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UsingWilsonian renormalization, we calculate the quantum correction to observable quantities, rather than
the bare parameters, of the Higgs field. A physical parameter, such as a mass-squared or a quartic coupling, at
an energy scale μ is obtained from that at a reference scale by integrating in the degrees of freedom in
between. In this process, heavy modes decouple and the ultraviolet scale dependence is canceled in the
observables. An exact renormalization group equation is parametrized by the low-energy scale μ.
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Renormalization in quantum field theory informs us how
to deal with the energy dependence of physical parameters.
In computing their quantum corrections including loops,
divergences arise. Traditionally, quantum field theory aimed
to remove these divergences; however, they indicate our
limited knowledge of small-scale physics. These divergences
have been brought under control through Wilsonian renorm-
alization [1,2]. The associated ultraviolet cutoff is interpreted
as the energy scale or the dimensionful parameter that
signifies new physics. The dependence on the ultraviolet
cutoff is further refined and understood as that of the infrared
energy scale [3–5], revealing the direct connection to
renormalization group equation [6–8]. We can follow how
such parameters inherit to the low-energy ones.
So far, the renormalization procedure has focused on the

bare parameters of a given quantum field theory [9]. In this
letter, we perform Wilsonian renormalization for physically
observable parameters, especially the Higgs mass. For in-
stance, if we take a reference as the pole mass, its quantum
correction is expressed as the difference of the bare parameters
at different energy scales, canceling the cutoff dependence [9].
Take a Higgs scalar ϕðxÞ couped to a heavy scalar XðxÞ

and a fermion tðxÞ. We consider a Euclidian action

−L ⊃
1

2
∂μϕ∂

μϕþ 1

2
m2

0ϕ
2 þ λ0

4
ϕ4 þ 1

2
∂μX∂μX þ 1

2
M2

0X
2

þ κ0
4
ϕ2X2 þ t̄L;Rγμ∂μtL;R þ yt;0ffiffiffi

2
p ðv0 þ ϕÞ

× ðt̄LtR þ t̄RtLÞ: ð1Þ

Here, we expanded the Higgs field around the electroweak
vacuum expectation value (VEV) v0. Thus it is a real scalar
field usually denoted by h. Other terms are omitted for
simplicity. We consider a hierarchy of energy scales

Λ < M0 < Λ?; ð2Þ

that is, we assume that the above Lagrangian is valid below
an energy scale Λ?. We shall be interested in the scale way
below the physics of the field X. In principle, we do not
need Λ, but in practice, we do not know the necessary
dimensionful parameter M0. For ϕ, we consider both cases
m0 ≪ M0 and m0 ∼M0.

1

We calculate the mass of the field ϕ in low energy. Since
the massM of the field X is very large from the low-energy
viewpoint, we expect it to be decoupled. We also separate,
in the scalar field, the high-frequency part ϕ̂ðkÞ, whose
Euclidianized momentum is larger than μ, as

ϕðkÞ → ϕðkÞ þ ϕ̂ðkÞ; ð3Þ

and let the remaining one ϕðkÞ fluctuate below μ [1]. The
relevant interactions are

V ¼ 3λ0
2

ϕ2ϕ̂2 þ λ0
4
ϕ̂4 þ κ0

4
ϕ2X2 þ yt;0ffiffiffi

2
p ϕ

�
t̄LtR þ t̄RtL

�
:

ð4Þ

The effective mass operator is obtained by contracting
two ϕ̂ fields in the interactions (4), using the Feynman*kangsin@ewha.ac.kr
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1We should dealwith the renormalizedmasses, not the bare ones:
see below. We are interested in the mass and the quartic coupling
of the scalar field ϕ, so except for those, we assume that the
renormalized couplings are obtained in the same way. The corre-
sponding quantities are denoted with the subscript as the scale.
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propagator [2]. We do not consider external momenta. For
the high-frequency scalar, we have

Σϕ̂ðμ2Þ ¼
3

2

Z
μ<jkj<Λ

d4k
ð2πÞ4

λk
k2 þm2

k

¼ 3

2

Z
Λ2

μ2

dk2k2

ð4πÞ2
λk

k2 þm2
k

: ð5Þ

Here, we took an arbitrary low energy scale μ < Λ and used
the nontrivial propagator only in the range indicated in the
integral. In Wilsonian renormalization, the cutoff Λ is not
the regularized infinity but the scale we specify. In the
propagator, we used a renormalized mass mk at the energy
scale k and a quartic coupling λk that we clarify shortly
[see Eqs. (8) and (15)]. This makes the definition of mass
self-dependent, but we can approximate and calculate it
perturbatively later.
Similarly, the heavy field X and the top quark contribute

to the mass by integrating out over the same region

Σ̃Xðμ2Þ ¼
1

4

Z
Λ2

μ2

dk2k2

ð4πÞ2
κk

k2 þM2
k

; ð6Þ

Σ̃tðμ2Þ ¼ −
Z

Λ2

μ2

dk2k2

ð4πÞ2
y2t
�
k2 −m2

t;k

�
�
k2 þm2

t;k

�
2
: ð7Þ

In the low-energy theory, the mass is corrected as

m2
μ ≡m2

0 þ
X

Σ̃iðμ2Þ; ð8Þ

where the summation runs over all the contributions we
consider.
Apparently, the mass correction depends on the high

scaleM and the cutoff Λ quadratically. We can further infer
that all the bare parameters, including m2

0; λ0 must also be
dependent on the cutoff Λ? and unknown physics beyond
that. Therefore, the mass is not well-defined in low energy
below Λ. This is the gauge hierarchy problem [10]. Note
that we do not address the problem of the smallness of m2

h,
but question the stability of the smallness against the
correction by heavy fields [10].
However, this has been about the bare parameters, which

are not observables. Also, the cutoff Λ and Λ? are not
physical parameters but human-made and are to be matched
by observables in the end [11]. In what follows, we show
that we can mention observable mass and compute the
quantum correction of it, whose result does not depend on
high energy [9].
Now we extract what we can observe. Only the combi-

nation (8) can be observable, so firstly we express it in
reference to the pole mass. The Feynman propagator for the
low-energy scalar ϕðxÞ with the momentum k has a pole at

the mass k2 ¼ m2
k defined in (8). We define a “pole mass”

mh as that satisfying

m2
h ¼ m2

0 þ
X

Σ̃iðm2
hÞ: ð9Þ

This is a natural reference point, but any reference would
be good. Since here we do not consider the kinematics of
the field, the mass (8) is independent of k and the field
renormalization is not necessary.
We can express the effective mass at scale μ in terms of

the pole mass [9]

m2
μ ¼ m2

h þ
X�

Σ̃iðμ2Þ − Σ̃iðm2
hÞ
�

≡m2
h þ δm2

hðμ2Þ: ð10Þ
The unobservable bare massm0 is removed and the mass is
understood as the quantum correction from the pole mass.
Note that it depends on the scale μ we consider: like the
upper limitΛ, we specified to which energy μwe run down.
We consider quantum correction from this reference mass
we can measure by experiment. This reference plays a
similar role as the renormalization condition. The mass at
different energy scales is now physical in the sense that we
can measure it as well.
Now, the mass correction consists of the combinations.

For the high-frequency scalar ϕ̂, it is

Σ̃ϕ̂ðμ2Þ − Σ̃ϕ̂ðm2
hÞ ¼

3

2

Z
m2

h

μ2

dk2k2

ð4πÞ2
λk

k2 þm2
k

: ð11Þ

This has a natural interpretation, faithfully following the
Wilsonian program: The physical parameter (the mass
squared) at scale μ2 is obtained from that at m2

h by integ-
rating in the degrees of freedom from m2

h up to μ2.
Considering multiple parameters, the renormalization
group flow may branch, so we should technically under-
stand this as the minus of the integrating out. Obviously, the
integration is finite, as if we did not need any regularization.
Since the running interval in the energy scale is short, we

can approximate the mass to be constant around the Higgs
pole mass. Also, we show shortly that the quartic coupling
does not run much, so we approximate the dimensionless
parameters as constants. Then, the mass correction (10)
becomes

δm2ðμ2Þ ≃ κ

64π2

�
−μ2 þm2

h −M2 log
m2

h þM2

μ2 þM2

�

þ 3λ

32π2

�
−μ2 þm2

h −m2
h log

2m2
h

μ2 þm2
h

�

þ y2t
16π2

�
−μ2 þm2

h − 3m2
t log

μ2 þm2
t

m2
h þm2

t

− 2m4
t

	
1

m2
h þm2

t
−

1

μ2 þm2
t


�
; ð12Þ

KANG-SIN CHOI PHYS. REV. D 109, 076008 (2024)

076008-2



All the couplings are matched at mh and written down
without subscripts. The dependences on Λ, the quadratic
and the logarithmic, are removed, as promised.
We can show that all the terms from the same origin are

of the same order. First, consider the correction from the
heavy scalar X. For large M, the logarithm is expanded as

− log
m2

h þM2

μ2 þM2
¼ μ2 −m2

h

M2
−
μ4 −m4

h

2M4
þ μ6 −m6

h

3M6
þ � � � :

Its dominant terms are canceled by the power-running part
in μ. Thus the first line in (12) becomes

κ

64π2

�
m4

h − μ4

2M2
−
m6

h − μ6

3M4
þ � � �

�
: ð13Þ

This contribution actually becomes zero, contrary to naïve
usual estimate, in the same way that the decoupling theorem
applies [12]. We draw the dependence of the scalar masses
on the Higgs mass squared correction in Fig. 1. Even if the
scalar X is light, its contribution is quickly suppressed for
reasonable mass.
The same decoupling occurs for the heavy fermion t. For

a large mt, the last line in (12) is

y2t
16π2

X∞
n¼1

ð−1Þn 2n − 1

nþ 1

m2nþ2
h − μ2nþ2

m2n
t

: ð14Þ

For a considerably large mt, the corresponding correction
vanishes.2 Again, even for small mass, we see that heavy
fermions also easily decouple as in Fig. 1.

The Higgs mass remains the same with good accuracy
even if we turn off the field X (and t if m2

t ≫ m2). In other
words, the Higgs mass correction is insensitive to ultra-
violet physics. Only the high-frequency scalar mass mh is
small, and the correction (12) is sizable.
We plot the correction to the Higgs pole mass squared,

as a function of the scale μ, in Fig. 2. We used the Higgs
potential relation for the quartic coupling ytv ¼ ffiffiffi

2
p

mt;
m2

h ¼ 2λv2.
The one-loop correction to the Higgs mass squared

by the top quark is calculated perturbatively in Ref. [9].
It is also depicted as the dotted curve in Fig. 2, showing
that they match. They are not a priori related because the
present effective field calculation has an additional con-
tribution by the high-frequency mode of the Higgs scalar,
with the new coupling λ.
A similar calculation gives the quartic coupling λμ ¼

λþ δλðμ2Þ from the reference coupling,

δλðμ2Þ ¼ −9
Z

m2
h

μ2

dk2k2

ð4πÞ2
λ2k�

k2 þm2
k

�
2
:

≃ −
9λ2

16π2

�
log

2m2
h

μ2 þm2
h

þ 1

2
−

m2
h

μ2 þm2
h

�
; ð15Þ

where we approximated λk and mk as before. Note that it is
not necessary to match the coupling λ at the Higgs pole
mass scale as before: we can match λk at any scale and run
from there, and then the mass in (15) is the Higgs mass at
the matching scale.
Besides the well-known logarithmic running, the last term

contains information on infrared, where light-scalar correc-
tion is essential. The change is up to 0.45% at 250 GeV,
justifying the constancy.
We have seen that the natural scale parameter for low

energy theory is μ. By differentiating the total mass with

FIG. 1. Decoupling in the correction of a scalar mass squared
m2

h by another scalar (fermion: dashed) with the massM. This is a
snapshot at μ ¼ 2mh. Its contribution starts from 1 − μ2=m2

h and
quickly approaches zero.

FIG. 2. The correction δm2
h to the Higgs pole mass squared m2

h
at renormalization scale μ, by integrating in the top quark loop
and the scalar self-interacting loop (solid). It agrees with the
conventional one-loop correction by top-quark (dotted) [9]. We
usemh ¼ 125.4,mt ¼ 173, all in GeV, and yt ¼ 1; λ ¼ 0.13. The
correction δm2

h is about −0.39% at 250 GeV.

2Here, we mean the case where the external heavy quark mass
is given by some other mechanism than the electroweak Higgs.
The top quark cannot be heavy because its mass is provided by
the VEV multiplied by the order one Yukawa coupling.
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the energy scale μ, we obtain the renormalization group
equation to one-loop order [3–5]

dm2
μ

dμ2
¼ −

3λ

32π2
μ2

μ2 þm2
h

−
κ

64π2
μ2

μ2 þM2

−
y2t μ2

�
μ2 −m2

t

�
16π2

�
μ2 þm2

t

�
2
; ð16Þ

μ
dλμ
dμ

¼ 9λ2

8π2
μ4�

μ2 þm2
h

�
2
: ð17Þ

Using this, we can study multiply coupled equations
by various couplings. For large mh and mt, the correspond-
ing fields decouple. For small mh and mt, the right-hand
sides become constants independent of μ, which are
commonly used.
Essentially, the same equations can be obtained by

differentiating the bare mass correction (8) and a similar
quartic coupling correction with respect to the upper bound
Λ, instead of the lower bound μ here. This means that our
exact renormalization group equation has a similar form as
that in Ref. [2] (focusing on ϕ̂)

μ
∂L
∂μ

¼ −μ
∂

∂μ

Z
mh<jkj<μ

d4k
ð2πÞ4

1

k2 þm2
k

×
1

2

�
∂L

∂ϕ̂ðkÞ
∂L

∂ϕ̂ð−kÞ þ
∂
2L

∂ϕ̂ðkÞ∂ϕ̂ð−kÞ

�
; ð18Þ

where L is the momentum-space Lagrangian of the
potential density V in (4), using the renormalized cou-
plings, integrated over the same regime mh < jkj < μ,
including the momentum-conserving delta function [2].
It makes the partition function

Z ¼
Z

DϕDϕ̂ exp

�
−
Z
mh<jkj<μ

d4k
ð2πÞ4

×

	
1

2
ϕ̂ðkÞðk2 þm2

kÞϕ̂ð−kÞ þ JðkÞϕ̂ð−kÞ


þ L

�

¼
Z

Dϕ expSeff;μ ð19Þ

invariant under the scale change in μ. It defines the
Wilsonian effective action Seff;μ , containing the mass (10)
and the quartic interaction (15). Conceptually, we track the
infrared behavior of the couplings and see at which energy
the correcting fields decouple. Also, using the energy-
dependent renormalized mass gives a more precise result.
In conclusion, the observable parameters of a scalar field

are governed by light fields only. We also calculated the
Higgs mass-squared correction from the pole mass by
integrating in its high-energy modes and the top quark.
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