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We study the phase structure of five-dimensional Yang-Mills theories coupled to Dirac fermions.
In order to tackle their nonperturbative character, we derive the flow equations for the gauge coupling and
the effective potential for the Aharonov-Bohm phases employing the functional renormalization group.
We analyze the infrared and ultraviolet fixed-point solutions in the flow of the gauge coupling as a function
of the compactification radius of the fifth dimension. We discuss various types of trajectories which
smoothly connect both dimensional limits. Last, we investigate the phase diagram and vacuum structure of
the gauge potential for different fermion content.
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I. INTRODUCTION

Many quantum field theories (QFTs), like the Standard
Model (SM) of particle physics, are formulated as non-
Abelian gauge theories. Understanding the phase structure
and dynamics of this family of theories is one of the central
tasks carried on by theoretical and phenomenological
efforts. Whereas our Universe is well-described by a
four-dimensional spacetime system, the possible emer-
gence of extra spacetime dimensions at higher-energy
scales is not yet excluded. These could be used to solve
longstanding open questions in fundamental physics such
as the nature of the electroweak scale [1,2]. For example,
extra-dimensional gauge theories have been studied as
models for gauge-Higgs unification [3–12] where one of
the components in the gauge field is identified with the
Higgs field. This idea has been extended to more realistic
setups beyond the SM (BSM). See e.g., Refs. [13–28].
Four-dimensional (D ¼ 4) non-Abelian gauge theories

such as quantum chromodynamics (QCD) have been
thoroughly studied with various QFT methods. One of
their noteworthy features is asymptotic freedom [29,30] in
the ultraviolet (UV) limit which allows us to define them as
continuum QFTs. In the infrared (IR) limit, the theories
evolve into a strongly interacting sector with a rich phase
structure and nontrivial phenomena such as dynamical
chiral symmetry breaking and color confinement. In the
many-flavor limit, additional nontrivial IR fixed-point

solutions can appear. In D ¼ 4, these are known as known
as Caswell-Banks-Zaks (CBZ) fixed points [31,32].
Conversely, extra-dimensional gauge theories have not

been as studied due to their perturbatively nonrenormalizable
character. Nevertheless, they show several attractive features
for example evidence for the existence of a nontrivial UV
fixed-point solution providing the theory with UV com-
pleteness [33–39] and hence, asymptotic safety.Moreover, in
this scenario, the theory although perturbatively not renor-
malizable is nonperturbatively renormalizable.
An important object to properly understanding the phase

structure of gauge theories is the gauge potential. A key
phenomenon in gauge theories, especially on compactified
spacetimes e.g., R4 × S1, is the Hosotani mechanism [6–8]
which is analogous to the Aharonov-Bohm (AB) effect in
quantum mechanics. Here, the extra-dimensional compo-
nent of the five-dimensional gauge field shows a nontrivial
background which, depending on its configuration, can
lead to the breaking of the gauge symmetry into one of its
subgroups. This dynamical process can be used to for-
mulate the SM electroweak and Higgs sectors in a more
minimal manner where all degrees of freedom are
embedded into a five-dimensional gauge theory.
In this work, we study the phase structure of five-

dimensional Yang-Mills theories coupled with Dirac fer-
mions transforming in different representations of the
gauge group. To continuously connect with the well-known
four-dimensional limit we formulate the theory in a
compactified manner on R4 × S1 spacetime. To tackle
the nonperturbative character of these theories, we employ
the functional renormalization group (FRG) [40–55] which
has proven its applicability in similar frameworks. We
employ the background field approximation [56–60]
and derive the flow equations employing heat-kernel
techniques. For the fixed-point analysis, we help ourselves
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by employing perturbative results for the anomalous
dimensions which include all fermionic contributions up
to three loops. While the truncation employed in this work
grants access to the qualitative features, it fails to quanti-
tatively address the strong dynamics and the associated
phenomena such as color confinement and chiral symmetry
breaking. Therefore, we study the behavior of the gauge
coupling and configurations of the background gauge fields
depending on fermion numbers.
This work is organized as follows. After introducing the

theoretical framework and the effective action formalism in
Sec. II, in Sec. III we derive the flow equation for the gauge
coupling and study the fixed-point solutions as a function
of the compactification radius and fermion content. In
Sec. IV we derive the flow of the effective potential and
study the AB phase diagram as a function of the compac-
tification radius and fermion masses for different number of
fundamental and adjoint fermions. Section V is devoted to
summarizing the results in this work and their relevance.

II. THEORETICAL FRAMEWORK

In this work, we employ the FRG to tackle the non-
perturbative character of five-dimensional gauge theories. In
QFT, the FRG is formulated as a functional partial differ-
ential equation describing the change of the effective average
action (one-particle irreducible generating functional) Γk for
the varying energy scale k. The scale dependence ofΓk obeys
the Wetterich equation [40] whose form is given by

∂tΓk ¼
1

2
Tr
h�

Γð2Þ
k þRk

�
−1
∂tRk

i
; ð1Þ

where ∂t ¼ k∂k is the dimensionless scale and Tr is the
functional trace acting on all spaces in which the fields are

defined. Here, Γð2Þ
k is the full two-point correlation function

obtained by performing the second-order functional deriva-
tive for Γk and Rk is the regulator function realizing the
coarse graining process within the path integral.
We are especially interested in the impact of fermionic

fluctuations on the gauge coupling and the nontrivial
background field of the gauge field in five-dimensional
(Euclidean) spacetime. For this purpose, we make the
following ansatz for the effective action Γk:

Γk ¼ Γgauge þ Γfermion þ Sgf þ Sgh þ ΓAB: ð2Þ

Here, Γgauge is the effective action for the SUðNcÞ Yang-
Mills gauge field,

Γgauge ¼
Zk

4g2

Z
d5xFa

MNF
aMN; ð3Þ

which in the current approximation has been truncated at
lowest order of gauge-invariant operators. Here, Fa

MN ¼
∂MAa

N − ∂NAa
M − fabcAb

MA
c
N is the field strength of Aa

M with

fabc the structure constants of SUðNcÞ and Zk is the field
renormalization factor for the gauge field. Note that the
squared gauge coupling has a canonical mass dimension of

½g2� ¼ −1; ð4Þ

makingapparent thepowercountingnonrenormalizablechar-
acter of the theory.Here andhereafter, capital Latin characters
M;N; � � � ð¼0;…; 3; 5Þ stand for Lorentz indices in five-
dimensional spacetime, while four-dimensional Lorentz
indices are denoted by Greek letters μ; ν; � � � ð¼0;…; 3Þ
and indices for the fundamental and adjoint representations
of SUðNcÞ are denoted by small Latin characters
i; j; � � � ð¼NcÞ and a; b; � � � ð¼N2

c − 1Þ, respectively.
We consider fermion fields in both fundamental and

adjoint representations of SUðNcÞ, which are denoted by
ψ ¼ ðψÞi and χ ¼ ðχaτaÞij, respectively, where τa are
generators of SUðNcÞ in the fundamental representation.
Note that the normalization for these generators is chosen to
be trðτaτbÞ ¼ 1

2
δab. The truncated effective action reads,

Γfermion ¼
Z

d5xψ̄ðiZψΓM∇M þmfÞψ

þ
Z

d5xχ̄aðiZχΓMDM þmadÞabχb; ð5Þ

where ΓM are the Dirac matrices in five-dimensional
spacetime and are defined by those in four dimensions,

ΓM ¼ γμ ðfor M ¼ μ ¼ 0;…; 3Þ; ð6Þ

Γ5 ¼ γ5 ðfor M ¼ 5Þ: ð7Þ

satisfying the Clifford algebra fΓM;ΓNg ¼ 2δMN . The
covariant derivatives acting on spinor fields are given
respectively by

∇Mψ ¼ ∂Mψ − iAMψ ; ð8Þ

DMχ ¼ ∂Mχ − i½AM; χ�; ð9Þ

where the fields in adjoint representation are χ ¼ χaτ
a

and AM ¼ Aa
Mτ

a.
Additionally in the gauge sector, the gauge fixing and

ghost actions associated to the gauge symmetry read

Sgf ¼
Zk

ξ

Z
d5xtr½F �2; ð10Þ

Sgh ¼ Zgh

Z
d5xtr½c̄Mc�; ð11Þ

with ξ being the gauge-fixing parameter and Zgh the ghost-
field renormalization factor. Here, c ¼ τaca and c̄ ¼ τac̄a

denote the ghost and antighost fields, respectively and tr
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acts on SUðNcÞ spaces. In this work, we intend to
investigate the nontrivial background generation of Aa

M,
so that it is convenient to introduce the gauge-fixing
function F such that some interactions involving both
the background and fluctuation fields in Eq. (3) are
appropriately canceled. To this end, assuming the linear
splitting Aa

M ¼ Āa
M þ aaM, we give a type of the Rξ-gauge

fixing function for F , namely

F ¼ δμνD̄μaν þ ξD̄5a5; ð12Þ

where bar on the field stands for the background gauge field
and then D̄μaν ¼ ∂μaν − i½Āμ; aν� is the covariant derivative
with the background gauge field Āa

M and the fluctuation aM.
Once F is fixed, the derivative operator M acting on the
ghost fields is automatically determined by the BRST
quantization procedure [61] to be

M ¼ δμνD̄μDν þ ξD̄5D5: ð13Þ

In this study, we choose the Feynman gauge ξ ¼ 1 to
appropriately cancel the Ā5 contributions appearing in the
gauge and ghosts modes. Hereafter, we provide all for-
mulas in this gauge.
When a five-dimensional spacial direction is compactified

such that R4 × S1 in which the circle radius is denoted by
R ≥ jx5j, its Fourier modes are discretized and known as the
Kaluza-Klein (KK)modes.More specifically, the fluctuation
fields for gauge and ghost fields (φ≡ aM; c; c̄) in position
space are given by

φðx; x5Þ ¼
X∞
n¼−∞

φðnÞðxÞ e
inx5=Rffiffiffiffiffiffiffiffiffi
2πR

p ; ð14Þ

while the fermionic fields, ψ , χ, are expanded as

ψðx; x5Þ ¼
X∞
n¼−∞

ψ ðnÞðxÞ e
iðnþβf=2πÞðx5=RÞffiffiffiffiffiffiffiffiffi

2πR
p ; ð15Þ

χðx; x5Þ ¼
X∞
n¼−∞

χðnÞðxÞ e
iðnþβad=2πÞðx5=RÞffiffiffiffiffiffiffiffiffi

2πR
p : ð16Þ

These KK expansions are associated to the boundary
conditions,

φðx; x5 þ 2πRÞ ¼ φðx; x5Þ; ð17Þ

ψðx; x5 þ 2πRÞ ¼ eiβfψðx; x5Þ; ð18Þ

χðx; x5 þ 2πRÞ ¼ eiβadχðx; x5Þ; ð19Þ

where βf ∈ ½0; 2πÞ and βad ∈ ½0; 2πÞ.

For the compactification R4 × S1 we consider the form,

Āa
μ ¼ 0; Āa

5 ¼
ϑa

2πR
; ð20Þ

for the background gauge field, which is written in a unified
manner as Āa

M ¼ ϑaδ5M=ð2πRÞ. The dimensionless param-
eters ϑa are the so-called AB phases. The use of the
SUðNcÞ generators in the fundamental representation gives
the other parametrization in a diagonal form

ðĀ5Þij ¼
1

2πR

0
BBB@

θ1

. .
.

θNc

1
CCCA ¼ θi

2πR
δij; ð21Þ

whoseAB phases θi satisfy
PNc

i¼1 θi ¼ 0 (mod 2π) due to the
traceless property for the generators of SUðNcÞ. This para-
metrization can be obtained by an SUðNcÞ transformation U
such that U†ϑaτaU ¼ diagðθ1;…; θNc

Þ. Inserting the KK
expansions exhibited in Eq. (14), the covariant derivative D̄2

5

acting on φ and the background field (20) gives rise to the

effective masses of φðnÞ
ij ¼ ðφðnÞ

a τaÞij,

M2
ij;n ¼

1

R2

�
n −

θi − θj
2π

�
2

: ð22Þ

We note here that the difference θi − θj originates from the
commutator involved in the covariant derivative acting on
the fields, ðD̄MφÞij ¼ ðD̄Mφ

aτaÞij ¼ ∂Mφij − i½Ā5;φ�ij ¼
∂Mφij − i

2πR ðθi − θjÞφij. It is clear now that even for the
zero KK mode n ¼ 0, the gauge field acquires a finite mass
from the AB phases for finite values of R. Furthermore, the
phenomenon that the gauge symmetry is spontaneously
broken by finite AB phase is known as the Hosotani
mechanism [6–8]. See also Refs. [9,10]. In the five-dimen-
sional spacetime limit R → ∞, all KK modes become
massless (for vanishing AB phases) and thus are dynamical
degrees of freedom. In the four-dimensional limit (R → 0),
all KK modes are infinitely massive and only the massless
zero KK mode (n ¼ 0) φð0Þ contributes to the quantum
dynamics in the system. The covariant derivatives acting on
the fermionic fields given in Eqs. (8) and (9) now read,

∇Mψ ¼ ∂Mψ − iaMψ − Ā5ψ ; ð23Þ

DMχ ¼ ∂Mχ − i½aM; χ� − i½Ā5; χ�: ð24Þ

Thus, together with the Dirac masses in Eq. (5), the effective

squared masses for the fermionic fields ψ ðnÞ
i and χðnÞij ¼

ðχðnÞa τaÞij are found to be
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M2
f;i;n ¼ m2

f þ
1

R2

�
nþ βf − θi

2π

�
2

; ð25Þ

M2
ad;ij;n ¼ m2

ad þ
1

R2

�
nþ βad − ðθi − θjÞ

2π

�
2

: ð26Þ

Finally, ΓAB contains the effective action for AB phases,

ΓAB ¼
Z

d5xV5DðθHÞ ¼
Z

d4xð2πRÞVðθHÞ; ð27Þ

where θH ¼ fθ1;…; θNc
g is a set of AB phases and we

have performed the integral for the fifth direction of
spacetime

R
2πR
0 dx5 ¼ 2πR.

For the total effective action (2), the Wetterich
equation (1) is expressed diagrammatically as

ð28Þ

where curly, dashed, and dotted lines represent the propa-
gators of the four-dimensional gauge (M ¼ 0;…; 3), the
extra-dimensional gauge field component (M ¼ 5) and ghost
fields, respectively. Single and double solid lines stand for
those of fundamental and adjoint fermion fields, respectively,
and the crossed circles denote the insertion of ∂tRk.
A crucial object for deriving the beta functions from the

Wetterich equation is the regulated propagators (inverse
two-point functions). For the gauge and ghost fields these
have been computed in Ref. [39]. The second-order func-
tional derivatives for the fermion fields in the effective
action (5) on the background field (20) with respect to the
pairs of (ψ ðnÞ

i , ψ̄ ðnÞ
i ) and (χðnÞij , χ̄ðnÞij ) yield,

Γð2Þ
ψ̄ψ jaM¼0 ¼ i=pþ i

R

�
nþ βf − θi

2π

�
γ5 þmf ; ð29Þ

Γð2Þ
χ̄χ jaM¼0¼ i=pþ i

R

�
nþβad− ðθi−θjÞ

2π

�
γ5þmad; ð30Þ

where =p ¼ γμpμ with pμ being the four-dimensional
momenta.
The cutoff regulator function is introduced as RkðpÞ ¼

i=prkðp2=k2Þ which replaces i=p in the inverse two-point
functions to i=pð1þ rFk ðp2=k2ÞÞ. In this work, we use
the Litim-type cutoff function [62], i.e., rFk ðxÞ ¼
ð1= ffiffiffi

x
p

− 1Þθð1 − xÞ where θð1 − xÞ is the step function.

The denominators of the regulated propagators for ψ ðnÞ
i and

χðnÞij take the forms of PF
k ðpÞ þM2

f;i;n and PF
k ðpÞ þM2

ad;i;n,
respectively, in which we defined PF

k ðpÞ ¼
p2ð1þ rFk ðp2=k2ÞÞ2. Note that for the bosonic fields

φðnÞ
ij , we employ the cutoff function RkðpÞ such that the

four-dimensional squared momentum p2 is replaced to
PB
k ðpÞ¼p2ð1þrBk ðp2=k2ÞÞ with rBk ðxÞ¼ð1=x−1Þθð1−xÞ.

For the momentum integral which is a part of the functional
trace in the Wetterich equation, both PF

k and PB
k turn to k2

because of θð1 − p2=k2Þ.
In the following sections, we derive the flow equations for

VðθHÞ and the gauge coupling g2. To this end, we use the
heat-kernel method as previously developed in [39]. For
obtaining the potential of AB phases, we project out Āa

5 (or
equivalentlyϑa) from loop effects.On the other hand, the beta
function for the gauge coupling is extracted by projecting on
F̄aμνF̄aμν which is the field strength for Āa

μ. Hence, to derive
the flow equation for the gauge coupling, we assume the
background field of the gauge field such that F̄a

MNF̄
aMN ¼

F̄a
μνF̄aμν for which the effective action (3) reads,

Zk

4g2

Z
d5xF̄a

MNF̄
aMN ¼ 2πRZk

4g2

Z
d4x F̄a

μνF̄aμν: ð31Þ

The scale derivative on the left-hand side of the Wetterich
equation acts on Zk, while we extract the operatorR
d4x F̄a

μνF̄aμν with loop coefficients and the threshold
functions from the right-hand side. Note that g24D ¼
g2=ð2πRÞ is identified with the dimensionless gauge cou-
pling in four-dimensional spacetime.

III. FLOW OF THE GAUGE COUPLING
AND FIXED POINTS

In this section, we derive the flow of the gauge coupling
in the background field approximation and analyze the
fixed-point solutions as a function of the gauge group,
fermion content, and the effective dimension. Additionally,
we discuss interdimensional trajectories which smoothly
connect all UV and IR solutions found.

A. Flow equation for the gauge coupling

We first deal with the gauge coupling flow whose
detailed derivation except for fermionic loop effects has
been discussed in Ref. [39]. Here, we exhibit the final form
of the flow equation. The running of the gauge coupling
arises from that of Zk for which we define the anomalous
dimension of the gauge field as

ηg ¼ −
∂tZk

Zk

¼ −
1

ð4πÞ2
Z−1
k g2

2πR

�
þ7Nc

�
1 −

19ηg
42

þ ηgh
21

�
JðR̄; 0Þ

−
4

3
Nfð1 − ηfÞJðR̄; m̄fÞ

−
8

3
NcNadð1 − ηadÞJðR̄; m̄adÞ

�
; ð32Þ
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where the anomalous dimensions for each of the remain-
ing fields read ηgh ¼ −∂tZgh=Zgh, ηf ¼ −∂tZf=Zf and
ηad ¼ −∂tZad=Zad. The threshold functions for massive
fields read,

JðR̄; m̄Þ ¼
X∞
n¼−∞

1

1þ ðnR̄Þ2 þ m̄2

¼ πR̄ cothð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

p
πR̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m̄2
p ; ð33Þ

with dimensionless quantities R̄ ¼ Rk and m̄2 ¼ m2=k2.
The first term in the curly brackets on the right-hand side of
Eq. (32) corresponds to the contributions from gauge and
ghost fields, while the second and third, to quantum
corrections from Nf fundamental fermions and Nad adjoint
ones, respectively.
Let us now define the dimensionless renormalized gauge

coupling [39] as

g̃2 ¼ Z−1
k g2

2πR
JðR̄; 0Þ ¼ Z−1

k g24DJðR̄; 0Þ: ð34Þ

Acting ∂t on this yields the flow equation for g̃ as

∂tg̃2 ¼ βg̃2 ¼ ðdeffðR̄Þ − 4þ ηgÞg̃2: ð35Þ

Here, we have defined the effective dimension

deffðR̄Þ ¼ 4þ d log JðR̄; 0Þ
d log R̄

; ð36Þ

as a function of R̄ [39,63]. As depicted in Fig. 1, the limit
R̄ → ∞ corresponds to D ¼ 5 and gives deffð∞Þ ¼ 5,
while in the D ¼ 4 limit (R̄ → 0), we have deffð0Þ ¼ 4.
Hence, Eq. (36) allows us to smoothly and continuously
interpolate the spacetime dimensionality of the system
depending on the compactification radius.

The anomalous dimension ηg appears on both sides of
Eq. (32) and hence can easily be solved so as to be

ηg ¼
− g̃2

ð4πÞ2
�
Nc
3
ð22 − 1Þ − 4

3
Nf − 8

3
NadNc

�

1 − g̃2

ð4πÞ2
19
6
Nc

; ð37Þ

where for simplicity we have considered massless fermions
(m̄f ¼ m̄ad ¼ 0) and have approximated ηad ¼ ηf ¼ ηgh ≈ 0.
By performing a series expansion in the gauge coupling,

we have

ηg ¼ −
g̃2

ð4πÞ2
�
Nc

3
ð22 − 1Þ − 4

3
Nf −

8

3
NcNad

�

þOðg̃4Þ; ð38Þ

where now the various matter contributions can easily be
identified and compared to the well-known four-dimen-
sional structure of non-Abelian gauge theories. The shown
anomalous dimension at the one-loop level in Eq. (38) or
the numerator of Eq. (37) coincides with the beta function
for a SUðNcÞ gauge group in the presence of Nc real scalar
fields transforming in the adjoint representation and Nf
fundamental and Nad adjoint fermions. The scalar-mode
contribution appears from the emergence of an additional
mode in the fifth-dimensional gauge field A5. Note that
fermionic fields do not induce additional modes as five-
dimensional Dirac fields are considered. While the anoma-
lous dimension ηg has a correct one-loop structure, higher-
order contributions disagree due to lack of inclusion of
some diagrams in the background approximation. In
particular, higher-order fermionic effects are missing as
can be seen from the fact that the denominator of Eq. (37)
depends neither on Nf nor on Nad. These contributions can
partially be included when feeding back the anomalous
dimensions in Eq. (32) arising from the cut lines in
Eq. (28). In fact, these terms are relevant in the g ≫ 0
limit where the contributions from the anomalous dimen-
sions are not negligible and cannot be dropped.
Furthermore, we comment on the R̄ dependence in the

resumed anomalous dimension (37). No compactification
radius dependence appears explicitly after the redefinition
of the gauge coupling. However, this is a special case in
which the anomalous dimensions contain only one specific
class of loop diagrams which yield the same form of the
threshold function JðR̄; 0Þ as in Eq. (33). See the left-hand
side diagram in Fig. 2. Consequently, the flow equation for
the gauge coupling takes a form as

∂t

�
Z−1
k g2

2πR

�
¼
�
c1JðR̄;0Þ

�
Z−1
k g2

2πR

�

þc2½JðR̄;0Þ�2
�
Z−1
k g2

2πR

�
2

þ�� �
�
Z−1
k g2

2πR
; ð39Þ

FIG. 1. Effective dimension for a trivial gauge background and
as a function of the dimensionless compactification radius for
different truncations of the KK-mode tower (Ntr). Figure adapted
from Ref. [39].
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where ci depend only onNf and Nc. The redefinition of the
gauge coupling (34) leads to

∂tg̃2 ¼ ½ðdeffðR̄Þ − 4Þ þ ðc1g̃2 þ c2g̃4 þ � � �Þ�g̃2: ð40Þ

Here, the term in the second parentheses in square brackets
corresponds to the anomalous dimension (37) free from the
compactification radius. However, in more general case
beyond the one-loop resummation such as the right-hand
side diagram in Fig. 2, explicit R̄ dependencies appear that
are not absorbed by the definition of g̃. These cannot be
appreciated in the background anomalous dimension given
that only accounts for one class of diagrams with the same
R̄ dependence properly absorbed in the definition of g̃.
More specifically, the flow equation reads,

∂t

�
Z−1
k g2

2πR

�
¼

	
c1JðR̄;0Þ

�
Z−1
k g2

2πR

�

þ ðc2½JðR̄;0Þ�2 þ d2IðR̄;0Þ þ � � �Þ

×

�
Z−1
k g2

2πR

�
2

þ � � �

�

Z−1
k g2

2πR

�
; ð41Þ

for which after the redefinition of the gauge coupling (34),
we have

∂tg̃2¼
	
ðdeffðR̄Þ−4Þ

þ
�
c1g̃2þ

�
c2þd2

IðR̄;0Þ
JðR̄;0Þþ���

�
g̃4þ���

�

g̃2; ð42Þ

where a new threshold function IðR̄; 0Þ with a factor d2 has
been introduced. R̄ dependences such as IðR̄; 0Þ=JðR̄; 0Þ
remain. In the following section, we discuss how the
resumed computation can be improved by adopting MS
results.

B. UV and IR fixed points

Let us study the fixed-point structure of the gauge
coupling using the flow equation (35) and as a function
of the compactification radius. Yang-Mills theories coupled

to fermions are known to feature a very rich phase structure
in the four-dimensional limit (R̄ → 0). Depending on the
number of fermions and the representation under which
they transform, we can find different fixed-point solutions.
For example, in the QCD-like scenario with small number
of fundamental fermions, the theory has a trivial UV fixed
point (g̃� ¼ 0) associated to asymptotic freedom [29,30]
and in the IR regime the system turns strongly coupled.
Increasing the number of fermions from the QCD scenario,
nontrivial IR solutions appear in the beta function. These
are known as CBZ fixed points and are roots of the beta
function caused by the cancellations of different loop
orders. Therefore, contributions beyond one loop are
crucial in this limit. Furthermore, in the many fermion
limit, asymptotic freedom is lost leading to a UV Landau
pole and the nontrivial IR fixed point evolves into a trivial
(Gaussian) solution.
Here, we analyze the fixed-point solutions as a function

of the effective dimensionality parametrized by the dimen-
sionless compactification radius R̄. For simplicity, we
consider the massless fermion limit and with the periodic
boundary conditions βf ¼ βad ¼ 0. The presence of masses
simply triggers the decoupling of fermionic degrees of
freedom and hence the UV and IR fixed points are not
significantly affected by such parameters. However,
masses, boundary conditions or a nontrivial vacuum
structure will leave imprints in the integrated flows at
finite R̄ and k, see Ref. [39]. We denote g2�ðR̄; Nf ; Nad; NcÞ
as the nontrivial fixed-point solutions for arbitrary com-
pactification radius, number of fermionic fields and colors.
These solutions are found in Eq. (35) by solving
deffðR̄Þ − 4þ ηg ¼ 0,

g̃2�ðR̄; Nf ; Nad; NcÞ ¼
ðdeffðR̄Þ − 4Þð4πÞ2
b0 þ cðdeffðR̄Þ − 4Þ ; ð43Þ

where b0 ¼ 7Nc − 4
3
Nf − 8

3
NadNc and c ¼ 19

6
Nc. For

R̄ ¼ 0 (D ¼ 4), the fixed-point solution (43) vanishes
leading to the trivial UV fixed point characterizing asymp-
totic freedom. As the compactification radius increases, g2�
takes a finite value. This fact provides evidence for the
nonperturbatively renormalizability, in sense of asymptotic
safety [64,65], of the theory. See the discussion at the end
of this section.
From Eq. (35) we find that in the absence of threshold

effects, the dependence on the compactification radius only
enters via the effective dimensionality deffðR̄Þ. As stated in
the end of the previous subsection, this follows from the
background approximation only accounting for one spe-
cific family of diagrams producing JðR̄; 0Þ whose R̄
dependence is fully absorbed in the definition of g̃.
Moreover, neglecting these dependencies permits us to
conveniently improve Eq. (43) by implementing ηg’s from
computations accounting for the complete higher-order
fermionic contributions lacking in the background

FIG. 2. Examples of two-loop diagrams. The left-hand side
diagram produces the two-loop effect proportional to ½JðR̄; 0Þ�2,
where JðR̄; 0Þ is defined in Eq. (33), while the right-hand side
one gives a new type of threshold function IðR̄; 0Þ different
from JðR̄; 0Þ.
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approximation. Furthermore, we will employ three-loop
MS results [66–68] for ηg instead of Eq. (37) for the
following study. This approximation implicitly assumes the
ratio IðR̄; 0Þ=JðR̄; 0Þ ≈ 1 and hence the R̄ dependence of
the diagrams not accounted in the background approxima-
tion to be small.
Before proceeding with the analysis, let us first inves-

tigate the appearance of fixed point solutions entertaining a
perturbative expansion of the anomalous dimension in
Eq. (35),

4−deffðR̄Þ¼ ηg ¼ g̃2�ðR̄Þ½fð1Þ þ g̃2�ðR̄Þfð2ÞðR̄Þþ �� ��: ð44Þ

Here, fðiÞ are the ith-order loop contributions dependent on
the gauge group and fermion content. While due to the
redefinition of the gauge coupling (34), the full R-depend-
ence of the one-loop coefficient fð1Þ is translated into the
effective dimension (36), for higher-loop terms a residual
contribution remains in the fði>1Þ functions given the
nontrivial powers of the threshold function (33). In
D ¼ 4 (R → 0), we find two solutions vanishing the
right-hand side of Eq. (44),

�
g̃2�ð0Þ ¼ 0 ðGaussianÞ;
fð1Þ þ g̃2�ð0Þfð2Þð0Þ þ � � � ¼ 0 ðCBZÞ: ð45Þ

While the Gaussian fixed point is a UV fixed point and
characterises asymptotic freedom, the nontrivial CBZ fixed
point is an IR solution given as a root of the several loop
contributions in polynomial of g2.
On the other hand, in the D ¼ 5 (R → ∞) limit, the

nontrivial fixed-point solution is obtained when

g̃2�ð∞Þfð1Þ þ g̃4�ð∞Þfð2Þð∞Þþ���¼4−deffð∞Þ¼−1; ð46Þ

is satisfied. In this limit, the roots of the beta function
cannot be only linked to the roots of the anomalous
dimension and hence the new fixed points cannot be related
to the four-dimensional CBZ solution.
In Fig. 3 we display the regions on theNc–Nf=Nad planes

where the beta function for the gauge coupling (35) shows
together both nontrivial UV and IR fixed points. In the
R̄ → 0 limit, we find the nontrivial IR fixed-point solutions
forNf andNad which satisfy ηg ¼ 0. This region is known as
the CBZ window and their properties such as boundaries
and magnitude of the fixed point have been widely stud-
ied with perturbative [32,68–75], and nonperturbative

FIG. 3. In the top (bottom) row, the nontrivial UV and IR fixed-point solutions for an SUðNcÞ gauge coupling in the presence of Nf

(Nad) fermion fields transforming in the fundamental (adjoint) representations and at different compactification radii; R̄ ¼ 0.01 (left
column), R̄ ¼ 0.1 (center column), and R̄ ¼ 1 (right column). Brighter colors indicate a larger magnitude of the fixed point. In order to
account for beyond one-loop fermionic contributions, we have employed three-loop MS results in the anomalous dimension
ηg in Eq. (35).
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methods [76–78] aswell as lattice simulations [79–85]. For a
larger number of fermions, the nontrivial IR fixed point turns
into a Gaussian fixed point, loosing asymptotic freedom
in the UV limit. It is important to recall a difference with
the standard gauge-fermion CBZ window picture; in the
current D ¼ 5 scenario there are additional Nc scalar
degrees of freedom in the R̄ → 0 limit associated to the five-
dimensional modes of the gauge field. Their contribution
reflects in a subtle fewer number of fermionic degrees of
freedom necessary to reach the conformal window.
As the compactification radius is increased, the growth

of dimensionality causes the canonical dimension of the
gauge coupling to increment turning the marginal gauge
coupling into a relevant one. Moreover, as was shown in
Ref. [38,39], pure Yang-Mills theories displaying asymp-
totic freedom in the UV limit evolve to asymptotic safety.
This is evidently seen in the appearance of a nontrivial fixed
point in the lower boundary of the CBZ window and below.
The increment of the canonical dimension of the gauge
coupling contributes positively to the flow alike the
addition of fermionic matter. Hence, increasing the dimen-
sionality will require a lower number of fermions to trigger
a singular solution. This causes the CBZ window to shrink
with the increment of R̄. However, we note a remanent of
the CBZ fixed point at R̄ → ∞ in the lower boundary of the
window (bright yellow band), leading to the simultaneous
presence of IR and UV fixed-point solutions. This will be
discussed in detail below.
The dependence of the beta function on the change of

dimension is best studied as a function of the gauge coupling.
This is shown in Fig. 4. Here, both of the approximations
employed for ηg, the resumed shown in Eq. (37) (black lines)

and the three-loop perturbative (red-orange lines), are shown
for different R̄. While both computations agree well at small
g̃2, the resumed anomalous dimension lacks to reproduce the
nontrivial CBZ fixed point as does not account for the
complete two-loop and higher structure.
As shown in Ref. [39], in the pure Yang-Mills or QCD-

like limit, the beta function experiences a relevant trans-
formation as the gauge coupling’s dimension changes with
the compactification radius. In the left most panels of
Fig. 4, it can be seen how the beta function with a single
Gaussian UV fixed point develops an additional nontrivial
solution. In other words, the change in dimensionality turns
the Gaussian UV fixed point into an IR fixed-point solution
and generates a nontrivial UV fixed point.
Furthermore, configurations which in D ¼ 4 show a

CBZ fixed point can evolve to two different scenarios.
In the upper boundary of the CBZ window, where
g2�ðR̄ ¼ 0; Nf ; Nad; NcÞ, the nontrivial IR fixed point is lost
leading to a five-dimensional theory with a trivial IR and a
UV Landau pole (third plot in each row in Fig. 4). In the
second case, we find that the IR CBZ fixed point does not
disappear in the R̄ → ∞ limit and as the new nontrivial UV
fixed point emerges. This leads to three solutions being
present and to UVand IR finite trajectories to be realizable
(second plot in each row of Fig. 4).
The many flavor limit is unaffected by the change of

dimensionality. This can be seen in the last panels of each
row in which the five-dimensional beta function does not
present any new solutions.
In Fig. 5, we depict different trajectories of the inte-

grated gauge coupling flow as a function of the cutoff scale
and considering various onsets of the extra dimension. For

FIG. 4. SUð3Þ gauge coupling beta functions as a function of the coupling for different fermion content in the fundamental (top row)
and adjoint (bottom row) representations. As plain lines from red (dark) to yellow (bright), we show the evolution from R̄ ¼ 0 to R̄ → ∞
employing the three-loop MS results. In black we show the resumed beta functions at R̄ ¼ 0 (black dashed) and R̄ → ∞ (black dotted).
The resumed anomalous dimension does not show the CBZ fixed point in the R̄ ¼ 0 as lacks the complete two-loop contributions.
Nevertheless, in the large and few Nf ; Nad limits, both beta functions qualitatively agree. Noninteger number of fermions are employed
in some instances for best display of qualitative features.
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a fixed number of colors Nc ¼ 3 and Nf ¼ 2, the inter-
dimensional flows connect a four-dimensional strong IR
QCD-like scenario with a UV finite five-dimensional
setting as shown in the left-most panel of Fig. 5. Here,
from bright yellow to dark green the onset scale of the extra
dimension is delayed with respect to the cutoff scales k.
Depicted by vertical lines with the respective color of the
trajectory, we show the scale at which R=k ¼ 1 and hence,
the onset of the extra dimension.
For Nf ¼ 6 we find a particularly interesting scenario

(middle panel in Fig. 5). From the UV, we commence the
flow at approximately the nontrivial fixed point in the
D ¼ 5 limit. If the system is kept in the R̄ → ∞ limit,
trajectories evolve towards either a Gaussian or interacting
IR fixed point. The former can be appreciated in the darkest
trajectories and the latter in the brightest. However, as soon
as the system senses the D ¼ 4 limit, both IR solutions are
attracted towards the CBZ fixed point.
The rightmost plot in Fig. 5 shows trajectories for

Nf ¼ 8 in which the CBZ solution exists in the D ¼ 4
limit but no fixed point is present in D ¼ 5.
Finally, we discuss the critical exponent of the gauge

coupling denoted here by νg̃2. At a fixed point g̃
2�, the gauge

coupling behaves as a power law,

g̃2 ∼ k
−ν−1

g̃2 : ð47Þ

From the beta function of the gauge coupling (35), the
critical exponent is given by

ν−1g̃2 ¼ −
∂βg̃2

∂g̃2

����
g̃2¼g̃2�

¼ −ðdeffðR̄Þ − 4þ ηgÞjg̃2¼g̃2� −
∂ηg
∂g̃2

����
g̃2¼g̃2�

g̃2�: ð48Þ

At the Gaussian fixed point g̃2� ¼ 0 for which ηg ¼ 0, one
obtains ν−1g̃2 ¼ 4 − deffðR̄Þ. Since deffðR̄Þ > 4 for finite R̄ as

shown in Fig. 1, we observe ν−1g̃2 < 0 and therefore the

gauge coupling at the Gaussian fixed point is an irrelevant

coupling in extra-dimensional spacetimes. In other
words, the Gaussian fixed point is an IR attractive fixed
point. The gauge coupling becomes marginal only when
deffðR̄ ¼ 0Þ ¼ 4. As is well-known, Yang-Mills theories in
D ¼ 4 exhibit the marginally relevant behavior of the
gauge coupling if the fermion numbers do not exceed a
certain threshold. This fact can be seen from ηg < 0 for a
small perturbation from the Gaussian fixed point as
0 < g2� ≪ 1. In such a case, one has ν−1g̃2 ≪ 1 so that,

g̃2 ∼ e− log k=νg̃2 ∼ ν−1g̃2 log k: ð49Þ

This logarithmic running is a natural result inferred from
the perturbative computation.
On the other hand, at the nontrivial fixed points g̃2� ≠ 0,

the first term on the right-hand side in Eq. (48) vanishes, so
that the critical exponent reads,

ν−1g̃2 ¼ −
∂ηg
∂g̃2

����
g̃2¼g̃2�

g̃2�: ð50Þ

For the anomalous dimension (37), there is the nontrivial
UV fixed point (43) at which the critical exponent is found
to be

ν−1g̃2 ¼ ðb0 þ cðdeffðR̄Þ − 4ÞÞðdeffðR̄Þ − 4Þ
b0

: ð51Þ

For R̄ > 0, we see that ν−1g̃2 > 0 for b0 þ cðdeffðR̄Þ − 4Þ > 0,

namely the gauge coupling is relevant. For large fermion
numbers,b0 þ cðdeffðR̄Þ − 4Þ < 0, leading to the fixed point
(43) turning positive. Hence, for positive values of the
nontrivial UV fixed point, the corresponding critical expo-
nent always takes positive values, implying a relevant
direction.
The existence of such a nontrivial UV fixed point

provides evidence for extra-dimensional Yang-Mills theo-
ries to be nonperturbatively renormalizable in terms of
asymptotic safety. However, the current setup for the
truncated effective action cannot determine the number

FIG. 5. Integrated renormalization group flows of the SUð3Þ coupling for different fermion content. From left to right, we increase the
number of fermions Nf ¼ 2, 6, 8 transforming in the fundamental representation, while Nad ¼ 0. In each plot we show different curves
for which the onset of the extra-dimension triggers at different scales. The vertical lines denote the onset of the extra dimension where
R=k ¼ 1 is satisfied.
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of relevant couplings and hence, the nonperturbative
renormalizability of the theory cannot be concluded. In
order to determine the dimensionality of the UV critical
surface, higher-dimensional operators such as ðFμνFμνÞn
have to be taken into account. This project will be reported
elsewhere.

IV. GAUGE POTENTIAL AND
AHARONOV-BOHM PHASES

In this section, we study the phase structure of the four-
and five-dimensional gauge effective. To this end, we
consider the effective potential for the AB phases and
the vacuum structure in the presence of fermions. The
relevant flow equation for the effective potential can be
obtained employing heat-kernel techniques and reads

∂tVðθHÞ ¼ þ 5k4

2ð4πÞ2
�
1−

ηg
6

�XNc

i;j¼1

hðR̄;θi − θj; 0Þ

−
k4

ð4πÞ2
�
1−

ηgh
6

�XNc

i;j¼1

hðR̄;θi − θj; 0Þ

−
2Nadk4

ð4πÞ2
�
1−

ηad
5

�XNc

i;j¼1

hðR̄;θi − θj − βad; m̄adÞ

−
2Nfk4

ð4πÞ2
�
1−

ηf
5

�XNc

i¼1

hðR̄;θi − βf ; m̄fÞ: ð52Þ

Here, the threshold function with a mass and AB phases is
given by

hðR̄;θH;m̄Þ¼ iπR̄

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

p
	
cot

�
1

2
R̄
�
θHþ2iπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

p ��

þ cot

�
−
1

2
R̄
�
θH−2iπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̄2

p ��

: ð53Þ

Note that setting θH ¼ 0 in Eq. (53) reduces to JðR̄; m̄Þ
defined in Eq. (33), i.e., hðR̄; 0; m̄Þ ¼ JðR̄; m̄Þ. For a
detailed derivation we refer to Appendixes of Ref. [39].
A key quantity for understanding the gauge phase

structure is the Polyakov loop which is defined as
P ¼ trW=Nc. Here, W denotes the Wilson line along S1

compactified direction (see e.g., Ref. [39] for its explicit
definition). The Polyakov loop is the gauge-independent
order parameter for distinguishing the confined (P ¼ 0)
and deconfined (P ≠ 0) phases. Especially P ≠ 0 implies
that the global ZNc

center symmetry of SUðNcÞ is sponta-
neously broken. While in SUðNcÞ gauge theories with
adjoint matter the ZNc

center symmetry is preserved, the
introduction of fundamental fermions leads to the explicit
ZNc

center symmetry breaking. As a result, if no other
matter fields are included, the minimum is always in the
deconfined phase [39].
As a specific example, we consider Nc ¼ 3 for which

there are three AB phases (θ1, θ2, θ3), but only two phases
among them are independent parameters thanks to the
traceless condition θ1 þ θ2 þ θ3 ¼ 0. Depending on the
configurations of AB phases, SUð3Þ gauge symmetry is
broken into different subgroups Hsym. The breaking pat-
terns for possible configurations of AB phases are listed in
Fig. 6. Moreover, for these AB phases, we show the values
of the Polyakov loop defined as

FIG. 6. Configurations of Aharonov-Bohm phases and breaking patterns of SUð3Þ gauge symmetry, namely SUð3Þ → Hsym via the
Hosotani mechanism [86,87]. Here, α ≠ 0, β1 ≠ β2;− 1

2
β2;−2β2. The confined configuration X arises from the Haar-measure

distribution which is uniformly and randomly distributed so as to be P ¼ 0 [87]. On the right-hand side, the Polyakov loop
configurations [defined in Eq. (54)] for the phases summarized on the left-hand side Table are displayed.
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P ¼ 1

3
ðeiθ1 þ eiθ2 þ eiθ3Þ; ð54Þ

on the right-hand side panel of Fig. 6.
As a first approximation, we neglect the effect of the

anomalous dimensions in Eq. (52) leading to an effective
potential independent of the gauge coupling. Moreover,
this implies that the confined phase (denoted by X) cannot
be accessed in the current simplified approximation.
Additionally, we assume a cutof-independent fermion mass
and hence its quantum corrections do not feed back to the
potential. This approximation neglects higher-order loop
effects which become sizeable in the strong coupling limit
where rich dynamics are expected.
In Fig. 7, we investigate the gauge vacuum phase

diagram as a function of the compactification radius and
the mass of one adjoint fermion. As previously known
from Monte Carlo simulations based on lattice gauge field
theory [86,87] and effective model studies [88,89], three
phases are present in both dimensional limits. While for
large masses the fermion contributions decouple and hence
the deconfined phase is present, for small masses the
reconfined phase is always found. On the right-hand side
of Fig. 7, the leftmost set of plots shows the relevant slice of
the effective potential (θ1 ¼ 0) at a fixed adjoint fermion
mass of m̄ad ¼ 0.4 and for different compactification
radius. On the top plot, the compactification radius is
slightly decreased from the deconfined phase (blue line) to
the split phase (green lines). In the bottom plot, we show
the evolution from the split to the reconfined phase
(yellow lines).
In comparison to previous studies [88,89], in the present

work we can continuously connect from deeply in both

D ¼ 4 and D ¼ 5 limits. The fRG accounts for the
threshold effects associated to inherent scales or field
masses. As shown in Eq. (53), the propagators contain
threshold functions which are sensitive to the compactifi-
cation radius and the explicit fermionic mass. We find that
the split phase only appears in the interdimensional limit
(finite R̄) while in the D ¼ 4, 5 limits vanishes as is
squeezed by both deconfined and reconfined phases. In the
rightmost panel of Fig. 7, we show the gauge potential
evolution as the adjoint fermion mass is decreased in both
of the dimensional limits. We see how the split phase
[minimum at ðθ1; θ2Þ ¼ ð0; πÞ] is not realized in any of the
limits. While in the D ¼ 5 limit the potential flattens along
this transition, in the D ¼ 4 limit a barrier separates all
three phases is present. Additionally, we note the clear
relation between the profile of the phase boundaries with
the dependence of the effective dimensionality on the
compactification radius.
We also investigated the AB phase diagram for larger

numbers of adjoint fermions. While the dependence on the
compactification radius was found to be exactly the same,
larger adjoint fermion masses are necessary in both dimen-
sional limits for the transition between the deconfined and
reconfined phases to occur. In other words, the profile
shown in Fig. 7 shifts to larger masses.
On the other hand, the inclusion of fundamental fermions

is known to explicitly break the center symmetry of thegauge
group; see e.g., Refs. [90,91]. As a result, the gauge potential
is always found in the deconfined phase (P ≠ 0). However,
including additional adjoint matter leads to a very rich phase
structure. In the left plot of Fig. 8, we show the gauge
potential phase diagram for ðNf ; NadÞ ¼ ð1; 1Þwith periodic
boundary conditions (βf ¼ βad ¼ 0) and m̄f ¼ 0, as a

(a)

(b)

(c)

FIG. 7. On the left-hand side plot, the AB phase diagram in the presence of one adjoint fermion ðNf ; NadÞ ¼ ð0; 1Þ as a function of the
compactification radius and the adjoint fermion mass. Three phases are found to appear: deconfined [(a), in blue], split [(b), in green],
and reconfined [(c), in orange]. On the first set of plots on the right-hand side panel, we show the evolution of a slice of the effective
potential along a fixed m̄ad ¼ 0.4 for different finite compactification radii. In the top plot, we show the evolution from the deconfined
(blue lines) to the split phase (green lines) and in the bottom plot, from the split (green lines) to the reconfined phase (yellow lines). We
slightly vary the compactification radius in the interval 1=R̄ ¼ ½0.42; 0.66�. In the rightmost set of plots, we show the evolution of the
gauge potential at two fixed radii 1=R̄ ¼ f0.1; 102g. The adjoint fermion mass is slightly decreased showing the evolution of the
potential from the deconfined (dark blue lines) to the split phase (dark yellow lines) in both dimensional limits. While in theD ¼ 5 limit
(top plot), this phase transition displays a separating barrier, in the D ¼ 4 limit (bottom plot) the potential undergoes a flat shape.
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function of the compactification radius and for different
values of the adjoint fermion mass. The plots here shown are
the interpolated version of the numerical results obtained. In
the D ¼ 5 limit (1=R≲ 1), we identify predominantly two
phases; the deconfined and split. In between both
(m̄ad ∼ 0.25), we find a region in which the potential shows
a flat shape in the ðθ1 ¼ θ2; θ2Þ plane in which both minima
coexist alike in the top plot in the rightmost panel of Fig. 8.
This evolution along decreasing mad resembles a second-
order phase transition. For small masses in the D ¼ 4 limit,
we find the so-called “pseudoreconfined” phase ðC�Þ [88]. In
this phase (not present in Fig. 6), the Polyakov loop is slightly
shifted from the central values ImP ¼ 0 andReP ¼ 0 but the
minimumof the potential still satisfies those conditions of the
reconfined phase.
We have also investigated the phase diagram for

ðNf ; NadÞ ¼ ð2; 2Þ, this is shown in Fig. 8. While the D ¼
4 limit is qualitatively similar to the ðNf ; NadÞ ¼ ð1; 1Þ, the
D ¼ 5 limit shows the presence of the pseudoreconfined
phase at small masses. Moreover, increasing the fermion
number lifts the split phase to larger values of m̄ad and
triggers the appearance of the pseudoreconfined phase at
smaller ones. This observation was already pointed out in
Ref. [88]. In other words, increasing fermion numbers are
equivalent to considering parity-pair [92] e.g., on Z2

orbifolding (S2=Z2).

V. SUMMARY AND CONCLUSIONS

In this work we have studied the properties of five-
dimensional Yang-Mills theories coupled to Dirac fer-
mions. To tackle the nonperturbative character of these
theories, we have employed the functional renormalization
group to derive the flow equations for the gauge coupling
and the effective potential.
First, we have investigated the structure of the flow

equations and the fixed-point solutions of the four- and

five-dimensional setups with different fermionic content.
Considering the extra dimension to be compactified and
employing a mass-dependent renormalization scheme
allows to continuously connect the phase diagram in both
dimensional limits. In Fig. 3, we summarize the IR and UV
fixed-point solutions found at different compactification
radii. Particularly, we find theories in which both IR and
UV fixed points are simultaneously present. We display the
trajectories between fixed points considering different
onsets of the extra dimension.
We also studied the gauge potential and AB phase

diagram as a function of the compactification radius. We
particularized on Nc ¼ 3 theories with both adjoint and
fundamental fermions. The findings discussed are in agree-
ment with previous results from Monte Carlo simulations
based on lattice gauge field theory [86,87] and effective-
model studies [88,89]. However, we find qualitative
advances given we employ a mass-dependent renormaliza-
tion scheme with sensitivity to threshold effects.
Compactifying the extra dimension and defining an

effective dimensionality has allowed us to continuously
interpolate between the four- and five-dimensional limits of
the theory. This is particularly useful for the implementa-
tion of the present theoretical results along functional
constructions of the SM [93,94] to describe and test
phenomenological models of gauge-Higgs unification,
see e.g., Ref. [95].
Given the intricacy of Yang-Mills theories, in the present

work we have focused on the qualitatively features. In
addition to the dimensionality of the gauge coupling, five-
dimensional gauge theories also require a nonperturbative
treatment as the gauge interactions turn strong. In this limit
important phenomena such as dynamical chiral symmetry
breaking or color confinement take place. Here, we have
worked in the background field approximation and used
heat-kernel techniques to derive the flows. This approxi-
mation does not provide quantitative access to the strong

(a) (a)

(b)

(c*)

(b)

(c*)

FIG. 8. AB phase diagram as a function of the compactification radius and m̄ad. On the left-(right-)hand side plot, we show the phase
diagram for ðNf ; NadÞ ¼ ð1; 1Þ [ðNf ; NadÞ ¼ ð2; 2Þ] with periodic boundary conditions and mf ¼ 0. In both cases, three phases are
found; deconfined [(a), in blue], split [(b), in green] and pseudoreconfined [(c�), in brown].
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sector and hence we focused in the discussion of the
qualitative aspects. However, to improve the current
approximation, we have made use of three-loop MS results
accounting for high order fermionic contributions. This
allowed to track the nontrivial CBZ fixed-point solution in
the five-dimensional limit.
Several improvements can be made for conclusive

statements and quantitative precision. First, the flow
equation for the gauge coupling can be derived from a
vertex expansion of the effective action and from the
scaling of 3- and 4-point functions containing gauge fields.
This method facilitates the study considering higher-
dimensional operators. This step is crucial in order to
determine the dimensionality of the critical surface and
hence the predictivity of the theory. Both analyses, the fixed
point landscape and the phase diagram, can be improved by
feeding back the anomalous dimensions of the gauge,
ghost, and fermionic fields. In the fixed-point study
performed, this will lead to the inclusion of more con-
tributions at two and higher loops which at the current point
have been included by employing perturbative results. In
the AB phase analysis, feeding the anomalous dimension
will make the gauge potential dependent on the gauge
coupling. This will lead to qualitative access to the strong
coupling confinement phase.
Finally, let us briefly mention some prospects of the study

of extra-dimensional Yang-Mills theories. From the theo-
retical point of view, the nonperturbative renormalizability,
i.e., the asymptotic safety scenario for extra-dimensional
Yang-Mills theories, is still an open question. Within the
truncation employed in this work, the tr½FμνFμν� operator is

found to be relevant. Nevertheless, one cannot exclude the
possibility of higher-dimensional operators additionally
being relevant and hence theory being less predictive. To
address this issue, we need to determine the dimensionality
of the UV critical surface in theory space spanned by an
infinite number of effective operators such as ðtr½FμνFμν�Þn
and tr½FμνFνσFσ

μ�. This is under investigation as an ongoing
project.
On the phenomenological side, UV complete extra-

dimensional Yang-Mills theories are necessary to con-
struct predictive models for gauge-Higgs unification. The
findings here discussed are relevant for phenomenologi-
cal implementations of the Hosotani mechanism into
viable models. However, defining chiral fermions is crucial
for realistic setups of gauge-Higgs unification models
compatible with the SM. Although one cannot define
chiral fermions on R4 × S1 spacetimes, implementations
are possible on the orbifold [13], e.g., R4 × S1=Z2.
Additionally, realistic gauge-Higgs unification models
are usually defined as a SUð3Þc × SOð5Þ ×Uð1ÞX gauge
theory [15–19]. Furthermore, gauge-Higgs grand unifica-
tion theories have been studied as BSM models [20–28].
For these reasons, it may be worthy to study the non-
perturbative features of extra-dimensional gauge theories
with other gauge groups and spacetime structures.
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