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We investigate the effects of the asymmetric pulse shapes on electron-positron pair production in a
field with three different cases of chirping via the real-time Dirac-Heisenberg-Wigner formalism. Our
findings reveal the disappearance of interference effects with shorter falling pulse length, and the peak is
concentrated on the left side of the momentum spectrum. As the falling pulse length extends, an
incomplete multiring structure appears in the momentum spectrum. The number density of particles are
very sensitive to the asymmetry of the pulse. With a long falling pulse, the number density can be
significantly enhanced by over four orders of magnitude when certain frequency chirps are utilized.
These results highlight the impact of the effective dynamically assisted mechanism and the frequency
chirp on pair creation.
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I. INTRODUCTION

Electron-positron ðe−eþÞ pair production in the vacuum
under strong electromagnetic fields stands as one of the
most intriguing phenomena in relativistic quantum phys-
ics [1–6]. This effect has yet to be directly observed in
the laboratory. The reason is that the critical field
strength Ecr ¼ m2c3=eℏ ≈ 1.3 × 1016 V=cm is too high,
which corresponds to the laser intensity of about 4.3 ×
1029 W=cm2 (where m and −e is the electron mass and
charge, respectively). Such an intensity level is presently
unattainable. Nevertheless, x-ray free electron laser sys-
tems approach near-critical field strengths of E=Ecr ≈
0.01–0.1 [7]. Recent advancements in high-intensity laser
technology [8,9] provide prospects for potential exper-
imental validation in the near future.
The influence of different pulse profiles on pair pro-

duction has been a subject of extensive research.
Hebenstreit et al. noted a significant sensitivity of momen-
tum spectra to external field parameters using short-pulse
lasers [10]. Furthermore, in spatially inhomogeneous
pulse fields, the pair production process is accompanied
by particle self-focusing effects [11]. Schützhold et al.
introduced a dynamically assisted Schwinger mechanism,

which combines low-frequency strong fields with high-
frequency weak fields [12], substantially amplifying the
particle production rate. Recently, the impact of frequency
chirp effects on particle momentum spectra and number
density in time-dependent electric field [13–16] has
attracted increased attention. Specifically, research has
focused on enhancing particle creation in both time-
dependent monochromatic and bichromatic laser fields
subjected to frequency chirp [17–22], and exploring
asymmetric pulse shapes in single-color fields [23,24].
Numerous studies aim to enhance pair production through
various field combinations.
In this study, we explore vacuum pair production, con-

sidering a range of chirp parameters and asymmetric pulse
shapes in the electric field. Our approach is based on the
Dirac-Heisenberg-Wigner (DHW) formalism, which can
handle diverse chirp and asymmetric envelope fields. We
observe that the momentum spectrum exhibits a high
sensitivity to chirp, revealing interference effects for varying
pulse shapes and chirp parameters. The particle number
density is in general enhanced with increasing chirp.
Specifically, in instances of extended falling pulses, the
effect of chirp results in an enhancement of the particle
number density by up to four orders of magnitude.
Throughout our study, we adopt natural units (ℏ ¼ c ¼ 1)
and express all quantities in terms of the electron mass m.
The paper is structured as follows: In Sec. II, we provide

a brief overview of the DHW formalism applied in this
study. In Sec. III, we introduce the model for background
fields. Within Sec. IV, we present numerical outcomes
concerning the momentum spectrum and analyze the
underlying physics. In Sec. V, we focus on numerical
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findings related to the number density. Finally, in Sec. VI,
we provide a summary and discussion.

II. DHW FORMALISM

The DHW formalism is an approach used to describe
quantum phenomena within a system, utilizing the Wigner
function to represent the relativistic phase space distribu-
tion. We employ the widely adopted DHW formalism for
investigating vacuum pair production within strong back-
ground fields [18,25–32]. Since the specific derivation of
DHW has been explained in prior studies [33,34], this work
focuses on presenting the fundamental concepts and
essential aspects of this method.
For convenience, we start with the system’s gauge-

invariant density operator,

Ĉαβðr; sÞ ¼ UðA; r; sÞ½ψ̄βðr − s=2Þ;ψαðrþ s=2Þ�; ð1Þ

where the electron’s spinor-valued Dirac field is denoted by
ψβðxÞ, where r represents the c.m. and s denotes the relative
coordinates. The introduction of the Wilson line factor,
UðA; r; sÞ, aims to maintain the gauge invariance of the
density operator. This factor’s properties are determined by
the elementary charge e and the background gauge field A.
An essential component of the DHW formalism is the

covariant Wigner operator, which is obtained by Fourier
transforming the density operator Eq. (1),

Ŵαβðr; pÞ ¼
1

2

Z
d4seipsĈαβðr; sÞ: ð2Þ

Upon calculating the vacuum expectation value of the
Wigner operator, we obtain the Wigner function,

Wðr; pÞ ¼ hΦjŴðr; pÞjΦi: ð3Þ

To derive the time-evolution equation, we rely on the equal-
time Wigner function

wðx;p; tÞ ¼
Z

dp0

2π
Wðr; pÞ: ð4Þ

TheWigner function can be decomposed into a complete
basis set of Dirac matrices, resulting in 16 covariant real
Wigner components,

w ¼ 1

4
ð1sþ iγ5pþ γμvμ þ γμγ5aμ þ σμνtμνÞ; ð5Þ

where s, p, vμ, aμ and tμν denote scalar, pseudoscalar,
vector, axial vector and tensor, respectively. According to
the Refs. [26,27,33], the motion equation for the Wigner
function is

Dtw ¼ −
1

2
Dx½γ0γ;w� − im½γ0;w� − iPfγ0γ;wg; ð6Þ

where Dt, Dx and P are represented as pseudodifferential
operators.
By embedding the motion Eq. (5) into Eq. (6), we

obtain a system of partial differential equations for the
16 Wigner components. Besides, for spatial homogeneous
time-dependent electric fields we can use the characteristic
method [35] to replace the dynamical momentum p with the
canonical momentum q via q − eAðtÞ, thus, the system of
partial differential equations for the 16 Wigner components
can be simplified to a set of 10 ordinary differential
equations:

w ¼ ðs; vi; ai; tiÞ; ti ≔ t0i − ti0: ð7Þ

Due to the complexity of the motion equation of the Wigner
function, we do not present a detailed derivation here, but it
is available in the cited Refs. [27,33]. The relevant nonzero
vacuum initial values are as follows:

svac ¼
−2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ; vi;vac ¼
−2piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð8Þ

Hereafter, we denote the scalar Wigner function fðq; tÞ
using the single-particle momentum distribution function,

fðq; tÞ ¼ 1

2Ωðq; tÞ ðε − εvacÞ; ð9Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðq − eAðtÞÞ2

p
is the total

energy of particle, ε ¼ msþ pivi represents the phase
space energy density, m represents the electron mass.
To accurately compute the single-particle momentum

distribution fðq; tÞ, we refer to Ref. [35]. We introduce an
auxiliary three-dimensional vector vðq; tÞ to facilitate the
calculation:

vðq; tÞ ≔ viðpðtÞ; tÞ − ð1 − fðq; tÞÞvi;vacðpðtÞ; tÞ: ð10Þ

Consequently, by solving the following ordinary differ-
ential equations, the single-particle momentum distribution
function fðq; tÞ can be obtained:

ḟ ¼ eE · v
2Ω

;

v̇ ¼ 2

Ω3
½ðeE · pÞp − eEΩ2�ðf − 1Þ

−
ðeE · vÞp

Ω2
− 2p × a − 2mt;

ȧ ¼ −2p × v;

ṫ ¼ 2

m
½m2v þ ðp · vÞp�; ð11Þ
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where fðq;−∞Þ¼0;vðq;−∞Þ¼aðq;−∞Þ¼ tðq;−∞Þ¼0
are initial conditions, dot represents a total time derivative,
v denotes current density, a is spin density, E is electric
field, p represents kinetic momentum, q denotes canonical
momentum, e is the charge of particle, i.e., jej and −jej for
positron and electron, respectively, AðtÞ is the vector
potential of the external field.
Ultimately, the number density of created pairs, defined

at the asymptotic limit as t → þ∞, can be determined by
integrating the distribution function fðq; tÞ:

n ¼ lim
t→þ∞

Z
d3q
ð2πÞ3 fðq; tÞ: ð12Þ

III. THE EXTERNAL FIELD FORM

We study the pair production in asymmetric frequency-
chirped electric fields. The external electric field we
consider is presented as follows:

EðtÞ ¼ E0

�
exp

�
−

t2

2τ1
2

�
Hð−tÞ þ exp

�
−

t2

2τ2
2

�
HðtÞ

�
× cosðbt2 þ ωtÞex; ð13Þ

where E0 represents the electric field amplitude, τ1 and τ2
denote the rising and falling pulse duration,HðtÞ stands for
the Heaviside step function, ω corresponds to the oscil-
lation frequency of the electric field, b is the chirp
parameter. We introduce a time-dependent effective fre-
quency, ωeff ¼ ωþ 2bt.
Notably, the electric field described by Eq. (13) is

solely time dependent and can be regarded as a standing
wave formed by two laser beams with different pulse
widths and opposite propagation directions. In our study
of e−eþ pair production, we define the following electric
field parameters:

E0¼ 0.1Ecr; ω¼0.6m; τ1¼ 10=m; τ2¼ kτ1; ð14Þ
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FIG. 1. Displaying asymmetric time-dependent electric field with ratio parameter k ¼ 0.5, k ¼ 1, k ¼ 2 and k ¼ 3. The red dashed
line, purple dashed line and solid blue line are corresponding to the field with chirp parameter b ¼ 0 m2, b ¼ 0.001 m2 and
b ¼ 0.012 m2, respectively. The chosen parameters are E0 ¼ 0.1Ecr, ω ¼ 0.6 m, τ1 ¼ 10=m and τ2 ¼ kτ1.
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where Ecr ¼ m2c3=eℏ ≈ 1.3 × 1016 V=cm stands as the
Schwinger critical field strength, k denotes the ratio of the
falling pulse duration to the rising pulse duration, adjust-
ing the field’s asymmetry. The pair production primarily
occurs within the time interval −τ < t < τ and the chirp
parameter b can be expressed as b ¼ αω=2τ (0 ≤ α ≤ 1).
We select the chirp parameter b to fall within the standard
range with the maximum chirp value to be b ¼ 0.012 m2.
In Fig. 1, we illustrate the influence of time-dependent
electric field over time for different chirp pulse parameters
b and ratio parameter k.
In the study of vacuum pair creation, the Keldysh

parameter holds significant importance and is defined as
follows:

γ ¼ mω=eE; ð15Þ

whereE represents the field strength of the background field.
The tunneling effect and multiphoton absorption can be
investigated by considering γ ≪ 1 and γ ≫ 1, respectively.
In our research, the Keldysh parameter is not significantly
larger than 1, indicating that the creation of particles involves
multiphoton absorption and tunneling effects.

IV. MOMENTUM SPECTRA
OF THE PRODUCED PARTICLES

This section explores the influence of asymmetric pulse
shapes on momentum spectra across varying fields,
encompassing chirp-free, small frequency chirp, and large
frequency chirp configurations.

A. Chirp-free b = 0

The impact of the asymmetric pulse on particle momen-
tum spectra within the chirp-free field is illustrated in
Fig. 2, exploring a range of k values from 0 to 1. The
momentum spectrum is sensitive to the electric field
asymmetry. At k ¼ 1, the momentum spectrum is sym-
metric and peaked at the origin, exhibiting mild oscilla-
tions as depicted in Fig. 2(a). These oscillations arise from
interference among separate complex conjugate pairs of
turning points, detailed in Ref. [13]. When k ¼ 0.7, the
peak has a slight increase with momentum concentrating
around −0.4 m as shown in Fig. 2(b). The breakdown
of symmetry is a direct consequence of the asymmetric
nature of the pulse. When setting k to 0.5, the momentum
spectra split in both positive and negative qx directions,
resulting in the observation of two distinct maxima in the

FIG. 2. Momentum spectra of particles in the ðqx; qyÞ plane with chirp-free (b ¼ 0). The falling-pulse duration τ2 ¼ kτ1 is
compressed, with k varying between 0 and 1. The chosen parameters for the electric field are E0 ¼ 0.1Ecr, ω ¼ 0.6 m, and τ1 ¼ 10=m.
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momentum spectrum in Fig. 2(c). This pronounced asym-
metry in the momentum spectrum resembles the effects
introduced by carrier phase, as studied in Ref. [10]. For
k ¼ 0.3, the minor peak in the negative qx region grows
into a major peak; see Fig. 2(d). This effect is similar to the
frequency-chirp effect studied in Ref. [14]. Finally, the
maximum of the momentum spectrum rises from 4.92 ×
10−6ðk ¼ 1Þ to 6.82 × 10−6ðk ¼ 0.3Þ.
For small values of k, the role of pulse asymmetry is

similar to that of the carrier phase. In the presence of EðtÞ,
the produced pairs are continuously accelerated, and
particle momentum is mainly determined by their creation
time [36,37]. Particles are created with zero longitudinal
momentum at the earlier time t0. After t0, they experience
extended acceleration, resulting in heightened longitudinal
momentum. Typically, the majority of pairs emerge during
instances corresponding to local maxima of the field.
Subsequently, these produced pairs undergo acceleration
due to the electric field, and the gained momenta are [14]

q ¼
Z

t

t0

eEðt0Þdt0 ¼ eAðt0Þ − eAðtÞ: ð16Þ

The particle final momentum is determined solely by the
vector potential at the time of its creation, as the vector
potential asymptotically approaches zero as t ⟶ ∞. For
instance, the peak observed in Fig. 2(a) when k ¼ 1 at
qðt0Þ ¼ 0 can be attributed to the dominant peak in the
electric field at t ¼ 0. As time progresses, the electric field
EðtÞ decreases, leading to a reduction in the number of
particles produced. However, the vector potential AðtÞ
increases simultaneously, resulting in these particles under-
going stronger acceleration. Consequently, the positions of
the peaks and the patterns in the momentum spectrum are
influenced by the pulse shape.
Moreover, with an increased pulse length ratio (k ≥ 1),

the momentum spectra of particles in the ðqx; qyÞ plane, as
shown in Fig. 3, exhibit a progressive decrease in the
central distribution and a gradual decrease in the peak
values. Both of these phenomena are consequences of the
intensifying asymmetry of the background electric field. A
significant observation is the emergence of ringlike struc-
tures in the momentum spectrum. This characteristic
pattern is indicative of multiphoton pair production.
Since the predicted particle canonical momentum is

FIG. 3. Same as Fig. 2 except that the falling pulse length τ2 ¼ kτ1 becomes longer with k ≥ 1.
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jq�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nω
2

�
2

−m2�

s
; ð17Þ

where m� and n are the effective mass and absorption
photon number [38]. The inner ring corresponds to the
absorption of four photons, while the incomplete outer ring
structure corresponds to the absorption of five photons.

B. Small frequency chirp parameter b = 0.002

Considering a small frequency chirp parameter (b ¼
0.002), Fig. 4 presents momentum spectra corresponding
to shorter pulse length ratios. Specifically, the peak of the
momentum spectrum concentrates in the center with a value
of 5.82 × 10−6 as depicted in Fig. 4(a). This peak exhibits a
slight increase compared to conditions without frequency
chirp effects. Notably, the distortion of the momentum
spectrum and the disruption of symmetry about the qx axis
can be attributed to frequency chirp. As k decreases further,
two distinct momentum peaks emerge, with the left peak
continuing to increase, while the right peak gradually
diminishes. When k is set to 0.7, a minor increase in the
momentum distribution in the negative qx region is

observed, as shown in Fig. 4(b). This phenomenon is
associated with pulse asymmetry. This can be attributed
to the shorter falling-pulse duration kτ1, leading to more
particles being accelerated towards the negative qx direction.
At k ¼ 0.5, the momentum spectrum distinctly splits into
two peaks, extending towards both positive and negative qx
directions. The peak in the negative qx region is smaller, as
can be seen in Fig. 4(c). As k decreases to 0.3, the peak in the
negative qx region surpasses that in the positive qx region, as
shown in Fig. 4(d). Furthermore, the oscillation cycles are
few for shorter pulses, making the multiphoton pair pro-
duction signal less clear in the spectrum due to the influence
of the smaller pulse length τ on the Keldysh parameter γ.
We consider the falling-pulse extension (k ≥ 1), as

illustrated in Fig. 5. For an extended falling-pulse, the peak
of the momentum spectrum, situated at (0, 0), increases with
k. At k ¼ 5, additional incomplete ring structures emerge
due to chirp effects. This can be attributed to the electric
field sufficient duration and direction change during pair
creation as pulse length kτ1 increases. Hence, particles
might be accelerated variably, resulting in a spectrum ring
structure. As pulse duration escalates with k, the oscillation
cycles within the Gaussian envelope amplify, leading to
more photons contributing to pair production.

FIG. 4. Same as Fig. 2 except for the small frequency chirp parameter with b ¼ 0.002.
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C. Large frequency chirp parameter b= 0.01

Considering a large frequency chirp parameter, b ¼ 0.01,
we delineate the momentum spectra for short pulses within
the range 0 < k ≤ 1 in Fig. 6. In the symmetric case
(k ¼ 1), the momentum spectrum moves in both positive
and negative qx directions, resulting in a split of the
momentum spectrum, leading to the observation of three
maxima, accompanied by an asymmetrical distribution, as
shown in Fig. 6(a). For k ¼ 0.7, the momentum spectrum
becomes more focused, accompanied by a decrease in the
peak value. When k is set to 0.5, the momentum spectrum
takes on a jellyfishlike shape. A substantial number of
particles are concentrated at the head of the jellyfishlike
momentum spectrum, while the tail exhibits a lower particle
distribution. At k ¼ 0.3, the jellyfishlike momentum dis-
tribution displays a different tail orientation compared to the
case when k ¼ 0.5. As the pulse length ratio k decreases, the
number of oscillations within the envelope becomes exceed-
ingly limited, thereby restricting the increase in effective
frequency ωeff. Therefore, Fig. 6(d) is similar to that in
Figs. 2 and 4(d).
For a large frequency chirp parameter, b ¼ 0.01, we

present the momentum spectra for an extended pulse length
ratio ð1 ≤ k ≤ 5Þ in Fig. 7. As the falling-pulse duration kτ1

increases, the effect of the chirp frequency is magnified.
At k ¼ 2, intriguing interference patterns are observed in
Fig. 7(b). The extended duration of the falling pulse
induces extensive interference, attributable to a significant
number of oscillation periods within the envelope. When
k ¼ 3, partial circular interference patterns are observed in
Fig. 7(c). With increasing pulse length kτ1, the electric field
persists long enough to alter its direction during the pair
creation process. This results in a ring structure of the
spectrum. The asymmetry of the pulse duration contributes
to the emergence of these partial circular patterns. Finally,
for k ¼ 5, these circular structures accumulate layer by
layer, as depicted in Fig. 7(d). Particles are primarily
localized at the center of the circular rings in momentum
spectrum. As the ring radius expands, the momentum
distribution diminishes.

V. NUMBER DENSITY OF PAIR PRODUCTION

In this section, we present the number density of particles
in chirped electric fields with the pulse ratio k varying as
depicted in Fig. 8. For the chirp-free field (b ¼ 0), we
observe a decrease in the particle number density as the
pulse length ratio k increases. Specifically, the number
density drops from 8.31 × 10−8 for k ¼ 0.3 to 9.50 × 10−9

FIG. 5. Same as Fig. 3 except for the small frequency chirp parameter with b ¼ 0.002.
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for k ¼ 5. As k decreases, the field consists of strong pulses
for t < 0 and weak but with a wider frequency component
(in terms of Fourier decomposition) pulses for t > 0. These
two semipulses, operating at different time scales, serve as
an effective dynamically assisted mechanism, leading to an
increase in the number density. A similar phenomenon is
observed in asymmetric linearly polarized pulses in Figs. 7
and 8 from the Ref. [24].
For a small chirp parameter (b ¼ 0.002), we observe an

initial decline in the number density of produced particles as
the pulse ratio k increases. This decrease reaches a minimum
at k ¼ 1, corresponding to a value of 1.96 × 10−8. When
k > 1, the number density begins to rise. The extension of
the pulse duration is accompanied by an increase in the
number of oscillation cycles, thereby enhancing the multi-
photon mechanism. Consequently, number density of par-
ticles rapidly increases for larger pulse ratio k. Interestingly,
the chirp does not necessarily enhance the number density
when b is small. This nonmonotonic relationship between
the number density and the chirp b is mainly attributed to the
temporal structure of the external field.
For a larger chirp parameter, the number density of

particles generated initially decreases and then increases
with the pulse length ratio k. With decreasing values of k,

the dynamically assisted mechanism becomes progressively
more effective, thereby enhancing the number density.
Conversely, for larger values of k, the pulse duration
extends, resulting in an increased number of oscillation
cycles within the Gaussian envelope. Simultaneously, the
effective frequency ωeff increases. Consequently, more
photons contribute to pair production through the multi-
photon absorption mechanism. For instance, in an electric
field with chirp parameter b ¼ 0.012, the number density
reaches its minimum when k is 0.5. The two mechanisms of
enhanced pair production compete, resulting in the lowest
number density.
For a possible optimization scheme, we present the

number density of created particles when the pulse energy
is kept constant but parameters b and k vary, the typical
results are depicted in Fig. 9. Note that almost similar results
are seen for fixed field energy in comparison with that for
fixed field intensity in Fig. 8. However there are delicate
difference between them. For a small chirp in Fig. 9, e.g.,
b ¼ 0.002, the number density decreases with increasing k,
which contrasts with Fig. 8. This can be attributed to the two
facts that on the one side, the multi-photon mechanism is
not significant for a small chirp, on the other hand, the
dynamical assistance mechanism is suppressed strongly for

FIG. 6. Same as Fig. 2 except for the large frequency chirp parameter with b ¼ 0.01.
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FIG. 9. Same as Fig. 8, except that the pulse energy is kept
constant.

FIG. 7. Same as Fig. 3 except for the large frequency chirp parameter with b ¼ 0.01.
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FIG. 8. Number density of particles in asymmetric electric
fields with varying pulse length ratio values k, measured in units
of λ−3c . The chirp parameters b considered in this research are
0; 0̇.002, 0.005, 0.007, 0.01, and 0.12. The electric field param-
eters chosen are E0 ¼ 0.1Ecr, ω ¼ 0.6 m, and τ1 ¼ 10=m.
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a larger k. For a large chirp, the variation trend of number
density is similar between Fig. 8 and Fig. 9 except that the
pair production is reduced a little at the same parameters
when the field energy is fixed.
In a word, for chirp-free and small chirp fields, short-

ening the falling pulse is more conducive to pair produc-
tion. For large chirp fields, elongating the falling pulse is
more helpful for pair production.

VI. SUMMARY AND DISCUSSION

In this study, we investigate the effects of the asymmetric
pulse shape on the momentum spectrum of created e−eþ
pairs in a strong background electric field. We considered
three different chirping, i.e., chirp-free, small frequency
chirp, and large frequency chirp, respectively. Utilizing the
DHW formalism, we analyze the momentum spectrum of
the generated particles. Keeping the rising pulse τ1 constant
while modifying the falling pulse τ2 ¼ kτ1, leading to two
asymmetric scenarios; pulse compression ð0 < k < 1Þ and
pulse extension (k > 1). As the falling pulse kτ1 com-
presses, interference effects gradually diminish with the
decreasing pulse length ratio k. Shortening the pulse length
induces a shift and split of the peaks. Conversely, when the
falling pulse τ2 extends, an incomplete multiring structure
appears for different chirped fields. The signal of multi-
photon pair production becomes pronounced in the chirp-
free field, while interference effects become noticeable in
chirped electric fields.
We also explore the impact of asymmetric falling pulse on

the number density. The particle number density is found to
be highly sensitive to both the asymmetry and chirp
parameters of the pulse. As falling pulse length compresses,
the number density could increase by up to fivefold and
ninefold when field intensity and the energy is kept constant,

respectively. Importantly, an elongated falling pulse leads to
a significant enhancement in the number density of produced
pairs by more than four orders of magnitude. The number
density is influenced by the effective dynamically assisted
mechanism and the frequency chirp. For shorter pulse
(k < 1), we observe that the traditional standard multiphoton
pair production weakens due to the Keldysh parameter γ ¼
mω=eE being modified by another time scale τ of the pulse
duration [24]. For very small τ, this implies that the
oscillation number of the field encompasses fewer cycles
and subcycles, making it not strictly a complete multiphoton
process. However, in this case, the number density of pairs
can be increased remarkably due to the dynamically assisted
mechanism. On the other hand, for the elongated pulse
k > 1, as k increases, pair production is dominated by the
multiphoton mechanism with chirping.
The influence of chirp frequency on momentum spec-

trum and number density is relatively minor during pulse
compression. The number density increases rapidly with
chirp parameters in the case of pulse extension. These
findings contribute to understanding the impact of key
external parameters, namely pulse length and chirp param-
eters, and provide insight into the structure of the external
pulse. While these results reveal useful information about
electron-positron pair production in various chirped fields,
this study is confined to multiphoton pair production.
Further research is essential to investigate the effects of
asymmetric pulse shapes under the Schwinger mechanism.
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