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The precision with which hadronic vacuum polarization (HVP) is obtained determines how accurately
important observables, such as the muon anomalous magnetic moment aμ or the low-energy running of the
electromagnetic coupling α, are predicted. The two most precise approaches for determining HVP are
dispersive relations combined with eþe− → hadrons cross section data and lattice QCD. However, the
results obtained in these two approaches display significant tensions, whose origins are not understood.
Here we present a framework that sheds light on this issue and—if the two approaches can be reconciled—
allows them to be combined. Via this framework, we test the hypothesis that the tensions can be explained
by modifying the R-ratio in different intervals of center-of-mass energy

ffiffiffi
s

p
. As ingredients, we consider

observables that have been precisely determined in both approaches. These are the leading hadronic
contributions to aμ, to the so-called intermediate window observable, and to the running of α between

spacelike virtualities 1 and 10 GeV2 (for which only a preliminary lattice result exists). Our tests take into
account all uncertainties and correlations, as well as uncertainties on uncertainties in the lattice results. For
instance, using this framework we show that results obtained in the two approaches can be made to agree,
for all three observables, by modifying the ρ peak in the experimental spectrum. More specifically, we show
that this requires a common ∼5% increase in the contributions of the peak to each of the three observables.
This result is robust against the presence or absence of the running of α in the comparison. However, such
an increase is much larger than the uncertainties on the measured R-ratio. We also discuss a variety of
generalizations of the methods used here, as well as the limits in the information that can be extracted from
the R-ratio via a finite set of observables.

DOI: 10.1103/PhysRevD.109.076019

I. INTRODUCTION

A virtual, propagating photon polarizes the vacuum into
quarks and gluons. Known as hadronic vacuum polarization
(HVP), this effect is important when processes involving
electromagnetism at the quantum level are studied with high
precision. For a photon of small virtuality, predicting this

effect requires being able to describe the strong interaction
in its nonperturbative regime. At present, there are two
approaches for making precise predictions of this polariza-
tion. These are based, on the one hand, on large-scale
numerical simulations in lattice quantum chromodynamics
(QCD) and, on the other, on the exploitation of eþe− →
hadron data.
HVP has been recently the center of much attention,

because of its importance in the standard model prediction
of the anomalous magnetic moment of the muon aμ. This
quantity is currently being measured at the Fermi National
Accelerator Laboratory (Fermilab) [1] and was previously
measured at the Brookhaven National Laboratory [2].
While the data-driven determination of the leading-order
(LO) HVP contribution to aμ [3–5], aLO-HVPμ , yields a
standard model prediction 4.2σ below the world average of
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the measurement of the total aμ [1,2], the most precise
lattice calculation of this contribution [6] reduces this
difference to 1.5σ, with comparable uncertainties [7].
Recently, a new experimental measurement from
Fermilab became available [8]. The combination of the
earlier world average with this measurement, based on the
data from runs 2 and 3, is larger than the theoretical
prediction based on dispersive integrals from the Muon
g − 2 Theory Initiative White Paper (WP) [5] by 5.1σ and
1.7σ above the prediction based on lattice QCD by the
BMW Collaboration [6].
As discussed below and in Ref. [6], this reduction in the

tension between prediction and experiment comes at the
expense of being 2.0σ above the data-driven prediction.
Moreover, for the so-called intermediate-distance-window
contribution to aLO-HVPμ [9], this excess rises to 3.8σ ([6]
and below) and even 4.2σ for a weighted average of inde-
pendent lattice determinations of this quantity [6,10–13]
(see Sec. IVA). A similar comparison was performed in
Ref. [11], without including the intermediate-time-window
results of Refs. [12,13] that appeared as Ref. [11] was being
published. That work also includes the first lattice compu-
tation of the so-called short-distance window, as well as a
comparison of that result with the one obtained in the data-
driven approach [14].
The above discussion does not take into account the

measurement of the eþe− → πþπ−ðγÞ cross section, from
threshold to 1.2 GeV, reported by the CMD-3 Collaboration
in the preprint [15]. This is because an explanation has not
yet been found for the fact that the cross section that they
obtain is significantly larger than all previous, modern
measurements and, in particular, the one published by the
same collaboration in Ref. [16].
Another place where HVP plays an important role is in

the scale dependence of the electromagnetic coupling α.
The fact that the lattice predicts a larger value for aLO-HVPμ

has an impact on the value of α at the scale of the Z-boson
mass MZ. This has been investigated in Refs. [17–20]. The
overall conclusion is that the lattice excess in aμ, alone,
does not imply a change in αðM2

ZÞ large enough to have an
impact on precision electroweak tests. This is confirmed by
direct lattice calculations of the running of α [6,21,22]. In
particular, Ref. [6] suggests that the faster running of α
observed in lattice calculations is concentrated for space-
like values of momentum scale below a few GeV2.
Beyond signaling tensions between the lattice and data-

driven approaches for specific physical observables, the
discrepancies discussed above also contain information
about the agreement or disagreement between the primary
quantities used to compute these HVP related observables
in each of the two approaches. On the lattice this primary
observable is the quark electromagnetic-current, two-point
function with vanishing three-momentum, computed as a
function of Euclidean time t. In the data-driven approach,
it is instead the cross section for eþe− annihilation into

hadrons, measured as a function of center-of-mass (c.m.)
energy

ffiffiffi
s

p
, normalized by the tree-level cross section for

eþe− → μþμ− in the massless limit, i.e., the R-ratio RðsÞ.1
To help pinpoint the possible sources of the disagree-

ment between the two approaches, and possibly correct
them, one needs to be able to make sharp statements about
the agreement or disagreement between the lattice corre-
lation function and the experimental R-ratio in different
regions of t and

ffiffiffi
s

p
. Because the current correlator is

proportional to the Laplace transform of
ffiffiffi
s

p
RðsÞ [23], it is

straightforward to determine that correlator, and any
observable that can be obtained from it, once RðsÞ is
measured. Thus, it is relatively simple to identify regions of
t in which the lattice and data-driven approaches disagree,
possibly pointing to a problem with lattice computations at
those length scales.
Determining the R-ratio in specific intervals of

ffiffiffi
s

p
from a lattice computation of the current correlator
requires performing an inverse Laplace transform. Such
lattice results will have uncertainties and be obtained at a
finite number of points, making this inverse a notoriously
ill-posed problem.
A number of interesting methods have been advocated

for relating the two approaches. For instance, Ref. [24]
proposes a modification of the Backus-Gilbert method that
involves reconstructing, not the spectral function itself,
but rather the spectral function convoluted, at individual
values of

ffiffiffi
s

p
, with a Gaussian whose narrowness is limited

by the statistical and systematic uncertainties on the lattice
results. The first application of this method was performed
in Ref. [25]. In Ref. [26] the authors propose a physics- and
data-constrained dispersive representation of the pion
electromagnetic form factor. Then, in Ref. [27] they use
it to study the consequences of a value of aLO-HVPμ , such as
the one obtained on the lattice in Ref. [6], on important
observables impacted by this form factor. Another
approach proposes to gain information about the R-ratio
in different regions of

ffiffiffi
s

p
, via well-chosen linear combi-

nations of so-called time-window observables computed on
the lattice [14]. Yet another approach proposes to use
spectral-width sum rules to constrain RðsÞ, in narrow
regions of

ffiffiffi
s

p
, using the lattice correlator [28].

More generally, a variety of methods have been developed
for extracting real-time properties (e.g., spectral functions)
from Euclidean correlation functions computed in lattice
QCD. These include approaches based on the Backus-Gilbert
method with various regularizations [29–33]; smeared spec-
tral functions using Chebyshev polynomials [34]; the maxi-
mum entropy method [35–41]; a Bayesian reconstruction

1The determination of RðsÞ actually mixes experimental
measurements and perturbative QCD predictions, depending
on the

ffiffiffi
s

p
range, as discussed in Appendix A. In the following

it will generally be referred to as “experimental R-ratio” and,
more specifically, as “measured R-ratio” for the

ffiffiffi
s

p
regions

where measurements are being used.
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approach [42,43]; Bayesian, Generalized Randomized
Hamiltonian Monte Carlo [44]; sum rules or other para-
metrizations [45–48], also combined with Bayesian
approaches [49]; a modified lattice correlator which
emphasizes different parts of the spectral function at large
times [50]; recent developments based on special properties
of certain conformal maps [51]; Gaussian processes [52];
and machine learning [53–63].2 Comparisons of various
approaches, together with their regularization, have also been
performed [67–70].
Here we propose to begin more modestly in terms of

R-ratio reconstruction. However, we do build a quantitative
measure of comparison between the two approaches into
our formalism and include it in our results.
To provide a relevant comparison between lattice and

data-driven results, the lattice results used must have
subpercent uncertainties. At such precisions, leading-order
strong-isospin breaking and QED corrections are required.
Moreover, if one is interested in probing the spectral
function above the cc̄ threshold, one must include the
contributions of at least the four lightest quark flavors. For
information above the bb̄ threshold, a fifth quark flavor
must be included. Of course, all continuum and infinite-
volume limits must be taken in a controlled fashion. In
addition, as the ranges of

ffiffiffi
s

p
that one is interested in

reconstructing become narrower, the function with which
the lattice results must be convoluted becomes more and
more oscillatory. Thus, not only do the uncertainties have to
be small, but also the statistical and systematic correlations
between the lattice quantities have to be well known.
In the present paper we focus on the results published

in Ref. [6], which satisfy all of the above requirements.
These comprise aLO-HVPμ and the intermediate-time-window
observable aLO-HVPμ;win . We also call upon the preliminary
result for the hadronic contribution to the running of α

between spacelike virtualities 1 and 10 GeV2, δðΔαð5ÞhadÞ≡
Δαð5Þhadð−10 GeV2Þ − Δαð5Þhadð−1 GeV2Þ [6], which provides
interesting complementary information.
Here we use a limited form of the more general approach

we propose, focusing on different intervals of
ffiffiffi
s

p
in the

eþe− → hadron spectrum, such as the ρ-peak region, the
low-mass region below that peak, different high-mass
regions, etc. The idea is to test the extent to which the
lattice results are consistent with a modification of the
spectrum that leads to a common rescaling of the observ-
ables of interest in the chosen region and to determine the
required rescaling factor. The simplest allowed modifica-
tion would consist of directly rescaling the experimental
R-ratio within the chosen region by that same factor. This
would be a rather crude distortion of the experimental

spectral function that can be viewed as a first approxima-
tion to a more physical modification. In fact, because the
constraints that we consider pertain only to integrals of the
R-ratio, there remains a significant amount of freedom in
the shape of the corresponding modification. Therefore,
many other modifications are possible, some of which may
actually be physical. This point is discussed in more detail
in Appendix E 1.
Beyond complete and precise lattice results for the HVP

quantities discussed above, our proposed reconstruction
and comparison approach also requires state-of-the-art
determinations of the contributions to those quantities from
different

ffiffiffi
s

p
intervals in the data-driven approach, includ-

ing a reliable quantification of correlations. For this we use
the Davier-Hoecker-Malaescu-Zhang (DHMZ) methodol-
ogy implemented in the HVPtools software [3,71–73].
Another feature of our analysis is that we include

“uncertainties on the uncertainties” for the lattice results.
That is, we determine statistical and systematic uncertain-
ties on the covariance matrix between the different lattice
observables considered. This is important, because recon-
struction methods are very sensitive to uncertainties and
correlations in the input data, a corollary of the ill-posed
nature of inverse methods. The same should eventually be
done for the correlations between the corresponding data-
driven observables. This is left for future work.
The remainder of the paper is organized as follows.

Section II briefly presents the lattice correlation function
and how it can be obtained from the R-ratio. The observ-
ables that we use in the comparison of the lattice and data-
driven approaches are defined in Sec. III, including the
window observables put forward in Ref. [9]. In Sec. IV,
we introduce the comparison methodology for testing the
lattice correlation function with data-driven results. More
importantly, we present our method for determining the
size of the modification of the experimental R-ratio, in a
given

ffiffiffi
s

p
interval, that would be required to reconcile the

lattice and data-driven values of the observables of interest.
Section V presents results of applications of these methods
to the comparison of the two approaches. This is followed
by our conclusions in Sec. VI, in which we also summarize
the main results of our study.
In addition, we provide a number of appendixes.

Appendix A presents the data-driven determination of
the relevant observables and of their correlations, and
Appendix B provides a summary of the lattice determi-
nation of these quantities, including uncertainties on the
covariance matrix. In Appendix C we discuss, in more
detail, the method used in this paper for determining the
size of the possible modifications of the experimental
R-ratio and its possible pitfalls. Appendix D is dedicated
to showing the stability of this method with respect to the
averaging procedure upon which it calls. Appendix E
presents various generalizations of this method, which
can provide increasingly refined reconstructions of the
R-ratio required to accommodate lattice results, as more of

2Some of these methods have also been applied in the context
of the reconstruction of parton distribution functions or of
distribution amplitudes of hadrons, from lattice QCD [64–66].
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these results become available and/or their precision
increases. Finally, in Appendix F, some of the limitations
on the number of observables that can be studied in the
data-driven approach are discussed.

II. THE HVP CORRELATOR FROM THE LATTICE
AND THE R-RATIO

Recent lattice calculations of leading-order HVP
effects are based on the following Euclidean-time t, quark,
electromagnetic-current two-point function with vanishing
three-momentum and averaged over spatial components [23],

CðtÞ ¼ 1

3e2
X3
i¼1

Z
d3xhJiðx⃗; tÞJið0Þi: ð1Þ

Here, e > 0 is the unit of electric charge, Jμ
e ¼ 2

3
ūγμu−

1
3
d̄γμd − 1

3
s̄γμsþ 2

3
c̄γμc − 1

3
b̄γμbþ 2

3
t̄γμt, and the angle

brackets stand for the QCDþ QED expectation value up
to and including order e2. For the quantities considered here,
the top-quark contribution is either negligible or excluded by
definition. However, all other flavors are required. Thus, the
lattice results that we use [6] are obtained including the first
five quark flavors.
The two-point function of Eq. (1) is not generically

studied in the data-driven approach because quantities of
phenomenological interest are usually obtained directly
from the R-ratio. The latter is defined in terms of the cross
section for eþe− annihilation into hadrons and is a function
of the c.m. energy

ffiffiffi
s

p
,

RðsÞ≡ σðeþe−ðsÞ → hadronsðþγÞÞ
4πα2ðsÞ=ð3sÞ ; ð2Þ

where the denominator is the Born cross section for
eþe− → μþμ− in the massless limit. In that denominator,
it is the electromagnetic coupling at c.m. energy squared s
that is used to remove unwanted vacuum polarization
effects in the numerator. In particular, in comparisons of
RðsÞ and CðtÞ, this means that it is the one-photon-
irreducible part of the latter that is relevant. We denote it
C1γIðtÞ. Moreover, the cross section in the numerator of
Eq. (2) includes the final-state radiation of photons. While
these photons imply that effects of higher order in α are
included, they are kept to obtain an infrared-safe cross
section at next-to-leading order (NLO) in α. Moreover, in
applications, the contributions of these photons can con-
sistently be taken into account in higher-order calculations.
From RðsÞ, it is straightforward to obtain C1γIðtÞ, after

invoking the optical theorem that relates the eþe− →
hadron cross section to the spectral function associated
with C1γIðtÞ. The result is proportional to the Laplace
transform of

ffiffiffi
s

p
RðsÞ [23],

C1γIðtÞ ¼
1

24π2

Z
∞

0

ds
ffiffiffi
s

p
RðsÞe−jtj ffiffi

s
p
: ð3Þ

The integral diverges at short distances like t−3, up to
logarithms. However, in physical quantities, C1γIðtÞ is
multiplied by weights that vanish faster than t3 as t → 0.

III. OBSERVABLES OF INTEREST

In principle one could try to make a direct comparison of
e.g., the function t4C1γIðtÞ,3 computed on the lattice and in
the data-driven approach [via Eq. (3)]. However, computing
t4C1γIðtÞ as a function of Euclidean time t, on the lattice,
necessarily introduces a model dependence to account for
the fact that, in each simulation, the correlator is obtained
for different discrete values of t, separated by as much as a
tenth of a femtometer. Moreover, t4C1γIðtÞ is affected by
different systematics in different t regions and the models
have to be adapted to account for these differences. In
addition, the statistical and systematic fluctuations in
t4C1γIðtÞ will be strongly correlated at neighboring times.
These correlations not only restrict the usefulness of obtain-
ing the function at multiple time points, but also complicate
error propagation in derived quantities. Furthermore, they
pose challenges in comparing it with its data-driven counter-
part, which is also susceptible to such correlations.
Thus, to compare the two approaches, we focus here on

quantities, derived from C1γIðtÞ, that are of direct phenom-
enological interest and that are likely to be computed by
several lattice collaborations. The fact that our framework
allows the use of such quantities, without necessitating the
computation of t4C1γIðtÞ as a function of t, is actually one
of its main virtues.
The LO-HVP contribution to the anomalous magnetic

moment of the muon can be obtained from C1γIðtÞ via [23]

aLO-HVPμ ¼ α2
Z

∞

0

dtKðtÞC1γIðtÞ; ð4Þ

where the kernel is

KðtÞ ¼
Z

∞

0

dQ2

m2
μ
ω

�
Q2

m2
μ

��
t2 −

4

Q2
sin2

�
t

ffiffiffiffiffiffi
Q2

p
2

��
; ð5Þ

ωðrÞ ¼ ½rþ 2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 4Þp �2= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðrþ 4Þp
and α is the fine-

structure constant in the Thomson limit. In fact, it is a
discretized version of Eq. (4) that is the basis of the lattice
calculation of aLO-HVPμ .
When the data-driven approach is used, aLO-HVPμ is

computed directly from RðsÞ as an integral over s (see
Appendix A). A comparison with lattice results gives a first
means of confronting the two approaches. However, in the

3C1γIðtÞ has a divergence proportional to 1=t3 at t ¼ 0, whose
coefficient is regularization-scheme dependent. To compare the
correlation function obtained in the two approaches requires
eliminating the divergence. That can be done, for instance, by
considering t4C1γIðtÞ instead of C1γIðtÞ itself.
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case of a disagreement, it is important to understand
more precisely how different Euclidean times t, in
C1γIðtÞ computed on the lattice, contribute to this tension.
Indeed, different length scales on the lattice are subject to
different statistical and systematic uncertainties, and know-
ing which ones agree or disagree with the data-driven
approach may help point to aspects of the lattice calcu-
lations that require more attention.
To shed light on this issue, particularly useful quantities

are the so-called Euclidean-time-window contributions
to aLO-HVPμ [9,14]. These are restrictions of the integral
in Eq. (4) to time intervals of interest, using a smoothed-out
Heaviside function that limits edge effects when dealing
with discrete times, as is the case on the lattice. This
function is taken to be θðt;ΔÞ≡ 1

2
½1þ tanh ðt=ΔÞ�, where

Δ > 0 determines the time range over which the function
transitions from 0 to 1. The desired, restricted integrals are
then defined as

aLO-HVPμ;win ðti; tfÞ ¼ α2
Z

∞

0

dtWðt; ti; tf;ΔÞKðtÞC1γIðtÞ; ð6Þ

where the window functionWðt; ti; tf;ΔÞ takes on different
forms depending on the values of ti and tf,

Wðt; ti; tf;ΔÞ

¼

8>>><
>>>:

1; when ti ¼ 0 and tf ¼ ∞;

1− θðt− tf;ΔÞ; when 0 ¼ ti < tf <∞;

θðt− ti;ΔÞ− θðt− tf;ΔÞ; when 0 < ti < tf <∞;

θðt− ti;ΔÞ; when 0 < ti < tf ¼ ∞;

ð7Þ

where we take Δ ¼ 0.15 fm, as advocated in [9]. Note that
Wðt; ti; tf;ΔÞ is defined such that aLO-HVPμ;win ð0;∞Þ ¼
aLO-HVPμ . Also, in the following, we call aLO-HVPμ;win the
Euclidean-time-window contribution to aLO-HVPμ from the
so-called “intermediate” time interval ½0.4; 1.0� fm, i.e.,
Eqs. (6) and (7) with ti ¼ 0.4 and tf ¼ 1.0 fm. Here we use
a version of Eq. (5) in which the upper limit of the integral
is Q2

max ¼ 3 GeV2 for reasons explained in Ref. [21].
These time-window observables are particularly useful

because they are straightforward to compute in both the
lattice and data-driven approaches.
On the lattice, their computation requires modifying the

kernel in Eq. (4) used to compute aLO-HVPμ that is using an
appropriate discretization of Eq. (6). Of course, the diffi-
culty of the continuum and infinite-volume extrapolations,
as well as the quality of the statistical signal, will depend
acutely on the chosen window.
With the R-ratio, one simply substitutes Eq. (3) into

Eq. (6), yielding

aLO-HVPμ;win ðti; tfÞ ¼
�
αmμ

3π

�
2
Z

∞

0

ds
s2

K̂ðs; ti; tfÞRðsÞ; ð8Þ

with

K̂ðs; ti; tfÞ ¼
3s5=2

8m4
μ

Z
∞

0

dte−t
ffiffi
s

p
Wðt; ti; tf;ΔÞKðtÞ: ð9Þ

A first quantitative comparison of the two approaches can
proceed through the comparison of individual windows, as
was done in Refs. [6,14].4

In addition to time-window observables, one can further
compare the lattice and data-driven approaches via the
HVP function Π̂ðQ2Þ at different values of the spacelike
momentum q, with Q2 ¼ −q2 ≥ 0 [21,22]. Alternatively,
one can consider the difference of this function at two
values of Q2 to isolate an interval of interest. This has
already be done in Ref. [6]. Instead of directly considering
Π̂ðQ2Þ, which is convention dependent, here we focus on
the hadronic running of the electromagnetic coupling in the
on-shell scheme, to which it is related. Thus, we work here
with the hadronic running of the fine-structure constant in

the five-flavor theory in the spacelike region, Δαð5Þhadð−Q2Þ.
In terms of the lattice correlation function of Eq. (1), this
quantity is given by

Δαð5Þhadð−Q2Þ ¼ e2
Z

∞

0

dt

�
t2 −

4

Q2
sin2

�
t

ffiffiffiffiffiffi
Q2

p
2

��
C1γIðtÞ

ð10Þ

and, in terms of the R-ratio, by

Δαð5Þhadð−Q2Þ ¼ αQ2

3π

Z
∞

0

ds
RðsÞ

sðsþQ2Þ : ð11Þ

So as to simplify notations in the following, we denote
quantities computed on the lattice alatj and their counterparts
computed in the data-driven approach aRj . Here the j
indexes different moment integrals, such as the total
aLO-HVPμ and window contributions to aLO-HVPμ , as well as
the running of α between two spacelike virtualities.

IV. COMPARISON METHODOLOGY

In the following two subsections, we present in more
detail the methodologies that we will use to compare and
test the lattice and data-driven approaches in Sec. V.

4An evaluation of the aLO-HVPμ;win integral based on hadronic τ
decay spectral functions, corrected for isospin-breaking effects,
has been performed in Ref. [74].
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A. Testing the lattice with R-ratio results

Using the notation introduced in the last paragraph of the
previous section, the first step is to compare the observables
of interest, alatj and aRj , one by one, and to determine their
level of compatibility. Depending on how localized these
observables are in Euclidean time or in c.m. energy, one
can isolate distance, virtuality, or energy scales that may be
problematic in each approach. Since a more effective
way of isolating possibly problematic regions of the exper-
imental R-ratio is presented below in Sec. IV B, the observ-
ables alat=Rj that we focus on are chosen to emphasize features
of the lattice correlator. Detailed results for the comparison of
individual observables obtained from the lattice and the
experimental R-ratio are given in Sec. VA.
To go beyond a comparison of individual observables,

we propose a more global comparison of the two
approaches that includes not just one observable at a time,
but many. Thus, we define the following χ2 function:

χ2 ¼
X
j;k

½alatj − aj�½C−1
lat �jk½alatk − ak�

þ
X
j;k

½aRj − aj�½C−1
R �jk½aRk − ak�; ð12Þ

where j, k run over the observables considered in the
comparison and where the aj are parameters. This function
requires knowledge of the covariance matrices Clat=R

between the observables obtained in each approach.
Correlations between lattice and experimental R-ratio
results are assumed to vanish, which is the case in the
examples considered below. This more global measure of
the compatibility of the two approaches is also important
because it serves as a baseline for the improvements in the
agreement brought by modifications of the experimental
R-ratio considered in Sec. IV B.
For absolute uncertainties,5 the minimum of the χ2 of

Eq. (12), as a function of the parameters ai, is attained at

ai ¼
X
j;k

½ðC−1
lat þ C−1

R Þ−1�ij½½C−1
lat �jkalatk þ ½C−1

R �jkaRk �; ð13Þ

and takes the minimum value

χ2min ¼
X
j;k

½alatj − aRj �½ðClat þ CRÞ−1�jk½alatk − aRk �: ð14Þ

We take the p-value associated with the minimum value
of χ2 and the number of degrees of freedom (d.o.f.) to be a
measure of the overall agreement of the two approaches.
Here, the d.o.f. is simply the number of observables

considered in the comparison. This measure of agreement
makes sense only if Clat=R are well known, because the
latter determine how much independent information is
available in the lattice and R-ratio inputs and because
the p-value obtained will depend strongly on them. This
p-value may dilute some of the tensions observed in
individual observables. However, in the presence of strong
correlations, its value will better reflect the significance of
having many observables disagree. Detailed results for this
combined comparison of lattice and experimental R-ratio
observables, via Eq. (14), are given in Sec. VA.
Note that if the p-value corresponding to this minimum

is acceptable, then the values of aj at the minimum of χ2

correspond to a weighted average of the experimental
R-ratio and lattice integrals. However, this averaging
constrains the shape of the underlying spectral functions
only in a very limited fashion. These aspects are discussed
in more detail in Appendix E.

B. Testing the experimental R-ratio
with lattice results: Rescaling

While fully reconstructing the R-ratio from the HVP
correlator computed on the lattice is an ill-posed problem,
interesting information about RðsÞ can still be derived.
The method proposed here is applicable to any observ-

able aj related to the HVP. It is meant to help isolate c.m.
energy regions in the experimental R-ratio that may be
responsible for tensions with the chosen lattice observables.
Thus, we split up the observables obtained from the R-ratio,
via e.g., Eqs. (8) and (11), into contributions from differentffiffiffi
s

p
intervals Ib,

aRj ¼
X
b

aRjb: ð15Þ

Here the sum over b (i.e., over all of the intervals) covers
the full support of RðsÞ. In the case of aLO-HVPμ , window
observables, and the running of α between two spacelike
momenta, the aRjb are obtained by restricting the integrals
over s in Eqs. (8) and (11), respectively, to the interval Ib.
When computing the Euclidean-time-window observ-

ables, the edges of the corresponding intervals are
smoothed out to account for the fact that, at finite lattice
spacing, the density of points in C1γIðtÞ is not that large.
This is not necessary for RðsÞ, because the density of
measured points in s is significant, allowing us to consider
sharp intervals Ib, with an interpolation between the two
points bracketing each boundary of the interval.
As discussed in the Introduction, in this paper we

investigate whether a tension between lattice and data-
driven results can be explained by a change in the
experimental R-ratio that is consistent with a rescaling
of the contributions, from one or more intervals in

ffiffiffi
s

p
to the

observables of interest. Thus, we wish to solve the
following system of equations for γb:

5This can be generalized for also treating relative uncertainties
that are scaled with the fitted quantities, e.g., by explicitly
including the corresponding dependencies on the fitted quantities
in the χ2 definition and/or using an iterative procedure [75,76]
(see also Sec. IV B and Appendix C).

MICHEL DAVIER et al. PHYS. REV. D 109, 076019 (2024)

076019-6



alatj ¼
X
b

γbaRjb; ð16Þ

taking into account all uncertainties and correlations among
the lattice results, on the one hand, and the experimental
R-ratio ones, on the other. If a given δb ≡ ðγb − 1Þ is set to
zero a priori, the R-ratio integrals remain unchanged in the
corresponding interval.
Here we consider the special case where a subset of

the
ffiffiffi
s

p
intervals A give contributions to the observables

that are rescaled by a common factor γ while, for the
complementary subset of intervals B, the contributions
are kept unchanged.6 In such a case, Eq. (16) becomes

alatj ¼
X
b∈A

γaRjb þ
X
b∈B

aRjb; ð17Þ

which implies

γ ¼ alatj −
P

b∈Ba
R
jbP

b∈Aa
R
jb

≡ γ̃j: ð18Þ

With more than one independent observable aj, this
becomes an overconstrained system, typically character-
ized by a χ2 function,

χ2 ¼
X
j;k

½γ − γ̃j�½ðCγ̃
lat þ Cγ̃

RÞ−1�jk½γ − γ̃k�; ð19Þ

where Cγ̃
lat and Cγ̃

R are the covariance matrices of the γ̃j
rescaling coefficients, originating from the lattice and the
dispersive uncertainties, respectively. They are obtained
through a linear propagation of uncertainties, from the
lattice QCD and experimental R-ratio aj integrals
through Eq. (18).
The rescaling factor γ optimizing the constraints from

Eq. (18) can be determined by minimizing the χ2 function
from Eq. (19) with respect to γ. This minimization yields an
average of the input γ̃j values, with weights given by the
inverse of the sum of covariance matrices that appears in
Eq. (19). Although very commonly used, this approach can
yield biased results (see e.g., Ref. [75] and the discussion in
Appendix C). In particular, such biases are caused by the
uncertainties on the uncertainties and on their correlations,
present both for the experimental measurements used in the
dispersive approaches and for the lattice QCD results. In
order to avoid these undesirable effects, we employ the
weighted average of Eq. (C1), in which we set the off-
diagonal elements of Cγ̃

lat and C
γ̃
R to zero, followed by a full

propagation of the uncertainties with their correlations (see
Appendix C for a detailed discussion).
We also consider a method based on a generalization of

the χ2 of Eq. (12), instead of the weighted averages

discussed above. This method also allows us to study
similar modifications of the experimental R-ratio. It is
discussed in Appendix E 3.

C. Possible extensions of the methodology

In Appendix E, we consider comparisons and tests of the
lattice and data-driven approaches that go beyond the
rescaling of the experimental R-ratio integrals in a

ffiffiffi
s

p
interval, by a single, common parameter γ. Moreover, in
Appendix F, we consider the possible advantages and
limitations associated with the use of additional observ-
ables in the data-driven approach.

V. COMPARISON RESULTS

A. Testing the lattice with R-ratio results

As a first step, we compare individually aLO-HVPμ , the
intermediate-time-window observable aLO-HVPμ;win , and

δðΔαð5ÞhadÞ. The kernels for these quantities are shown as
functions of t and

ffiffiffi
s

p
in Fig. 1. As is well known, the

kernels for aLO-HVPμ are highly peaked for small values offfiffiffi
s

p
and large values of t. While the Euclidean-time kernel

for aLO-HVPμ;win is strongly localized in t in the interval ranging
approximately from 0.35 to 1.51 fm,7 its c.m. counterpart
emphasizes a

ffiffiffi
s

p
region from threshold to around 3.2 GeV.8

Finally, the kernels for δðΔαð5ÞhadÞ extend over all t, with an
oscillation of period ∼1 fm, and over a large range of

ffiffiffi
s

p
,

going from threshold to well beyond 5 GeV. The upshot is
that the observables which we consider here probe the
behavior of the lattice correlator C1γIðtÞ at very different
distance scales, while the c.m. energies at which the
R-ratio is probed have more overlap. Thus, the comparison
of these observables tells us more about specific features of
the lattice correlator than they do about those of the
timelike spectrum.
The lattice [6] and data-driven results for the observ-

ables of interest are shown in Table I, together with their
pairwise differences. While the preliminary lattice [6]

and the data-driven results for δðΔαð5ÞhadÞ are compatible
within 1.4σ,9 there is a 2.0σ tension between the results for

6In practice, for the cases we consider here, these subsets
contain one or two

ffiffiffi
s

p
intervals.

7This interval is the range of t values within which the kernel
for aLO-HVPμ;win takes on values greater than 1% of its maximum
value. The same exercise on the window function of Eq. (7), with
ti ¼ 0.4 and tf ¼ 1 fm, gives the interval [0.05,1.35] fm. Thus,
the region of the lattice correlator that is probed via aLO-HVPμ;win is
shifted upward relative to the one given by the window function
alone.

8This upper limit is the value of
ffiffiffi
s

p
below which the kernel

takes on values larger than 1% of its maximum value.
9This compatibility is less good if the lattice results of Ref. [22]

are considered. Indeed, using those results and their correlations
we obtain δðΔαð5ÞhadÞ ¼ 49.28ð0.45Þ × 10-4, which is 2.6(1.2)% or
2.3σ larger than the data-driven result presented in Table I.
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aLO-HVPμ . For aLO-HVPμ;win , the tension is much more significant,
at 3.8σ. This number rises to 4.2σ when the lattice result
of Ref. [6] is replaced by a weighted average of inde-
pendent lattice determinations of this quantity [6,10–13].
All of these points are illustrated in Fig. 2. This large
discrepancy points to a significant inconsistency between
the approaches that must be resolved before giving a
standard model prediction for aLO-HVPμ .
Because the window observable probes intermediate

Euclidean-time distances, its computation is particularly
well suited to the lattice approach. The observable is
significantly less noisy statistically than aLO-HVPμ , less sensi-
tive to finite-volume effects, and less sensitive to short-
distance discretization effects, making its computation in
lattice QCD particularly reliable.
In principle, the disagreement with the data-driven

approach could be due to a common feature in the lattice

calculations of Fig. 2 that would lead to an overlooked
systematic error. For instance, one may worry that all the
calculations are based on the time-momentum representation
(TMR) of the current-current correlator given in Eq. (1).
However, Ref. [83] explicitly checked that the connected
contributions of the ud and s quarks to the window
observable, obtained using a Lorentz-covariant coordinate-
space representation, agree with those computed in the
TMR to the level of 0.7%, in simulations with pion and
kaon masses of ∼350 and ∼450 MeV, respectively.
Alternatively, one may question the universality of the
continuum limit. However, as discussed in the caption of
Fig. 2, the lattice results for ½aLO-HVPμ;win �udiso [6,10–13], included
in the average, are obtained with different discretizations,
thus testing this universality.Moreover, two of these analyses
were blinded [12,13], strengthening this test. There are
four additional calculations of the leading u and d quark

FIG. 1. Kernels for aLO-HVPμ , aLO-HVPμ;win , and δðΔαð5ÞhadÞ as a function of Euclidean time (left) and of c.m. energy
ffiffiffi
s

p
(right). In addition, to

clarify the arguments laid out later in the section, we have added the kernels of the short-distance window [Eq. (7) with ti ¼ 0 and
tf ¼ 0.4 fm] and the long-distance one as well [Eq. (7) with ti ¼ 1 fm and tf ¼ ∞]. Some of the kernels are rescaled for better visibility.
aLO-HVPμ;win , the short-distance and long-distance windows are a contribution to aLO-HVPμ so that their kernels (green, orange, and red curves,
respectively) are contributions to aLO-HVPμ ’s kernel (blue curve).

TABLE I. Comparison of lattice and data-driven results for the three main observables of interest in this paper. Each row contains the
results and comparisons for the observable described in the first column. The second column provides the corresponding lattice result
from Ref. [6] and the third, the data-driven one computed here, using the methods of Ref. [3]. The fourth column displays the absolute
difference between the two results, the fifth their relative difference, the sixth their difference in units of combined standard deviations,
and the last column, the corresponding p-value. The values in parentheses correspond to the total uncertainties of the corresponding
quantities. Note that the powers of 10 in the observable column only apply to columns 2–4. The three remaining columns have units
specified in the corresponding column label.

Observable Lattice [6] Data driven Diff. % Diff. σ p-value (%)

aLO-HVPμ × 1010 707.5(5.5) 694.0(4.0) 13.5(6.8) 1.9(1.0) 2.0 4.7
aLO-HVPμ;win × 1010 236.7(1.4) 229.2(1.4) 7.5(2.0) 3.2(0.8) 3.8 0.01

½Δαð5Þhadð−10 GeV2Þ − Δαð5Þhadð−1 GeV2Þ� × 104 48.67ð0.32Þa 48.02(0.32) 0.65(0.45) 1.3(0.9) 1.4 15.

aThis result’s continuum limit does not include the logarithmically enhanced discretization uncertainties discovered subsequently in
Ref. [82], nor was this quantity the focus of Ref. [6]. However, we include it in the present study to illustrate how using a quantity which
is complementary to aLO-HVPμ and aLO-HVPμ;win can provide important information.
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contributions [9,77–79].All nine calculations agree, as shown
in the left panel of Fig. 2.
From the perspective of the R-ratio as a function of

ffiffiffi
s

p
,

the range covered by the intermediate window is more
spread out. Though it is not exclusively emphasized, this
region includes the ρ peak, in which some disagreement
between the different measurements is apparent [3,15].
However, the difference between the KLOE [84–86] and
the BABAR [87] measurements of the eþe− → πþπ−ðγÞ
cross section is taken into account as an additional
systematic uncertainty, as described in Ref. [3]. So,
unless a large, unknown systematic uncertainty is present
in the measurements of the eþe− → hadrons cross
section [84–87], the strong tension with the lattice calcu-
lation of the intermediate window cannot be explained
within the data-driven approach. The very recent measure-
ment of the eþe− → πþπ−ðγÞ cross section by the CMD-3
Collaboration [15] helps bring the data-driven results for

aLO-HVPμ and aLO-HVPμ;win in line with the lattice results for those
quantities. However, it does so at the expense of a dramatic
tension with previous measurements that is not yet
understood.
As a preamble to the following discussion about the

consequences, for the lattice correlator, of the tensions
and agreement in the values of aLO-HVPμ , aLO-HVPμ;win , and

δðΔαð5ÞhadÞ computed in the two approaches, it is impor-
tant to remember that the current correlator is a smooth,
monotonically decreasing function of t that behaves
as t−3 for small t, up to logarithms, and falls off
exponentially with exponent 2Mπt at large t in infinite
volume.
While the significance of the difference between the

lattice and data-driven determinations of aLO-HVPμ is
smaller than in aLO-HVPμ;win , the absolute difference itself
is about twice as large. Thus, about half the discrepancy

WA lattice

RBC/UKQCD’18
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�QCD’22 (Ov/DW)

�QCD’22 (Ov/HISQ)

ABGP’22

Mainz’22

ETMC’22

RBC/UKQCD’23

FHM’23

 200  203  206  209  212

 10
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LO-HVP

]
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iso
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lattice avg

BMW’20

CEKHLST’22

This work

WA lattice

 227  230  233  236  239

4.2 �

 10
10

 � a�,win
LO-HVP

lattice avg

R-ratio

FIG. 2. Comparison of lattice and data-driven results for the contribution aLO-HVPμ;win to aLO-HVPμ , from the Euclidean time interval
[0.4,1.0] fm [see Eqs. (6) and (7) and subsequent text]. Left: Comparison of lattice results for the isospin-symmetric, u and d
connected contribution to the intermediate-window observable, noted ½aLO-HVPμ;win �udiso (green squares). For each group, only the most
recent results are shown. BMW’20 [6], LM’20 [77], ABGP’22 [78], and FHM’23 [13] are obtained with different varieties of
staggered fermions; Mainz’22 [10] with OðaÞ-improved-Wilson, ETMC’22 [11] with twisted-mass, and RBC/UKQCD’23 [12] with
domain-wall fermions; χQCD’22 [79] with overlap valence quarks on either HISQ or domain-wall configurations. The filled
squares correspond to fully independent results, while the open ones are obtained using subsets of configurations from other
calculations. LM’20 relies on a subset of the configurations used in FHM’23 and χQCD’22 on subsets of those used in FHM’23
and RBC/UKQCD’23. The green band corresponds to a weighted average of the fully independent (filled squares) lattice results for
½aLO-HVPμ;win �udiso. Following the procedure discussed in Appendix C, the mean is performed without correlations in the determination of
the weights, while the uncertainty propagation and χ2 evaluation take them into account. These are obtained by assuming 100%
correlation between the total systematic errors of the different calculations. In this way we find ½aLO-HVPμ;win �udiso ¼ ð206.6� 0.9Þ × 10−10

with a correlated χ2=d.o.f. ¼ 1.7=4. Note that a phenomenological estimate of this quantity was reported in Refs. [80,81]. Right
panel: Comparison of the world average (WA) of lattice results (green filled circle and band) with a number of R-ratio results for
the intermediate-window observable aLO-HVPμ;win (red diamonds), including the one determined in this paper (filled red diamond and

band) and by CEKHLST’22 [14]. The WA for aLO-HVPμ;win is obtained from that for ½aLO-HVPμ;win �udiso, by adding all other quark, QED, and
strong-isospin-breaking contributions from Ref. [6]. The resulting average is aLO-HVPμ;win ¼ ð236.1� 0.9Þ × 10−10. The difference of
this result with the data-driven one of the present work is 4.2σ, shown as a horizontal arrow.
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in aLO-HVPμ must come from the value of the lattice
correlator for t below ∼0.35 fm and/or above ∼1.51 fm.
An important caveat is that the uncertainty on this second
half of the discrepancy is around 100% (see Table I),
making this contribution to the discrepancy not signifi-
cantly different from 0.
Combining this observation with the results for

δðΔαð5ÞhadÞ, which agree in the two approaches, is more
complicated. Indeed, the kernel of this observable is
oscillatory in t and has support at all times. However, the

kernel of δðΔαð5ÞhadÞ also has significant overlap with the

one of aLO-HVPμ;win . This suggests that δðΔαð5ÞhadÞ will receive
an enhancement similar to the one of aLO-HVPμ;win , from the
region delimited by the kernel of the window observable.
Of course, that will not be true if all of the enhancement
in aLO-HVPμ;win comes from times 1.2≲ t≲ 1.5 fm, where the
running-of-α kernel is suppressed. Assuming, for the

moment, that δðΔαð5ÞhadÞ is enhanced in the window,
agreement on that quantity in the two approaches then
requires that the lattice correlator be suppressed for some
values of t outside that window.
This discussion leads to a situation where aLO-HVPμ

suggests that the lattice correlator is enhanced, compared
to the data-driven one, for t below ∼0.35 fm and/or above

∼1.5 fm, while δðΔαð5ÞhadÞ suggests the opposite. To try to
reconcile the two statements, it is useful to look at
contributions to each of the two observables from the
short-distance (SD) window [defined via the window
function of Eq. (7), with ti ¼ 0 and tf ¼ 0.4 fm], the
intermediate-distance (ID) one (denoted simply as window
in this paper and with ti ¼ 0.4 and tf ¼ 1 fm), and the
long-distance (LD) one (with t ¼ 1 fm to ∞). Using
the data from Ref. [88] for a rough estimate of the ratio
of the contributions of the SD:ID:LD windows, we find
10%:33%:57% for aLO-HVPμ and 70%:29%:1% for δðΔαð5ÞhadÞ.
Of course aLO-HVPμ;win receives a 100% contribution from the
ID window.

Thus, if the excess in δðΔαð5ÞhadÞ from the ID window
were to be compensated by a suppression of the
correlator in the LD window alone, which contributes
only 1%, that suppression would have to be significant.
However, such a significant suppression would also
reduce aLO-HVPμ , since the contribution of the LD window
to that observable is dominant. To compensate that
suppression would require a significant enhancement of
the lattice correlator in the SD window because that
window only contributes at the level of 10% to aLO-HVPμ .
But such an SD enhancement would make the lattice

determination of δðΔαð5ÞhadÞ significantly larger than that
from the experimental R-ratio, given that the SD window
is responsible for about 70% of the value of that
observable. This discussion suggests that the SD window

is not responsible for the additional enhancement in the
lattice computation of aLO-HVPμ over that of aLO-HVPμ;win in the

comparison with the data-driven results. It also suggests
that an LD suppression of the lattice correlator cannot be
responsible for mitigating a possible enhancement due to

the ID-window contribution to δðΔαð5ÞhadÞ.
To summarize, we know for sure that the lattice

correlator is enhanced in the ID-window region com-
pared to the one obtained from the data-driven
approach. In addition, the arguments made above
suggest that the lattice correlator may be slightly sup-
pressed in the part of the SD window that has overlap

with the δðΔαð5ÞhadÞ kernel and enhanced in the LD one.
Note that a suppression of the correlator in the full SD
window cannot be significant because that would con-
tradict the agreement of the lattice [11] and the data-
driven [14] SD-window results.10

We now consider combined comparisons of the lattice
and experimental R-ratio results for the above observ-
ables via the minimization of the χ2 function defined in
Eq. (12). Beyond giving a more global measure of
the compatibility of the two approaches, the resulting
p-values also provide baselines against which to com-
pare those obtained when we study possible rescalings
of integrals of the R-ratio in chosen

ffiffiffi
s

p
intervals in the

following section. These comparisons require knowledge
of the covariance matrices, among the observables
considered, in each of the lattice and data-driven
approaches. While the correlations between aLO-HVPμ

and aLO-HVPμ;win , determined in lattice QCD, are obtained
as described in Appendix B, the determination of the
running of α is impacted by uncertainties that are, to
good approximation, independent of those of the former.
On the other hand, for the dispersive approach, the
correlations among the uncertainties of the contributions
to all moment integrals are derived as discussed in
Appendix A.
We first consider a combined comparison of aLO-HVPμ

and aLO-HVPμ;win . The resulting χ2=d.o.f. range from

14.4þ3.0
−2.1=2 to 18.8þ2.0

−1.7=2 when the two most extreme
of the four systematic variations of the lattice covariance
matrices, given in Appendix B,11 are considered. The
central values correspond to the nominal lattice sample.
The uncertainties are statistical, obtained from the �1σ
quantile deviations from the median of the bootstrap

10The RBC/UKQCD Collaboration also computed the SD
window on the lattice, but only the connected, light-quark
contribution to it, which means that their result cannot be
compared directly to the data-driven result of Ref. [14].
Nevertheless, their result for this contribution is in full agreement
with that of Ref. [11].

11These two results correspond to the covariance matrices
labeled 2 and 3, respectively.
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distributions for the lattice covariance matrices.12 Half the
difference between the central values, i.e., 4.4=2 ¼ 2.2,
can be viewed as the lattice systematic uncertainty on
these results. It is of comparable size to the statistical
one. Unlike what has been just discussed for the lattice
results, statistical and systematic uncertainties on the
uncertainties associated with the data-driven approach
are not yet included here, but should be in the future.
The corresponding p-values are 7þ10

−6 × 10−4 and
8þ13
−6 × 10−5, respectively. These are very small and sig-
nificantly smaller than the p-value for aLO-HVPμ alone in
Table I. Nevertheless, the first of the above p-values can be
as much as 17 times larger than the one in given in Table I
for aLO-HVPμ;win and the second as much as a factor of 5 smaller,
within 1 standard deviation. In any case, the probability that
the lattice and data-driven results for aLO-HVPμ and aLO-HVPμ;win

agree simultaneously is very small.

The disagreement reduces to some extent when δðΔαð5ÞhadÞ
is added to the mix. In the lattice calculation, which is still
preliminary, this quantity is negligibly correlated with
aLO-HVPμ and aLO-HVPμ;win . While here the χ2 remain essentially

unchanged, ranging from 14.4þ3.0
−2.1 to 18.8þ2.0

−1.7 , the d.o.f.
increases from 2 to 3, leading to improved p-values that
range from 2.3þ4.0

−1.9 × 10−3 and 3.0þ4.2
−2.1 × 10−4. That is, the

inclusion of δðΔαð5ÞhadÞ and, to a lesser extent, aLO-HVPμ is
observed to dilute the disagreement between the lattice
and data-driven approaches for aLO-HVPμ;win . This dilution is
expected because the disagreement between the two

approaches is much smaller for both δðΔαð5ÞhadÞ and
aLO-HVPμ . However, in the presence of strong correlations,
this combined measure will better reflect the significance
of having agreement or disagreement among many
observables.
Very similar results are obtained in the approach of

Sec. IV B, when the γ rescaling coefficient in Eq. (16) is
set to unity. This is not surprising because, with γ ¼ 1,
Eqs. (14) and (19) indicate that the χ2 and d.o.f. are the
same in the two approaches, up to possible nonlinearities
in the propagation of uncertainties. In particular, the
minimal/maximal χ2=d.o.f. values are stable, within 0.2
or less, with respect to the choice of the split in variousffiffiffi
s

p
regions. When sampling the χ2=d.o.f. values for the

various bootstrap replicas of the lattice covariance matrix,
with either two or three moment integrals, the median of
the resulting distribution is close to the nominal values

(within 0.15 or less), while the variance and �1σ
quantiles of the distribution are smaller than 1.5 and
the �2σ quantiles are smaller than 3.0 (similar to the
uncertainty values given earlier in this section). It is
hence observed that the level of the tension between the
dispersive- and lattice-based moment integrals is rela-
tively stable with respect to the choice of the split in
various

ffiffiffi
s

p
regions and/or statistical and systematic

variations of the lattice covariance matrix.
Of course, other quantities related to hadronic vacuum

polarization that are computed in the lattice and data-driven
approaches can also be compared individually or added
with correlations to the χ2 to further sharpen the compari-
son of the two approaches.

B. Testing the experimental R-ratio
with lattice results: Rescaling

In this section we present the results obtained
when comparing the lattice QCD and dispersive results,
employing the methodology discussed in Sec. IV B and
Appendix C. With this methodology, we determine the size
of modifications to the experimental R-ratio that lead to a
rescaling of the contributions, from a given

ffiffiffi
s

p
interval to

the observables of interest. As in the previous subsection,
the study is performed for either two moment integrals
(aLO-HVPμ and aLO-HVPμ;win ) or three of them [i.e., including, in

addition, δðΔαð5ÞhadÞ]. Results are given for various scenarios,
i.e.,

ffiffiffi
s

p
regions where the dispersive integrals are computed

and the rescaling factors are determined. These include
ffiffiffi
s

p
regions below or above 0.63, 0.96, 1.1, 1.8, and 3.0 GeV,
respectively, as well as rescaling inside or outside the [0.63,
0.92] GeV interval. While the first set of intervals covers
various low- and high-mass regions, with different con-
tributions to the dispersive integrals and different method-
ologies used for deriving them, the last one covers the
region dominated by the ρ-resonance peak and the region
complementary to it. The intervals are displayed in the left
panel of Fig. 3. All uncertainties and correlations are
accounted for, as discussed in the previous subsection.
There we needed those associated with the moment
integrals of the R-ratio over the full range of

ffiffiffi
s

p
. Here

we need those corresponding to the contributions to
moment integrals from the various

ffiffiffi
s

p
intervals, whose

determinations are also described in Appendix A.
Table II and Fig. 3 also present the results for the

rescaling factor, γ1 ≡ 1þ δ1, for the various
ffiffiffi
s

p
regions I1

discussed in the previous paragraph, using either two or
three moment integrals. The results are determined via the
averages defined by the χ2 function of Eq. (19), in which γ
is replaced by γ1 and with the weights of the input γ̃j values
obtained by setting all correlations to zero, for reasons
discussed in Appendix D. Out of the four systematic
uncertainty variations of the lattice covariance matrices
discussed in Appendix B 2, results are presented here for

12As discussed in Appendix B, it is important to note that the
statistical covariance of the lattice data is determined from only
48 binned samples, which is smaller than the number of
independent samples in the full dataset. However, as seen below,
the statistical uncertainties on the lattice covariance matrix that
arise due to this conservative binning are sufficiently small for the
purposes of the present study. In future work, we will aim to
improve this evaluation.
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the two which induce the smallest/largest χ2 values in the
fit for each of the intervals. Indeed, depending on the fit
configuration, the smallest χ2 values are generally obtained
for matrices “0” and “2,” while the largest ones are for
matrix “3.”
More specifically, Table II and Fig. 3 report the nominal

results (obtained using the nominal lattice covariance
matrices) for the rescaling percentage δ1 with its uncer-
tainty propagated from the covariance matrices of the
lattice QCD and dispersive results13 in Table II, the
χ2=d.o.f. obtained by injecting γ1 into Eq. (19), and
the corresponding p-value.
Using either two or three moment integrals, the

rescaling of the integrals of the R-ratio by a common
factor, in the

ffiffiffi
s

p
regions below 0.96, 1.1, 1.8, or

3.0 GeV, allows a good agreement between the lattice
and R-ratio approaches. In those scenarios, the rescalings
range from approximately 2% to 5%, the lower number

corresponding to the larger intervals. In addition, a
rescaling by around 5% in the ρ-peak interval, [0.63,
0.92] GeV, also restores the agreement.14 However, the
tension persists when the rescaling is performed in the
region below 0.63 GeV.
When using only the two observables aLO-HVPμ and

aLO-HVPμ;win , agreement is also restored through rescalings
above either 0.63, 0.96, 1.1, 1.8 GeV or outside the
[0.63, 0.92] GeV interval, while tensions persist for a
rescaling performed above 3.0 GeV.

FIG. 3. Plot illustrating Table II. The first panel displays, in dark gray, the various
ffiffiffi
s

p
intervals considered here. The first row

corresponds to the ρ peak. In the second panel, we plot the p-values that indicate the compatibility of the rescaling hypothesis, in the
given interval, with the lattice and data-driven results for aLO-HVPμ and aLO-HVPμ;win (two observables, blue triangles) and with the results for

the additional observable δðΔαð5ÞhadÞ (three observables, orange upside-down triangles). These p-values are obtained from the χ2 defined
in Eq. (19), using the appropriate d.o.f.. The error bars are the statistical uncertainties resulting from those on the lattice covariance
matrices determined in Appendix B (see also footnote 12). The corresponding uncertainty distributions are plotted in Figs. 4 and 6
(for the third and eleventh row of this plot, respectively). The filled/empty points correspond to the largest/smallest p-value obtained
from the four systematic variations of the lattice covariance matrix of Eqs. (B31)–(B34). The vertical dashed line corresponds to 5%. We
consider solutions with p-values above and close to that line to be compatible with the rescaling hypothesis in the corresponding interval
and those far below to be incompatible. The rightmost panel displays the rescaling percentages δ1, corresponding to the p-values on the
same row that have the same plot symbol. Here the uncertainties are the leading ones, given by the nominal values of the lattice and
R-ratio covariance matrices, i.e., not including the small, additional uncertainty associated with the statistical uncertainty on the lattice
covariance matrices.

13It has also been checked that nonlinear effects in the
uncertainty propagation are small, by comparing the outcome
of the uncertainty propagation when performing þ1σ variations,
on the one hand, and −1σ variations, on the other.

14As a function of
ffiffiffi
s

p
, the lattice SD and ID windows

correspond to weighting the R-ratio by kernels depicted by the
orange and green curves in the right-hand panel of Fig. 1. In
Ref. [11] the authors compare the data-driven results for those
windows [6,14], as well as the one for aLO-HVPμ [3,4] (with a
kernel given by the blue curve in that same figure), to their result
for the SD window, theirs and others’ [6,10,11] for the ID one, as
well as the result of Ref. [6] for aLO-HVPμ . On the basis of that
comparison, the authors argue that “qualitatively, … the accurate
lattice results for the time windows and for the full HVP term
could be compatible with an overall few-percent enhancement of
the eþe− cross section data in the 2π channels at center-of-mass
energies below 1 GeV,” anticipating our quantitative results.
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TABLE II. Results for various rescaling scenarios, using two observables (aLO-HVPμ and aLO-HVPμ;win ) or three [adding δðΔαð5ÞhadÞ], as
indicated in column 1. In these scenarios it is assumed that the integrals of the experimental R-ratio in the

ffiffiffi
s

p
interval I1 are rescaled by a

common γ1 ≡ 1þ δ1. This interval is given in column 2 and the nominal rescaling percentage δ1 (obtained through the weighted average
discussed in Sec. IV B, using the nominal values of the lattice covariance matrices obtained in Appendix B), in column 4, with the
corresponding nominal uncertainty propagated from the covariance matrices of the lattice QCD and dispersive results (Cγ̃

lat and Cγ̃
R)

indicated between “()”. Column 3 indicates which of the four systematic uncertainty variations of the lattice covariance (Lat. cov.)
matrices give the best and worst fit qualities. Column 5 gives the nominal χ2=d.o.f. for the scenario [obtained by injecting γ1 into
Eq. (19)], and column 6 gives the corresponding p-value. The values indicated between “[]” correspond to the �1σ quantiles based on

the lattice bootstrap replicas discussed in Appendix B (see also footnote 12). The last column indicates the shift on Δαð5ÞhadðMZ
2Þ induced

by the δ1 rescaling.

No. of observables I1 (GeV) Lat. cov. δ1 (%) χ2=d.o.f. p-value (%) δ1 × Δαð5ÞhadðM2
ZÞ½I1� × 104

2 ½ ffiffiffiffiffi
sth

p
; 0.63� 0 15.9ð5.3Þ½þ0.9−0.8 �% 10.0½þ2.4−1.9 �=1 0.16½þ0.31−0.13 �% 0.80

2 ½ ffiffiffiffiffi
sth

p
; 0.63� 3 17.4ð5.7Þ½þ0.6−0.5 �% 17.4½þ2.2−1.9 �=1 0.003½þ0.010−0.004 �% 0.88

2 ½0.63;∞½ 0 3.1ð0.9Þ½þ0.05−0.05 �% 0.9½þ0.1−0.1 �=1 34.6½þ3.2−3.2 �% 8.49
2 ½0.63;∞½ 3 3.2ð0.9Þ½þ0.02−0.02 �% 1.3½þ0.1−0.1 �=1 25.2½þ2.8−2.2 �% 8.71

3 ½ ffiffiffiffiffi
sth

p
; 0.63� 0 16.4ð5.4Þ½þ0.9−0.7 �% 10.6½þ2.2−1.7 �=2 0.49½þ0.73−0.36 �% 0.83

3 ½ ffiffiffiffiffi
sth

p
; 0.63� 3 17.9ð5.8Þ½þ0.6−0.5 �% 17.8½þ2.1−1.9 �=2 0.013½þ0.038−0.016 �% 0.91

3 ½0.63;∞½ 0 2.5ð0.7Þ½þ0.08−0.07 �% 3.8½þ0.6−0.5 �=2 14.7½þ4.2−4.0 �% 6.68
3 ½0.63;∞½ 3 2.6ð0.7Þ½þ0.04−0.04 �% 5.3½þ0.5−0.4 �=2 7.0½þ1.8−1.6 �% 6.96

2 ½ ffiffiffiffiffi
sth

p
; 0.96� 0 3.7ð1.1Þ½þ0.1−0.1 �% 2.8½þ0.5−0.4 �=1 9.3½þ2.8−2.5 �% 1.32

2 ½ ffiffiffiffiffi
sth

p
; 0.96� 3 3.9ð1.1Þ½þ0.06−0.06 �% 4.4½þ0.4−0.5 �=1 3.5½þ1.4−1.0 �% 1.39

2 ½0.96;∞½ 0 9.4ð2.6Þ½þ0.04−0.04 �% 0.09½þ0.01−0.009�=1 77.0½þ1.2−1.3 �% 22.59
2 ½0.96;∞½ 3 9.5ð2.5Þ½þ0.02−0.02 �% 0.12½þ0.01−0.01 �=1 72.9½þ1.5−1.1 �% 22.75

3 ½ ffiffiffiffiffi
sth

p
; 0.96� 0 3.8ð1.1Þ½þ0.09−0.09 �% 3.1½þ0.4−0.3 �=2 21.7½þ4.3−4.2 �% 1.36

3 ½ ffiffiffiffiffi
sth

p
; 0.96� 3 4.0ð1.1Þ½þ0.06−0.05 �% 4.5½þ0.4−0.4 �=2 10.7½þ3.2−2.3 �% 1.42

3 ½0.96;∞½ 2 3.5ð1.3Þ½þ0.2−0.2 �% 10.9½þ2.2−1.6 �=2 0.43½þ0.54−0.30 �% 8.35
3 ½0.96;∞½ 3 3.7ð1.3Þ½þ0.1−0.1 �% 14.1½þ1.5−1.2 �=2 0.089½þ0.083−0.052 �% 8.91

2 ½ ffiffiffiffiffi
sth

p
; 1.1� 0 3.3ð1.0Þ½þ0.1−0.1 �% 2.2½þ0.4−0.3 �=1 13.4½þ3.2−2.9 �% 1.40

2 ½ ffiffiffiffiffi
sth

p
; 1.1� 3 3.4ð1.0Þ½þ0.05−0.04 �% 3.5½þ0.3−0.4 �=1 6.3½þ1.9−1.3 �% 1.46

2 ½1.1;∞½ 0 14.1ð3.9Þ½þ0.07−0.08 �% 0.1½þ0.02−0.02 �=1 70.9½þ1.6−1.6 �% 33.01
2 ½1.1;∞½ 3 14.3ð3.8Þ½þ0.04−0.04 �% 0.2½þ0.02−0.02 �=1 65.8½þ1.8−1.4 �% 33.31

3 ½ ffiffiffiffiffi
sth

p
; 1.1� 0 3.4ð1.0Þ½þ0.07−0.07 �% 2.4½þ0.3−0.3 �=2 30.3½þ4.5−4.4 �% 1.44

3 ½ ffiffiffiffiffi
sth

p
; 1.1� 3 3.5ð1.0Þ½þ0.04−0.04 �% 3.5½þ0.3−0.3 �=2 17.8½þ3.8−2.8 �% 1.49

3 ½1.1;∞½ 2 3.5ð1.4Þ½þ0.2−0.2 �% 13.0½þ2.9−2.0 �=2 0.15½þ0.27−0.12 �% 8.14
3 ½1.1;∞½ 3 3.7ð1.4Þ½þ0.1−0.1 �% 17.1½þ1.9−1.6 �=2 0.019½þ0.027−0.014 �% 8.70

2 ½ ffiffiffiffiffi
sth

p
; 1.8� 0 2.9ð0.8Þ½þ0.1−0.1 �% 1.7½þ0.3−0.2 �=1 19.8½þ3.4−3.2 �% 1.63

2 ½ ffiffiffiffiffi
sth

p
; 1.8� 3 3.1ð0.9Þ½þ0.03−0.03 �% 2.5½þ0.2−0.3 �=1 11.3½þ2.4−1.8 �% 1.69

2 ½1.8;∞½ 0 31.8ð9.1Þ½þ0.6−0.6 �% 1.5½þ0.2−0.2 �=1 21.4½þ3.4−3.2 �% 70.17
2 ½1.8;∞½ 3 32.9ð9.2Þ½þ0.4−0.3 �% 2.3½þ0.2−0.2 �=1 12.8½þ2.5−1.8 �% 72.62

3 ½ ffiffiffiffiffi
sth

p
; 1.8� 0 3.0ð0.9Þ½þ0.05−0.05 �% 1.7½þ0.2−0.2 �=2 43.7½þ4.9−5.2 �% 1.65

3 ½ ffiffiffiffiffi
sth

p
; 1.8� 3 3.1ð0.9Þ½þ0.03−0.03 �% 2.5½þ0.2−0.3 �=2 28.6½þ4.5−3.5 �% 1.70

3 ½1.8;∞½ 2 3.5ð1.7Þ½þ0.2−0.1 �% 15.1½þ3.6−2.4 �=2 0.052½þ0.130−0.046 �% 7.79
3 ½1.8;∞½ 3 3.7ð1.7Þ½þ0.08−0.08 �% 20.3½þ2.4−2.0 �=2 0.0039½þ0.0081−0.0034 �% 8.18

2 ½ ffiffiffiffiffi
sth

p
; 3.0� 0 2.8ð0.8Þ½þ0.06−0.06 �% 1.5½þ0.2−0.2 �=1 22.0½þ3.4−3.2 �% 2.03

2 ½ ffiffiffiffiffi
sth

p
; 3.0� 3 2.9ð0.8Þ½þ0.03−0.03 �% 2.3½þ0.2−0.2 �=1 13.2½þ2.5−1.9 �% 2.10

2 ½3.0;∞½ 0 70.5ð22.4Þ½þ3.6−3.2 �% 7.8½þ1.7−1.4 �=1 0.51½þ0.66−0.35 �% 143.42
2 ½3.0;∞½ 3 76.9ð23.9Þ½þ2.4−2.2 �% 13.4½þ1.6−1.5 �=1 0.025½þ0.052−0.024 �% 156.38

(Table continued)
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Adding the third observable δðΔαð5ÞhadÞ increases the
constraints and tensions arise for a rescaling in any of
the intervals that do not include the ρ peak.
It is worth noting that the values of the rescaling

percentage δ1 for the various configurations presented in
Table II are much larger than the (sub)percent-level
uncertainties of the experimental R-ratio in the corre-
sponding

ffiffiffi
s

p
regions. Therefore, such shifts are not to be

interpreted as a plausible way of solving the tension
between lattice QCD and the dispersive approaches, but
rather as a way of comparing various hypotheses for the
possible source(s) of the tension.
Also given in Table II are the �1σ statistical quantiles

obtained for δ1, the χ2=d.o.f., and the corresponding
p-value, when considering their distributions obtained
from the bootstrap replicas of the lattice covariance
matrices computed in Appendix D (see also footnote 12).
Examples of such distributions are shown in Figs. 4–7.
In the case of Fig. 3, which summarizes our results,
those uncertainties are shown only for the p-values.
For δ1, in many scenarios the �1σ quantiles based on

the lattice bootstrap replicas are smaller than the
primary uncertainty propagated from the covariance
matrices of the lattice QCD and dispersive results, by
about an order of magnitude or more. The changes
associated with the four systematic variations of the
lattice covariance matrix are also small, though some-
what larger than the bootstrap ones. This is not
necessarily surprising because they are uncertainties
on the primary uncertainty. In fact, the latter are of
only a few percent. Furthermore, the same statistical and
systematic uncertainties on the χ2=d.o.f. and on the
corresponding p-values do not change the fact that a
given fit can be considered “good” or “bad.” These
observations indicate that the statistical and systematic

variations of the lattice covariance matrix do not change
the conclusions qualitatively.
As mentioned in the previous subsection, the same

bootstrap resampling can present some slight differences
between the mean, median, and nominal values of the
corresponding distributions. In particular, the asymmetric,
non-Gaussian tails (present especially for the p-values)
impact the mean values (see e.g., Figs. 4 and 6). Still, these
differences are well within the �2σ quantiles (most often
within the �1σ quantiles) and do not impact the con-
clusions of the study. The asymmetric tails also induce
some differences between the uncertainties obtained from
asymmetric variances,15 those from the �1σ quantiles, and
those from the�2σ ones (divided by 2). However, here also
the conclusions of the study are not impacted by the slight
differences among these three estimates of uncertainties.
In order to display the implications of observed nor-

malization shifts for electroweak precision observable
(EWPO) fits [17–20], in Table II we indicate the impact

of the δ1 rescaling on Δαð5ÞhadðMZ
2Þ.16 As expected, the

largest impacts on Δαð5ÞhadðMZ
2Þ are observed for modifi-

cations of the R-ratio in the high-
ffiffiffi
s

p
intervals. However,

while such modifications may have reasonable p-values
with constraints from only aLO-HVPμ and aLO-HVPμ;win , when one

TABLE II. (Continued)

No. of observables I1 (GeV) Lat. cov. δ1 (%) χ2=d.o.f. p-value (%) δ1 × Δαð5ÞhadðM2
ZÞ½I1� × 104

3 ½ ffiffiffiffiffi
sth

p
; 3.0� 0 2.7ð0.8Þ½þ0.05−0.05 �% 1.7½þ0.3−0.2 �=2 43.1½þ5.8−6.1 �% 1.97

3 ½ ffiffiffiffiffi
sth

p
; 3.0� 3 2.8ð0.8Þ½þ0.03−0.03 �% 2.7½þ0.3−0.3 �=2 26.3½þ4.3−3.7 �% 2.04

3 ½3.0;∞½ 2 4.2ð2.4Þ½þ0.09−0.08 �% 16.0½þ3.9−2.6 �=2 0.033½þ0.094−0.030 �% 8.59
3 ½3.0;∞½ 3 4.3ð2.4Þ½þ0.06−0.05 �% 21.7½þ2.7−2.2 �=2 0.0020½þ0.0049−0.0018 �% 8.80

2 [0.63, 0.92] 0 4.8ð1.4Þ½þ0.1−0.1 �% 1.7½þ0.3−0.2 �=1 19.6½þ3.4−3.2 �% 1.42
2 [0.63, 0.92] 3 4.9ð1.4Þ½þ0.06−0.05 �% 2.5½þ0.2−0.3 �=1 11.2½þ2.4−1.8 �% 1.47
2 ½ ffiffiffiffiffi

sth
p

; 0.63� ∪ ½0.92;∞½ 0 6.2ð1.8Þ½þ0.1−0.1 �% 1.6½þ0.2−0.2 �=1 20.4½þ3.4−3.2 �% 15.33
2 ½ ffiffiffiffiffi

sth
p

; 0.63� ∪ ½0.92;∞½ 3 6.5ð1.8Þ½þ0.07−0.07 �% 2.4½þ0.2−0.2 �=1 11.9½þ2.4−1.8 �% 15.88

3 [0.63, 0.92] 0 4.9ð1.4Þ½þ0.08−0.08 �% 1.8½þ0.2−0.2 �=2 40.2½þ4.0−4.1 �% 1.45
3 [0.63, 0.92] 3 5.0ð1.4Þ½þ0.05−0.05 �% 2.6½þ0.2−0.2 �=2 27.9½þ4.0−3.1 �% 1.50
3 ½ ffiffiffiffiffi

sth
p

; 0.63� ∪ ½0.92;∞½ 0 3.4ð1.1Þ½þ0.2−0.1 �% 9.0½þ1.8−1.3 �=2 1.1½þ1.1−0.7 �% 8.30
3 ½ ffiffiffiffiffi

sth
p

; 0.63� ∪ ½0.92;∞½ 3 3.6ð1.1Þ½þ0.08−0.08 �% 12.4½þ1.3−1.1 �=2 0.21½þ0.18−0.12 �% 8.80

15These variances are computed from the values in the
distribution that are above and below the nominal one.

16While the uncertainty of the δ1 rescaling factors is deter-
mined from the fits, we do not attempt a correlated propagation to
(the uncertainty of) the corresponding shift of Δαð5ÞhadðMZ

2Þ, nor a
simple rescaling of the uncertainty of the latter. This follows the
rescaling approach discussed in Ref. [20]. There it was pointed
out that, if such rescaling is necessary for the nominal values of
the hadronic spectra, it is not obvious how the corresponding
uncertainties should be computed.
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FIG. 4. Distributions of χ2 (left) and p-value (right) obtained by sampling the bootstrap replicas of the lattice covariance matrix.
These figures show the effects of different approaches to determining γ1 and its uncertainty in the low-mass region below 0.96 GeV.
Two moment integrals are considered here, with the lattice covariance matrix 0. In the first row, we consider normalization fits using the
full covariance matrices for determining the averaging weights—their comparison with the two plots in the following row is discussed in
Appendix D. In the middle row, we consider normalization fits with the averaging weights proportional to the inverse of the γ̃j
uncertainties squared, as considered in the present section. In the final row, we set the γb normalization coefficients to unity, i.e., we
perform no rescaling—these are discussed in Sec. VA. The blue horizontal error bar indicates the asymmetric variance of the
distribution, computed on each side of the nominal value (blue point and blue dashed vertical line). The median (dash-dotted black line),
mean (black continuous line), 68.3% and 95.4% quantiles (colored bands) of the distribution are also indicated. The number of degrees
of freedom in the χ2 calculation is indicated by the dotted pink line. Note that the scales in the last row of plots (corresponding to
no rescaling) are very different from those of the two previous rows (in which rescaling is allowed) to account for the fact that the χ2 and
p-values with no rescaling are very poor.
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also includes the hadronic contribution to the five-flavor
running of the electromagnetic coupling, between −10 and
−1 GeV2, the fit quality becomes very poor and the
common rescaling of the contributions to the observables
in these high-

ffiffiffi
s

p
intervals is strongly reduced too. Thus, in

the presence of the δðΔαð5ÞhadÞ constraint, the corresponding
modifications of the R-ratio will not significantly impact
the conclusions of EWPO fits.
As they are for the comparisons of Sec. VA, the con-

clusions of the studies performed here are stable against the
statistical and systematic variations of the lattice covariance
matrix. As shown in Appendix D, they are also stable with
respect to the averaging methodology that is employed.
Moreover, very similar results are obtained using the χ2

approach to the rescaling described in Appendix E 3.

VI. SUMMARY OF RESULTS
AND CONCLUSIONS

We have presented a framework that enables a com-
parison of the primary ingredients that are used for
determining HVP in the lattice QCD and data-driven
approaches. The framework makes use of observables
computable in both formalisms. These primary ingre-
dients are for the lattice approach, the zero three-
momentum, current-current correlator of Eq. (1), studied
as a function of Euclidean time t; for the data-driven
approach, the experimental R-ratio is studied as a
function of timelike c.m. energy,

ffiffiffi
s

p
[Eq. (2)]. The

observables are integrals over t and
ffiffiffi
s

p
, weighted with

appropriately chosen kernels. We alternatively call these
observables or moment integrals.
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FIG. 5. Distributions of the normalization rescaling factor γ1 (left) and its uncertainty propagated from the covariance matrices of the
lattice QCD and dispersive results (right), obtained by sampling the bootstrap replicas of the lattice covariance matrix. These figures
show the effects of different approaches to determining γ1 and its uncertainty in the low-mass region below 0.96 GeV. Two moment
integrals are considered here, with the lattice covariance matrix 0. In the first row, we consider normalization fits using the full
covariance matrices of the γ̃j for determining the averaging weights. In the second row, we consider normalization fits with the averaging
weights proportional to the inverse of the γ̃j uncertainties squared. The blue horizontal line indicates the asymmetric variance of the
distribution, computed on each side of the nominal value (dashed blue vertical line). The median (dash-dotted black line), mean (black
continuous line), 68.3% and 95.4% quantiles (colored bands) of the distribution are also indicated.
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FIG. 6. Distributions of χ2 (left) and p-value (right), obtained by sampling the bootstrap replicas of the lattice covariance matrix. These
figures show the effects of different approaches to determining γ1 and its uncertainty in the high-mass region above 3.0 GeV. Two
moment integrals are considered here, with the lattice covariance matrix 3. In the first row, we consider normalization fits using the full
covariance matrices for determining the averaging weights—their comparison with the two plots in the following row is discussed in
Appendix D. In the middle row, we consider normalization fits with the averaging weights proportional to the inverse of the γ̃j
uncertainties squared, as considered in the present section. In the final row, we set the γb normalization coefficients to unity, i.e., we
perform no rescaling—these are discussed in Sec. VA. The blue horizontal error bar indicates the asymmetric variance of the
distribution, computed on each side of the nominal value (blue point and blue dashed vertical line). The median (dash-dotted black line),
mean (black continuous line), 68.3% and 95.4% quantiles (colored bands) of the distribution are also indicated. The number of degrees
of freedom in the χ2 calculation is indicated by the dotted pink line. Note that the scales in the last row of plots (corresponding to no
rescaling) are very different from those of the two previous rows (in which rescaling is allowed) to account for the fact that the χ2 and
p-values with no rescaling are very poor.
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The kernels can be chosen to be localized on the t-axis,
as are the aLO-HVPμ time windows proposed in Ref. [9]. Then
by comparing the corresponding observables obtained in
the two approaches, one can aim to isolate distance scales
in the lattice correlator that may lie at the origin of
the observed disagreement in the values, for instance, of
aLO-HVPμ and aLO-HVPμ;win . Such comparisons are also interesting
for HVP observables that have limited support in photon
virtuality. These are typically related to the Adler function
and the hadronic running of the electromagnetic coupling.
They provide a complementary way to isolate relevant
scales in the lattice correlator. More generally, our method
applies to any observable related to HVP.
Our framework also allows us to gain information about

the R-ratio in chosen regions of c.m. energy, from these
same observables. The main challenge here comes from
the fact that this requires solving a notoriously ill-posed,
inverse problem that arises because the lattice correlator is a

Laplace transform of the R-ratio [Eq. (2)]. It also comes
from the fact that observables which are localized in
Euclidean time are much less so in c.m. energy. We solve
the second problem by partitioning the

ffiffiffi
s

p
-axis from

threshold to infinity into intervals and computing the
contributions of each such interval to the observables of
interest. The first challenge—the reconstruction of a
continuous function from a finite number of its weighted
integrals does not have a priori a unique solution—is
addressed by limiting the information that we try to extract
while monitoring the possible pitfalls associated with such
a reconstruction.
In the present work, we focus on simple scenarios.

We consider three observables related to HVP: aLO-HVPμ ,
aLO-HVPμ;win , and the hadronic running of the electromagnetic
coupling between spacelike virtualities −10 and −1 GeV2,

δðΔαð5ÞhadÞ. This choice is motivated by the fact that these
quantities have been determined on the lattice to the

1.5 1.6 1.7 1.8 1.9 2

Normalization [Av. with correlations]

0

10

20

30

40

50

60

E
n

tr
ie

s

Nominal

Var �
Median

Mean

68.3%

95.4%

0.23 0.24 0.25 0.26 0.27 0.28

(Normalization) [Av. with correlations]�

0

10

20

30

40

50

60

E
n

tr
ie

s

Nominal

Var �
Median

Mean

68.3%

95.4%

1.5 1.6 1.7 1.8 1.9 2

Normalization [Av. simple weights]

0

20

40

60

80

100

120

E
n

tr
ie

s

Nominal

Var �
Median

Mean

68.3%

95.4%

0.23 0.24 0.25 0.26 0.27 0.28

(Normalization) [Av. simple weights]�

0

10

20

30

40

50

60

E
n

tr
ie

s

Nominal

Var �
Median

Mean

68.3%

95.4%

FIG. 7. Distributions of the normalization rescaling factor γ1 (left) and its uncertainty propagated from the covariance matrices of the
lattice QCD and dispersive results (right), obtained by sampling the bootstrap replicas of the lattice covariance matrix. These figures
show the effects of different approaches to determining γ1 and its uncertainty in the high-mass region above 3.0 GeV. Two moment
integrals are considered here, with the lattice covariance matrix 3. In the first row, we consider normalization fits using the full
covariance matrices of the γ̃j for determining the averaging weights. In the second row, we consider normalization fits with the averaging
weights proportional to the inverse of the γ̃j uncertainties squared. The blue horizontal line indicates the asymmetric variance of the
distribution, computed on each side of the nominal value (dashed blue vertical line). The median (dash-dotted black line), mean (black
continuous line), 68.3% and 95.4% quantiles (colored bands) of the distribution are also indicated.
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subpercent level, with all relevant corrections [6]. It is

important to note that the result for δðΔαð5ÞhadÞ is not the main
focus of Ref. [6] and should be understood as preliminary.
Nevertheless, we include it because it imposes comple-
mentary constraints on the spectral function and demon-
strates the flexibility of our approach.
Then, we use these observables to
(I) isolate regions of t in which the lattice correlator leads

to values of the observables that are inconsistent with
those obtained in the data-driven approach;

(II) determine intervals of
ffiffiffi
s

p
in which a change in the

experimental R-ratio could explain the observed
discrepancies between the lattice and R-ratio ap-
proaches, by allowing a common rescaling of the
contributions from these intervals to the observables
of interest.

Because our approach is based on the minimization of χ2

functions, it allows us to quantify the compatibility of the
observables in the two approaches, as well as the consis-
tency of the observables with our hypothesis that a change
of the experimental R-ratio, in a particular

ffiffiffi
s

p
interval,

could explain the observed discrepancies. Clearly, the very
simple model of item II tells us little about the shape of the
deformations of the timelike spectral function that may be
required. Moreover, it does not incorporate, a priori,
physical constraints, such as those imposed by chiral
perturbation theory at small c.m. energies, by perturbative
QCD at large ones, or by analyticity and positivity at all
energies. However, it is not necessarily incompatible with
some of them either. In addition, it can help isolate

ffiffiffi
s

p
intervals in which the experimental R-ratio may have to be
modified to explain the lattice results.
Within a given approach, the observables obtained are not

independent. Thus, it is critical to take into account corre-
lations between them. This is necessary to correctly quantify
the compatibility of the lattice and data-driven observables
with one another. It is also particularly important when
considering the inverse problem because its solutions are
very sensitive to these correlations. In fact, because of the
exponential enhancement of fluctuations, it is also important
to consider the stability of the results against uncertainties on
the corresponding covariancematrices.We take into account
all uncertainties and correlations and, for the lattice results,
we also consider the effect of uncertainties on the corre-
sponding covariance matrices. The consideration of such an
effect in the data-driven approach is left for future work.
Using the methods described in Sec. IVA, we find the

results presented and discussed in Sec. VA. They represent
our attempt to isolate regions in the lattice correlator, on the
Euclidean time axis, that do not agree with the data-driven
approach.
As already observed in Ref. [6], the lattice result for

aLO-HVPμ is 2.1σ above the one obtained from the data-driven
approach (corresponding to a p-value of 5 × 10−2), and the
one for aLO-HVPμ;win , 3.8σ above (p-value of 1 × 10−4), while the

preliminary lattice result for δðΔαð5ÞhadÞ is only 1.4σ above
(p-value of 0.15).Moreover, the lattice result for the leading,
isospin-limit, up-and-down quark contribution to the win-
dow observable has been independently confirmed by nine
collaborations [6,10–13], of which two also confirm the
results for some of the other contributions [10,12]. This
increases the tensions with the data-driven results to a
conservative 4.2σ. Similar observations were made in [25].
The discrepancies discussed in the previous paragraph

are confirmed when correlations are taken into account via
Eq. (12). Considering first aLO-HVPμ and aLO-HVPμ;win together we

find p-values which range approximately from 2 × 10−5 to
1.7 × 10−3, taking into account the maximum systematic
variation and 1σ statistical fluctuation in the lattice covari-
ance matrices. These are substantially smaller than the one
for aLO-HVPμ alone.
Adding to the comparison the preliminary lattice result

for δðΔαð5ÞhadÞ, and its data-driven counterpart, reduces the
overall tension to some degree. The p-values now range
from approximately 10−4 to 6 × 10−3, still making an
overall agreement very unlikely.
Combining all of this information with the shape of the

observable’s kernels, in Sec. VA we argue that our results
point to an excess of the lattice correlator in at least part of
the intermediate-time range from 0.4 to 1.5 fm, a probable
excess at time separations above 1.5 fm, and possibly a
slight suppression in part of the short-time range below
∼0.6 fm, which must be limited in light of the agreement of
the short-distance-window lattice results of Refs. [11,89]
with the data-driven one of Ref. [14].
Then, we turn to the implications that the comparison of

the two approaches may have on the experimental R-ratio.
Again, the tests considered take into account all systematic
errors and correlations, as well as uncertainties on uncer-
tainties in the lattice results.
Using the averaging procedure of Sec. IV B, we find that

the lattice predictions for aLO-HVPμ and the corresponding

aLO-HVPμ;win [but excluding δðΔαð5ÞhadÞ], can be reproduced
within uncertainties via a modification of the experimental
R-ratio in various intervals of

ffiffiffi
s

p
. More specifically, if the

lower end of these intervals begins at threshold, the
intervals must include the ρ peak. Indeed, for intervals
whose upper bound is anywhere between

ffiffiffi
s

p ¼ 0.96 and
3.0 GeV, the modifications have to be such that they
increase the contributions to both the data-driven aLO-HVPμ

and aLO-HVPμ;win in those intervals by approximately 2%–5%,
the lower value corresponding to the larger intervals.
These conclusions allow scenarios, such as those advocated
in [90], in which the R-ratio would have to receive
modifications above 1 GeV to explain the lattice results
for aLO-HVPμ and aLO-HVPμ;win .
Interestingly, a modification of only the ρ-peak region is

also compatible with the lattice results, but requires around
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a 5% increase of the contributions to the two observables
from that region. It is worth noting that such an increase
is comparable to the one claimed by CMD-3 in a very
similar region [15]. However, without having worked out
the correlations between CMD-3 and the other eþe− →
hadron measurements, it is impossible to make a more
quantitative statement. Moreover, in the presence of large,
unexplained discrepancies between measurements, and
thus of large unknown systematics, one cannot claim to
control such correlations and uncertainties.
Somewhat surprisingly, a scenario in which the exper-

imental R-ratio is modified in an interval from threshold to
infinity from which the ρ peak is excluded is also permitted,
with p-values above ∼10% in the two-observable case—
i.e., beginning right below the cc̄ resonance region.
Moreover, modifications of the experimental R-ratio, in
intervals that extend to infinity and begin at

ffiffiffi
s

p
as small as

0.63 GeVand as large as 1.8 GeV, are also allowed. In that
case, the contributions to the data-driven aLO-HVPμ and
aLO-HVPμ;win must be increased anywhere between approxi-
mately 2% and 40%. On the other hand, an explanation
of the discrepancy between the two approaches via a
modification of the experimental R-ratio only above
3 GeV is excluded with high probability.
In order to see if some of the above scenarios can be

eliminated, we consider adding the observable δðΔαð5ÞhadÞ.
This observable has a footprint along the

ffiffiffi
s

p
-axis that is

significantly more extended toward larger c.m. energies than
thoseofaLO-HVPμ andaLO-HVPμ;win .We find that the additionof this
observable eliminates, with significant probability, all sce-
narios in which the modification of the experimental R-ratio
excludes the ρ peak. Nevertheless, the scenario including
only the ρ-peak interval, and the one in which the interval
begins below the ρ peak and extends to infinity, both survive
this additional constraint. Moreover, these possible modifi-
cations of the experimental R-ratio imply a rescaling of the
data-driven results, for all three observables, by a common
factor between about 1.02 and 1.06. In particular, the
scenario including only the ρ peak is barely changed by

the addition of the constraint from δðΔαð5ÞhadÞ, making it a
robust explanation for the discrepancy between the lattice
and data-driven approaches.17

Not surprisingly, very similar conclusions are obtained
using the fitted-moment formalism given in Appendix E 3.
There, however, the natural interpretation of the results is
slightly different. In that approach, the contributions of
different

ffiffiffi
s

p
intervals to the various observables become fit

parameters, as are the rescaling factors. Thus, under the
assumption that the proposed rescaling scenario is correct,
as should also be verified by the corresponding χ2=d.o.f.,
the fitted contributions to the observables can be under-
stood as a combination of lattice and data-driven results for
these contributions.
It is important to remember that all of the modifications

to the experimental R-ratio discussed above are not con-
sistent with the uncertainties of the timelike spectrum. This
is made obvious by the very small p-values, discussed
above, that correspond to the minimum of the χ2 of
Eq. (12), which measures the combined compatibility of
the lattice and data-driven results for aLO-HVPμ , aLO-HVPμ;win ,

and δðΔαð5ÞhadÞ.
As discussed in Appendix E, the methods presented

above can be generalized to include more and more
information about HVP from the lattice and data-driven
approaches. This additional information will allow us to
refine our understanding of the discrepancies between the
two approaches, both in terms of the Euclidean correlation
function and the experimental R-ratio. Our methods can
also be generalized to include more theoretical constraints,
such as those discussed earlier in this section. Moreover,
the methods presented in Appendix E supply means of
obtaining combinations of lattice and data-driven results
for various quantities of interest related to HVP. The
validity of these combinations rests on that of the models
used to reconcile the two approaches.
Finally, in Appendix F we argue that the number of

linearly independent moments that can be obtained with
reasonable precision from the experimental R-ratio is less
than 10 for the types of observables considered here, which
should be computable with subpercent precision in the
lattice approach.

Note added.—Recently, a preprint was uploaded on
arXiv [91], which discusses the impact of tensions in
eþe− → πþπ−ðγÞ measurements on evaluating the HVP
contribution to aLO-HVPμ and aLO-HVPμ;win . This is particularly
relevant given recent measurements by CMD-3 of eþe− →
πþπ− [15] and BABAR’s experimental study of higher-
order radiative effects in eþe− → πþπ−γ and eþe− →
μþμ−γ [92]. This study suggests that the measurement
performed by the KLOE experiment is impacted by the
higher-order radiative effects discussed in [92], at a level
larger than the systematic uncertainty that is currently
assigned to this effect. Furthermore, employing a combi-
nation of BABAR, CMD-3, and hadronic τ-decay data
would decrease the tensions between data-driven and lattice
results for aLO-HVPμ and aLO-HVPμ;win . Resolving discrepancies

17These conclusions allow a scenario such as the one discussed
in Ref. [25]. In that work, neglecting arguably small QED, strong-
isospin breaking, and b-quark effects, the authors compute an
observable in lattice QCD which corresponds to convoluting the
R-ratio with a Gaussian kernel and compare it to a data-driven
determination based on the compilation of [4]. In particular, they
consider a Gaussian centered at 0.80 GeV with a width at half
maximum of 1.26 GeV, thus smearing the R-ratio over a

ffiffiffi
s

p
interval ranging from threshold to 2.06 GeV, when 95.5% of the
area under the Gaussian is considered. In that interval in

ffiffiffi
s

p
, they

find that their lattice result for the Gaussian-convoluted R-ratio
exceeds the data-driven one by 2.8% or 3σ.
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between CMD-2 [16] and CMD-3 [15] measurements
would also be necessary before drawing final conclusions.
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APPENDIX A: DATA-DRIVEN DETERMINATION
OF THE OBSERVABLES

AND THEIR CORRELATIONS

Computing the contributions to the moments integrals
from the low-energy region, below 1.8 GeV, requires
combining the spectra measured by various experiments.
These measurements are performed either through a scan of
the energy in the center of mass of the collider, as is the case
of e.g., the CMD-2 and SND experiments, or using the
initial-state radiation (ISR) technique, in the case of KLOE
and BABAR (see e.g., Refs. [16,84–87,95–97] for the πþπ−
channel, dominant in the case of aLO-HVPμ ). In the latter case,
selecting events with a hard photon emitted from the initial
state allows such studies to cover a broad range of invariant
masses for the hadronic final-state system.Actually,BABAR
covers the full energy range of interest, due to selecting
eventswith the hard photon reconstructed in the detector and
to the high energy in the center ofmass of the collider.While
the KLOE 2008 [84] and KLOE 2012 [86] measurements
consider events with the hard ISR photon along the
beam, the KLOE 2010 measurement uses large-angle ISR
photons [85]. Furthermore, in measurements where the ISR
luminosity is evaluated in situ based on eþe− → μþμ−
events [86,87,97], several systematic uncertainties are
reduced. Still, among the currently available results, only
the BABAR study uses the reconstructed extra photons
(performing a measurement reconstructed at NLO and
inclusive of any number of additional photons), necessary

at the subpercent-level precision aimed for here. The
differences between the sampled event topologies, the
detector technologies, and especially the analysis method-
ologies result in systematic tensions between the BABAR
and KLOE measurements [3,73], but also between the
KLOE measurements themselves (see Ref. [5] and refer-
ences therein). Since these tensions are still to be under-
stood and fixed, they require special care in the current
combinations.
The channel-by-channel combinations in the DHMZ

approach (implemented in the HVPtools software) [3,71–73]
are performed in fine energy ranges, using a spline-based
procedure. It takes into account the information on the
uncertainties and their correlations between bins/points
and between experiments. The DHMZ procedure also
accounts for correlations between the various different
exclusive channelswhen summing their contributions,which
induces a necessary enhancement of the total uncertainty.
Furthermore, the local tensions between the measurements
are taken into account based on the computation of a
χ2=d.o.f. in fine energy ranges, used for the rescaling of
the uncertainties. However, in the presence of systematic
tensions, such as the ones between theBABAR and theKLOE
measurements in the ππ channel, the local rescaling of
the uncertainties is not sufficient. For this reason, in the
most recent DHMZ study [3], these tensions are taken into
account by treating half of the difference between integrals
without either BABAR or KLOE as an extra uncertainty. This
yields the dominant uncertainty on aLO-HVPμ , amounting to
2.8 × 10−10. The fidelity of the full analysis chain (poly-
nomial interpolation, averaging, integration) has been suc-
cessfully checked through a closure test, based on a
Gounaris-Sakurai vector-meson resonance model, faithfully
describing the πþπ− data [71].18 The DHMZ approaches for
accounting for correlations between channels and for the
BABAR-KLOE tension in the ππ channel have also been
adopted for the result of the WP [5].
The procedure described above is used to derive the

experimental values of Reþe−→hadronsðsÞ, together with its
covariance matrix, up to 1.8 GeV. It is completed with
contributions from inclusive experimental measurements in
the range between 3.7 and 5 GeV, combined using the same
methodology as above, with contributions from narrow
resonances, as well as from perturbative QCD for the
continuum [3]. An uncertainty accounting for possible
duality violation effects is also included. A direct integra-
tion of the resulting Reþe−→hadronsðsÞ on the full mass range,
together with a linear propagation of the uncertainties with
their correlations, yields the moment integrals with the
kernels of interest here, together with their covariance
matrix.

18More recently, tests based on treed Gaussian processes
have confirmed the good quality of the R-ratio modeling in
our spline-based approach [98].
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APPENDIX B: DETERMINATION OF LATTICE
OBSERVABLES AND OF THEIR

CORRELATIONS

The lattice QCD results used in this work were obtained
in Ref. [6]. In order to calculate the two-point func-
tion CðtÞ defined in Eq. (1), we need to evaluate the
current correlator hJμðxÞJμ̄ðx̄Þi in our lattice regularization.
We define the regularized current correlator as the second
differential of the partition function with respect to an
external photon field

hJμðxÞJμ̄ðx̄Þi≡ δ2 logZ
δAext

μ;xδAext
μ̄;x̄

����
Aext¼0

: ðB1Þ

Thus, we use the conserved current at source and sink. The
correlator can be evaluated as

hJμðxÞJμ̄ðx̄Þi=e2 ¼
�X

f

Cconn
μ;x;μ̄;x̄ðmf; eqfÞ þ Cdisc

μ;x;μ̄;x̄

	
;

ðB2Þ
plus a contact term that gives no contribution to the
observables of interest here. Cconn

μ;x;μ̄;x̄ and Cdisc
μ;x;μ̄;x̄ arise

respectively from the connected and disconnected Wick
contractions of the quark fields and are given by

Cconn
μ;x;μ̄;x̄ðmf; eqfÞ ¼ −

1

4
TrðM−1

f Dμ½iPxVUeieqfA�
·M−1

f Dμ̄½iPx̄VUeieqfA�Þ; ðB3Þ

Cdisc
μ;x;μ̄;x̄ ¼

X
f;f̄

Iμ;xðmf; eqfÞIμ̄;x̄ðmf̄; eqf̄Þ; ðB4Þ

where Tr is the spin-color trace, Px is a projection operator
that sets all sites other than x to zero,M−1

f is the propagator
for a quark of mass mf on a gauge background VUeieqfA,
and

Iμ;xðmf; eqfÞ≡ 1

4
TrðM−1

f Dμ½iPxVUeieqfA�Þ: ðB5Þ

These calculations are performed gauge ensemble by
gauge ensemble. The SU(3) configurations are generated at
the isospin-symmetric point, where mu ¼ md and e ¼ 0.
Leading-order QED and strong-isospin-breaking (SIB)
corrections are then added as perturbations.
The leading QED corrections are obtained as follows.

For each SU(3) gauge configuration, a stochastic U(1)
photon field is generated with the noncompact, QEDL
action. The U(1) fields are exponentiated into link variables
that we multiply with the corresponding SU(3) links. The
covariant Dirac operator is then inverted on each of the
corresponding gauge configurations and the resulting
quark propagators are appropriately contracted. The first

and second derivatives of the contractions, with respect to
the unit of electric charge e, are obtained by computing the
contractions for þe and −e and by taking the appropriate
finite differences. The expressions for the first and second
derivatives of the fermion determinant, in terms of quark
propagators, are computed analytically. For the second
derivative, around 2000 photon fields are used.
These first and second derivatives are appropriately

combined, with the e ¼ 0 contractions as well, to obtain
all Oðe2Þ contractions relevant for the current correlator.
The desired correlators are then obtained by averaging the
various contractions over the SU(3) and U(1) gauge
configurations of each ensemble.
At leading order, the fermion determinant does not

contribute SIB corrections. The valence contributions are
obtained by computing the first derivative of the con-
tractions, with respect to light-quark mass, and then
multiplying it by the u and d quark mass difference. As
above, the desired correlators are then obtained by averag-
ing the various contractions over the SU(3) and U(1) gauge
configurations of each ensemble.
In order to obtain physically relevant values, we perform

global fits to the lattice spacing, quark mass, and electric
charge dependence of aLO-HVPμ and aLO-HVPμ;win . These fits take
the form

Y ¼ Aþ BXl þ CXs þDXδm þ EXvv þ FXvs þ GXss;

ðB6Þ
where the first three terms on the right-hand side of the
equation provide the isospin-symmetric contribution to Y
and the other four give the isospin-breaking effects, in a
scheme specified via Eqs. (B7)–(B14). The Xl and Xs
variables describe the deviation from the physical light and
strange mass

Xl ¼
M2

π0

M2
Ω
−
�
M2

π0

M2
Ω

�
ph
; ðB7Þ

Xs ¼
M2

Kχ

M2
Ω
−
�M2

Kχ

M2
Ω

�
ph
; ðB8Þ

where “ph” indicates the physical value. The remaining X
variables measure the distance to the isospin-symmetric
limit

Xδm ¼ ΔM2
K

M2
Ω

; ðB9Þ

Xvv ¼ e2v; ðB10Þ

Xvs ¼ eves; ðB11Þ

Xss ¼ e2s ; ðB12Þ
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where ev and es are the valence and sea electric charges,
respectively. The meson masses are defined as

M2
Kχ

≡ 1

2
ðM2

K0
þM2

Kþ −M2
πþÞ; ðB13Þ

ΔM2
K ≡M2

K0
−M2

Kþ : ðB14Þ

The coefficients A;B;… in Eq. (B6) are specific to the
observable Y. They can depend on the lattice spacing and
also on the X variables defined above; in particular, we use

A ¼ A0 þ A2½a2ðαsð1=aÞÞn� þ A4½a2ðαsð1=aÞÞn�2
þ A6½a2ðαsð1=aÞÞn�3; ðB15Þ

B ¼ B0 þ B2a2; ðB16Þ

C ¼ C0 þ C2a2; ðB17Þ

D ¼ D0 þD2a2 þD4a4 þDlXl þDsXs; ðB18Þ

E ¼ E0 þ E2a2 þ E4a4 þ ElXl þ EsXs; ðB19Þ

F ¼ F0 þ F2a2; ðB20Þ

G ¼ G0 þG2a2: ðB21Þ

For any ensemble, a is given by the ratio of theΩmass, in
lattice units, to its experimental value. For theA coefficient of
observableswhich give a large contribution to the final result,
we include powers n of the strong coupling αsð1=aÞ in the
lattice-spacing dependence [99].We take both the commonly
used n ¼ 0 (corresponding to the usual polynomial expan-
sion in a2) and n ¼ 3, as suggested in Ref. [100]. For the
strong coupling,we use its four-flavorMSvalue at scale 1=a.
We determine this value from the world average value of
αsðMZÞ [101] by running down fromMZ to 1=a in five-loop
perturbation theory [102], taking into account four-loop
threshold corrections [103] at the b-quark mass that are
given in Ref. [101].
The choice of n is included as a source of systematic

uncertainty in the analysis described below. In addition, we
vary the polynomial order of the coefficients as an addi-
tional source of uncertainty. As required by the data, we
take the A coefficient to be linear, quadratic, or cubic in
a2αsð1=aÞn. For all other coefficients, the lattice-spacing
dependence is assumed to be a function of a2 only. In theD
and E coefficients, up to quadratic dependencies are used;
in all other cases only a linear one is needed. Depending on
the fit qualities, some of these parameters will be set
to zero.
We perform simulations at six different values of the

lattice spacing, at a range of quark masses scattered around
the isospin-symmetric point. We exclude zero or more of

the coarsest lattice spacings from the analysis, and the
resulting variation in the global fit provides another source
of systematic uncertainty.

1. Estimating the covariance matrix

The results of this lattice calculation are subject to both
statistical uncertainties arising from the Monte Carlo sam-
pling of the QCD gauge fields and systematic uncertainties
arising from choices made during the analysis. We estimate
the variance and covariance arising from both types of
uncertainty by using a combination of statistical resampling
and histogramming of systematic variations [6,104,105].
The statistical covariance matrix is computed through

jackknife resampling of the two-point, electromagnetic
current-current correlator CðtÞ. The gauge field configura-
tions are computed through a Markov chain algorithm that
induces an autocorrelation between subsequent configura-
tions. We suppress this effect by introducing a blocking
procedure, where the individual configurations are grouped
together into NJ blocks and then the average of CðtÞ on
each block is used in the resampling procedure instead of
the value on each configuration. To simplify the analysis,
we take NJ to be the same on all ensembles. Specifically,
we take NJ ¼ 48which gives typical blocks of 100 or more
configurations, larger than the autocorrelation time of the
topological charge (which is ∼20 on the finest ensembles).
Systematic uncertainties arise from a number of choices

that must be made throughout the analysis. For example,
the choice of appropriate fit ranges, the experimental value
of the Ω-baryon mass used to set the scale, or the particular
fit form used to perform the global fit. We call the global fit
resulting from a particular set of these choices an analysis.
In order to quantify the systematic uncertainties, we need to
estimate the variance of the final value across all analyses
arising from reasonable choices. To do this we follow the
strategy used in Ref. [6].
As the full value of aLO-HVPμ and the window observable

aLO-HVPμ;win are evaluated with similar techniques on the same
set of gauge configurations, a number of choices in the
analyses for aLO-HVPμ and aLO-HVPμ;win are similar and hence
introduce correlations. Therefore, the procedure described
in Ref. [6] had to be adapted to take into account these

correlations. δðΔαð5ÞhadÞ is assumed to have negligible corre-
lations with aLO-HVPμ and aLO-HVPμ;win because it is mostly
determined by contributions from shorter distances.
The systematic uncertainties affecting any given analysis

can be arranged into two groups: those that induce
correlations and those that induce no correlation. The
systematics that induce no correlation are further subdi-
vided into those that enter with a flat weight and those that
are weighted with the Akaike information criterion,

AIC ∝ exp

�
−
1

2
ðχ2 þ 2npar − ndataÞ

�
; ðB22Þ
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where the χ2, the number of fit parameters npar, and the
number of data points ndata describe the global fit corre-
sponding to the given analysis. These relative AIC weights
are employed between analyses differing in the choice of fit
functions or in the lattice spacings included. For other
systematics, including all systematics that induce correla-
tions, a flat weight is employed. The choices that are
assumed to introduce correlations are the fit ranges in the
extraction of masses from correlation functions, the exper-
imental input for the Ω mass, the taste improvement time
ranges, and the choice of tc in the bounding method for the
extraction of aLO-HVPμ . Details of this procedure and
explanation of the individual contributions to the system-
atic uncertainties can be found in Ref. [6]. In the following,
we denote with Aðϕ;ψ flat;ψAICÞ the result for some
observable A, either aLO-HVPμ or aLO-HVPμ;win , with a specific
set of systematics. Here, ϕ is a label for a set of specific
choices that will induce correlations between aLO-HVPμ and
aLO-HVPμ;win , and the labels ψ flat and ψAIC refer to choices that
are made independently and are weighted either by a flat
weight or by an AIC weight. In this notation, the histogram
for a single observable A can be expressed as

HðAÞ ¼
X

ϕ;ψ flat;ψAIC

wðϕ;ψ flat;ψAICÞ

×N 1ðA; Āðϕ;ψ flat;ψAICÞ; σAðϕ;ψ flat;ψAICÞÞ; ðB23Þ

where N 1ðx; μ; σÞ is the probability density function of the
normal distribution with mean μ and standard deviation σ.
Āðϕ;ψ flat;ψAICÞ refers to the mean value of the observable
A in the analysis with the systematic variation indicated in
parentheses. In the same sense, σAðϕ;ψ flat;ψAICÞ corresponds to
the statistical uncertainty on this analysis determined from
the jackknife samples. The weight function

wðϕ;ψ flat;ψAICÞ ¼ AICðϕ;ψ flat;ψAICÞP
ψAICAICðϕ;ψ flat;ψAICÞ ðB24Þ

ensures a correct relative weight between the analyses.
Here, AICð� � �Þ denotes the AIC weight of the indicated
analysis.
This procedure can be generalized to the study of the

correlations between aLO-HVPμ and aLO-HVPμ;win by introducing a
two-dimensional histogram,

HðA; BÞ ¼
X

ϕ;ψ flat
A

ψflat
B

;
ψAIC
A

ψAIC
B

;

wAðϕ;ψ flat
A ;ψAIC

A ÞwBðϕ;ψ flat
B ;ψAIC

B Þ

×N 2ðA; B; Āðϕ;ψ flat
A ;ψAIC

A Þ;
B̄ðϕ;ψ flat

B ;ψAIC
B Þ;

Cð1Þ
statðϕ;ψ flat

A ;ψAIC
A ;ψ flat

B ;ψAIC
B ÞÞ: ðB25Þ

Here, Cð1Þ
stat refers to the statistical covariance matrix

determined from the jackknife samples for each individual
combination of analyses and N 2 is the bivariate normal
distribution with this covariance matrix. A and B refer to
either aLO-HVPμ and aLO-HVPμ;win or individual flavor and con-
traction contributions to them.
We treated the systematic error introduced by the taste

correction as a special case—both aLO-HVPμ and aLO-HVPμ;win are
affected by this correction in a correlated way. For aLO-HVPμ ,
four time ranges for taste improvements to the correlation
function are used, starting at the Euclidean times 0.4, 0.7,
1.0, and 1.3 fm. But since the window observable aLO-HVPμ;win

is not affected by the taste improvement in the last range,
for aLO-HVPμ;win the two last ranges give the same results.
Therefore, using all four ranges for both observables would
bias the window observable. To avoid this, but still retain a
measure of correlation, we considered 12 systematic
combinations where, for each matrix, we fixed the range
of the taste correction to aLO-HVPμ and aLO-HVPμ;win . The starting
times for the taste correction ranges in all 12 cases are
shown in Table III. Then, we averaged the 12 covariance
matrices.
As there are a large number of choices with many of

these inducing a correlation, explicitly evaluating Eq. (B25)
as a function of aLO-HVPμ and aLO-HVPμ;win is unfeasible.
Instead, we prepared three one-dimensional histograms
for the distributions of X ¼ aLO-HVPμ , Y ¼ aLO-HVPμ;win , and
Z ¼ aLO-HVPμ þ aLO-HVPμ;win . From these three histograms, we
determined the median and the interquantile distances dσX,
dσY , and dσZ. Here, σ indicates the number of standard
deviations the interquantile distances would correspond to,

TABLE III. Starting time for the taste corrections in the 12
systematic combinations used to estimate the correlation intro-
duced by the taste correction. The first column contains the
number of the systematic combination, the second column
contains the starting time for the taste correction in aLO-HVPμ ,
and the last column contains the starting time for the taste
correction for aLO-HVPμ;win .

No. syst. comb. tstartaLO-HVPμ
=fm tstart

aLO-HVPμ;win
=fm

1 0.4 0.4
2 0.4 0.4
3 0.4 0.4
4 0.7 0.4
5 0.7 0.7
6 0.7 0.7
7 1.0 0.7
8 1.0 0.7
9 1.0 1.0
10 1.3 1.0
11 1.3 1.0
12 1.3 1.0
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in the case of normal distributions. Using these results, we
construct the covariance matrices as

C ¼

2
64

ðdσXÞ2
σ2

ðdσZÞ2−ðdσXÞ2−ðdσYÞ2
2σ2

ðdσZÞ2−ðdσXÞ2−ðdσYÞ2
2σ2

ðdσY Þ2
σ2

3
75: ðB26Þ

To avoid any bias from the details of the histogram binning,
we considered a large number of 2000 bins per histogram.
The upper and lower bounds of the histogram were chosen
such that they do not influence the results. These values can
be found in Table IV. The resulting histograms for X and Y
are plotted as black curves on the upper and the right
sides of the heat maps of Fig. 8. For illustrative purposes,
we also calculated two-dimensional histograms with a
smaller number of 1000 bins in each direction. These
two-dimensional histograms are also shown Fig. 8. The
bins were filled by sampling five random points for each
summand in Eq. (B25). Note that the random sampling is
only included in the visualization and has no impact on the
end result. It is noteworthy that, in the case of the light-
quark contribution to the window quantity, a double-peak
structure appears. This structure is due to the variation of
the parameter n ¼ 0, 3 in Eq. (B15). The effect of the non-
Gaussianity of the distribution introduced by this structure
is taken into account by looking at both the σ and 2σ
quantiles.
In order to separate the systematic uncertainties and

correlations from the statistical ones, we repeat, in analogy
to the procedure in Ref. [6], the full procedure while
replacing C with λC in Eq. (B25). We choose λ ¼ 2. Then,
we solve the equations

C ¼ Cstat þ Csyst; ðB27Þ

Cλ ¼ λCstat þ Csyst; ðB28Þ

for Cstat and Csyst. Here, Cstat and Csyst are the statistical and
systematic covariance matrices of aLO-HVPμ and aLO-HVPμ;win ,
extrapolated to a ¼ 0 and interpolated to the physical
mass point.

2. Systematic and statistical uncertainties
on the covariance matrix

The specific value taken by the estimated covariance
matrix can have an important effect on the results described

in the main paper, in particular on those for χ2, for the
corresponding p-values, as well as those resulting from the
inverse problem. As such, we found it important to quantify
the uncertainties in this estimate. We identified two major
sources of systematic uncertainty in our covariance esti-
mate: non-normal distributions and correlation of con-
tinuum extrapolations. Each of these sources is described
below, along with our approach to estimating the associated
uncertainty.
Our jackknife estimate of the statistical covariance

matrix for each analysis has itself a statistical uncertainty.
We estimate this uncertainty by applying an approximate
second-order resampling technique. We observe that the
jackknife bias in aLO-HVPμ and aLO-HVPμ;win is small. Hence,
we can approximate the true bootstrap distribution by
bootstrapping the reconstructed samples Xi ¼ NJX̄ −
ðNJ − 1ÞX̄i, where X̄ is the ensemble mean and X̄i is
the ith jackknife. We construct NB ¼ 1000 bootstraps in
this way, and then on each bootstrap we compute the
jackknife statistical covariance and perform the histogram-
ming technique described above to obtain the full covari-
ance matrix. In this way we compute the bootstrapped
distribution of our final covariance matrix.
To obtain a covariance from the histogram, we make the

assumption that the histogram is normally distributed.
Under this assumption, the 1σ quantiles described above
will fall one standard deviation below and above the
median. Any deviation away from the normal distribution
will hence introduce a systematic uncertainty. One example
of such a non-normal distribution is the double-peak
structure observed in Fig. 8(a). This double peak arises
from the two-point systematic related to the power n of the
strong coupling in the description of the lattice-spacing
dependence of aLO-HVPμ;l;win [i.e., the connected light (ud) quark
contribution to the window observable] given in Eq. (B15).
It is an artifact of how we sample the errors and not intrinsic
to the underlying distribution, but it still introduces an
uncertainty in how the covariance is defined. To quantify
this uncertainty, we also consider the covariance matrix
obtained by considering the 2σ quantiles to be 2 standard
deviations below and above the median. If the distribution
were normal, the covariance matrix obtained in each of
these ways would be identical. We take the difference
between these two determinations of the covariance matrix
as a two-point systematic.
In producing the histograms we allow the form of the

continuum fit to vary independently foraLO-HVPμ andaLO-HVPμ;win ,

TABLE IV. Upper and lower bounds of the histograms used for determining the lattice covariance matrices in different flavor
channels.

Channel Lower bound aLO-HVPμ;chan Upper bound aLO-HVPμ;chan Lower bound aLO-HVPμ;chan;win Upper bound aLO-HVPμ;chan;win

Light 600 680 190 230
Strange 51 55 25 29
Disconnected −28.5 −8.5 −1.5 −0.9
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as there is no a priori reason that the fit forms should be the
same. Hence, by construction we obtain no correlation
between systematic uncertainties arising from the continuum
limit of each quantity. However, since aLO-HVPμ can be
considered to be the sum of W ¼ aLO-HVPμ;win and its comple-
ment C, it is reasonable to surmise that there may be some
correlation between their continuum limits. To estimate this
potential correlation, we consider taking the continuum
limits of W and C independently and adding them together
to obtain T ¼ W þ C ¼ aμ. In this scenario, let W have
variance ðdWÞ2c associated with the continuum limit and
similar for C. Then the variance of T is

ðdTÞ2 ¼ ðdTÞ2o þ ðdWÞ2c þ ðdCÞ2c; ðB29Þ
where ðdTÞ2o is the variance of T due to uncertainty
sources other than the continuum extrapolation. Under these
assumptions, the covariance matrix between T and W is

CTW ¼ Co
TW þ

� ðdWÞ2c þ ðdCÞ2c ðdWÞ2c
ðdWÞ2c ðdWÞ2c

�
; ðB30Þ

where Co
TW describes the covariance not associated with the

continuum extrapolation. In practice, since the continuum
limit of the combined T ¼ W þ C is taken instead, the C
component may interfere and partially spoil the correlation.
As such we expect the true covariance to lie somewhere
between this case and the case where this contribution is
neglected. We take as an additional two-point systematic
covariance matrices including either 0% or 100% of this
estimated continuum limit contribution.
The connected contribution from valence charm quarks

was computed in Ref. [106], and the data were not avai-
lable to perform the covariance analysis described here.
To address this, we assume that the correlation between
aLO-HVPμ;c and aLO-HVPμ;c;win lies somewhere between 0% and
100% and treat the difference between these two extremes
as an additional uncertainty. The charm contribution is a
very small part of the total variance so this uncertainty is
small. It is closely related to the uncertainty from the
correlation of continuum extrapolations and as such is
treated as part of the same two-point systematic.
Finally, the finite-size effects computed in Ref. [6] have a

large contribution from the continuum limit of dedicated
large-volume lattice studies, so once again the correlation
of these errors is unknown. We conservatively take this
correlation to lie somewhere between 0% and 100% and
include this in the same two-point systematic as the other
continuum limit correlations.
Taking into account both two-point systematics, we

obtain four correlation matrices, each with an associated
statistical uncertainty,

C0 ≡ C1σ;0%
lat ¼

�
30.13ð4.88Þ −0.05ð0.03Þ
−0.05ð0.03Þ 1.95ð0.47Þ

�
; ðB31Þ

FIG. 8. Histograms for the estimation of the total, statistical,
and systematic lattice covariance matrices for the connected ud
(a), the connected s (b), and disconnected (c) contributions to
aLO-HVPμ and aLO-HVPμ;win . These are obtained via the marginalization
of Eq. (B25) to these individual contributions, as described in the
text. Each of the three plots has a heat map in its center,
illustrating the two-dimensional covariance distribution of the
total combined uncertainty. As usual, colors from white to blue
represent higher to lower probability densities. These densities
are calculated using the random sampling discussed in the text.
The solid and dashed ellipses in these maps indicate the 1σ and 2σ
errors determined from the corresponding quantiles. In the upper
and right panels around the heat maps, histograms of the
marginalized distributions are shown. These are calculated
exactly without random sampling. The two green bands show
the 1σ and 2σ uncertainties determined by the corresponding
quantiles of the distribution evaluated symmetrically around the
median.
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C1 ≡ C2σ;0%
lat ¼

�
34.04ð16.80Þ 0.32ð0.05Þ
0.32ð0.05Þ 1.12ð0.07Þ

�
; ðB32Þ

C2 ≡ C1σ;100%
lat ¼

�
30.13ð4.88Þ 1.56ð0.03Þ
1.56ð0.03Þ 1.95ð0.47Þ

�
; ðB33Þ

C3 ≡ C2σ;100%
lat ¼

�
34.04ð16.80Þ 1.94ð0.05Þ
1.94ð0.05Þ 1.12ð0.07Þ

�
: ðB34Þ

By performing the fits described in the main text with
each bootstrap sample for each of the four representa-
tive covariance matrices, we obtain the uncertainty in the
rescaling factors and observed χ2 values arising from our
uncertainty in the lattice covariance matrix.
It is important to note that the statistical covariance

matrices Cð1Þ
stat used in the histogramming procedure are

determined from jackknifes over NJ ¼ 48 binned “mea-
surements.” Therefore, the statistical uncertainty on these
covariance matrices is determined by NJ, rather than by the
number of independent samples used in the determination
of the central values. This number is smaller than the total
number of independent samples available in the dataset,
even accounting for autocorrelations. This means that
with the available data, a different sampling procedure
(in particular, a larger number of bins) could produce an
estimate of the statistical covariance with smaller statistical
errors. However, this conservative approach to binning
ensures that the systematic errors arising from autocorre-
lations within the data are negligible compared to these
statistical errors. In addition, this choice provides consis-
tency with the analysis of Ref. [6]. As the results of Sec. V
show, the statistical error this conservative binning produ-
ces is still sufficiently small that it does not quantitatively
affect the conclusions drawn in the present work.

APPENDIX C: WEIGHTED AVERAGE
PROCEDURE IN PRESENCE

OF UNCERTAINTIES ON UNCERTAINTIES
AND CORRELATIONS

The minimum of the χ2 function in Eq. (19) with respect
to γ is obtained for

γ ¼
P

j;k½ðCγ̃
lat þ Cγ̃

RÞ−1�kj · γ̃jP
l;m½ðCγ̃

lat þ Cγ̃
RÞ−1�lm

; ðC1Þ

which represents a weighted mean of the input γ̃j values.
However, it is known that this approach can yield biased
results (see e.g., Ref. [75]).
According to the Gauss-Markov theorem, this χ2 min-

imization is equivalent to the minimization of the variance
of a weighted average, with the sum of weights constrained
to unity (see e.g., Refs. [107–109]). It is for this reason
that this method is also called the “best linear unbiased
estimate” (see e.g., Ref. [107] and references therein).

However, the word “unbiased” in the name above needs to
be interpreted with care, as it implicitly involves several
assumptions about the statistical model being employed.
Indeed, in the presence of strong correlations among the
inputs, the weights in Eq. (C1) can be negative or larger
than unity, yielding an average value that can be even
outside the range of the input values, which may be
problematic. Chapter 7 of Ref. [108] points out that the
measurements are likely to lie on the same side of the true
value in the presence of strong positive correlations.
However, it is also indicated that this interpretation is
subject to the implicit assumptions about the knowledge of
the covariance matrix, as discussed in more detail below.
Reference [75] points out that a bias in this procedure is

caused by the input covariance matrix because of “the
linearization on which the usual error propagation relies.”
While the χ2 definition of Eq. (19) treats all the uncer-
tainties as absolute (i.e., corresponding to additive effects),
at least some of them should be treated as relative19

(i.e., corresponding to multiplicative effects) [76].
Furthermore, another problem of this approach is that

Eq. (19) involves an ill-behaved inversion of the covariance
matrix. Indeed, a small change in the covariance matrix can
have an important impact on its inverse, hence on the
weights and the resulting average. Without special tech-
niques, the inverse cannot be computed, nor can the χ2

minimization be performed [76]. While modern numerical
algorithms allow one to address the technical aspect of this
matter, some more fundamental problems related to the
evaluation of the covariance matrix still persist (see below).
In Ref. [75] it is discussed that a possible solution to

these problems consists of introducing, in the χ2 definition,
one nuisance parameter for each correlated systematic
uncertainty, together with the corresponding constraint
terms. Doing so, for a normalization uncertainty, a scaling
factor is applied to both data and uncorrelated uncertainties.
An equivalent approach introduces the corresponding
nuisance parameter as a scaling factor on the theoretical
prediction [76,110]. An alternative method for the treat-
ment of relative uncertainties consists of scaling them to the
fitted value minimizing the χ2, rederiving the correspond-
ing covariance matrix, and iterating (see Refs. [75,111] and
references therein).20 However, we note that the rescaling of

19That is the case e.g., for the luminosity uncertainty of
the experimental measurements.

20However, for more general applications, such a procedure
faces some important challenges when the rescaling is applied for
the statistical uncertainties of unfolded measurements. Indeed, in
such a case the migrations of events induce nontrivial correlations
between the various bins, which imply that the statistical
uncertainty in a given bin also depends on (i.e., scales as a
function of) the expected numbers of events in other bins.
Furthermore, the regularization procedures typically used in
the unfolding also induce nonlinear effects in the uncertainty
propagation, making the uncertainty rescaling of such measure-
ments even more challenging.
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the uncertainties has little relevance in the current use cases,
when there is little difference between the γ̃j values to be
combined or when one of them is more precisely determined
than the others and dominates the average (see Sec.V B). It is
also worth recalling that, if all the nuisance parameters
correspond to (are treated as) absolute systematic uncertain-
ties, each of them acting as a coherent additive shift of
the theoretical prediction, the approach using nuisance
parameters is equivalent to the one of the “standard” χ2

with correlations from Eq. (19) (see Refs. [112–117]).
The approach using nuisance parameters in the fit often

leads to reduced systematic uncertainties, as they are
constrained by the χ2 minimization. However, this reduc-
tion assumes and strongly relies on a perfect knowledge of
the phase-space dependence and correlations of the sys-
tematic uncertainties, information explicitly used in the χ2

definition. The same assumptions and features are implicit
for the standard χ2 with correlations in Eqs. (12), (19), (E8),
and (E10), in particular for minimizing the variance of the
average, as discussed above. Indeed, the need for precisely
known covariance matrices, mentioned in Refs. [14,118],
becomes explicit in the equations above.
Building upon remarks made in the context of ATLAS

jet performance and cross section studies [119–121] (see
also the earlier discussion in Ref. [122]), these strong
assumptions were also questioned for the eþe− annihi-
lation data used for the evaluation of aLO-HVPμ , since there
are clear indications that the amplitudes of systematic
uncertainties and their correlations are generally impac-
ted by uncertainties themselves [3,5,123].21 Indeed, the
size of the systematic uncertainties of the various
measurements and the correlations of a systematic
uncertainty component impacting several measurements,
as well as the correlations between the systematic
uncertainties impacting a given measurement are never
really measured, but rather estimated. For example, the
tensions between the input measurements observed in
several channels (e.g., between BABAR and KLOE in the
πþπ− channel) are a direct indication of underestimated
uncertainties for the measurements and motivated the
inclusion of an extra systematic uncertainty for the
resulting dispersive integrals [3] (see also Appendix A).
Such two-point systematic uncertainty, although neces-
sary when using the currently available inputs, has
unknown correlations between different phase-space
regions. Therefore, it comes at the price of bringing
some fundamental limitations for the treatment of corre-
lations in Eqs. (12), (19), (E8), and (E10). The recent
CMD-3 measurement in the πþπ− channel [15], which

shows some significant tension with the previous precise
measurements of the same channel, emphasizes even
further the existence and the need for a careful treatment
of the uncertainties on uncertainties. Furthermore, such
limitations in the statistical treatment also originate from
the uncertainties on uncertainties and on correlations
for the lattice QCD calculations (see Appendix B).
Therefore, the statistical procedures employing such
inputs (or other quantities derived using them) should
avoid overestimating the precision with which the uncer-
tainties and their correlations are known, a conservative
uncertainty treatment being preferable. This is especially
important since the uncertainties on the uncertainties and
on their correlations are not available in the current
publications of hadronic spectra.
In order to address the limitations related to the uncer-

tainties on the systematic uncertainties and on their
correlations, we use a procedure which consists of perform-
ing a weighted average, with the weights of the input γ̃j
values being proportional to the inverse of their squared
total uncertainties. This is equivalent to using only the
diagonal elements of the covariance matrices (i.e., setting
the other elements of the matrices to zero) in Eq. (C1) when
deriving the weights. The weights used in this procedure
are in the range between 0 and 1 and are on the larger end
for more precise contributions. This part of the procedure
matches the corresponding one in Refs. [126,127]. At the
same time, the full information of the input uncertainties,
with their correlations, is propagated to the result of the
weighted average (as e.g., in Ref. [127]) and is used in
the χ2 when assessing the level of agreement between
the inputs and the average value. A similar fitting pro-
cedure, using only the diagonal uncertainties in the χ2,
followed by a propagation of the full set of uncertainties
and their correlations, has been successfully used in
Ref. [3] for combining the experimental measurements
in the eþe− → πþπ− channel.22

APPENDIX D: STABILITY OF THE RESULTS
OF SEC. V B WITH RESPECT

TO THE AVERAGING PROCEDURE

In this appendix we discuss the use of an alternative
averaging procedure to the one employed in Sec. V B,
to obtain the results for changes to the experimental
R-ratio that could explain the differences between the
lattice and data-driven results for aLO-HVPμ , aLO-HVPμ;win , and

δðΔαð5ÞhadÞ. In that section, we perform the average
defined in Eq. (C1). That is, when we derive the
averaging weights, we replace the full covariance matrix

21More recently, a similar remark has been independently
made in Ref. [124]. The remarks made in the context of the muon
g − 2 studies are also relevant when using the data of hadronic
spectra for other applications, e.g., for the extraction of the strong
coupling employing the Adler function [125].

22In Ref. [122] one can find some further discussions on other
unbiased combination procedures with realistic uncertainty esti-
mates, taking into account the full information of the uncertain-
ties and correlations of the inputs.
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ðCγ̃
lat þ Cγ̃

RÞ, obtained by a linear propagation of lattice
and experimental R-ratio uncertainties and correlations,
by its diagonal form with no correlation. Here we
consider what the effect of including these correlations
is on our results.
Generically, the use of the full covariance matrices

for determining the averaging weights in Eq. (C1)
changes these weights significantly, some becoming
negative and others larger than unity (see Sec. IV B).
However, here, their deviations from zero or from unity
are observed to be smaller than 0.06. Furthermore, in
such cases either the γ̃j values from Eq. (18) do not
differ much23 or one of them is more precise and
dominates the average. Thus, the values of the average
γ ¼ γ1 are similar for the two averaging methods, within
12% in the most extreme case, and in most cases within
a few percent or less.
Even if this alternative approach minimizes the χ2 in

Eq. (19) (and the uncertainty of the rescaling percentage δ1,
which is propagated from the covariance matrices of the
lattice QCD and dispersive results), it only reduces it by
15% (9%) or less, compared to the values obtained with
weights proportional to the inverse of the γ̃j uncertainties
squared, which are used in the nominal approach to
produce Table II. Therefore, the p-values obtained with
the two approaches are also similar, leading to similar
conclusions about the level of compatibility between the
lattice and dispersive moment integrals for all the normali-
zation shift scenarios considered in this paper.
The statistical variance and quantiles of the rescaling

percentage δ1, obtained from the bootstrap variations of the
lattice covariance matrices, are most often enhanced (by up
to 540%) in the alternative averaging method compared to
the one used to obtain the results given in the main text,
while in some rare cases they are reduced (by up to 87%).
At the same time, the changes of δ1 under systematic
variations of the lattice covariance matrix are also generally
broader for the alternative averaging method.
Concerning the statistical variance and quantiles of the

uncertainty on δ1 (propagated from the covariance matrices
of the lattice QCD and dispersive results), they are most
often enhanced (by up to 133%) in the alternative averag-
ing method compared to the nominal one, while in some
rare cases they are reduced (by up to 99%). In all cases, as
for the nominal method, the uncertainty of the rescaling
percentage δ1 remains precisely determined when using the
alternative averaging method.

On the other hand, the variance and quantiles of the χ2

values, due to the same bootstrap fluctuations as above, are
generally reduced when using the alternative averaging
method (by up to 44%), while in some rare scenarios they
are slightly enhanced (by less than 3%). The range covered
by the χ2 values under systematic variations of the lattice
covariance matrix is generally somewhat narrower for the
alternative averaging method.
Some of the features described above, for the compari-

son between the two averaging methods, are illustrated
by comparisons between the plots in the first two rows of
Figs. 4–7. These features are consistent with the fact that
while both procedures are sensitive to the uncertainty on
the uncertainty in the determination of the weights, only
the alternative approach, which uses the full covariance
matrices for determining the averaging weights, relies on
correlations for computing the weights to minimize the χ2

and the uncertainty of the rescaling percentage δ1.

APPENDIX E: GOING BEYOND THE
RESCALING IN A SINGLE

ffiffi
s

p
INTERVAL

To go beyond the simple scenarios and interpretations of
Appendix C, more window observables are required from
the lattice, with the corresponding ones from the exper-
imental R-ratio, split up into

ffiffiffi
s

p
intervals. These can be

complemented by other quantities related to the HVP, such
as the hadronic vacuum polarization function Π̂ðQ2Þ at
various Q2 accessible to the lattice. Again, all of these
quantities must be obtained with a full description of the
relevant covariances.

1. General formalism for comparing and possibly
combining lattice and data-driven results

Consider a function MRðs; αiÞ that depends on s and on
parameters αi. It is chosen so as to provide a good
description of the experimental R-ratio, or a rebinned
version of it, once the αi are appropriately adjusted.
Now, consider a modified model Mlatðs; αi; βjÞ that
depends on the additional parameters βj. This new model
represents a guess at how the experimental R-ratio could be
modified to reproduce the lattice observables of interest,
once integrated over s with the appropriate weights. We
then define the ratio of these two models as

Flat÷Rðs; βjÞ≡Mlatðs; αi; βjÞ=MRðs; αiÞ; ðE1Þ

which is chosen not to depend on the αi parameters.24 For
instance, these functions can be physics-motivated models,
spline-based parametrizations, orthogonal polynomials,
histograms of the bins used for the experimental R-ratio,

23The γ̃j values used for a given averaging differ by typically
only 12% or less, except for cases when the normalization fit is
done in restricted

ffiffiffi
s

p
regions, below 0.63 GeV or above 1.8 or

3.0 GeV. In that case, the shape differences among the kernels of
the various moment integrals have a more important impact for
Eq. (18) and the differences between the γ̃j values can be as large
as 30%–80%.

24This factorization is used here just for an intuitive simpli-
fication of the explanation, while the methods discussed below
can also be applied to more general Mlatðs; αi; βjÞ models.
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or with some different binning, etc. For either the R-ratio or
lattice model functions, we define the integrals of interest as

a
MR=lat

jb ≡
Z
Ib

dsK̃jðsÞMR=latðsÞ; ðE2Þ

where the αi and βj model parameters are kept implicit. As
above, Ib can be either some restricted

ffiffiffi
s

p
interval or it can

cover the full range from threshold to ∞. In the latter case
we drop the index b for the integral label, which also keeps
the notations consistent with e.g., Eq. (15). Note that if
MR=lat is a histogram, then the integral in Eq. (E2) becomes
a sum over bins.
For the lattice constraints of the model integrals one can

write the χ2 function as

χ2lat ¼
X
j;k

½alatj − aMlat
j �½C−1

lat �jk½alatk − aMlat
k �; ðE3Þ

while for the constraints from the experimental R-ratio,
one can use approaches based on different χ2 definitions,
such as

χ2R;1 ¼
X
j;k

½aRj − aMR
j �½C−1

R �jk½aRk − aMR
k �; ðE4Þ

χ2R;2 ¼
X

ðjbÞ;ðkcÞ
½aRjb − aMR

jb �½C−1
R �ðjbÞðkcÞ½aRkc − aMR

kc �; ðE5Þ

χ2R;3 ¼
X
b;c

½Rb −MR;b�½C−1
R;bin�bc½Rc −MR;c�; ðE6Þ

where, as above, we indicate whether the covariance
matrix of the aj or ajb moment integrals correspond to
those of the lattice (data-driven) approach via the subscript
“lat” (“R”). In addition, we callCR;bin the covariance matrix
that corresponds to (a possibly rebinned version of) the
experimental R-ratio. Indeed, Eq. (E4) concerns dispersive
integrals on the full s range, Eq. (E5) includes further
information on the shape of the R-ratio through the integrals
computedonvarious Ib intervals,whileEq. (E6) uses directly
the experimental R-ratio (without any further convolution),
either within its original bins or after merging the bins within
larger intervals. Based on these χ2 functions, one can
consider several approaches for comparing and/or combining
the R-ratio and lattice results.
A first approach can consist of constraining the param-

eters αi ofMRðs; αiÞ by minimizing one of the χ2R functions
in Eqs. (E4) and (E6), followed by a determination of the βj
parameters of Mlatðs;αi; βjÞ through a minimization of χ2lat
from Eq. (E3). In this two-step approach, the αi parameters
are held fixed when the second fit is performed and
therefore they are not constrained by lattice results. Still,
their uncertainties and correlations are propagated from the

first step to the second, e.g., by replacing Clat in Eq. (E3)
with the appropriate covariance matrix.
A second approach can consist of simultaneously con-

straining the αi and βj parameters of the model, by
minimizing χ2lat þ χ2R, with either of the definitions in
Eqs. (E4) and (E6) for the contribution from the exper-
imental R-ratio. We note that this minimum is generally
lower than the χ2lat þ χ2R value obtained for the models
fitted in the two-step approach discussed above. While the
minimization of the χ2 defined in Eq. (12), according to
Eqs. (13) and (14), represents a combination of the lattice
and R-ratio results in the space of the aj integrals, without
any extra constraints, the approach of fitting the αi and βj
parameters by minimizing χ2lat þ χ2R represents a similar
combination in the R-ratio space, under the constraint of the
Mlatðs; αi; βjÞ and MRðs; αiÞ models, respectively.
In a third approach, one can first minimize χ2lat from

Eq. (E3) with respect to the free parameters of the
model Mlatðs; αi; βjÞ, obtaining α̂i and β̂j. One then con-
siders a modified version of that lattice model which
accounts for possible differences with the R-ratio.
Using the notation of Eq. (E1), we define this model as
M̂latðs; α̂iÞ≡Mlatðs; α̂i; β̂jÞ=Flat÷Rðs; β̂jÞ. This model is
subsequently binned via averaging within chosen

ffiffiffi
s

p
intervals. We call the resulting histogram M̂bin

lat ðs; α̂iÞ and
its covariance matrix Ĉlat;bin. In addition, we consider a
model MRðs; αiÞ for the R-ratio and its version M̃Rðs; αiÞ,
possibly rebinned to match the binning of M̂bin

lat ðs; α̂iÞ. The
parameters αi are to be fitted simultaneously to the
experimental R-ratio and M̂bin

lat ðs; α̂iÞ by minimizing

χ2 ¼
X
b;c

½M̂bin
lat;b − M̃R;b�½Ĉ−1

lat;bin�bc½M̂bin
lat;c − M̃R;c�

þ
X
b;c

½Rb −MR;b�½C−1
R;bin�bc½Rc −MR;c�; ðE7Þ

where the first sum runs over the lattice bins and the second
runs over the ones of the experimental R-ratio. This
effectively combines the lattice and experimental R-ratio
results.
In this third approach, consider the case in which Mlat is

taken to be a binned histogramwith the number of bins equal
to the number of (linearly independent) lattice moment
integrals, the count of each bin being a free parameter to
be determined. Then the minimization of χ2lat of Eq. (E3) is
equivalent to an “unregularized” unfolding toward the space
of the R-ratio (in the sense that no other regularization
besides the binning choice itself is being applied). Indeed,
this is equivalent to solving a system of constraints through a
matrix inversion approach (see e.g., Chap. 11 of Ref. [108]).
However, the parametrizationofMlatðs; αi; βjÞ can beused to
inject an effective regularization into the inverse problem.
The unregularized approach avoids biases related to the
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matrix inversion. However, it may induce large variances
and strong (anti)correlations between the determined
quantities (i.e., fitted R-ratio values in various bins) and
hence a large hierarchy among the eigenvalues of the
corresponding covariance matrix. In that case, any further
use of such results would require a very precise determina-
tion of the covariance matrix which, in turn, would neces-
sitate very precise knowledge of the input covariances.
Alternatively, it is generally preferable to use regularized
unfolding methods, aiming for a trade-off between moderate
statistical variances and systematic biases induced through
the regularization.25

It is to be noted that the three approaches described
above, with their possible variants, imply different hypoth-
eses about the validity of the fitted models and the way
in which their parameters are constrained. The resulting
χ2=d.o.f. values represent tests of these hypotheses,
providing information about the compatibility between
these models and the input data, as well as about the
compatibility between the lattice and R-ratio inputs them-
selves. In the presence of tensions, one can consider
enhancing the uncertainties of the combination result,
following e.g., the approaches from Refs. [3,71–73],
summarized in Appendix A. This can be achieved by
using the information from some (partial/local) χ2 and/or
adding some extra uncertainties to account for systematic
deviations between the inputs.
Moreover, while Eqs. (E3) and (E6) are written using the

full covariance matrices, the discussion of Appendix C
concerning the treatment of the uncertainties on the
uncertainties and on the correlations is relevant here too
and has to be implemented accordingly. For instance,
one can perform the χ2 fits for determining the model
parameters using only the diagonal elements of the
covariance matrices, while the full information on the
uncertainties and their correlations is propagated to evalu-
ate the uncertainties of the model parameters, their corre-
lations, and the fit quality.

2. The case of rescaling factors in either
a single or multiple

ffiffi
s

p
intervals

To make contact with what was done in the main body of
the paper, we consider here the rescaling in a single

ffiffiffi
s

p
interval that was introduced in Sec. IV B and employed in
Sec. V B. It can be retrieved as a special case of the general
approaches discussed above. Indeed, one can consider a
“model” MRðs;αiÞ that consists of a histogram with the
same binning as the experimental R-ratio itself. The αi are
parameters to be determined and correspond to the bin

counts. Employing the first, two-step approach described
below Eq. (E6), with χ2R given by χ2R;3 from that equation,
the first minimization step yields the bin counts with
χ2R ¼ 0. Moreover it propagates the covariance matrix of
the experimental R-ratio to the histogram ofMRðs; αiÞ, i.e.,
to the parameters αi. The model is completed with the
function Flat÷Rðs; γÞ, which is equal to a rescaling factor γ
in a subset of the

ffiffiffi
s

p
intervals, while it is equal to unity

for the complementary subset of bins. This yields a model
Mlatðs; αi; γÞ that implements the prescription from
Eq. (17). In particular, this model ensures that the ratios
of integrals aMR

jb =aMR
kb and aMlat

jb =aMlat
kb are equal to aRjb=a

R
kb.

In turn, this guarantees that these ratios are independent of
the parameter γ, for any j and k integrals and any interval
Ib. In other words, these ratios of integrals are driven by the
corresponding kernels convoluted with (i.e., averaged over)
the shape of the experimental R-ratio, while the changes of
normalization through the factor γ impact coherently all the
aMlat
jb integrals on the rescaled

ffiffiffi
s

p
interval. Equation (E3),

with the model Mlatðs; αi; γÞ and Clat completed with a
propagation of the covariance matrix of the parameters αi,
yields Eq. (19) [after a change of variable similar to
Eq. (18), together with the corresponding linear uncertainty
propagation].
The approach discussed above can be generalized by

applying the constraint from Eq. (16) at the level of the
corresponding R-ratio and lattice models, with multiple
rescaling factors γb applied in the

ffiffiffi
s

p
intervals Ib. This

corresponds to minimizing

χ2 ¼
X
j;k

�
alatj −

X
b

γbaRjb

�
½ðClat þ C̃RÞ−1�jk

×

�
alatk −

X
c

γcaRkc

�
; ðE8Þ

provided that the number of linearly independent moment
integrals is greater or equal to the number of fitted γb
rescaling factors. In this equation, ðClat þ C̃RÞ is the
covariance matrix corresponding to ½alatj −

P
b γba

R
jb�,

depending hence also on the γb parameters. As above, this
implies assigning a prefit uncertainty to the MRðs; αiÞ
model, which is then propagated via the corresponding
covariance matrix.26 In addition, if the Ib intervals corre-
spond to the original experimental R-ratio bins and their
number is equal to that of linearly independent lattice
observables alatj , then the rescaling hypothesis becomes

25Such regularization limits the number of free parameters
that are to be determined, allowing us to also address the worries
that are sometimes expressed concerning the ill-defined nature
of the problem when using χ2-based approaches (see e.g.,
Refs. [35–37,39,42,43]).

26These methods can also be seen as fits of normalization
factors for templates of moment integrals derived through the
dispersive approach, used to describe the corresponding lattice
results, as well as possible. For a discussion on the template
fitting methods, with the various approaches for treating the
uncertainties of the fitted distributions and of the templates
themselves, see e.g., Refs. [128–130] and references therein.
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exact. In that case, one can have as many normalization
rescaling factors as there are bins, allowing for a complete,
unregularized reconstruction of the lattice R-ratio with the
same granularity as that of the experimental R-ratio. Please
see the discussion after Eq. (E7) for more details. It is also
worth noting that, in the case when all the γb ¼ 1, the χ2

from Eq. (E8) matches the one of Eq. (14), providing a
direct compatibility check between the lattice and the
dispersive results.

3. Single or multiple rescaling factors
for fitted moment integrals

An alternative to Eq. (E8), which includes multiple
rescaling factors γb, is given by the model8<

:
alatj ¼ P

b
γbajb

aRjb ¼ ajb
; ðE9Þ

which is assumed to describe the inputs alatj and aRjb within
the uncertainties. The second line provides a trivial model
for the R-ratio contributions aRjb, from the

ffiffiffi
s

p
intervals Ib,

defined after Eq. (15) and the first a rescaling model for the
corresponding lattice observables defined in Sec. III. Of
course, the number of lattice observables alatj must be larger
than the number of free rescaling parameters. This is a
special case of Eq. (E1), as given in Eqs. (E3) and (E5)
without, however, the constraints of the models MR=lat for
the lattice and R-ratio spectral functions.
Thus, to determine the parameters of this model, taking

into account all correlations, one can minimize

χ2 ¼
X
j;k

�
alatj −

X
b

γbajb

�
½C−1

lat �jk
�
alatk −

X
c

γcakc

�

þ
X

ðjbÞ;ðkcÞ
½aRjb − ajb�½C−1

R �ðjbÞðkcÞ½aRkc − akc�; ðE10Þ

with respect to the γb and ajb. Again, lattice results are
assumed to have no correlations with those obtained from
the experimental R-ratio. The uncertainties on the param-
eters γb and ajb can be obtained from the Hessian or
by using pseudoexperiments. One can also consider the
p-value obtained from the minimum value of the χ2 and
the system’s number of degrees of freedom, which is the
number of lattice window observables minus the number of
rescaling parameters. This p-value indicates the consis-
tency of the available lattice and R-ratio input with the
rescaling hypothesis above.
Now, suppose that the rescaling model of Eq. (E9) is well

justified theoretically and that the p-value of the fit is
acceptable. Then, the resulting parameter values provide a
description of the lattice and R-ratio observables, via the
right-hand sides of Eq. (E9), that combines the information
contained in the alati and aRjb. When the number of

observables and intervals increases, so will (anti)correla-
tions between them, leading to large variances on the
results, well known in inverse problems. Of course, if the
number of rescaling parameters is the same as the number
of lattice observables, then the system of equations (E9) can
be solved exactly, and one obtains ajb ¼ aRjb as well as the
values of the γb obtained by minimizing Eq. (E8), in the
same situation.
Beyond the possibility of combining lattice and R-ratio

results for alatj and aRjb via the model of Eq. (E9), the
approaches of Sec. IV B and of Eqs. (E9) and (E10) differ
in that the former is based on amodel that is linear in the fitted
parameters [Eq. (18)], with a linear propagation of uncer-
tainties, while the latter refers to a nonlinear model
[Eq. (E9)], but with no linear propagation of uncertainties.
They are expected to be equivalent in the limit that the
rescaling factors are such that the jγb − 1j are small and as
long as the relative uncertainties on theaRjb are also small.We
have checked this analytically and numerically, in the case of
a single rescaling factor γ (either fitted or fixed to 1) for the
results presented in Sec. V. The nonlinear effects in the
uncertainty propagation mentioned above were also studied
and found to be numerically small. The nonlinearities in
the deviation from 1 of the rescaling parameter γ are also
generally small, though somewhat larger when the model
does not describe the lattice and R-ratio results well.
The two approaches also answer slightly different

questions. The one of Appendix E 2 corresponds to a
rescaling of the dispersive integrals derived from the
experimental R-ratio in different

ffiffiffi
s

p
subintervals Ib, while

the one presented here corresponds to a rescaling of the
fitted ajb, which may deviate from the input aRjb.
Moreover, the approach described here provides an

unregularized reconstruction of both the lattice observ-
ables, via the first line of Eq. (E9), and of the timelike
contributions of

ffiffiffi
s

p
intervals Ib, as given in the second line

of Eq. (E9). The resolution with which this sort of
reconstruction can be performed is usually limited by
(anti)correlations between the various observables that
generally lead to large variances on the results.
Note that, when all the γb factors are set to unity, one can

perform the change of variable ajb̄ ¼ aj −
P

b≠b̄ ajb in
Eq. (E10), for an arbitrary index b̄. The covariance matrix
C̄R, resulting from the propagation of CR through this
change of variable, can be decomposed into a set of
uncertainties that are either uncorrelated (σjðbÞ) or that
correlate (sljðbÞ) the aRjðbÞ,

27

½C̄R�jðbÞ;kðcÞ ¼ σ2jðbÞ · δjðbÞ;kðcÞ þ
X
l

sljðbÞ · s
l
kðcÞ; ðE11Þ

27In quantities such as aRjðbÞ, the parentheses indicate that we
are considering both aRj and aRjb with b ≠ b̄.
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with the index l running over the corresponding indepen-
dent uncertainty components [117]. This enables an equiv-
alent rewriting of the χ2 function from Eq. (E10) as

χ2 ¼
X
j;k

½alatj − aj�½C−1
lat �jk½alatk − ak�

þmin
βl

( X
jðb≠b̄Þ

½aRjðbÞ þ
P

ls
l
jðbÞ · βl − ajðbÞ�2
σ2jðbÞ

þ
X
l

β2l

)
;

ðE12Þ

using nuisance parameters sljðbÞ to account for the corre-

lated uncertainties [112–117].28 While the aj parameters
are constrained by both the lattice and the dispersive inputs,
the aj;b≠b̄ parameters remaining after the change of variable
only enter the dispersive part of the χ2 function. The
minimization of this χ2 function with respect to aj;b≠b̄
allows us to exactly cancel the corresponding contribution
to the χ2, regardless of the contributions of the shifts of the
nuisance parameters away from zero, which are parame-
trized by the βl and induced by the aRj and alatj inputs.
Switching back from the representation in terms of nui-
sance parameters to the one with the covariance matrix, this
time in the subspace of aj parameters, allows us to show
that the minimum of Eq. (E10) with respect to aj;b≠b̄
reduces to Eq. (12), while their global minimum is provided
by Eq. (14). This also implies that for γb ¼ 1 the minimum
of the χ2 function from Eq. (E10) is stable with respect to
the choice of the Ib intervals, a feature also observed
numerically.

4. Parametrizing possible shape changes
of the R-ratio suggested by lattice results

Once sufficient lattice input is available, one can refine
the analysis in other ways. Since our results suggest that the
ρ peak could be responsible for the disagreement with the
data-driven approach, one could imagine focusing on that
region and subdividing it into smaller

ffiffiffi
s

p
intervals. Then,

with the methods described in Appendixes E 2 and E 3, one
could reconstruct, via rescaling parameters, the modifica-
tions to the experimental R-ratio suggested by the lattice
observables.

a. Using complete sets of polynomials

Because we are interested in understanding how a
tension between lattice and data-driven results could
suggest a necessary alteration of the normalization, slope,
curvature, etc. of the R-ratio in a given

ffiffiffi
s

p
interval, it also

makes sense to parametrize the deviation from the exper-
imental R-ratio as a sum of Legendre polynomials Pl that
form a complete basis on that interval. Thus for simplicity,
we choose the model MRðs; αiÞ to correspond to the
histogram of the experimental R-ratio, with the original
binning and the αi parameters tuned to the corresponding
bin counts. We also choose the function Flat÷R of Eq. (E1)
to have the following form29:

Flat÷Rðs; βlÞ≡
(

2
s2−s1

P
l≥0 βlPlðxðsÞÞ; s∈ I1

1; s∈ I2
; ðE13Þ

where I1 ¼ ½ ffiffiffiffiffi
s1

p
;

ffiffiffiffiffi
s2

p � and I2 is the complementary inter-
val on the real axis.
Then we write

aMlat
j ¼

X
b¼1;2

aMlat
j;b ; ðE14Þ

where aMlat
jb , b ¼ 1; 2, are defined via Eq. (E2), with the

appropriate kernel K̃jðsÞ. The parameters of the model
are determined via the first approach described in
Appendix E 1. The coefficients βl of the Legendre poly-
nomials are then determined by minimizing χ2lat of Eq. (E3).
The resulting model, Mlatðs; αi; βlÞ, serves as a regulari-
zation of the unfolding of the lattice R-ratio, in the sense
discussed at the end of Appendix E 1, provided that the
number of fitted Legendre coefficients is smaller than the
number of moment integrals being considered.
Note that the rescaling hypothesis of Sec. IV B is a

special case of the one considered here, with l restricted to
the value 0 and δ ¼ β0 − 1.

b. Using physics-driven models

Up until this point, none of the considered modifica-
tions to the experimental R-ratio incorporate theoretical
constraints which the spectral function is known to
obey. Parametrizations that do that can be found in
Refs. [3,26,131–135].
Here, for concreteness, we focus on the parametriza-

tion given in Ref. [26]. It relates the R-ratio to the πþ
electromagnetic form factor in the timelike region and it is
the latter which is actually parametrized. This parametriza-
tion satisfies many requirements of analyticity and unitar-
ity. It also includes two- and three-pion channels, as well as
inelastic corrections via a conformal polynomial, with a
threshold dictated by phenomenology. The authors esti-
mate that this parametrization is valid from the two-pion

28In Eq. (E12), the parentheses around the b and b̄ indices
indicate that the sum in the second term of the equation runs over
the aRj and aRjb.

29This function can be generalized to include Legendre
polynomials over several complementary

ffiffiffi
s

p
intervals, with

possible continuity and smoothness conditions at the edges of
the intervals, obtained by imposing appropriate constraints on the
Legendre coefficients.
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threshold to
ffiffiffi
s

p
≃ 1 GeV. To fit it to the measured R-ratio,

the latter must be corrected for final-state radiation [26].
Because we do not actually analyze results with this

parametrization here, we do not describe it in detail. Its
expression is given in Ref. [26]. However, we make a few
comments on its parameters and how it may be used to
describe a modification to the measured R-ratio compatible
with lattice results.
The first set of parameters is the two-pion phase shift

at
ffiffiffiffiffi
s0

p ¼ 0.8 and
ffiffiffiffiffi
s1

p ¼ 1.15 GeV. The second set of
parameters describes ρ − ω mixing, in terms of the mass
and width of the ω, as well as of a mixing parameter.
The last set of parameters describes inelasticity aboveffiffiffiffiffi
sin

p ¼ Mω þMπ0 , with typically four parameters. That
constitutes a set of nine parameters that we label pk.
In Ref. [27], the authors perform a study of the

modifications to the measured R-ratio implied by a value
of aLO-HVPμ that differs from its data-driven prediction.
However, the assumptions behind that study and the
questions which it answers are quite different from those
of the approach proposed here.
In Ref. [27] the authors first perform a fit of the

parametrization of Ref. [26] to all eþe− → πþπ− measure-
ments available at the time, fixing its nine parameters. This
allows them to predict the two-pion contribution to a
number of quantities, including aLO-HVPμ , in the data-driven
approach. Then they release some of the nine parameters,
keeping the others fixed to their data-driven values, while
performing the fit once more, with the constraint that the
predicted value of aππμ takes on a precise, prescribed value.
This value is allowed to vary from its nominal, data-driven
value to the value of aππμ that one obtains by assuming that
the full difference between a lattice result for aLO-HVPμ , close
to that of Ref. [6], and its data-driven counterpart can be
ascribed to the two-pion contribution. In particular, the
approach allows the authors to determine the Δχ2 between
a scenario in which aππμ takes on its “lattice” versus its
nominal value. In turn, the value of the Δχ2 indicates how
compatible different values of aππμ are with eþe− → πþπ−

data and known constraints on the pion electromagnetic
form factor. The approach also allows the authors to present
correlations between aππμ values and predictions for the
two-pion contribution to other observables, such as the pion
electromagnetic radius or the running of α.
Here, in a sense that we now describe, we address the

problem the other way around. As discussed throughout
this article, we choose to consider the measured R-ratio, or
quantities derived from it, and as many observables as
possible that are computed in latticeQCD and that are related
to HVP. The latter include, for instance, the contributions to
aLO-HVPμ in various time windows, the running of α in certain
spacelike intervals, etc. Concerning the spectral function
aspect of the comparison, we not only consider the

ffiffiffi
s

p
interval I1 ¼ ½2Mπ� ; 1 GeV�, but also its complementary

interval I2. As for all the comparisons between the two
approaches that we have looked upon until now, knowledge
of the correlations between all quantities considered must
be determined as precisely as possible. Then, in the
notation of Appendix E 1, we call MRðs; αiÞ the model
for the R-ratio. To be more specific, in I1 one can consider
MRðs; αiÞ to be the model of Ref. [26], so that nine of the αi
correspond to the parameters pk discussed above. We
continue calling αi the other parameters of the model.
To describe the R-ratio in I1, only the pk are needed. The αi
are involved in describing the R-ratio in I2. In that interval,
MRðs; fpk; αigÞ can be chosen to be any of the models
discussed above for quantities related to the R-ratio, e.g.,
the histogram of the measured spectral function, with
parameters αi corresponding to the counts in the original
measurement bins.
Now we consider a model for the candidate lattice

R-ratio, Mlatðs; αi; βjÞ. Instead of defining it via Eq. (E1),
we take it to be the same model as MRðs; fpk; αigÞ in I1,
but where some of the parameters βj correspond to possible
shifts δpl of a subset of the parameters pk of the model of
Ref. [26]. Thus, as for MRðs; fpk;αigÞ, we rewrite the
lattice R-ratio modelMlatðs; fpk; αig; fδpl; βjgÞ, where the
parameters αi are those needed to describe the measured
R-ratio in I2, via MR, and the βj, those that are used to
express the differences between the measured and lattice
spectral functions in that same interval. For instance, the βj
could correspond to rescaling factors of the measured
R-ratio in subintervals of I2, discussed in Appendix E,
or Legendre polynomial modifications, as discussed in
Appendix E 4.
The next step consists of following the second approach

described in Appendix E 1, in which the parameters pk,
δpl, αi, and βj are simultaneously determined by minimiz-
ing χ2lat þ χ2R, where χ

2
lat is given by Eq. (E3) and χ2R is one

of the χ2 given in Eqs. (E4) and (E5). In this physics-
motivated approach, both the candidate lattice and the
measured R-ratios are described by a model that incorpo-
rates as many physical constraints as desired in interval I1.
Moreover, the possible differences between the data-driven
and lattice HVP are expressed in terms of parameters which
have a physical meaning. For instance, suppose that the δpl
only correspond to modifications in the two-pion phase
shift at

ffiffiffiffiffi
s0

p ¼ 0.8 and
ffiffiffiffiffi
s1

p ¼ 1.15 GeV. If the minimiza-
tion of χ2lat þ χ2R gives a good χ2 value and at least one of the
δpl is not consistent with zero, then we can argue that, in
the interval I1, the lattice and data-driven approaches differ
in their prediction for the phase of the pion form factor. In
addition, if one has reasons to believe that Mlat correctly
describes the differences between the lattice and data-
driven approaches and one knows which of the two
approaches correctly describes HVP, then the correspond-
ing model can be viewed as a combination of the data-
driven and lattice results and can be used to make improved
predictions for quantities that involve HVP.
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We leave the comparison of lattice and data-driven
results via physics-motivated models, as described here,
for future work.

APPENDIX F: CONSIDERING MORE
OBSERVABLES IN THE DATA-DRIVEN

APPROACH

In Ref. [14] it was stated that several window integrals,
with possibly narrower ½tmin; tmax� ranges compared to the
ones studied up to now, could be employed to perform a
more detailed comparison of the dispersive and lattice
approaches. While such a larger set of window moments
generically enhances the amount of available information,
this increase will eventually be limited by the (anti)
correlations among the windows, for both the dispersive
and lattice determinations.
In the following studies we use a “blinding” approach, in

the sense of only communicating the information on the
dispersive uncertainties and their correlations for the
moment integrals, but not the corresponding nominal
values. This is motivated by the fact that these moments
have not yet been determined via lattice QCD and we wish
to preserve the possibility of doing so without any risk of
bias. This is different to the approach followed in Ref. [14]
that quotes nominal values for moment integrals derived
through the dispersive approach (obtained with different
data combination methodologies from those used here),
even when these integrals have not yet been computed
via lattice QCD. We believe that going forward, all

groups working on this problem should adopt our more
conservative approach. Employing blinding approaches is
very important when working at the level of precision
involved in these studies. This is especially the case in the
current context of the existing tensions between the dis-
persive approaches and the lattice calculations, as well as
among the various experimental results themselves.
We consider first the seven window moments discussed

in Ref. [14], then a set of nine window moments where the
½1.6;∞½ fm window is split into three, with extra thresholds
at 2.6 and 4 fm, and finally a set of 19 moments including

ten extra Δαð5Þhadðq2Þ results, with spacelike q2 varying from
−10 to −1 GeV2. Table V shows the correlation matrix of
these 19 moment integrals, computed using the dispersive
approach. It represents a first way of quantifying the
amount of independent information available in these
moments. Indeed, one can notice that moment integrals

with similar kernel shapes [e.g., Δαð5Þhadðq2Þ moments
computed for similar q2 values] are strongly correlated,
while other moments have weaker correlations. This
reflects the fact that differing kernel shapes supply a more
effective way of exploiting the information provided by the
timelike spectra.
A way of further quantifying the amount of independent

information in the moment integrals is to evaluate the
eigenvalues of the corresponding covariance matrix, since
strong correlations typically imply the presence of small
eigenvalues. Tables VI–VIII show the dispersive uncer-
tainties for the three sets of moments, as well as the

TABLE V. Correlation matrix of ten Δαð5Þhadðq2Þ and nine aLO-HVPμ;win dispersive moment integrals computed for various q2 values and
½tmin; tmax� intervals with Δ ¼ 0.15 fm, respectively.

Moment integral Correlation coefficients

Δαð5Þhadð−10 GeV2Þ 1

Δαð5Þhadð−9 GeV2Þ 0.999 1

Δαð5Þhadð−8 GeV2Þ 0.999 0.999 1

Δαð5Þhadð−7 GeV2Þ 0.996 0.998 0.999 1

Δαð5Þhadð−6 GeV2Þ 0.993 0.995 0.998 0.999 1

Δαð5Þhadð−5 GeV2Þ 0.986 0.990 0.994 0.997 0.999 1

Δαð5Þhadð−4 GeV2Þ 0.976 0.981 0.986 0.991 0.995 0.999 1

Δαð5Þhadð−3 GeV2Þ 0.960 0.966 0.973 0.980 0.986 0.993 0.998 1

Δαð5Þhadð−2 GeV2Þ 0.931 0.939 0.948 0.957 0.967 0.977 0.987 0.996 1

Δαð5Þhadð−1 GeV2Þ 0.874 0.885 0.896 0.909 0.923 0.938 0.955 0.973 0.990 1

aLO−HVPμ;win [0, 0.1] fm 0.806 0.791 0.774 0.753 0.728 0.698 0.660 0.611 0.543 0.442 1

aLO−HVPμ;win [0.1, 0.4] fm 0.959 0.955 0.949 0.942 0.931 0.916 0.895 0.864 0.813 0.723 0.864 1

aLO−HVPμ;win [0.4, 0.7] fm 0.876 0.887 0.899 0.912 0.926 0.940 0.954 0.966 0.972 0.958 0.428 0.786 1

aLO-HVPμ;win [0.7, 1] fm 0.711 0.726 0.743 0.762 0.784 0.809 0.838 0.873 0.91 0.961 0.206 0.509 0.893 1

aLO-HVPμ;win [1, 1.3] fm 0.604 0.619 0.636 0.656 0.678 0.705 0.738 0.778 0.831 0.901 0.123 0.365 0.775 0.973 1

aLO-HVPμ;win [1.3, 1.6] fm 0.553 0.568 0.584 0.604 0.626 0.653 0.686 0.728 0.783 0.861 0.093 0.305 0.710 0.941 0.993 1

aLO-HVPμ;win [1.6, 2.6] fm 0.508 0.522 0.537 0.556 0.577 0.604 0.636 0.677 0.733 0.814 0.074 0.260 0.647 0.891 0.963 0.987 1

aLO-HVPμ;win [2.6, 4] fm 0.419 0.431 0.445 0.461 0.479 0.502 0.530 0.567 0.617 0.694 0.052 0.197 0.523 0.753 0.840 0.885 0.944 1

aLO-HVPμ;win ½4;∞½ fm 0.312 0.321 0.332 0.344 0.358 0.375 0.397 0.426 0.466 0.528 0.034 0.137 0.381 0.565 0.646 0.698 0.787 0.942 1
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TABLE VI. Total uncertainty of seven aLO-HVPμ;win dispersive moment integrals computed for various ½tmin; tmax�
intervals with Δ ¼ 0.15 fm. The eigenvalues of the corresponding covariance, correlation, and normalized
covariance matrices are also shown.

Moment integral Eigenvalues

aLO-HVPμ;win ½tmin; tmax� (fm) Total uncertainty Covariance Correlation Normalized covariance

[0, 0.1] 8.18 × 10−12 3.12 × 10−20 4.85 2.04 × 10−4

[0.1, 0.4] 3.86 × 10−11 3.52 × 10−21 1.76 8.39 × 10−5

[0.4, 0.7] 6.43 × 10−11 6.38 × 10−22 3.32 × 10−1 1.45 × 10−5

[0.7, 1] 8.00 × 10−11 1.53 × 10−22 4.88 × 10−2 2.06 × 10−6

[1, 1.3] 7.90 × 10−11 8.77 × 10−24 4.27 × 10−3 1.87 × 10−7

[1.3, 1.6] 6.32 × 10−11 4.64 × 10−25 4.47 × 10−4 1.88 × 10−8

½1.6;∞½ 1.15 × 10−10 7.89 × 10−26 1.51 × 10−5 6.34 × 10−10

TABLE VII. Total uncertainty of nine aLO-HVPμ;win dispersive moment integrals computed for various ½tmin; tmax�
intervals with Δ ¼ 0.15 fm. The eigenvalues of the corresponding covariance, correlation, and normalized
covariance matrices are also shown.

Moment integral Eigenvalues

aLO-HVPμ;win ½tmin; tmax� (fm) Total uncertainty Covariance Correlation Normalized covariance

[0, 0.1] 8.18 × 10−12 2.76 × 10−20 6.07 2.49 × 10−4

[0.1, 0.4] 3.86 × 10−11 3.17 × 10−21 1.99 9.28 × 10−5

[0.4, 0.7] 6.43 × 10−11 5.11 × 10−22 6.86 × 10−1 2.72 × 10−5

[0.7, 1] 8.00 × 10−11 1.33 × 10−22 2.29 × 10−1 9.71 × 10−6

[1, 1.3] 7.90 × 10−11 1.52 × 10−23 2.12 × 10−2 8.76 × 10−7

[1.3, 1.6] 6.32 × 10−11 1.20 × 10−24 2.36 × 10−3 9.89 × 10−8

[1.6, 2.6] 9.32 × 10−11 2.91 × 10−25 3.90 × 10−4 1.59 × 10−8

[2.6, 4] 2.01 × 10−11 2.15 × 10−26 3.43 × 10−5 1.41 × 10−9

½4;∞½ 2.64 × 10−12 1.78 × 10−27 5.83 × 10−7 2.50 × 10−11

TABLE VIII. Total uncertainty of ten Δαð5Þhadðq2Þ and nine aLO-HVPμ;win dispersive moment integrals computed for
various q2 values and ½tmin; tmax� intervals with Δ ¼ 0.15 fm, respectively. The eigenvalues of the corresponding
covariance, correlation, and normalized covariance matrices are also shown.

Moment integral Total uncertainty

Eigenvalues

Covariance Correlation Normalized covariance

Δαð5Þhadð−10 GeV2Þ 4.80 × 10−5 1.48 × 10−8 14.74 5.21 × 10−4

Δαð5Þhadð−9 GeV2Þ 4.64 × 10−5 2.17 × 10−10 3.26 1.34 × 10−4

Δαð5Þhadð−8 GeV2Þ 4.48 × 10−5 4.09 × 10−12 7.36 × 10−1 2.92 × 10−5

Δαð5Þhadð−7 GeV2Þ 4.29 × 10−5 1.94 × 10−14 2.40 × 10−1 1.02 × 10−5

Δαð5Þhadð−6 GeV2Þ 4.09 × 10−5 2.22 × 10−16 2.16 × 10−2 8.90 × 10−7

Δαð5Þhadð−5 GeV2Þ 3.85 × 10−5 3.40 × 10−18 2.45 × 10−3 1.02 × 10−7

Δαð5Þhadð−4 GeV2Þ 3.57 × 10−5 1.99 × 10−20 4.17 × 10−4 1.68 × 10−8

Δαð5Þhadð−3 GeV2Þ 3.23 × 10−5 9.27 × 10−23 3.92 × 10−5 1.59 × 10−9

Δαð5Þhadð−2 GeV2Þ 2.78 × 10−5 1.40 × 10−23 2.33 × 10−6 8.94 × 10−11

Δαð5Þhadð−1 GeV2Þ 2.07 × 10−5 7.03 × 10−25 1.15 × 10−7 4.78 × 10−12

aLO−HVPμ;win [0, 0.1] fm 8.18 × 10−12 1.47 × 10−25 3.46 × 10−10 1.22 × 10−14

aLO−HVPμ;win [0.1, 0.4] fm 3.86 × 10−11 7.96 × 10−28 3.76 × 10−13 1.19 × 10−17

(Table continued)
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eigenvalues of the corresponding covariance matrices,
which typically show a fast drop over several orders of
magnitude. It is worth noting that the uncertainties of

the Δαð5Þhadðq2Þ and aLO-HVPμ;win integrals typically differ by
several orders of magnitude, just because of the natural
normalization of these moments, which is also reflected
in the range covered by the corresponding eigenvalues
of the covariance matrix. This effect, also present to
some extent when considering separate series of aLO-HVPμ;win

and Δαð5Þhadðq2Þ integrals, interferes with the intent of
quantifying the amount of independent information in
the moments.
To take this into account, we also consider the eigen-

values of the correlation matrices of the moment integrals,
as well as of the covariance matrices normalized by the
nominal values of the moments [i.e., ½CR�ij=ðaRi · aRj Þ].
These are also displayed in Tables VI–VIII.30,31 For the set of
sevenaLO-HVPμ;win dispersivemoment integrals in TableVI, these
eigenvalues cover 7 orders of magnitude, which reflects the
strong correlations among some of these moments. For the
three sets of moments, while the largest eigenvalues are
enhanced by a factor of 2–3, as moremoments are added, the
smallest eigenvalues drop by more and more orders of
magnitude. This indicates that the amount of independent
information (i.e., of independent degrees of freedom) is less
than the number of added extra moments. Indeed, when
comparing the ratios of the various eigenvalues with the
largest one, a reduction of the eigenvalues by 2 or 4 orders of
magnitude for Table VI allows us to accommodate typically
one extra moment in Table VII. At the same time, when

including the extra Δαð5Þhadðq2Þ moments in Table VIII, the
potential gain in extra degrees of freedom seems rather

marginal. This is related to the fact that the Δαð5Þhadðq2Þ
moments considered here are rather strongly correlated
among themselves and have rather strong correlations with
at least one of the aLO-HVPμ;win moments (see Table V).
One can attempt to provide more quantitative conclu-

sions concerning the number of independent degrees of
freedom that are available in the data-driven approach for a
comparison with lattice results. For this purpose, one can
consider the eigenvalues of the correlation or normalized
covariance matrix, rescaled by the largest eigenvalue. The
number of independent degrees of freedom can then be
obtained by counting the number of such ratios above some
lower bound. This procedure is consistent with the idea that
there is a limit to the precision with which we can obtain the
uncertainty of moments of the measured R-ratio and linear
combinations thereof. Such a limit approximately corre-
sponds to that lower bound.
Here we choose this lower bound to be 10−6, driven by

the number of orders of magnitude covered by the
eigenvalues of the correlation and normalized covariance
matrices, for the moments in Table VI. With this bound we
find that the seven window observables listed in Table VI
contain a significant amount of linearly independent
information. This number rises to eight when two more
long-distance-window observables are considered in

Table VII. However, when ten values of Δαð5Þhadðq2Þ are
added, in Table V, to the nine window observables of
Table VII, no additional independent degrees of freedom
appear. Thus, assuming that a lower bound of around 10−6

is appropriate, it is reasonable to conclude that the number
of linearly independent moments which can be obtained
from the experimental R-ratio is less than 10 for the types of
observables considered here, which are the ones that should
be computable, in the lattice approach with subpercent
precision.
All these and other results presented in the paper point to

the importance of determining the corresponding matrices
in the lattice approach and performing studies similar to
those presented here, when more moments become avail-
able in that approach.

TABLE VIII. (Continued)

Moment integral Total uncertainty

Eigenvalues

Covariance Correlation Normalized covariance

aLO−HVPμ;win [0.4, 0.7] fm 6.43 × 10−11 1.66 × 10−28 2.28 × 10−13 7.40 × 10−18

aLO-HVPμ;win [0.7, 1] fm 8.00 × 10−11 4.50 × 10−30 9.74 × 10−14 3.10 × 10−18

aLO-HVPμ;win [1, 1.3] fm 7.90 × 10−11 5.25 × 10−31 3.07 × 10−14 9.72 × 10−19

aLO-HVPμ;win [1.3, 1.6] fm 6.32 × 10−11 8.57 × 10−32 1.40 × 10−14 4.38 × 10−19

aLO-HVPμ;win [1.6, 2.6] fm 9.32 × 10−11 −4.56 × 10−27 −2.24 × 10−14 −7.06 × 10−19

aLO-HVPμ;win [2.6, 4] fm 2.01 × 10−11 −2.01 × 10−23 −3.79 × 10−14 −1.19 × 10−18

aLO-HVPμ;win ½4;∞½ fm 2.64 × 10−12 −1.12 × 10−22 −1.22 × 10−13 −3.83 × 10−18

30It is worth noting that the rotation matrices of eigenvectors
from the diagonalization of the covariance, correlation, and
normalized covariance matrices are different.

31The presence of some small negative eigenvalues in
Table VIII is related to numerical effects typically occurring in
the presence of strong correlations among moments.
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