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Motivated by the first observation of the double-charm tetraquark Tþ
ccð3875Þ by the LHCb Collabo-

ration, we investigate the nature of Tþ
cc as an isoscalar DD� hadronic molecule in a meson-exchange

potential model incorporated by the coupled-channel effects and three-body unitarity. The D0D0πþ

invariant mass spectrum can be well-described and the Tþ
cc pole structure can be precisely extracted. Under

the hypothesis that the interactions between the heavy flavor hadrons can be saturated by the light meson-
exchange potentials, the near-threshold dynamics of Tþ

cc can shed light on the binding of its heavy-quark
spin symmetry (HQSS) partner D�D� (I ¼ 0) and on the nature of other heavy hadronic molecule
candidates such as Xð3872Þ and Zcð3900Þ in the charmed-anticharmed systems. The latter states can be
related to Tþ

cc in the meson-exchange potential model with limited assumptions based on the SU(3) flavor
symmetry relations. The combined analysis, on the one hand, indicates the HQSS breaking effects among
those HQSS partners, and on the other hand, highlights the role played by the short and long-distance
dynamics for the near threshold Dð�ÞDð�Þ and Dð�ÞD̄ð�Þ þ c:c: systems.

DOI: 10.1103/PhysRevD.109.076016

I. INTRODUCTION

One of the critical issues about the non-perturbative
property of quantum chromodynamics (QCD) is to what
extent it allows the existence of the so-called “exotic
hadrons” of which the constituent contents are beyond
the conventional quark model (i.e., mesons are composed
of qq̄ and baryons of qqq [1–5]). Such exotic hadrons
include glueballs, hybrids, multiquarks, and hadronic
molecules, etc., and their existences may serve as a unique
probe for understanding the nonperturbative property of
QCD. Since the discovery of Xð3872Þ by the Belle
Collaboration in 2003 [6], there have been a large number
of exotic candidates observed in experiments (see e.g.,
Refs. [7–16] for recent reviews). Interestingly, most of
these observed states are heavy flavor states and located in

the vicinity of some relative S-wave thresholds. It makes
the hadronic molecule picture a natural solution for their
nature, and also allows the implementation of effective field
theory (EFT) approaches in the description of the near-
threshold dynamics. Such a phenomenon is very similar to
that for the deuteron system, where the EFT approach
originally proposed by Weinberg [17] have been greatly
developed during the past decades [18–21].
From the perspective of the EFTs, the nonperturbative

property of QCD can be learned from different aspects at
different low energy scales. In the light-quark sector, the
light meson-meson interactions can be described by the
chiral perturbation theory (ChPT), which is constructed by
the pseudo-Nambu-Goldstone boson fields that emerge
from the spontaneous symmetry breaking of chiral sym-
metry. While in the heavy-heavy sector, the interactions
between two heavy hadrons are well-constrained by the
heavy quark symmetry (HQS) and heavy quark spin sym-
metry (HQSS). Due to the large heavy quark masses
(mQ ≫ ΛQCD) the mid and short-range interactions can be
described by only several low energy constants (LECs) for
different isospin channels. However, these LECs still cannot
be well-determined due to the lack of experimental data and
taking into account also the uncertaintyOðΛQCD=mQÞ ifmQ

is not large enough.
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From another view, the hadron-hadron interactions can
also be described by the potentials generated by the meson
exchanges, such as scalar (σ, κ), vector (ρ, ω, J=ψ),
pseudoscalar mesons (π, η, ηc), etc. They are similar to
the meson exchange potentials between nucleons inside a
nucleus and can mimic the underlying quark-exchange
processes. With the decay constants determined by the on
shell heavy-meson decays, these LECs are hypothesized to
be saturated by matching the ChPT operators expansion
with those meson-exchange potentials [22,23].
With the interactions mentioned above, the dynamical

mechanism between hadron-hadron pairs can then be
investigated and the complete scattering amplitudes can
be accessed by making a proper analytical continuation of
the on shell ones into the complex plane with the exception
of finite singularities determined by the particle-exchange
kinematics [24,25]. Then the resonance peaks observed in
the invariant mass spectrum may be derived from the poles
of the scattering amplitudes on the complex plane, which
has been proved successful in the description of many low-
energy meson-meson scatterings [26,27] and meson
(nucleon)-nucleon scatterings [28,29] in the light-quark
sector. As to the very long-range potential mediated by the
light pion exchange, it brings into the breaking of HQS/
HQSS, and due to the on shell decay D� → Dπ the two-
hadron composite systems are usually quasibound/virtual-
statelike resonances. Strictly, the multihadrons involved
processes can be learned by solving the Faddeev-type
equations [30]. But in practice they are often reduced to
an effective two-body Lippmann-Schwinger equation with
the assumption that the two-body interaction proceeds via
an isobar [31,32]. In such a way, the three-body unitarity is
reserved and the poles of these hadronic molecules acquire
a certain imaginary part which arises from these subthresh-
old cuts.
In 2021, the LHCb Collaboration announced the first

observation of a double-charm tetraquark Tþ
ccð3875Þ

(ccū d̄) in the D0D0πþ invariant mass distribution [33]
and its Breit-Wigner parameters are

δmBW ¼ −273� 61 keV=c2; ΓBW ¼ 410� 165 keV;

with δmBW the mass relative to the nominal D0D�þ
threshold and ΓBW the width. Later, a unitarized analysis
by LHCb Collaboration [34] suggests it is a pole on the
second Riemann sheet,

δmpole ¼ −360� 40þ4
−0 keV=c2; Γpole ¼ 48� 2þ0

−14 keV;

where δmpole also refers to the real part of its pole relative to
theD0D�þ threshold and Γpole is twice of the absolute value
of the imaginary part of its pole. The partial amplitude
analysis and the absence of its isospin partners in DþD0πþ

channel imply its quantum numbers as IJP ¼ 01þ.
Besides, the fact that approximately 90% of the D0D0πþ
events contain a genuine D�þ meson reveals its main
components as D0D�þ, and it should couple strongly to
DþD�0 and DDπ due to the proximity among those
channel thresholds. Early theoretical studies of the
double heavy-flavor exotic states can be found in the
literature [35–49].
With the discovery of Tþ

ccð3875Þ, a lot of efforts have
been done on understanding its nature based on different
scenarios, such as compact states [50,51], hadronic mol-
ecules [52–60], triangle singularity (TS) mechanism [61],
etc. It was also investigated by lattice QCD (LQCD)
calculations [62–65], and in its production and decays
[66–69]. More or less, these models can provide a reason-
able explanation of its formation and production. The
existence of Xð3872Þ, Tþ

cc and Zcð3900Þ suggests peculiar
dynamics arising from the Dð�ÞD̄ð�Þ and Dð�ÞDð�Þ threshold
interactions. Thus, a combined analysis of these states,
which involves the Dð�ÞD̄ð�Þ and Dð�ÞDð�Þ threshold inter-
actions, is necessary for gaining deeper insights into the
underlying dynamics.
Different from the double-charm system, the charmed-

anticharmed systems have already been studied broadly in
both experiment and theory. Although the nature of these
resonances is still heatedly debated due to the more
complicated analytical structures. In our work, we first
study the near-threshold dynamical nature of Tþ

cc as an
isoscalar DD� hadronic molecule within the meson-
exchange model including both coupled-channel effects
and the three-body unitarity. Then, we try to explore other
possibilities of hadronic molecules composed by charm-
anticharm heavy mesons such as Xð3872Þ and Zcð3900Þ
which can be regarded as partners of Tþ

cc with respect to
flavor symmetry and charge conjugate transformation
beyond the HQS/HQSS in a more general basis. In this
sense, our combined analysis of these systems tends to, on
the one hand, demonstrate the relations based on the HQS/
HQSS, and on the other hand, manifest the effects caused
by the HQS/HQSS breaking in the Dð�ÞD̄ð�Þ and Dð�ÞDð�Þ
interactions.
This paper is organized as follows. In Sec. II, we discuss

the potentials constructed by the one-boson-exchange
(OBE) model and coupled-channel formalism, and the
eigenwave functions satisfying the Hamiltonian. In
Sec. III, we present our numerical results and discussions.
A brief summary is given in Sec. IV.

II. FRAMEWORK

A. One-boson-exchange model and potentials

The OBE model describes the hadron interactions
similar to that for the nuclear force. The exchanged bosons,
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which have different quantum numbers and masses,
account for a lot of features of the nuclear elements.
While the boson exchanges are actually the quark
exchanges between hadrons, the OBE model can be
regarded as a leading-order approximation of the strong
QCD in the nonperturbative regime. Within the OBE model
the dynamics for the interacting hadrons are generally fine-
tuned by a physical cutoff Λ (0.3–1.2 GeV) by matching
the theoretical calculations to the experimental data. The
cutoff indicates a typical scale beyond which the boson
exchange scenario does not hold anymore. The relevance of
these dynamical ingredients can be learned by the so-called
Weinberg organizational principle [18–21] which effi-
ciently collects the soft/hard scales and counts the operators
order by order.
In the heavy meson-(anti)meson sector [70], it can be

learned that the one-pion exchange (OPE) and coupled-
channel effects (i.e., the DD −DD� −D�D� couplings for
the double-charm system), are both next-to-leading-order
(NLO). In contrast, the leading-order (LO) contributions

are from the light vector meson exchanges, which are
treated as dynamical gauge bosons of hidden local sym-
metries [71–75]. At this moment, we limit our analysis in
the sector of nonstrange charmed meson systems. We note
that in the bottom sector the large masses of Bð�Þ mesons
can bring in a large typical relative momentum for the Bð�ÞB
(Bð�ÞB̄) systems at the mass region of the B�B� (B�B̄�)
threshold though the threshold differences among Bð�ÞBð�Þ

or ðBð�ÞB̄ð�ÞÞ channels are rather small, i.e., δ < mπ with
δ≡MB� −MB ≃ 50 MeV. As the result, the OPE contri-
bution is no longer perturbative and can be promoted to the
LO [76]. This will slow down the convergence of the EFT.
For composite systems with strangeness, the SU(3) flavor
symmetry becomes the approximate one and the kaon-
induced interactions are very subtle due to lightness of kaon
mesons.
The LO Lagrangians for the S-wave heavy (anti)mesons

interactions respecting the heavy quark symmetry and the
SU(3)-flavor symmetry read [77–80],

LHHΠ ¼ ighHðQÞ
b γμγ5A

μ
baH̄

ðQÞ
a i þ ighH̄ðQ̄Þ

a γμγ5A
μ
abH

ðQ̄Þ
b i þ � � � ;

LHHV ¼ iβhHðQÞ
b νμðVμ

ba − ρμbaÞH̄ðQÞ
a i þ iλhHðQÞ

b σμνFμνðρÞbaH̄ðQÞ
a i

− iβhH̄ðQ̄Þ
a νμðVμ

ab − ρμabÞHðQ̄Þ
b i þ iλhH̄ðQ̄Þ

a σμνFμνHðQ̄Þ
b i þ � � � ;

LHHσ ¼ gshHðQÞ
a σH̄ðQÞ

a i þ gshH̄ðQ̄Þ
a σHðQ̄Þ

a i þ � � � ; ð1Þ

where h� � �i denotes tracing over the Dirac γ matrices, HðQÞ
a

and H̄ðQÞ
a are the superfields that annihilate and create

heavy mesons, respectively. Similarly, HðQ̄Þ
a and H̄ðQ̄Þ

a are
the superfields that annihilate and create heavy antimesons,
respectively. They have the following expressions:

HðQÞ
a ¼ 1þ ν

2
½P�ðQÞμ

a γμ − PðQÞ
a γ5�; ð2Þ

H̄ðQÞ
a ¼ γ0H

ðQÞ†
a γ0 ¼ ½P�ðQÞ†μ

a γμ þ PðQÞ†
a γ5�

1þ ν

2
; ð3Þ

HðQ̄Þ
a ¼ CðCHðQÞ

a C−1ÞTC−1 ¼ ½P�ðQ̄Þμ
a γμ − PðQ̄Þ

a γ5�
1 − ν

2
;

ð4Þ

H̄ðQ̄Þ
a ¼ γ0H

ðQ̄Þ†
a γ0 ¼

1 − ν

2
½P�ðQ̄Þμ

a γμ þ PðQ̄Þ
a γ5�; ð5Þ

with C the charge conjugation operator and C ¼ iγ2γ0 the
charge conjugation matrix. In the charmed meson sector
PðQÞ ¼ ðD0; Dþ; Dþ

s Þ and P�ðQÞ ¼ ðD�0; D�þ; D�þ
s Þ are the

pseudoscalar and vector charmed mesons along with

their anticharmed ones PðQ̄Þ ¼ ðD̄0; D−; D−
s Þ and P�ðQ̄Þ ¼

ðD̄�0; D�−; D�−
s Þ. The axial-current Aμ is defined as

Aμ ¼ 1
2
ðξ†∂μξ − ξ∂μξ†Þ, where ξ ¼ e

iΠ
fπ with Π the pseudo-

scalar meson fields given in Eq. (6). The vector current is
Vμ ¼ 1

2
ðξ†∂μξþ ξ∂μξ†Þ. In the heavy quark limit νμ ¼

pμ=M ¼ ð1; 0; 0; 0Þ is the four-velocity of the heavy meson
and FμνðρÞ ¼ ∂

μρν − ∂
νρμ − ½ρμ; ρν� with ρμ the vector

meson fields given in the following equation:

Π ¼

0
BBB@

1ffiffi
2

p π0 þ ηffiffi
6

p πþ Kþ

π− − 1ffiffi
2

p π0 þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA;

ρ ¼ i
gVffiffiffi
2

p ρ̂ ¼ i
gVffiffiffi
2

p

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA: ð6Þ

The Lagrangians in Eq. (1) can thus be expanded as
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L ¼ −i
2g
fπ

ϵαμνλν
αP�ðQÞμ

b P�ðQÞλ†
a ∂

νΠba −
2g
fπ

ðPðQÞ
b P�ðQÞ†

aλ þ P�ðQÞ
bλ PðQÞ†

a Þ∂λΠba −
ffiffiffi
2

p
βgVP

ðQÞ
b PðQÞ†

a ν · ρ̂ba

− 2
ffiffiffi
2

p
λgVνλϵλμαβðPðQÞ

b P�ðQÞμ†
a þ P�ðQÞμ

b PðQÞ†
a Þð∂αρ̂βÞba þ

ffiffiffi
2

p
βgVP

�ðQÞ
b · P�ðQÞ†

a ν · ρ̂ba

− i2
ffiffiffi
2

p
λgVP

�ðQÞμ
b P�ðQÞν†

a ð∂μρ̂ν − ∂νρ̂μÞba − 2gsP
ðQÞ
b PðQÞ†

b σ þ 2gsP
�ðQÞ
b · P�ðQÞ†

b σ

þ i
2g
fπ

ϵαμνλν
αP�ðQ̄Þμ†

a P�ðQ̄Þλ
b ∂

νΠab þ
2g
fπ

ðP�ðQ̄Þ†
aλ PðQ̄Þ

b þ PðQ̄Þ†
a P�ðQ̄Þ

bλ Þ∂λΠab þ
ffiffiffi
2

p
βgVP

ðQ̄Þ†
a PðQ̄Þ

b ν · ρ̂ab

− 2
ffiffiffi
2

p
λgVνλϵλμαβðP�ðQ̄Þμ†

a PðQ̄Þ
b þ PðQ̄Þ†

a P�ðQ̄Þμ
b Þð∂αρ̂βÞab −

ffiffiffi
2

p
βgVP

�ðQ̄Þ†
a · P�ðQ̄Þ

b ν · ρ̂ab

− i2
ffiffiffi
2

p
λgVP

�ðQ̄Þμ†
a P�ðQ̄Þν

b ð∂μρ̂ν − ∂νρ̂μÞab − 2gsP
ðQ̄Þ†
a PðQ̄Þ

a σ þ 2gsP
ðQ̄Þ�†
a · P�ðQ̄Þ

a σ þ � � � : ð7Þ

In this work we adopt the same coupling constants as used in Ref. [81], i.e., the pion decay constant fπ ¼ 132 MeV,
g ¼ 0.59� 0.007� 0.01, gV ¼ 5.8, β ¼ 0.9, λ ¼ 0.56 GeV−1, and gs ¼ gπ=ð2

ffiffiffi
6

p Þ with gπ ¼ 3.73. For Lagrangians
involving the exchange of heavy mesons (J=ψ , ηc, etc.), they can be derived by replacing the SU(3) flavor octets by the
ones in the SU(4) flavor symmetry [82,83].
For composite system DD� in an S-wave, the wave functions with quantum numbers JP ¼ 1þ with I ¼ 0, 1 can be

constructed as

I ¼ 0∶
1ffiffiffi
2

p ðū d̄−d̄ ūÞ ⊗ 1ffiffiffi
2

p ðPV þ VPÞ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
2

p ðjD0D�þi − jD�þD0iÞ − 1ffiffiffi
2

p ðjDþD�0i − jD�0DþiÞ
�
;

I ¼ 1∶
1ffiffiffi
2

p ðū d̄þd̄ ūÞ ⊗ 1ffiffiffi
2

p ðPV þ VPÞ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
2

p ðjD0D�þi þ jD�þD0iÞ þ 1ffiffiffi
2

p ðjDþD�0i þ jD�0DþiÞ
�
: ð8Þ

It should be noted that the systems of D0D�0 ðI ¼ 1;
I3 ¼ −1Þ and DþD�þ ðI ¼ 1; I3 ¼ þ1Þ are just partners of
the DD� isospin triplet with ðI ¼ 1; I3 ¼ 0Þ. In view of the
hidden local symmetries the isoscalar system is found to be
attractive, and the isovector one turns out to be repulsive
with the light vector meson exchanges. Thus, we consider
only the above wave functions for DD� and charge-neutral
ones for the charmed-anticharmed system.
Note that the full eigenstate must include all the degrees

of freedom. By solving the two-body problem, one
obtains the eigenstate for this two-body system, but would
not be able to distinguish D� and D. The eigenstate
describes the relative motions of the two-body system
quantum-mechanically in a relative spatial separation of r
(corresponding to the momentum transfer between the two
constituents in the momentum space) without knowing
which one is which. Similar considerations were also
discussed in Ref. [84]. In our recent work [85], we have
made a detailed survey of the wave functions and
potentials of the heavy hadronic molecules in accordance

with their quantum numbers and we briefly summarize the
basic ingredients here for reference. This issue is also
noticed by Ref. [57].
Moreover, we emphasize that the total wave function,

which is symmetric under space, isospin and spin group
Oð3Þ ⊗ SUIð2Þ ⊗ SUSð2Þ for bosons, is crucial for prop-
erly introducing the meson-exchange potentials, especially
the pion-exchange ones from the u channel. Since the full
pionful interaction requires the inclusion of loop correc-
tions [86,87] and the pion-exchange potential would not
account for the short-distance dynamics with r ≪ 1=mπ ,
different parametrizations of the short-distance potential
can result in different behaviors of the nonperturbative OPE
to be either attractive or repulsive [70]. This also calls for a
unified approaches for the Dð�ÞD̄ð�Þ and Dð�ÞDð�Þ systems.
Otherwise, the conclusion about the importance of OPE
could become self-contradicting and even misleading.
For the S-wave DD̄� composite system, the charge-

neutral wave functions for different isospins and charge
conjugations can be constructed in a similar way,

I ¼ 0; C ¼ þ∶
1ffiffiffi
2

p ðūuþ d̄dÞ ⊗ 1ffiffiffi
2

p ðPV̄ − VP̄Þ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
2

p ðD0D̄�0 −D�0D̄0Þ þ 1ffiffiffi
2

p ðDþD�− −D�þD−Þ
�
;

I ¼ 0; C ¼ −∶
1ffiffiffi
2

p ðūuþ d̄dÞ ⊗ 1ffiffiffi
2

p ðPV̄ þ VP̄Þ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
2

p ðD0D̄�0 þD�0D̄0Þ þ 1ffiffiffi
2

p ðDþD�− þD�þD−Þ
�
;
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I ¼ 1; C ¼ þ∶
1ffiffiffi
2

p ðūu − d̄dÞ ⊗ 1ffiffiffi
2

p ðPV̄ − VP̄Þ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
2

p ðD0D̄�0 −D�0D̄0Þ − 1ffiffiffi
2

p ðDþD�− −D�þD−Þ
�
;

I ¼ 1; C ¼ −∶
1ffiffiffi
2

p ðūu − d̄dÞ ⊗ 1ffiffiffi
2

p ðPV̄ þ VP̄Þ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
2

p ðD0D̄�0 þD�0D̄0Þ − 1ffiffiffi
2

p ðDþD�− þD�þD−Þ
�
: ð9Þ

Since for many of those hadronic molecules, the binding
energy is far smaller than the threshold difference between
coupled channels and thus the isospin breaking effect should
be taken into account. Therefore, we define two channels in
the particle basis as in Ref. [81]: ½D0D�þ�∓ ¼ ðjD0D�þi ∓
jD�þD0iÞ= ffiffiffi

2
p

and ½DþD�0�∓¼ðjDþD�0i∓jD�0DþiÞ= ffiffiffi
2

p
.

The physical state Tþ
cc is a linear combination of

ð½D0D�þ�− − ½DþD�0�−Þ=
ffiffiffi
2

p
(rather than ð½D0D�þ�þ −

½DþD�0�þÞ=
ffiffiffi
2

p
used inRefs. [81,88,89]) taking into account

the coupled-channel effects. Similarly, we define two
channels for DD̄�; ½D0D̄�0�∓ ¼ ðD0D̄�0 ∓ D�0D̄0Þ= ffiffiffi

2
p

and ½DþD�−�∓ ¼ ðDþD�− ∓ D�þD−Þ= ffiffiffi
2

p
among which

Xð3872Þ is described by ½DD̄��− and Zcð3900Þ by ½DD̄��þ.
The near-threshold potentials can then be evaluated by

the static approximation [90],

V̂ðab → cdÞ ¼ −
M̂ðab → cdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
ið2miÞ

Q
fð2mfÞ

q ; ð10Þ

with M̂ the scattering amplitude of the process ab →
cd and mi=f the masses of initial-state or final-state

mesons. For convenience, we first define the following
functions:

X̃ ex ¼
ϵi · ϵ�f

jqj2 þm2
ex − q0

2 ;

X ex ¼
�
1 − q0

2

m2
ex

�
ϵi · ϵ�f

jqj2 þm2
ex − q0

2 ;

Yex ¼
ϵi · qϵ�f · q

jqj2 þm2
ex − q0

2 ;

Zex ¼
ðϵi × qÞ · ðϵ�f × qÞ
jqj2 þm2

ex − q0
2 ; ð11Þ

where ϵi is the initial polarization vector of D�ðD̄�Þ, ϵ�f is
the final one, mex is the mass of the exchanged meson, and
q0=q are the zero-th/three-vector components of the trans-
ferred momentum qμ ¼ p0μ − pμ with p0μ=pμ the momenta
of the final/initial mesons. Interestingly, q0 could be larger
than the mass of the exchanged pion for some processes

like D0D�þ⟶
π−

D�þD0. It will lead to a logarithmic
divergence in the projected partial waves and should be
properly treated by a full consideration of the three-body
unitarity [91,92].

The detailed potentials for DD� → DD� (as depicted in Fig. 1) are listed as follows:
(1) D0D�þ → D0D�þ=DþD�0 → DþD�0

V ½DD��∓ ¼ −
g2Vβ

2

4
Xρ0 þ

g2Vβ
2

4
Xω − g2SX̃σ �

g2

f2π
Yπ− � 2g2Vλ

2Zρ− þ
g2Vβ

2

2
X J=ψ ; ð12Þ

(2) D0D�þ → DþD�0

V ½DD��∓ ¼ g2Vβ
2

2
Xρ− ∓ g2

2f2π
Yπ0 �

g2

6f2π
Yη ∓ g2Vλ

2Zρ0 � g2Vλ
2Zω � g2

f2π
Yηc � 2g2Vλ

2ZJ=ψ : ð13Þ

FIG. 1. Direct (left) and crossing (right) Feynmann diagrams of process D0D�þ → D0D�þ.
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Similarly for DD̄�:
(1) D0D̄�0 → D0D̄�0=DþD�− → DþD�−

V ½DD̄��∓ ¼ −
g2Vβ

2

4
X ρ0 −

g2Vβ
2

4
Xω − g2SX̃σ ∓ g2

2f2π
Yπ0 ∓ g2

6f2π
Yη � λ2g2VZρ0 � λ2g2VZω

∓ g2

f2π
Yηc −

g2Vβ
2

2
XJ=ψ � 2λ2g2VZJ=ψ ; ð14Þ

(2) D0D̄�0 → DþD�−

V ½DD̄��∓ ¼ −
g2Vβ

2

2
Xρ− ∓ g2

f2π
Yπ− � 2g2Vλ

2Zρ− : ð15Þ

To saturate the LECs with the meson-exchange poten-
tials, one matches the contact-range operator expansion
with those potentials generated by the light meson
exchange [93]. We illustrate this pattern with OPE by
decomposing it into two terms,

Yπ ¼
1

3

��
1 −

μ2π
jqj2 þ μ2π

�
Ŝðϵi; ϵ�fÞ þ

jqj2
jqj2 þ μ2π

T̂ðϵi; ϵ�fÞ
�
;

ð16Þ

where μ2π ¼ m2
π − q02, the first term is called the central

term Ŝðϵi; ϵ�fÞ ¼ ϵi · ϵ�f and the second term is called the

tensor term T̂ðϵi; ϵ�fÞ ¼ 3ϵi · q̂ϵ�f · q̂ − ϵi · ϵ�fjq̂j2 with q̂ the
unit of q. Because of the perturbative contribution by
the pion-exchange diagrams, the tensor term is negligible
and we only consider the S-wave component in our work.
For the central term, the first Dirac-delta term actually is
unphysical since the dynamics of δðrÞ is far beyond the
reach of the pion scale 1=mπ . It is generally parametrized
by a finite size ∼1=Λ with Λ > mπ . In our approach, we
parametrize this term along with the heavier pseudoscalar
(P) and vector (V) meson (mP;V ∼ Λ) exchange potentials
via the scale-dependent counterterms CP;V , which are not
fully captured by the OBE model [94]. Thus, we adopt the
following substitution rules [95]:

YP=V ∼
1

3

�
−

μ2P=V
jqj2 þ μ2P=V

þ CP=V

�
Ŝðϵi; ϵ�fÞ; ð17Þ

ZV ∼
2

3

�
−

μ2V
jqj2 þ μ2V

þ CV

�
Ŝðϵi; ϵ�fÞ; ð18Þ

with μ2i ¼ m2
i − q02 and 0 ≤ CP=V ≤ 1. For very heavy

exchanged mesons (e.g., J=ψ ; ηc), we just ignore the spin-
dependent terms Yex, Zex as they vanish at the threshold
(since the Dirac-delta terms are fully reserved), but keep the
resumed Yukawa terms X ex. We collect the wave functions

and potentials of other heavy double-charm or charmed-
anticharmed systems in Appendix A.

B. Lippmann-Schwinger equation
and three-body interactions

The near-threshold coupled-channel dynamics can be
studied by solving the nonrelativistical Lippmann-
Schwinger equation (LSE),

Tαβðp; k;EÞ
¼ Vαβðp; k;EÞ

þ
X
δ

Z
d3q
ð2πÞ3 Vαδðp; q;EÞGδδðq;EÞTδβðq; k;EÞ ð19Þ

where E is the energy in the initial c.m. frame, Vαβðp; k;EÞ
is the potential from the βth channel to the αth channel. To
regularize the ultraviolet (UV) divergence we introduce a
hard cutoff into the LSE by replacing the potentials with,

Vαβðp; q;EÞ → Vαβðp; q;EÞΘðΛ − jpjÞΘðΛ − jqjÞ; ð20Þ

where Θ is the Heaviside step function and Λ the cutoff
parameter. We refrain from the use of any Gaussian or
monopole form factors because of their complexities in the
undermentioned analytical continuation [96]. Gδδðq;EÞ is
the two-body propagator of the δth channel which can be
written as (in the nonrelativistical limit),

Gδδðq;EÞ ¼
1

E −m1 −m2 −
q2

2μδ
þ i Γδðq;EÞ

2

; ð21Þ

with mi the mass of the constituent particle, μδ the reduced
mass of the δth channel and Γδðq;EÞ the width contribution
of the δth channel. As we only focus on the near-threshold
phenomena (e.g., 3.873–3.877 GeV for the D0D0πþ mass
spectrum), the above nonrelativistic approximation should
be reasonable. Since the width ofD� is comparable with the
width of the corresponding hadronic molecules, namely
Tþ
cc and Xð3872Þ, the width part of the propagator Γδ will

have a significant effect on the pole position. In most of the
literature, the constant width treatment for D� might be
appropriate as argued in Ref. [97]. But the width of the
composite state could be overestimated by two times,
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compared with the one in which the full three-body
unitarity is considered [91]. In the case of a constant width
for D�, the Riemann sheets can be classified according to
the sign of the imaginary parts of the on shell momenta
(taking two channels D0D�þ and DþD�0 as example),

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ1

�
E −mD0 −mD�þ þ i

ΓD�þ

2

�s
;

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2

�
E −mDþ −mD�0 þ i

ΓD�0

2

�s
; ð22Þ

with μ1, μ2 the reduced masses of the D0D�þ, DþD�0
channels, respectively. Namely,

RS-I∶ ℑk1 > 0;ℑk2 > 0;

RS-II∶ ℑk1 < 0;ℑk2 > 0;

RS-III∶ ℑk1 < 0;ℑk2 < 0;

RS-IV∶ ℑk1 > 0;ℑk2 < 0: ð23Þ

Apart from the LO tree diagrams at the order Q−1, the
NLO diagrams involving the pion exchange which can
contribute to the decay width of composite particle
DD�ðD̄�Þ, is depicted in Fig. 2. They are suppressed by
one power of Q as analyzed with an effective Lagrangian
derived from heavy-hadron chiral perturbation theory
(HHχPT) [98]. While the NLO contribution is also found
to be dominant by the contact potential, the wave function
receives the renormalization, especially the imaginary part,
by evaluating the above cut diagrams which are charac-
terized by the Dπ loop and one-pion-exchange. Regardless
of the full-pion calculation, the nonperturbative nature of
the OPE was justified by the opposing argument about the
calculation of one-loop diagrams using the dimensional
regularization scheme [86] and the sharp cutoff scheme
[87] which leads to the conclusion that the OPE potential in
an EFT is only well-defined in connection with a contact
term. Moreover, the width of Xð3872Þ with the effects of
three-body cuts and its quark-mass dependence were also
validated in the EFT treatment with both perturbative pions
[98,99] and nonperturbative pions [91]. In summary, the
DD� scattering in three-body unitarity must include the full

D� propagators and the pion-exchange diagrams in the on
shell renormalization scheme.
In our approach since the dominant contact part in theOPE

is completely removed, the perturbative nature of OPE is
retained if the physical cutoff andother counterterms are fine-
tuned to the full line shape. We leave the discussion about its
analytical treatment in Appendix B. On the other hand, the
width of D� should be energy dependent due to the self-
energy from Dπ loop as done in Refs. [52,91,92,95]. For
D� → Dπ, the width contribution to the complex mass
of D� is

Γ ∝ p3
cm; ð24Þ

where pcm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μDπðE0 −mD −mπÞ

p
is the magnitude of

three-momentum in the c.m. frame ofD� with E0 the energy
in the c.m. frame ofD� andmD andmπ the masses ofD and
pion, respectively, as depicted in Fig. 2(a). The first/second
Riemann sheets are also defined regarding the imaginary part
of pcm induced by the right-hand cut (RHC) lying along
[mD þmπ ,∞), i.e.,

RS-I∶ ℑpcm > 0;

RS-II∶ ℑpcm < 0: ð25Þ

In the moving frame of D�ðqÞ, the energy available for
D� gets reduced since the denominator of the Dπ propa-
gator is now,

E0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ ðq=2þ lÞ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ðq=2 − lÞ2
q

¼ E0 − ωD − ωπ − ð1=ωD þ 1=ωπÞ
q2

8
þOðq4Þ; ð26Þ

where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ l2
p

is the energy of the constituent
particle in the static c.m. frame of D�ðq ¼ 0Þ with l the
relative three-momentum between D and π in the Dπ loop.
In the framework of time-ordered perturbation theory
(TOPT), the static energy of D� in the initial c.m. frame
can be approximated by

FIG. 2. Three-body cuts involved in the DD� scattering. (a) Self-energy of D� by the Dπ loop; (b) On shell decay of process
D� → Dπ. The left-hand side is the propagator of pion in Feynmann representation used in our work and the right-hand side is the sum
of the forward and backward emissions of pion in TOPT.
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E0ðE; qÞ ¼ EþmD� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ q2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ q2
q

ð27Þ

with mD� the bare mass of D�.
We denote the pcm solved from the above process by: pcm ¼ F ðE; q; m1; m2; m3Þ and then the energy-dependent width

of D�þ=D�0 is (analogous to Refs. [91,92]),

Γcðq;EÞ ¼ ΓðD�þ → DþγÞ þ g2mD0

6πf2πmD�þ
F 3ðE; q; mD0 ; mπþ ; mD0Þ þ g2mDþ

12πf2πmD�þ
F 3ðE; q; mDþ ; mπ0 ; mD0Þ;

Γ0ðq;EÞ ¼ ΓðD�0 → D0γÞ þ g2mD0

12πf2πmD�0
F 3ðE; q; mD0 ; mπ0 ; mDþÞ þ g2mDþ

6πf2πmD�0
½F 3ðE; q; mDþ ; mπ− ; mDþÞ

− F 3ðmDþ þmD�0 ; 0; mDþ ; mπ− ; mDþÞ�: ð28Þ

For the purpose of searching for poles, the function F ðE; q; m1; m2; m3Þ has to be analytically and properly continued by
the technique of redirecting the branch cuts and contour deformation. We only present the result in this section and refer to
Refs. [92,96,100,101] or Appendix B for details,

F̃ ðE; q; m1; m2; m3Þ ¼
�−F ðE; q; m1; m2; m3Þ; if ℑðE0ðE; qÞÞ < 0 and ℜðE0ðE; qÞÞ > m1 þm2;

F ðE; q; m1; m2; m3Þ; else:
ð29Þ

C. Line shape analysis of the D0D0π + mass spectrum

We solve the Lippmann-Schwinger equation in the
particle basis,

fD0D�þð3S1Þ; DþD�0ð3S1Þg; ð30Þ

and the LO Lagrangian to describe the interaction between
Tþ
cc and D=D� is

LXDD� ¼ igXDD� ðXμD�þ
μ D0 ∓ XμD�0

μ DþÞ; ð31Þ

where symbol ∓ corresponds to the isoscalar/isovector
DD� system, and gXDD� is the coupling constant and
approximated by a constant due to the narrow D0D0πþ
invariant mass range ∼4 MeV. Note that the contribution
from the D wave is neglected due to the suppression of the
centrifugal barrier. Thus, the transition Tþ

cc → D0D�þ can
be evaluated by (as depicted by Fig. 3),

tðp;EÞ ¼ gXDD� þ gXDD�

Z
d3q
ð2πÞ3 T11ðp; q;EÞG11ðq;EÞ

ð32Þ

−gXDD�

Z
d3q
ð2πÞ3 T12ðp; q;EÞG22ðq;EÞ ð33Þ

with p the three momentum of D0 in the c.m. frame of Tþ
cc.

The coupling constant gXDD� can be absorbed into the
overall factor N and thus is set to unit.
The decay width of Tþ

cc → D0D0πþ is (see Fig. 4),

dΓTþ
cc→D0D0πþðEÞ
ds12ds23

∝ jqπG11ðp;EÞtðp;EÞ þ q̄πG11ðp̄;EÞtðp̄;EÞj2; ð34Þ

where the two terms come from the symmetry of two D0

mesons in the final state with qπðq̄πÞ the magnitude of three-
momentum of pion in the c.m. frame ofD�þ½πþðp2ÞD0ðp3Þ�
and pðp̄Þ the magnitude of the D0 three-momentum pro-
duced at the first vertex in the initial c.m. frame, namely,

FIG. 3. Feynman diagram for the Tþ
cc → D0D�þ transitions.
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qπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs23;m2

πþ ;m
2
D0Þ

q
2

ffiffiffiffiffiffi
s23

p ; p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðE2;m2

D0 ;s23Þ
q

2E
;

q̄π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs12;m2

D0 ;m2
πþÞ

q
2

ffiffiffiffiffiffi
s12

p ; p̄¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðE2;m2

D0 ;s12Þ
q

2E
; ð35Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz is the
Källén function, s12 ¼ ðp1 þ p2Þ2, s23 ¼ ðp2 þ p3Þ2 are
the invariant masses squared, and the integral limits are
determined by the Dalitz boundary,

ðm1 þm2Þ2 ≤ s12 ≤ ðE −m3Þ2;
ðE�

2 þ E�
3Þ2 −

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�
2 −m2

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3 −m2

3

q �
2
≤ s23 ≤ ðE�

2 þ E�
3Þ2 −

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�
2 −m2

2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3 −m2

3

q �
2
; ð36Þ

with m1, m2, and m3 the masses of D0, πþ, and D0, respectively, and E�
2 ≡ s12−m2

1
þm2

2

2
ffiffiffiffiffi
s12

p and E�
3 ≡ E2−s12−m2

3

2
ffiffiffiffiffi
s12

p .

In order to compare with the experimental data, the decay width function above should be convoluted with the mass
resolution function of the LHCb detector, which are modulated by the sum of two Gaussian functions [54],

Yields
ΔE

¼ N
Z

EiþΔE=2

Ei−ΔE=2
dE

ΓTþ
cc→D0D0πþðEÞ

ΔE

�X2
j¼1

βj ·
1ffiffiffiffiffiffi
2π

p
σj

exp

	
−
1

2

�
E − Ei

σj

�
2

�

; ð37Þ

where ΔE ¼ 200 keV is the bin width; β1 ¼ 0.778, β2 ¼ 0.222, σ1 ¼ 1.05 × 263 keV, and σ2 ¼ 2.413 × σ1 are taken
from the LHCb analysis [33,34].

III. RESULTS AND DISCUSSIONS

A. Line shape of D0D0π + mass spectrum

Proceeding to the numerical analysis, we list the param-
eters to be fitted by the line shape data: the physical cutoff
Λ, the counter terms CP=V , and the trivial overall factor N .
It is obvious that Λ and CP=V are correlated but we find that
they can be strictly constrained by fitting the line shape of
the D0D0πþ mass spectrum. Moreover, CV has a more
sensitive impact on the pole position and line shape while
the dependence of CP is relatively moderate due to their
coupling difference and the energy scale difference
between the pseudoscalar and vector mesons in such
systems.
In order to investigate the role played by the OPE

mechanism and the width effects of D�, we consider three
fitting schemes to fit the D0D0πþ mass spectrum with
Eq. (37), i.e.,
(1) Scheme I: OBE potentials excluding OPE, with a

constant D� width, i.e., ΓD�0 ¼ 53.7 keV and
ΓD�þ ¼ 82.5 keV [55].

(2) Scheme II: OBE potentials excluding OPE, with
an energy-dependent D� width as formulated by
Eq. (28).

(3) Scheme III: OBE potentials with an energy-depen-
dent D� width which incorporates with the three-
body unitarity (i.e., the OPE is also properly
considered).

In the above three schemes we consider a baseline fit by
fixing CP=V ¼ 0 to compare with the fitting results with CV

fixed with well-chosen values from 0.0 to 1.0.
In Table I the fitted parameters (when CV ¼ 0.0) and the

extracted pole positions are presented. The fitted line
shapes in the corresponding schemes are presented in
Fig. 5. Roughly speaking, these fitting results are compa-
rable and reasonably good but by detailed comparisons we
can still learn some crucial information concerning the
underlying dynamics:

(i) Since the contact-range term of the OPE has been
parametrized out by parameter CP which is then set
as CP ¼ 0, it means that the OPE will only account
for the long-distance behavior of the wave function,
while the short-distance behavior will be parame-
trized by CV. As the consequence, the cutoff Λ in the
three schemes is consistently in the same range. We
mention that if CP ≠ 0 the fitted values for Λ can be
very different for these three schemes. This can be
compared with similar findings in Ref. [92].

FIG. 4. Tree-level diagram for Tþ
cc → D0πþD0.
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(ii) Although the OPE contribution is subleading, it still
plays an important role in fitting the line shape and
extracting the pole position and width, which can be
seen by comparing between Scheme-II and Scheme-
III. Moreover, the width at the bound state pole
including three-body unitarity (Scheme-III) is con-
sistent with the unitarized analysis by LHCb [34].

(iii) Also, it shows that the implementation of the energy-
dependent D� width will reduce the pole width by a
half. This indicates the importance of the three-body
unitarity to some extent.

As mentioned earlier, there exist strong correlations
between the counter terms CP=V and Λ. Thus, we make
a survey of their correlation by looking at the variations of
Λ and χ2 with CP being fixed to zero and CV taking values
within [0, 1]. The correlation is demonstrated in Fig. 6. It
shows that, as CV increases, the Λ increases with different
increasing rates in the small (physical) and large (unphys-
ical) momentum regions (see Appendix. C for a detailed
explanation). The cutoffs in the three schemes, especially in
the physical region (≤ 0.5 GeV), are consistent with each
other due to the NLO roles played by the three-body cuts.
For isoscalar systems excluding 1þ− DD̄� and 2þþ D�D̄�

(see Appendix A), the larger CV is, the larger repulsive
contact potential will be introduced and thus the larger Λ is
required to retainmore short-distance potentials.Meanwhile,

for a relatively largeΛ, more contributions fromhigher-order
terms, such as Oðq2=ðq2 þ μ2πÞÞ of OPE, may manifest
themselves as shown from the small but sizable deviation
(due to theweak scaling of pion-exchange) betweenScheme-
II and Scheme-III. Nevertheless, the reasonable range of the
cutoff parameter Λ is set empirically below 1.2 GeV.
Actually, the stability of the χ2 for the whole range of CV

with the corresponding range of Λ in Fig. 6 indicates the
model-independent feature in this analysis after the proper
treatment of the short and long-distance dynamics and the
three-body unitarity [102]. This also reflects the matching
between the OBE and the EFT approach (see e.g.,
Ref. [92]). Such a feature can be further investigated in
the study of theD�D� ðI ¼ 0Þ system as the HQSS partners
of Tþ

cc. On the one hand, we expect that the HQSS relation
should provide some constraints on the parameters fixed by
the Tþ

cc line shape. On the other hand, we also anticipate
deviations which are the manifestations of the HQSS
breaking effects.

B. Possible hadronic molecules in
the nonstrange charmed sector

For the double-charm system, the only possible hadronic
molecule except Tþ

cc is the isoscalar 1þ D�D� and the
contact potentials between them are strictly correlated by
the heavy-quark spin symmetry. Namely, in the heavy
quark limit, we have

VCTðDD�; I ¼ 0Þ ¼ VCTðD�D�; I ¼ 0Þ: ð38Þ

Thus, the parameters learned from Tþ
cc can make a strong

constraint on the binding energy EB of the isoscalar D�D�.
We plot the dependence of EB on the aforementioned
CVðΛÞ in the three schemes as in Fig. 7 and the EB is found
to be about 2–9 MeV for reasonable parameters (CV < 0.7,
Λ < 1.0 GeV), which is consistent with the result in
Ref. [53] (but the isoscalar D�D� is only found to be a
bound state here).
As to the charmed-anticharmed system, the nonpertur-

bative short-distance interactions can be very different from
the double-charm ones, such as the difference between the
quark annihilation of cc̄ and quark rearrangement of cc.
Such dynamical differences cannot be fully compensated
by the meson-exchange model, and neither by an EFT

TABLE I. Parameters and pole positions of the Tþ
cc relative toD0D�þ threshold. The first Riemann sheet (RS-I) in

Scheme-I is defined by the two-body branch point given by Eq. (23) and the second Riemann sheet (RS-II) in
Scheme II-III is the most important unphysical Riemann sheet accessed by Eq. (29). The uncertainty of Λ is
evaluated by χ2 fitting and propagates to pole positions.

Schemes χ2=d:o:f Λ½GeV� ffiffiffi
s

p
pole½keV�

Scheme I 14.22=ð20 − 1Þ ¼ 0.740 0.399� 0.0008 −379.9þ15.7
−15.5 − i · 37.0þ0.0

−0.0 ðRS-IÞ
Scheme II 15.3=ð20 − 1Þ ¼ 0.805 0.390� 0.0006 −347.4þ11.5

−11.3 − i · 18.7þ0.2
−0.2 ðRS-IIÞ

Scheme III 14.69=ð20 − 1Þ ¼ 0.773 0.396� 0.0010 −350.4þ18.3
−18.2 − i · 24.6þ0.3

−0.2 ðRS-IIÞ

FIG. 5. Baseline fitting results of line shape of D0D0πþ,
convoluted with mass resolution function.
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approach given the HQSS breaking is unavoidable. To be
consistent with the experimental results, it is found that CV
tends to be much larger under the same Λ when CP is still
fixed as zero. For example, the binding energy of
D�D̄�ðI ¼ 0Þ would be found around 100 MeV if the
parameters from Tþ

cc adopted. Such a value has obviously
overestimated the binding since the binding momentum jpj
would amount to hundreds of MeVwhen its binding energy
is just 10 MeV. Meanwhile, it will be questionable for the
Born approximation since it would not hold for such deeply
bound states. On the other hand, taking into account that the
isoscalar DD̄� with C ¼ þ is found to form a bound state
for a large CV , but only a virtual state for a small CV , the
existence of Xð3872Þ allows us to limit our discussions
within 0.35 GeV < Λ < 0.65 GeV and a relatively large
0.7 < CV < 1.0 below though we present the results within

a wide range of CV in Fig. 7 to show the Λ dependence
[103]. The LSE solutions for the isoscalar Dð�ÞD̄ð�Þ are
listed in Table II.
Since there is no spin-dependent terms forDD̄, the above

Λ boundary is chosen partly by comparison with another
calculation by dimensional regularization (DR) in
Ref. [53]. While for D�D̄�, there is a mass splitting for
different J due to the inclusion of spin-dependent terms and
we note that the unacceptably large numerical binding
energy 117.7 MeV for the 2þþ D�D̄� system is calculated
with the unphysical value of CV ¼ 1.0. In such a case the
full reservation of the Dirac-delta term will introduce an
extremely large attractive potential as mentioned in the last
subsection. Though more profound considerations, such as
higher partial waves, coupled-channel effect, and four-body
unitarity, etc., are needed, the above result shows the signal
for the existence of the isoscalar hadronic molecules
composed of D�D̄�, especially the 2þþ tensor state.
Despite the fact that there are no lower channels than
the DD̄ threshold in strong decays, the existence of an
isoscalar DD̄ has been widely predicted by phenomeno-
logical studies [104,105] and by LQCD calculation [106].
Besides, the role of the isoscalarDD̄ state can be significant

FIG. 6. (Left) Dependence of Λ on CV in these three schemes. (Right) The fluctuations of χ2 fitting on CV in these three schemes. The
slight instability of χ2 in Scheme-III is caused by the mild dependence of the fitting scheme on parameter ω used in the contour
deformation but one can read from the left panel that such a fluctuation does not cause significant deviations of Λ from its smooth
correlation with CV .

FIG. 7. Dependence of the binding energy of D�D� ðI ¼ 0Þ on
CVðΛÞ in the three schemes. The long-distance OPE is removed
in the Scheme-I and Scheme-II while retained in the Scheme-III
correspondingly.

TABLE II. Pole positions (in MeV) of the isoscalar Dð�ÞD̄ð�Þ.
The notation ðrs; EBÞ represents the binding energy EB on the
first/second Riemann sheet. The EB boundary for each Λ is
evaluated with CV ¼ 0.7, 1.0, respectively. See the context for
further explanations.

System JPC PoleðΛ ¼ 0.35 GeVÞ PoleðΛ ¼ 0.65 GeVÞ
DD̄ 0þþ (1, 0.3) (1, 33.6)

0þþ ð1; 0.006Þ–ð1; 12.4Þ ð1; 0.5Þ–ð1; 39.3Þ
D�D̄� 1þ− ð1; 0.4Þ–ð1; 6.4Þ ð1; 4.1Þ–ð1; 37.7Þ

2þþ ð2; 3.3Þ–ð1; 3.2Þ ð1; 46.6Þ–ð1; 117.7Þ
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in the study of its HQSS partners like Xð3872Þ by the loop
enhancement if there exists a near-threshold bound/virtual
state [107,108]. As for the isovector Dð�ÞD̄ð�Þ, we found no
bound/virtual states here but the observed hadronic mol-
ecule candidate Zcð4020Þ� [109,110] is actually generated
by more complicated mechanisms, similar to Zcð3900Þ to
be discussed later.
For the DD̄� system, the three-body unitarity has to be

taken into account. Interestingly, it seems that there should
exist a counterpart of Xð3872Þ with negative C-parity,
denoted as X̃ð3872Þ, which has been studied in the
literature [111–114]. In Fig. 8, we plot the pole positions
of these two states with respect to Λ and CV . Similarly, the
binding energy of Xð3872Þ is estimated to be from
hundreds of keV to a few MeV along with an imaginary
part comparable with that of Tþ

cc. One notices the different
dependence behaviors of the width and binding energy EB
on the short-distance parameter CV for Xð3872Þ. Namely,
with the increase of CV the value of jEBj drops and the
width (defined as twice of the absolute value of the
imaginary part of the pole position) increases. In particular,
with CV → 1, the width increases up to 40 keV–60 keV
where EB is only hundreds of keV. This behavior is
consistent with the results of Refs. [91,98]. In the upper
panels of Fig. 8 one also sees the correlation of the width
and binding energy with the cutoff parameter Λ with the

fixed CV . With the smaller value for Λ, one obtains a
relatively shallower binding and relatively larger width.
Note that with the fixed CV the smaller value of Λ
corresponds to the smaller contributions from the short-
distance dynamics. The driving mechanism for the binding
of Xð3872Þ due to the short-distance dynamics is actually
highlighted.
In contrast with Xð3872Þ, the C ¼ −1 isoscalar X̃ð3872Þ

is found to be more bound with a slightly smaller imaginary
part. Actually, if one only looks at the solid lines for both
Xð3872Þ and X̃ð3872Þ in Fig. 8, their values are quite close
to each other. However, with the increase of the Λ value the
binding energy and total width of X̃ð3872Þ both increase.
As mentioned earlier that the larger value of Λ corresponds
to larger contributions from the short-distance dynamics, it
suggests that the coupling strength for X̃ð3872Þ to DD̄� þ
c:c: increases. Such a change, on the one hand, leads to a
larger binding energy, and on the other hand, overtakes
the decrease of the phase space to produce a larger
decay width. With Λ ∼ 0.4 GeV favored by Xð3872Þ (by
comparing the extracted pole mass with the value from
the Particle Data Group (PDG) [115]), the binding energy
of X̃ð3872Þ is about 10 MeV, which is very close to the
result MX̃ð3872Þ ¼ 3860.4� 10.0 MeV=c2 reported by the
COMPASS Collaboration [111]. However, it should be
cautioned that for such a deeply bound state, the formula of

FIG. 8. Real and imaginary parts of pole positions relative to the D0D̄�0 þ c:c: threshold of isoscalar DD̄� with the positive (upper
panels) and negative (lower panels) C-parity.
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the D� width must be revised regarding the small mass
difference betweenD� andDπ, and the large binding energy
up to 10 MeV. To be brief, comparing the behaviors of
Xð3872Þ and X̃ð3872Þ with each other one sees the crucial
role played by the short-distance dynamics. Meanwhile, one
sees the apparent deviations from the HQSS.
For the isovectorDD̄� system, the interactions from the ρ

and ω meson exchanges actually cancel with each other.
Without additional mechanisms this system cannot form
bound state through the residual meson-exchange poten-
tials (i.e., σ, π, η, J=ψ , etc.), and it turns out more likely to
be a virtual state or resonance (see e.g., Refs. [116–120]
and the review of Ref. [7]). This can be regarded as being
consistent with the experimental observations of Zcð3900Þ
[121–123]. In particular, the observation of Zcð3900Þ
seems to be strongly correlated with the production of
Yð4260Þ for which the presence of the so-called “triangle
singularity” can provide a natural explanation for its
enhanced production rate [124,125].

IV. SUMMARY

Motivated by the observation of the double-charm
tetraquark molecule candidate Tþ

cc by the LHCb
Collaboration, we present a coupled-channel analysis of
the D0D0πþ mass spectrum within the meson-exchange
model including isospin breaking effect. It is found that the
dynamical details, and the two-body or three-body unitarity,
have indeed played an important role in the description of the
underlying dynamics for such composite states with unstable
constituents. The well-described line shape allows us to
extract the pole information about Tþ

cc at a rather high
precision and it confirms the nature of Tþ

cc as an isoscalar
DD� hadronic molecule which can be regarded as a mile-
stone in the study of hadronic molecules and hadron
spectroscopy. Moreover, by implementing the HQSS it
provides a stringent constraint on some of those crucial
dynamical aspects for theDð�ÞD̄ð�Þ systems which allows us
to compare with the EFT results and examine the HQSS
breaking effects through the combined analysis. In particular,
the existence of another double-charm hadronic molecule
candidateD�D�ðI ¼ 0Þ is predicted in the same framework.
In the combined analysis the interactions between the

charmed mesons are hypothesized to be saturated by the
meson-exchange potentials. This allows us to relate the OBE
potentials for the double-charm system with the charmed-
anticharmed system. Although it should be recognized that
the short-distance dynamics between the charm quark

rearrangement and charm-anticharm annihilations are
actually different, we expect that these two systems will
still share some crucial aspects of the dynamics via the
OBEpotentials. It allowsus to establish the relations between
the double-charm and charmed-anticharmed systems, and
extract thebindingconditions for these systems, especially for
the isoscalar ones. For isovector states such as Zcð3900Þ and
Zcð4020Þ, we find that the light vector mesons potentials via
the exchange of ρ0 and ω actually cancel each other. The
residual potentials turn out to be insufficient for binding. It
suggests that Zcð3900Þ and Zcð4020Þ should behave more
likely to be threshold-enhanced virtual states, resonances, or
even quasibound states depending on additional mechanisms
introduced. Besides, the correlation of the Zcð3900Þ and
Zcð4020Þ productions with the triangle singularity mecha-
nismmake it necessary to include the productionmechanisms
in the detailed analysis. While these are still nontrivial issues
to be addressed, we leave them to be studied in future works.
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APPENDIX A: WAVE FUNCTIONS AND
MESON-EXCHANGE POTENTIALS

For the S-wave DD (D�D�) systems, the isoscalar
and isovector wave functions are ½Dð�ÞDð�Þ�∓ ¼
− 1ffiffi

2
p ðDð�Þ0Dð�Þþ ∓ Dð�ÞþDð�Þ0Þ. However, some of those

are forbidden due to the Bose-Einstein statistic;
Lþ Sþ I þ 2i ¼ even number, with L and S the total
orbital angular momentum and spin of the two mesons; I
and i the total and individual isospin of the mesons [see
Eq. (15) in Ref. [58] ]. For instance, for the DD system, the
I ¼ 0 state is forbidden. The meson-exchange potentials are

V ½DD�þ ¼ −g2SX̃
0
σ −

g2Vβ
2

4
X 0

ρ0
þ g2Vβ

2

4
X 0

ω þ g2Vβ
2

2
X 0

ρ− ; ðA1Þ

V ½D�D��∓ ¼ −g2SX̃
00
σ −

1

2

�
g
fπ

�
2

Y00
π0
þ 1

6

�
g
fπ

�
2

Y00
η −

g2Vβ
2

4
X 00

ρ0
þ 2λ2g2VZ

00
ρ0
þ g2Vβ

2

4
X 00

ω − 2λ2g2VZ
00
ω; ðA2Þ
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þ g2Vβ
2

2
X 00

J=ψ − 4λ2g2VZ
00
J=ψ þ

�
g
fπ

�
2

Y00
ηc ∓

	
g2Vβ

2

2
X 00

ρþ − 4λ2g2VZ
00
ρþ þ

�
g
fπ

�
2

Y00
πþ



; ðA3Þ

where we have defined some new functions,

X̃ 0
ex ¼

1

jqj2 þm2
ex − q0

2 ; X 0
ex ¼

ð1 − q0
2

m2
ex
Þ

jqj2 þm2
ex − q0

2 ; ðA4Þ

X̃ 00
ex ¼

ϵ1 · ϵ�3ϵ2 · ϵ
�
4

jqj2 þm2
ex − q0

2 ; X 00
ex ¼

ð1 − q02

m2
ex
Þϵ1 · ϵ�3ϵ2 · ϵ�4

jqj2 þm2
ex − q0

2 ; ðA5Þ

Y00
ex ¼

ðϵ1 × ϵ�3Þ · qðϵ2 × ϵ�4Þ · q
jqj2 þm2

ex − q0
2 ; Z00

ex ¼
ðϵ1 × ϵ�3 × qÞ · ðϵ2 × ϵ�4 × qÞ

jqj2 þm2
ex − q0

2 ; ðA6Þ

with ϵi the polarization vector of initial or final D� mesons. And similarly, we make the following substitutions for the spin-
dependent terms:

Y00
P=V ∼

1

3

�
−

μ2P=V
jqj2 þ μ2P=V

þ CP=V

�
Ŝðϵ1 × ϵ�3; ϵ2 × ϵ�4Þ; ðA7Þ

Z00
V ∼

2

3

�
−

μ2V
jqj2 þ μ2V

þ CV

�
Ŝðϵ1 × ϵ�3; ϵ2 × ϵ�4Þ: ðA8Þ

where thematrix elements of operator Ŝðϵ1 × ϵ�3; ϵ2 × ϵ�4Þ are
2; 1;−1 for different total spin J ¼ 0, 1, 2, respectively, and
the tensor part T̂ðϵ1 × ϵ�3; ϵ2 × ϵ�4Þ vanishes (seeAppendixA
in Ref. [126]).
ForDD̄ (D�D̄�), thewave functions are correlatedwith the

charge conjugation parity C ¼ ð−1ÞLþS for the charge-
neutral systems. Thus, the allowed quantum numbers
for DD̄ are only those with C ¼ þ, i.e., ½DD̄�� ¼
1ffiffi
2

p ðD0D̄0 �DþD−Þ, where “þ” corresponds to the isoscalar

and “−” to the isovector:
(1) D0D̄0 → D0D̄0=DþD− → DþD−

V ½DD̄� ¼−g2SX̃
0
σ −

g2Vβ
2

4
X 0

ρ0
−
g2Vβ

2

4
X 0

ω−
g2Vβ

2

2
X 0

J=ψ ;

ðA9Þ

(2) D0D̄0 → DþD−

V ½DD̄� ¼ −
g2Vβ

2

2
X 0

ρ− : ðA10Þ

The allowed quantum numbers for the D�D̄� system are
those with C ¼ þ; J ¼ 0, 2 or C ¼ −; J ¼ 1 for wave
functions ½D�D̄��� ¼ 1ffiffi

2
p ðD�0D̄�0 �D�þD�−Þ:

(1) D�0D̄�0 → D�0D̄�0=D�þD�− → D�þD�−

V ½D�D̄�� ¼ −g2SX̃
00
σ −

g2Vβ
2

4
X 00

ρ0
þ 2λ2g2VZ

00
ρ0

−
g2Vβ

2

4
X 00

ω þ 2λ2g2VZ
00
ω

−
g2Vβ

2

2
X 00

J=ψ þ 4λ2g2VZ
00
J=ψ ðA11Þ

þ 1

2

�
g
fπ

�
2

Y00
π0
þ 1

6

�
g
fπ

�
2

Y00
η þ

�
g
fπ

�
2

Y00
ηc ; ðA12Þ

(2) D�0D̄�0 → D�þD�−

V ½D�D̄�� ¼ −
g2Vβ

2

2
X 00

ρ− þ 4λ2g2VZ
00
ρ− þ

�
g
fπ

�
2

Y00
π− :

ðA13Þ

APPENDIX B: ANALYTIC STRUCTURES

We present a detailed treatment for the branch points/
cuts and analytic continuation encountered when solving
the coupled-channel LSE. For the 3S1 system, Eq. (19) can
be reduced to
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Tαβðp; k;EÞ ¼ Vαβðp; k;EÞ þ
X
δ

Z
Λ

0

dqq2

2π2
Vαδðp; q;EÞGδδðq;EÞTδβðq; k;EÞ: ðB1Þ

Note that we have used the following relations for the
projected partial-wave potentials Vij in the above
equation [127],

Vijð−p1; p2Þ ¼ ð−1ÞliVijðp1; p2Þ;
Vijðp1;−p2Þ ¼ ð−1ÞljVijðp1; p2Þ; ðB2Þ

with li the angular momentum and p1;2 the initial/final
magnitude of the three-vector momentum.
As discussed in Refs. [95,101,127], the most important

branch points/cuts come from two kinds: the RHCs induced
by the thresholds (open channels) and the left-hand cuts
(LHCs) arising from the particle-exchange potentials.

1. The participation of new channel

For each channel, there will be a new branch point
located at the threshold which leads to a new branch cut
(usually starting from the threshold to the positive infinity).
For a channel with stable particles, e.g., ππ, the branch
point is located at 2mπ on the physical axis and thus they
usually have a significant influence on the observable. For a
channel with an unstable particle, e.g., σN, the branch
points are located at mN þmσ � iΓσ=2, where Γσ is the
width of σ. Since they are always on the complex plane, the
poles on these Riemann sheets induced by these cuts are of
no interests in most cases.
Therefore, for DD� → DD� process, the most relevant

branch points are those DDπ thresholds (D0D0πþ,
D0Dþπ0 and DþDþπ−) [101]. For the case of ℑE > 0,

the path of E0 [transformed by Eq. (27)] when integrating q
from zero to positive infinity along the real axis (unde-
formed path) does not cross the cut (see Fig. 7 in
Ref. [100]) and hence there is no analytic problem.
However, when E enters into the lower half plane, i.e.,
ℑE < 0 forℜE > m1 þm2 þm3, the corresponding unde-
formed path in E0 complex plane will enclose the RHC and
thus leads to discontinuity. To analytically continue to the
lower half plane of E, the branch cut of D�½Dπ� self-energy
can be redirected along the negative imaginary axis which
means the function F ðE; q; m1; m2; m3Þ is replaced by
F̃ ðE; q; m1; m2; m3Þ in Eq. (29) first. We plot the
F ðE; 0; mD0 ; mπþ ; mD0Þ and F̃ ðE; 0; mD0 ; mπþ ; mD0Þ as a
demonstration in Fig. 9.
Meanwhile, the integral path of q shall be deformed and

we adopt the parametrization used in Ref. [96], namely,

ΓSMC ¼ fqjq¼ tþ iV0ð1− e−t=wÞð1− eðt−ΛÞ=wÞ; t∈ ½0;Λ�g:
ðB3Þ

With ω ∼ 0.1 GeV and V0 ∼ −0.1 GeV, the “spectator
momentum contour” (SMC) can be deformed and deep into
the lower half complex plane with the endpoints q ¼ 0;Λ
fixed. And then the deformed path of E0 can avoid crossing
the branch cut parallel to the negative imaginary axis, given
by F̃ (see Fig. 7 in Ref. [100]). Another advantage of such
a parametrization is that the divergence of the pion-
exchange potentials can also be moderated to some extent
[128] which we will discuss in the next subsection.

FIG. 9. The real part of pcm of D�þ½D0πþ�D0 before(a)/after(b) the analytic continuation within the energy range −500 keV ≤
ℜE ≤ 500 keV relative to D0πþD0 threshold and width range −500 keV ≤ ℑE ≤ 500 keV when the frame D�þ½D0πþ� is static, i.e.,
q ¼ 0. The three-body cut is redirected from the RHC on the real axis to the direction parallel to the negative imaginary axis.
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2. The particle-exchange potentials

Due to the unitarity, the t- and u-channel particle-exchange potentials can always lead to the LHCs when projecting these
potentials into partial waves. For a general process aðp1Þbðp2Þ → cðp3Þdðp4Þ, the t-channel S-wave projected potential is

Z
1

−1

dz
t −m2

ex
¼

Z
1

−1

dz
ðE3 − E1Þ2 − p2

1 − p2
3 þ 2zp1p3 −m2

ex

¼ 1

2p1p3

log

�ðp3 − p1Þ2 − ðE3 − E1Þ2 þm2
ex

ðp3 þ p1Þ2 − ðE3 − E1Þ2 þm2
ex

�

¼ 1

2p1p3

½logððp3 − p1Þ2 − ðE3 − E1Þ2 þm2
exÞ − logððp3 þ p1Þ2 − ðE3 − E1Þ2 þm2

exÞ�; ðB4Þ

with mi=Ei=pi (i ¼ 1, 2, 3, 4) the mass/energy/module of
the three-vector momentum of particle a, b, c, d in order,
and mex the mass of the exchanged particle. Note that the
last second step to the last one is reasonable only for pi on
the physical axis or around it. Otherwise, the potential in
such a form has to be analytically extrapolated properly.
The branch cuts are thus determined by restricting the
arguments of the two logarithms into ð−∞; 0Þ, i.e.,

p3 ¼ �p1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE3 − E1Þ2 −m2

ex − x2
q

; x∈R; ðB5Þ

where the two “�” signs are uncorrelated. Equation (B5)
gives rise to the curved cut, called dynamical cuts (DCs),
with p3 as a function of p1 and the exact discontinuities can
be evaluated by the N/D method [127]. As for t-channel
jE3 − E1j ≪ mex in our case DD� → DD�ðDD̄� → DD̄�Þ,
the on shell, half-off shell and off shell projected partial
potentials are argued as follows:
(1) For the on shell case p1 ≈ p3, Eq. (B5) with minus

sign in the first � symbol gives,

p3 ≈� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE3 − E1Þ2 −m2

ex − x2
q

; ðB6Þ

which leads to the LHC along p2
3 ≤ − m2

ex
4
, which

means that the crossing of cuts only happens
when jℑp3j ≥ mex

2
;

(2) For the half-off shell case p1 > 0, the imaginary part
of p3, dominated bymex, is still far from the physical
region of interests (about tens of MeV mostly) since
the masses of the t-channel exchanged mesons are
usually at the amount of hundreds of MeV (ρ, ω,
σ, etc);

(3) For the off shell case with p1, p3 > 0, there is no
crossing of cuts as seen from the second line
in Eq. (B4).

While for the u-channel processes (by performing
p3 ↔ p4), the situation turns to be subtle as jE4 − E1j
becomes comparable with or even larger than mex for the
exchanged pion while still the same for heavier exchanged
mesons. Similarly, the projected partial potentials are
treated as follows:
(1) For the on shell case, the poles of the integrand

ðE4 − E1Þ2 − p2
4 − p2

1 þ 2zp1p4 −m2
π ¼ 0 for z

within the interval ½−1; 1� actually lead to different
branch cuts for the three different processes in-
volved: 1) a finite cut on the real axis above the

D0D�þ threshold for process D0D�þ ⟶
πþ

D�þD0;
2) a finite cut along with a circular cut as shown in

Fig. 22 in Ref. [100] for processD0D�þ ⟶
π0

D�0Dþ;
3) a finite cut crossing the D0D�þ threshold for

DþD�0 ⟶
πþ

D�0Dþ which can be treated analyti-
cally as shown later;

(2) For the off shell case with p1, p4 > 0, the
above condition turns out to be a finite cut

ð0; jm2
4
−m2

3
−m2

1
þm2

2
j

2mπ
� in the

ffiffiffi
s

p
complex plane

(which fully covers ð0; mD0 þmD�þ � for process

D0D�þ ⟶
πþ

D�þD0) and thus crossing over the cut
will occur which produces discontinuity when the
energy

ffiffiffi
s

p
moves from the upper-half plane to the

lower one. Thus, one needs to deform the integral
path rather than ½−1; 1� on the real axis such as a
polyline −1 → −1 − ia → 1 − ia → 1 with suffi-
ciently large a as used in Ref. [95] or analytically
continue by adding the discontinuity on the real
axis directly, i.e., twice of the imaginary part on
the cut,

Z
1

−1

1

z − ξ
¼

�
logð1 − ξÞ − logð−1 − ξÞ þ 2πi; jℜξj < 1 and ℑξ < 0;

logð1 − ξÞ − logð−1 − ξÞ; else;
ðB7Þ
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with ξ ¼ p2
1
þp2

4
þm2

π−ðE4−E1Þ2
2p1p4

;
(3) The situation becomes even more complicated for

the half-off shell case. But the procedure goes the
same as the previous case with the mentioned
adjustment above.

In our work, we have made a proper treatment for the
analytic issues as discussed above, and in Fig. 10 the
singular region of the integrand

p� ¼ −l · z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðz2 − 1Þ −m2

π þ jE4 − E1j2
q

ðB8Þ

for l∈ΓSMC and z∈ ½−1; 1� is illustrated. We have to admit
that there are still certain flaws in our numerical treatment
though they do not affect what we have achieved. It is
worth noting that a better treatment of the on shell OPE is to
decompose it into two parts in TOPT as in Fig. 2(b) since
the OPE receives its cut only from the forward diagrams,
i.e., the DDπ cuts in our work [96].

APPENDIX C: CORRELATION BETWEEN
CUTOFF PARAMETER Λ AND POTENTIAL

STRENGTH CV

In this subsection, we give a detailed explanation of the
dependence behavior betweenΛ and CV found in Fig. 6. To

proceed, we simplify the issue of double-charm tetraquark
Tþ
cc into a single-channel scattering problem where the

NLO three-body cuts are also turned off. In such a case, the
pole of the amplitude, solved by a typical LSE, is evaluated
by the root of the determination, namely,

0 ¼ 1 −
Z

∞

0

d3q
ð2πÞ3 VðqÞGðq;EÞΘðΛ − qÞ ðC1Þ

¼ 1þ
Z

Λ

0

dq
μDD�q2

π2ð2μDD�EB þ q2ÞVðqÞ ðC2Þ

with μDD� the reduced mass of the composite DD� system
and EB ≈ 273 keV the binding energy of Tþ

cc from the
LHCb’s Briet-Wigner fitting as an illustration. The typical
momentum scale γT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μDD�EB
p

≈ 22 MeV is far below
a typical hard scale 0.3 ∼ Λ ∼ 1.2 GeV. The potentials
involved in our work can be parametrized as

VðqÞ ¼ c0 · CV þ
XN
i

ai
1

q2 þ μ2i
þ
XM
j¼1

bj
q2

q2 þ μ2j
; ðC3Þ

and then each integral term in Eq. (C2) is listed as follows:

fCTðΛÞ ¼
Z

Λ

0

dq
μDD�q2

π2ð2μDD�EB þ q2Þ · 1 ¼ μDD�γT
π2

	
Λ
γT

− arctan

�
Λ
γT

�

; ðC4Þ

fE1ðΛ; μiÞ ¼
Z

Λ

0

dq
μDD�q2

π2ð2μDD�EB þ q2Þ ·
1

q2 þ μ2i
¼ μDD�

π2
μi · arctanðΛμiÞ − γT · arctanðΛγTÞ

μ2i − γ2T
; ðC5Þ

FIG. 10. The complex contour ΓSMC (red line) and its singular region (gaussian points in light blue or purple) given by Eq. (B8) for

process D0D�þ ⟶
π0

D�0Dþ (left) and D0D�þ ⟶
π−

D�þD0 (right). The parameters used in this demo are Λ ¼ 0.5 GeV, ω ¼ 0.1 GeV
and V0 ¼ −0.1 GeV. As shown in the figures, there is no analytical problem with the left process when solving the LSE. However,
crossing the cut ½−1; 1� will occur for the right one, which can be treated properly by Eq. (B7). See the text for further explanations.
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fM1ðΛ; μjÞ ¼
Z

Λ

0

dq
μDD�q2

π2ð2μDD�EB þ q2Þ ·
q2

q2 þ μ2j
¼ μDD�

π2
Λðμ2j − γ2TÞ − μ3j arctanðΛμjÞ þ γ3T arctanðΛγTÞ

μ2j − γ2T
: ðC6Þ

Since the vector-meson exchange plays the dominant role
in the heavy meson-(anti)meson systems, we plot the above
three functions and their derivativeswithμi=j ≈mρ in Fig. 11.
It shows that these three types of potentials lead to different
dependencebehaviors at differentmomentum regions: 1) that
of contact potential is always proportional to Λ due to the
separation Λ ≫ γT ; 2) that of E1-type potentials, which

manifest for a small q, increasewith a decreasing rate; 3) that
of M1-type potentials, which manifest for a large q, increase
with an increasing rate. And then, the dependence in Fig. 6
can be understood similarly if flipping the Λ − CV axes
where a stationary point shows up from the competition
between fE1 and fM1 around Λ ≈ 1.0 GeV (the precise
position is also related to the prefactors ai=bi=ci).
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