and Y.-Q. Ma, Phys. Rev. D 99, 071501 (2019).
[23] X. Guan, X. Liu, and Y.-Q. Ma, Chin. Phys. C 44, 093106

(2020).
[24] A. Kardos, arXiv:1812.05622.
[25] X. Jiang and L. L. Yang, Phys. Rev. D 108, 076004 (2023).
[26] P. A. Baikov, Nucl. Instrum. Methods Phys. Res., Sect. A

389, 347 (1997).

[27] R. N. Lee, Nucl. Phys. B830, 474 (2010).
[28] H. Frellesvig and C. G. Papadopoulos, J. High Energy Phys.

04 (2017) 083.
[29] J. Bosma, M. Sogaard, and Y. Zhang, J. High Energy Phys.

08 (2017) 051.
[30] M. Harley, F. Moriello, and R. M. Schabinger, J. High

Energy Phys. 06 (2017) 049.
[31] K. J. Larsen and Y. Zhang, Phys. Rev. D 93, 041701

(2016).
[32] D. Bendle, J. Böhm, W. Decker, A. Georgoudis, F.-J.

Pfreundt, M. Rahn, P. Wasser, and Y. Zhang, J. High
Energy Phys. 02 (2020) 079.

[33] J. Chen and B. Feng, J. High Energy Phys. 02 (2023) 178.
[34] R. Britto, F. Cachazo, and B. Feng, Nucl. Phys. B725, 275

(2005).
[35] G. Ossola, C. G. Papadopoulos, and R. Pittau, Nucl. Phys.

B763, 147 (2007).
[36] W. B. Kilgore, arXiv:0711.5015.
[37] R. K. Ellis, W. T. Giele, Z. Kunszt, and K. Melnikov, Nucl.

Phys. B822, 270 (2009).
[38] Y. Zhang, J. High Energy Phys. 09 (2012) 042.
[39] H. Frellesvig, F. Gasparotto, S. Laporta, M. K. Mandal, P.

Mastrolia, L. Mattiazzi, and S. Mizera, J. High Energy Phys.
05 (2019) 153.

[40] A. V. Smirnov and A. V. Petukhov, Lett. Math. Phys. 97, 37
(2011).

[41] K. Aomoto, J. Math. Soc. Jpn. 27, 248 (1975).
[42] R. N. Lee and A. A. Pomeransky, J. High Energy Phys. 11

(2013) 165.
[43] This can be obtained from a similar short exact sequence of

dual integrands in [16,17].
[44] J. Chen, X. Jiang, C. Ma, X. Xu, and L. L. Yang, J. High

Energy Phys. 07 (2022) 066.
[45] This number can be correctly computed from the dimension

of the cohomology group in the standard representation. In
the loop-by-loop representation (94), the dimension will be
higher, since the representation allows extra integrals with
x5 and/or x7 in the denominator.

[46] J. Chen, X. Jiang, X. Xu, and L. L. Yang, Phys. Lett. B 814,
136085 (2021).

RECURSIVE STRUCTURE OF BAIKOV REPRESENTATIONS: … PHYS. REV. D 109, 076020 (2024)

076020-21

https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1088/1751-8113/48/15/153001
https://doi.org/10.1016/S0370-2693(01)00256-8
https://doi.org/10.1142/S0217751X00002159
https://arXiv.org/abs/1201.4330
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1016/j.cpc.2021.108024
https://doi.org/10.1103/PhysRevLett.120.141602
https://doi.org/10.1007/JHEP02(2019)139
https://doi.org/10.1007/JHEP02(2019)139
https://doi.org/10.22323/1.383.0016
https://arXiv.org/abs/2002.10476
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1007/JHEP03(2021)027
https://doi.org/10.1007/JHEP03(2021)027
https://doi.org/10.1063/5.0054292
https://doi.org/10.1007/JHEP12(2021)045
https://doi.org/10.1007/JHEP12(2021)045
https://doi.org/10.1007/JHEP04(2022)078
https://doi.org/10.1007/JHEP04(2022)078
https://doi.org/10.1007/JHEP08(2023)175
https://doi.org/10.1007/JHEP08(2023)175
https://doi.org/10.1007/JHEP06(2023)131
https://doi.org/10.1007/JHEP09(2018)024
https://doi.org/10.1016/j.cpc.2023.108999
https://doi.org/10.1016/j.cpc.2023.108999
https://doi.org/10.1103/PhysRevD.99.071501
https://doi.org/10.1088/1674-1137/44/9/093106
https://doi.org/10.1088/1674-1137/44/9/093106
https://arXiv.org/abs/1812.05622
https://doi.org/10.1103/PhysRevD.108.076004
https://doi.org/10.1016/S0168-9002(97)00126-5
https://doi.org/10.1016/S0168-9002(97)00126-5
https://doi.org/10.1016/j.nuclphysb.2009.12.025
https://doi.org/10.1007/JHEP04(2017)083
https://doi.org/10.1007/JHEP04(2017)083
https://doi.org/10.1007/JHEP08(2017)051
https://doi.org/10.1007/JHEP08(2017)051
https://doi.org/10.1007/JHEP06(2017)049
https://doi.org/10.1007/JHEP06(2017)049
https://doi.org/10.1103/PhysRevD.93.041701
https://doi.org/10.1103/PhysRevD.93.041701
https://doi.org/10.1007/JHEP02(2020)079
https://doi.org/10.1007/JHEP02(2020)079
https://doi.org/10.1007/JHEP02(2023)178
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://arXiv.org/abs/0711.5015
https://doi.org/10.1016/j.nuclphysb.2009.07.023
https://doi.org/10.1016/j.nuclphysb.2009.07.023
https://doi.org/10.1007/JHEP09(2012)042
https://doi.org/10.1007/JHEP05(2019)153
https://doi.org/10.1007/JHEP05(2019)153
https://doi.org/10.1007/s11005-010-0450-0
https://doi.org/10.1007/s11005-010-0450-0
https://doi.org/10.2969/jmsj/02720248
https://doi.org/10.1007/JHEP11(2013)165
https://doi.org/10.1007/JHEP11(2013)165
https://doi.org/10.1007/JHEP07(2022)066
https://doi.org/10.1007/JHEP07(2022)066
https://doi.org/10.1016/j.physletb.2021.136085
https://doi.org/10.1016/j.physletb.2021.136085

