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We introduce a graph neural network architecture designed to extract novel phenomena in the standard
model effective field theory (SMEFT) context from LHC collision data. The proposed infrared- and
collinear-safe architecture is sensitive to the angular orientation of radiation patterns in jets from hadronic
decays of highly energetic massive particles. Equivariance with respect to rotations around the jet axis
allows for extracting the information on the angular orientation decoupled from the jet substructure. We
demonstrate the robustness of the approach and its potential for future probes of the SMEFT at the LHC
through toy studies and with realistic event simulations of the associated production of a W and a Z boson
in the semileptonic decay channel.
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I. INTRODUCTION

The Large Hadron Collider (LHC) is a veritable gold
mine of data, among whose most complex signatures are
collimated sprays of particles (jets) originating from the
hadronic decays of boosted massive particles. This richness
presents a challenge and a fertile ground for exploring
fundamental physics in hadronic final states.
In recent years, machine learning algorithms have been

increasingly adapted to more complex data representations,
with the ensuing rise of the input feature dimension tamed
by imposed symmetries of the underlying physical problem
(see Refs. [1–3] for an overview). In particular, message-
passing graph neural networks (gNNs) [4–6] learn from
relationships among particles that are interpreted as point
clouds with manifest permutation invariance [7–10]. Such
developments have markedly improved the tagging perfor-
mance for the various objects that are reconstructed as highly
energetic jets at collider experiments [11]. Incorporating
invariance or equivariance for symmetry groups specific to

certain tagging challenges refines the algorithms’ inductive
bias and is an active area of research [12–23]. In particular,
infrared and collinear (IRC) safety was integrated into gNNs
bymeans of energy-weightedmessage passing [24], general-
izing energy flow networks [25], and providing robustness to
uncertainties in the modeling of the splitting or merging of
soft and collinear particles. A rich technological toolkit thus
extends the experiments’ grasp on lower-level data repre-
sentations that are particularly relevant for the hadronic final
states considered in this work.
In the theoretical domain, a parallel interest in more low-

level representations of hypothetical new phenomena is
fueled by the absence of any compelling signal of new
resonant phenomena. The standard model effective field
theory (SMEFT) [26–28] has emerged as the preferred
language for describing hypothetical phenomena below an
assumed energy scale, which separates the energy scale of
the LHC from resonant phenomena at much higher scales.
The SMEFT is a powerful framework extending the
standard model (SM) Lagrangian by field monomials
whose prefactors, the Wilson coefficients, are the param-
eters of interest in experimental measurements. These give
the experimentalist a low-level representation of a wide
range of hypothetical high-scale models.
The SMEFT organizing principle is the operators’ mass

dimension, starting at six for the new physics scenarios
relevant at the LHC [28]. Because the lowest-order ampli-
tude modifications are linear in the Wilson coefficients, the
cross-section deviations are accurately described by quad-
ratic polynomials within the SMEFT’s range of validity.
This simple analytic structure, in turn, is exploited in
various simulation-based inference techniques [29–39].
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The linear term in the polynomial describes the SM-
SMEFT interference. It is the only contribution not subject
to further contributions from SMEFT operators with a
higher mass dimension, and, therefore, the unambiguous
harbinger of dimension-6 SMEFT effects. In a wide range
of final states involving decays of massive vector bosons,
however, a naive experimental analysis may unintentionally
remove the sensitivity to the linear contribution. In these
cases, a dedicated angular analysis can sometimes “resur-
rect” the interference terms [40–44]. In such cases, the
orientation of the decay planes of the W or Z boson
provides crucial sensitivity because it can resolve the
amplitudes’ helicity configuration which is altered in the
SMEFT [40]. Analyses of leptonic final states of diboson
processes (VV with V ¼ W, Z, γ, or H) already profit from
the boost in experimental sensitivity [45–47] and served as
a motivating use case for the development of machine-
learned optimal observables [36–39].
The main idea of this paper is to extend this simulation-

based inference approach to hadronic final states and extract
SMEFT sensitivity via a gNN that is equivariant with respect
to azimuthal rotations around the axis of a highly energetic
jet, originating from the hadronic decay of a boostedmassive
particle. The variable-length set of the jet’s constituents is the
input to the gNN. Its output is fed into dense layers that can
also accept other features of the event. The algorithm is
tailored towards the linear SM-SMEFT interference and
exploits the spatial angular orientation of the radiation
patternswith respect to the event remainder. Itsmain purpose
is to learn the score vector associated with the SMEFT
Wilson coefficients. It thus provides machine-learned opti-
mal observables for small deviations from the SM. A
prototypical situation is sketched in Fig. 1.
The rest of the paper is organized as follows. In Sec. II

we describe the subject of our study, the associated
production of a W and a Z boson WZ decaying semi-
leptonically, and the datasets’ structure. In Sec. III, we
formulate the algorithm. We elucidate its main features in
simple toy studies presented in Sec. IV. The application to
simulated WZ events is provided in Sec. V, and we give
conclusions and an outlook in Sec. VI.

II. THE SEMILEPTONIC WZ FINAL STATE

Despite the relatively small number of expected events in
the high-pT regime, we can nevertheless probe SMEFT
operators as they induce energy-growing corrections to the
SM amplitudes [38,39]. Among the diboson final states
providing SMEFT sensitivity to LHC data analyses [45–47],
we chose the comparably simple case of pp → WZ as a
motivating example. We consider the semileptonic decay
channel, where Z → ll and W → q̄q, and restrict to the
highly energetic phase space pTðWÞ > 300 GeV, where the
W boson is reconstructed as a jet by the anti-kT [48]
algorithm in the FASTJET implementation [49] with a radius
parameter of R ¼ 0.8 (AK8) of approximately massless jet
constituents.We focus on the interference contribution to the
differential cross section from the operators

OW ¼ εijkWiν
μ W

jρ
ν W

iμ
ρ and

OW̃ ¼ εijkW̃iν
μ W

jρ
ν W

iμ
ρ ð1Þ

whose Wilson coefficients we denote by CW and CW̃. The
operators OW and OW̃ induce CP-even and CP-odd mod-
ifications of the gauge boson self-interactions, while another

operator, Oð3Þ
Hq ¼ ðH†iD

↔i
μHÞðq̄LσiγμqLÞ, modifies the light

quark–gauge bosonvectorlike interaction.At the linear level,
these operators exhibit energy growth with the center-of-
mass energy of the diboson system, denoted by s. The

operator Oð3Þ
Hq dominantly contributes to the helicity con-

figuration where both bosons are longitudinally polarized
and where SM contribution is constant in s at high energy.
Therefore, the SM-SMEFT interference term introduces
energy growth but does not modify the distributions of the
azimuthal decay-plane angles. Therefore, we do not consider
it further.
The operators OW and OW̃, in contrast, contribute

energy-growing amplitudes for transverse gauge boson
polarization with the same helicities which are small in
the SM. Consequently, the interference contribution van-
ishes in the tail if it is not resurrected by a dedicated angular
analysis [38–40]. In the leptonic decay channels, the
azimuthal orientation of the decay plane φdecay, as shown
in Fig. 1, drives the sensitivity. A dedicated multivariate
analysis of the fully leptonic decay mode exploits this fact
by extracting SMEFT sensitivity from global event kin-
ematics, i.e., per-event features that are reconstructed from
lepton kinematics and in particular angular observables in
the diboson rest frame [38,39].
In our case, we attempt to similarly access this sensitivity

by extracting it with a graph neural network. Because of
the special role of the azimuthal decay plane angle, we
construct it equivariantly with respect to rotations of the
boosted jet’s constituents around the jet axis. The relevant
symmetry group is SO(2), irrespective of whether we
choose our reference frame as the lab frame or, as done

FIG. 1. Sketch of the pp → WZ process, the decay plane, the
decay plane angle φdecay of the W boson decay. The ΔRi and φi

coordinates of a constituent i from a highly energetic jet are
defined with respect to the beam plane and the jet axis.
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in Fig. 1, as the rest frame of the WZ system. Our events are
instances in a dataset

D ¼ fxglobal;j; fxpgNpðjÞ
i¼1 gNevents

j¼1 ; ð2Þ

where xglobal denotes optional global event features, per-
taining to the kinematics of the WZ candidate event, the Z
boson, the transverse missing energy, etc. In each event,
there is also a list of Np approximately massless constituent
particles of an AK8 jet [48]. These constituents could, for
example, be provided by a particle-flow algorithm [50].
Each particle’s feature vector xp contains the four-momentum
pμ
i and, in principle, a number of features which could, e.g.,

represent the quality of the particle tracks association with
the primary collision vertex, its probability of originating
from a pileup vertex [51], or the charge of the particle. We
emphasize that the dataset in Eq. (2) is hierarchical in the
sense that the reference frame for the pμ

i depends on the
event kinematic that also enters via xglobal. There are two
natural choices for these reference frames. In the lab frame,
the constituents’ four-momentum is given by the transverse
momentum pT;i of the particle and the azimuthal angular
difference to the jet axis Δϕi, as well as the difference in
pseudorapidity Δηi. Alternatively, we can obtain a polar
and an azimuthal angle after a Lorentz boost into the
diboson rest frame. In this case, we can align the z axis of
the spherical coordinate system with the jet axis and
measure the azimuthal angle, denoted by φi, with respect
to the beam plane as depicted in Fig. 1. In both cases, we
denote Euclidean distances in the two-dimensional angular
coordinates by ΔR. Either way, the dataset encodes
information on the per-event decay plane that is disguised
in the radiation patterns mapped to the variable-length
constituent vector. The algorithm described in the next
section is designed to extract its SMEFT sensitivity.

III. THE ALGORITHM

The constituents fxpgNp

i¼1 of the highly energetic jet are
individually reconstructed particles that can be viewed as a
point cloud whose elements are feature vectors, composed
of observables like four-momenta, charge, and other
constituent properties.
General message-passing gNNs construct graphs on the

point cloud and iteratively change the representations of
the graphs’ nodes by updating the feature vectors hi by an
aggregate of messages from the nodes in a neighborhood
N ðiÞ and, possibly, from the edges connecting the
nodes [4–6]. In the most general case, a node update
function ψ ðlÞ and a message-passing function ϕðlÞ are
highly expressive learnable functions, typically imple-
mented as multilayer perceptrons (MLPs). At each iteration
lþ 1, these determine the feature vector of a node i from

the messages imðlÞ
j ¼ fðlÞm ðhðlÞ

i ;hðlÞ
j ; eijÞ that are obtained

from the node features hðlÞ
i , the neighbors’ node features

hðlÞ
j , and, possibly, from edge features eðlÞij via the general

node-update formula hðlþ1Þ
i ¼ fðlÞr ðhðlÞ

i ;□j∈N ðiÞim
ðlÞ
j Þ. The

aggregation function, denoted by □, is permutation invari-
ant and accumulates the messages from a suitably defined
neighborhood N ðiÞ of particle i. After a number of L
iterations, the nodes are read out by accumulating the
features hðLÞ with an aggregation function that typically
spans all nodes in the graph. In the simplest setting, this
output is fed into a final global readout MLP whose
parameters, together with the parameters of the message-

passing and per-iteration readout MLPs, fðlÞm and fðlÞr , are
adjusted to minimize a problem-specific loss function.
First, we simplify the problem by demanding IRC safety

via energy-weighted message passing, following Ref. [24].
This requirement imposes a number of restrictions. The
input features for iteration l ¼ 0 are only the four-
vectors pi of the particles. The message-passing function,

specifically, is given by imðlÞ
j ¼ ωðN ðiÞÞ

j fðlÞm ðp̂i; p̂jÞ, where p̂
denotes the direction of the three-momentum of the
particles. The energy weighting is implemented via the
relative hardness

ωN
j ¼ pT;jP

k∈N pT;k
; ð3Þ

where instead of the transverse particle momentum pT , we
could alternatively use another measure of the hardness of
the particle, e.g., the energy or the three-momentum
measured in a well-defined rest frame. Furthermore, the
definition of the neighborhood cannot depend on the
occurrence of infrared or collinear splits of the particles,
excluding, e.g., the otherwise common kNN algorithm.
Instead, a particle j is defined to be in the neighbor-
hood N ðiÞ of a particle i according to the Euclidean
distance in the (pseudo)rapidity-azimuth plane, ΔRij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕðp̂i; p̂jÞ2 þ Δηðp̂i; p̂jÞ2

q
≤ ΔR. The threshold ΔR is a

hyperparameter of the network. Choosing a specific per-
event reference frame for the Np massless constituents
of a given W jet candidate, the gNN inputs for l ¼ 0 are

represented by a feature list fpT;i;φi;ΔRigNp

i¼1 as shown
in Fig. 1.
Our algorithm is also SO(2) equivariant. In general, a

function γ∶ X → Y is equivariant with respect to group
transformations g of a group G, if there are two represen-
tations Tg and Sg, acting on the spaces X and Y, respec-
tively, and the function satisfies SgðγðxÞÞ ¼ γðTgðxÞÞ.
Because SO(2) is a one-dimensional group, we single
out one angular coordinate, denoted by hφ, and demand
that the new representation ðhφ;hÞ∈ ½−π; π� × RM trans-
forms equivariantly under the SO(2) group action as

SΔφðhφ;hÞ ¼ ðhφ þ Δφ;hÞ: ð4Þ
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This group action applies a common shift Δφ to the
azimuthal coordinates hφ and to the azimuthal input
features φi. The M remaining features h of this data
representation transform invariantly. h will encode infor-
mation related to the substructure of the jet, which is also
invariant with respect to these rotations, while hφ can
only contain information associated to quantities that
transform equivariantly with the angle, effectively decou-
pling the two aspects.
Because the group manifold of SO(2) is a circle, we

represent this coordinate in the complex plane as eihφ;i such
that the message-passing relations

hðlþ1Þ
i ¼

X
j∈NðiÞ

ωðNðiÞÞ
j f ðlÞh ðhðlÞ

i ;hðlÞ
j ; hðlÞφ;i − hðlÞφ;jÞ

eih
ðlþ1Þ
φ;i ¼ eih

ðlÞ
φ;iþi

P
j∈NðiÞ ω

ðNðiÞÞ
j fðlÞΦ ðhðlÞ

i ;hðlÞ
j ;hðlÞφ;i−h

ðlÞ
φ;jÞ ð5Þ

are manifestly equivariant under the transformation (4)
if we restrict the inputs to the message-passing neural

networks, fðlÞΦ and f ðlÞh , to group invariants. The distance
function for NðiÞ for l > 1 can be generalized to
h2
i þ h2

j − 2hi · hj cosðhφ;i − hφ;jÞ. Besides the features
h, invariant under S by construction, the only other
invariants are differences of φ coordinates, such that
Eq. (5) is general. Other dependencies are not allowed
when IRC safety should be ensured, such that xp;i reduces
to pμ

i , and concretely for the inputs to the first iteration,

hð0Þφ;i ¼ φi; hð0Þ
i ¼ ΔRi; ð6Þ

whereΔRi is measured with respect to the jet axis. Because
the inputs to the neural networks fΦ and f h are the
same, weights can be shared. In practice, a single neural
network with MðlÞ þ 1 outputs, simultaneously providing
fΦ and f h, has proven efficient. After L iterations, the
global pooling is carried out with the energy weighting in
Eq. (3), but summing over all the constituents, i.e.,

N ¼ fxpgNp

i¼1 [24]. Together with the global features
xglobal, the pooled IRC-safe and SO(2) equivariant outputs
are fed into a final MLP. A sketch of the whole construction
is provided in Fig. 2.
Technically, the algorithm is implemented in PYTORCH

[52] using the PYTORCH-GEOMETRIC (PyG) package [53].
Best performances were obtained with leaky ReLU acti-
vation functions with a slope parameter of 0.3. For training,
we used the ADAM PYTORCH optimizer with a learning rate
of 10−3. Other choices for the activation functions (e.g.,
ReLU or sigmoid) and for the optimizer led to comparable
performances, albeit with a slightly longer training time.
This suggests that the algorithm performance is relatively
robust. For the studies in the remainder of the paper, we
found that a single iteration (L ¼ 1) with a message-
passing neural network with two hidden layers of node

size 20 and a readout MLP with the same configuration
performs sufficiently well. This is, therefore, our baseline
configuration. Higher numbers of iterations train slower,
with similar performance for the cases discussed below.
Finally, we note the possibility of breaking IRC safety by

including extra information via the input features and still
keeping the energy weighting in Eq. (3). For example, the
constituents charge could help resolve the parton-level
ambiguity of the light quarks from the W decay. While
jet charge measurements were done by the ATLAS and
CMS collaborations [54,55], the benefit of non-IRC-safe
information, including vertex-association quality or the
probability of originating from pileup vertices, cannot be
confidently assessed without access to a comprehensive
model of systematic uncertainties.

IV. TWO TOY SCENARIOS

We illustrate the algorithms’ basic properties using a toy
dataset that aims to reflect a simple two-prong structure in a
variable-length feature vector. We first let N̄part ¼ 50 be the
mean number of constituents in a mock-up jet. For each
training instance, we sample two Poisson random numbers
N1;2 with means N̄1;2 ¼ N̄part=2 such that each prong has,
on average, the same number of constituents. Subsequently,
we draw N1 and N2 two-dimensional coordinates xi ¼
ðx1; x2Þi from Normal distributions Nðμ1;ΣÞ and Nðμ2;ΣÞ,
respectively. We choose Σ ¼ Diagð0.3; 0.3Þ. For the con-
stituents’ momenta pT;i, we draw random numbers from a
log-normal distribution lnNð1; 0.2Þ. We scale the pT;i by
the likelihood of the constituent’s 2D coordinate in the
Normal distribution it was obtained from, which is
Nðxijμ1;2;ΣÞ. Because we sampled the x from Normal
distributions, each prong will likely have high-momentum
particles close to the location parameters μ1;2. The sum of
all constituent momenta, taken over both prongs, is finally
scaled to 100 such that the mockup jet’s total momentum is
not random. During training, there is no information on the
constituents’ origin; each instance in the training set D is
given solely by a total of Nj ¼ Nj;1 þ Nj;2 constituents

fpT;i; xigNj

i¼1 and a binary truth label yj. There are no global

FIG. 2. Sketch of the network configuration as explained in the
text. The equivariant feature is represented by a double line and
the algorithms output by f̂.
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event features in this study. The loss function, for simplic-
ity, is the mean-squared-error

L ¼
X

fp;xgj;yj ∈D

ðf̂ðfxi; pigNj

i¼1Þ − yjÞ2: ð7Þ

We have also tested the binary cross-entropy loss function
and found no change in the performance.
In a scenario (A) we attempt a simple classification task

between a two-prong signal category μsig1;2 ¼ ð�1; 0Þ and a

background category μbkg1;2 ¼ ð0; 0Þ, the latter equivalent to a
single prong with a mean of N̄part constituents. Contour
lines of the probability density function (PDF) at 1σ, 2σ,
and 3σ levels alongside the constituents of a single
illustrative signal event are shown in Fig. 3 (left).
Training this classifier on 105 pseudoevents for both
categories leads to a background efficiency of approxi-
mately 1% for a signal efficiency of 99%. It is more
interesting to study the behavior of the gNN output features
before they enter the final MLP for different types of input.
For this purpose, we exploit the simplicity of our toy
dataset: a sample of signal events is, by construction,
indistinguishable from a background sample when the
constituents are shifted by an amount xi → xi þ Δxi with
Δxi ¼ −μ1;2, depending on whether constituent i came
from prong 1 or prong 2. For illustration, we generate 104

independent test events and shift the constituents by Δxi ¼
−μ1 þ ðsΔx; 0Þ for prong 1 and Δxi ¼ −μ2 − ðsΔx; 0Þ. In
this construction, the test sample is background-like for
sΔx ¼ 0 and signal-like for sΔx ¼ 1. In Fig. 3 (middle) we
show the median of the output score and the medians of the
pooled gNN outputs before they enter the readout MLP. It is
evident that the readout MLP learns to distinguish signal
events from background events using the 20-dimensional
internal representation h. The insignificance of the

equivariant feature is expected, as there is no relevant
azimuthal dependence of the prong structure in this
classification task.
The situation is very different in scenario (B), where we

train a classifier to separate between a signal with μsig1;2 ¼
ð�1; 0Þ from a background category with μbkg1;2 ¼ ð0;�1Þ.
This time, the signal has a prong structure along the x1 axis
while the background has a prong structure along the x2
axis. In Fig. 3 (right) we show similar results as before, but
this time for a signal sample that is rotated around the origin
by an angle sΔφ. Therefore, sΔφ ¼ 0 or sΔφ ¼ �π corre-
spond to a signal sample, while sΔφ ¼ � π

2
corresponds to a

background sample. We first note from Fig. 3 (right) that
the internal features do not vary at all with the angle of
rotation sΔφ. This manifests the invariance of h under the
operation SΔφ in Eq. (5). Second, we note that there is a
reflection ambiguity in the toy setup that mimics a similar
reflection ambiguity of the light quarks in the W boson
decay. The probability density function is symmetric under
the exchange of x1 and x2; however, the value of hφ
changes by π under this operation. Therefore, we inves-
tigate a function of the equivariant feature which is
invariant under this reflection. The simplest such function
is sin2 hϕ. The median of this value in the test dataset is
shown in blue color in Fig. 3 (right) as a function of sΔφ. It
transforms with the rotation of inputs such that the events in
the test sample are identified as signal events for rotations
that are close to even multiples of π=2 and as background
when the rotation is close to odd multiples of π=2. The
modulations of sin2 hφ and the classifier output are not in
phase, but that only reflects the networks’ freedom in the
internal representation.
In summary, the trained algorithm correctly reflects the

basic properties of the classification task in both scenarios.
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FIG. 3. Left: contours of the probability density functions used in the toy example, along with an illustrative single event. Middle:
median of the MLP output score (black) in scenario (A) as well as the medians of the 20 gNN outputs that serve as inputs to the redout
MLP (gray) in arbitrary units. The equivariant feature hγ is shown in blue. Right: median of the MLP output score (black) in scenario
(B) as well as the medians of the first seven pooled gNN outputs that serve as inputs to the redout MLP (gray) in arbitrary units.
The median of sin2 hφ is shown in blue.
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V. LEARNING FROM THE WZ PROCESS

We now showcase the performance of the algorithm in a
more realistic setup using a sample of simulated WZ events
in a semileptonic decay chain. The pp → Wð→ qq̄ÞZð→
llÞ events are generated with MADGRAPH5_AMC@NLO v2.65

event generator [56] in the leading-order configuration with
one extra parton in the hard-scatter process. The simulation
sample uses the NNPDF3.1 PDF set [57]. The renormal-
ization and factorization scales are not kept fixed, and their
values are the default in MADGRAPH5, namely the transverse
mass of the 2 → 2 system resulting from kT clustering. A
requirement of HT > 300 GeV selects events with a
sufficiently boosted W boson candidate, where HT is the
scalar sum of transverse final-state parton momenta. We use
the SMEFTSIMv3.0 [58] model with single SMEFT operator
insertions to simulate an event sample at CW ¼ CW̃ ¼ 1 in
order to ensure the kinematic phase space is well populated
under the SM and SMEFT scenarios. The PYTHIAv8.24 [59]
package is used to simulate the parton shower and
hadronization. The matching between matrix element
calculation in MADGRAPH5 and PYTHIA parton shower
model is performed following the MLM [56] prescription.
The detector response is emulated using DELPHESv3.5.0 [60]
with the ATLAS card, such that the setup is equivalent to
the top quark reference dataset described in Ref. [61].
Since the SMEFT effects induce a modulation in the

distribution of φdecay, we first use the algorithm to regress in
this variable from the jet’s constituents. Analogously to
Sec. IV, the observed lab frame features of a training event j

are given by xj ¼ fpT;i;φi;ΔRigNj

i¼1, where the φi and ΔRi

are measured with respect to the jet’s axis and Nj denotes
the number of jet constituents. The parton-level φj;decay is
the regression target. We consider only events with a
reconstructed AK8 jet with pT > 500 GeV and we do
not use any global event information. We train the
algorithm on 80% of the WZ dataset by minimizing the
loss function

L ¼
X

xj ∈Dsim

sin2ðf̂ðxjÞ − φj;decayÞ: ð8Þ

This choice, in particular the sine function, implements
invariance to the reflection ambiguity, described in Sec. IV,
at the level of the loss function: the data does not pro-
vide information to distinguish constituents originating
from up- from down-type quarks and therefore will be
invariant under transformations φj;decay → π − φj;decay. The
sine removes the ambiguity and this inductive bias
improves the speed of convergence. It is, however, not
needed in principle. We have tested that the network also
converges with a standard mean-squared error loss or, e.g.,
with a piecewise linear function with the same symmetry
properties as the sine function. Figure 4 shows the two-
dimensional distribution of the true and the regressed φdecay

in the remaining 20% WZ dataset, indicating a sensible
behavior of the algorithm.
We now turn to extracting SMEFT sensitivity, consid-

ering events with a Z boson candidate constructed from
its decay products, and a reconstructed jet, both with
pT > 300 GeV. For predicting SMEFT effects, we use
a variant of the morphing technique [33] to obtain
weighted predictions in the parameter space spanned by
the Wilson coefficients. To this end, MADGRAPH5 with the
MADWEIGHT [62] module is used to compute a per-event
weight for a sufficiently large number of SMEFT parameter
points C ¼ ðCW; CW̃Þ. Because second-order polynomials
accurately describe the SMEFT matrix elements with a
single operator insertion, a small number of such evalua-
tions is sufficient to determine the coefficients of this
polynomial, denoted by ωjðCÞ for an event with a label j.
We choose an overall normalization of the event weights
such that at the SM parameter point C ¼ 0 we haveP

j ωjð0Þ ¼ LσWZðSMÞ. It follows that the SMEFT pre-
diction for any Poisson yield λðCÞ in a phase space volume
Δx, defined in terms of the observed features x, is given by
the sum of the polynomial per-event weights

λðCÞ ¼ L
Z
Δx

dx
dσðCÞ
dx

¼ LσðCÞ
Z
Δx

dxpðxjCÞ

¼ LσðCÞ
Z
Δx

dx
Z

dzpðx;zjCÞ≈
X

xj∈Δx
ωjðCÞ: ð9Þ

The second expression gives the yield in terms of the
differential cross section, the third relates the cross section
to the detector-level PDF pðxjCÞ, the fourth introduces the
joint PDF of the observation x and the latent features z,
and the last term, finally, is the Monte-Carlo approxima-
tion from a simulated sample Dsim ¼ fωjðCÞ;xj; zjgNsim

j¼1 .
Because Monte-Carlo simulation is a sampling of the joint
ðx; zÞ space [31], the ratio of two polynomial event weights
is expressed in terms of the ratio of the joint likelihood,

ωjðCÞ
ωjð0Þ

¼ σðCÞ
σðSMÞ

pðxj; zjjCÞ
pðxj; zjjSMÞ : ð10Þ
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FIG. 4. Two-dimensional distribution of the true and regressed
angle φdecay in the test dataset.
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Here, the first factor on the rhs accounts for the dependence
of the total cross section on the Wilson coefficients. The
simulation-based inference technique we use for learning
the SM-SMEFT interference is based on Refs. [29–34] and
similar to the SALLY method [30]. It capitalizes on the fact
that the joint likelihood ratio is tractable, i.e., simulation
allows evaluating Eq. (10) as a function of C.
Because our targeted effect is linear in C, we are

interested in the model’s behavior near the SM where
the score vector

tðxÞ ¼ ∇C logpðxjCÞjC¼SM ¼ ∇CpðxjCÞ
pðxjSMÞ jC¼SM ð11Þ

is a sufficient statistic [31]. It provides a locally optimal
observable, i.e., extracts the maximum amount of informa-
tion from the training data [31]. At first sight, it appears
problematic that our quantity of interest in Eq. (11) is a ratio
of detector-level likelihoods, with separate implicit latent-
space integrations in the numerator and denominator, while
in Eq. (10), the quantity available in simulation, there
appears a ratio of latent-space PDFs without that integra-
tion. Following Refs. [29,30], we can nevertheless learn the
detector-level score from expanding the log derivative of
Eq. (10) to linear order,

tðxj; zjÞ ¼ ∇C log
ωjðCÞ
σðCÞ

����
C¼SM

: ð12Þ

This quantity is tractable for simulated events. It is then
straightforward to show [29] that the analytic loss function

L ¼
Z

dx dzpðx; zjSMÞðtðx; zÞ − f̂ ðxÞÞ2 ð13Þ

for an infinitely expressive f̂ , depending on the observable
x but not on the latent z, provides a minimum f �ðxÞ ¼ tðxÞ
as defined in Eq. (11). Our empirical loss function is,
therefore, the empirical version of Eq. (13), given by

L ¼
X

fωjðCÞ;xj;zjg∈Dsim

ωjðSMÞðtðxj; zjÞ − f̂ ðxjÞÞ2; ð14Þ

where we make use of Eq. (12). All of its ingredients are
available in the simulation. Finally, we can remove σðCÞ in
Eq. (12) if we use f̂ only as a discriminator in a hypothesis
test. The total cross section has no impact on its discrimi-
native power as this term only provides a constant shift to
the predicted value, common to all events.
Minimizing this loss function over 3 × 105 training

events provides a surrogate of the detector-level two-
component score vector of CW and CW̃. The distance
parameter ΔR in the gNN is set to the value of 0.4. The
same network configuration as in Sec. IV is used, with
little observed dependence on the MLP configuration. The
detector-level transverse momenta of the leptonic and
hadronic bosons show mild dependence on CW at the
linear level and are, therefore, used as global features for
the CW component, while we do not use global features for
the CW̃ component.
We show the result of the training in Fig. 5 (left) on a

statistically independent test dataset. The detector-level
score exhibits the expected sinusoidal modulations as a
function of the true decay plane angle. The gNN very
accurately reproduces this dependence, showing that the
gNN can indeed recover SMEFT effects in the angular
radiation patterns.
In Fig. 5 (middle, right) we perform one-dimensional

likelihood scans of our surrogate model normalized to
2000 expected events. Without incorporating systematic
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FIG. 5. Left: mean score as a function of φdecay, obtained with the true model and the regressed surrogate model. Center and right:
likelihood scan as a function of CW (center) and CW̃ (right) using different likelihood models, assuming 2000 observed events. The
surrogate model described in this paper is compared with a MLP that takes as an only input the φdecay and the likelihood function of a
counting experiment considering ten bins in φdecay. We also compare to a strategy based on the soft-drop mass MSD [63] and
N-subjettiness ratio τ21 [64].
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uncertainties, this procedure will lead to optimistic results.
Nevertheless, comparing the surrogate model’s perfor-
mance to the truth level is enlightening. The negative
log-likelihood (NLL) ratio is shown for three different
test statistics. First, the true decay-plane angle φdecay

shows similar performance in a binned Poisson and as
an unbinned test statistic, suggesting that a binned analysis
in the regressed φdecay may have good sensitivity. Second,
the unbinned surrogate model performs well for both, the
CW and CW̃ Wilson coefficients. Despite the complexity of
the hadronic final state, the gNN thus manages to extract
the leading linear SMEFT dependence from the boosted
jet’s constituents. In the case of CW, the surrogate model
also profits from the SMEFT dependence of the global
event features, increasing the sensitivity. This showcases
the ability of the algorithm to combine information from
the radiation patterns and observables sensitive to energy
growth. For the CW̃ coefficient, the energy growth is much
smaller, and φdecay dominates the sensitivity.
We also compare to a strategy suggested in Ref. [43] that

is based on the soft-drop mass observableMSD [63] and the
N -subjettiness ratio τ21 [64], both computed from the
constituents of the jet. In the training for this regressor, we
also include all the global event features from the nominal
training, but our graph neural network is not used. With this
approach, we obtain a negligible sensitivity for the CW̃
coefficient, which is not shown, and a small sensitivity to
the CW coefficient compared to our gNN approach. This
can be understood from the almost exclusive effect of CW̃
and CW on the orientation of the decay plane, which is only
captured by the gNN and, therefore, the gNN shows good
sensitivity gains in both cases.
In combination, the results show that our gNN can

extract the linear SMEFT dependence from the decay plane
angle of a hadronically decaying W boson, unlocking the

large hadronic branching fractions for future analyses in
search of new physics.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have constructed an IRC-safe and
rotation-equivariant gNN, whose main input is the variable-
length list of the particle constituents of a jet produced in
the hadronic decay of a boosted massive particle. The
algorithm is able to extract information on the angular
orientation of the radiation patterns present in the jet,
decoupled from other aspects of the jet substructure thanks
to the equivariance of the network.
We have investigated the main features in simple toy

studies and applied the algorithm to linear SMEFTeffects in
semileptonic final states of the WZ process at the LHC. It
learns a surrogate of the score vector, thus providing an
optimal observable for small deviations from the SM. We
have shown that the score is well reproduced as a function of
the true decay plane angle, thus fully extracting its SMEFT
sensitivity. Moreover, we incorporate information from
additional observables encoding effects from energy growth,
boosting the sensitivity towards the theoretical optimum.
The algorithm allows the large hadronic branching

fractions to be utilized in future SMEFT analyses. It is
also suitably general to be useful in a variety of applica-
tions, potentially including three-prong decays of boosted
top quarks or semileptonic final states of vector boson
scattering at the LHC.
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