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We study zero temperature equations of state (EOS) in isospin QCDwithin a quark-mesonmodel which is
renormalizable and hence eliminates high density artifacts in models with the ultraviolet cutoff (e.g., Nambu-
Jona-Lasinio type models models). The model exhibits a crossover transition of pion condensations from the
Bose-Einstein-Condensation regime at low density to the Bardeen-Cooper-Schrieffer regime at high density.
The EOS stiffens quickly and approaches the quarkmatter regime at density significantly less than the density
for pions to spatially overlap. The squared sound velocity c2s develops a peak in the crossover region, and then
gradually relaxes to the conformal value 1=3 from above, in contrast to the perturbative QCD results which
predicts the approach from below. In the context of QCD computations, this opposite trend is in part due to the
lack of gluon exchanges in our model, and also due to the nonperturbative power corrections arising from the
condensates. We argue that with large power corrections the trace anomaly can be negative. Our EOS
reproduces the qualitative trend of the lattice results from theBEC to theBCS regime, implying that the quark-
meson model captures relevant effective degrees of freedom. The BCS gap in our model is Δ ≃ 300 MeV in
the quark matter domain, and naive application of the BCS relation for the critical temperature Tc ≃ 0.57Δ
yields the estimate Tc ≃ 170 MeV, in good agreement with the lattice data.

DOI: 10.1103/PhysRevD.109.076006

I. INTRODUCTION

The quantum chromodynamics (QCD) with a large
isospin chemical potential (μI) can be studied in lattice
Monte-Carlo simulations and hence has been a useful
laboratory to test theoretical conceptions in dense matter
[1–3]. In this theory, the positive isospin chemical potential
favors the population of up-quarks and of down-antiquarks.
A matter with finite isospin density starts with a Bose-
Einstein-Condensation (BEC) phase of charged pions as
composite particles. The dilute regime is well described
by chiral effective theories (ChEFT) for pions [4–8]. As
density increases the quark substructure of pions should
become important and the system transforms into a
Bardeen-Cooper-Schrieffer (BCS) phase with a substantial
quark Fermi sea. This BEC-BCS transition is crossover (for
BEC-BCS crossover, see, e.g., Ref. [9–11]), as confirmed
by model studies and lattice Monte-Carlo simulations. We
study this crossover in the context of quark-hadron con-
tinuity [12–14] or duality [15,16], which may be also
realized in QCD at finite baryon chemical potential (μB).

One of fundamental topics in dense QCD is the equation
of state (EOS) (Ref. [17] for a short review from the
QCD perspective), which is a crucial piece to understand
the structure of neutron stars (NSs). Recent analyses of
NSs, with similar radii (≃12.4 km) for 2.1 and 1.4 solar
mass NSs [18–20], and the nuclear physics constraints
at nuclear saturation density n0 (≃0.16 fm−3), suggest
that the EOS stiffens rapidly (i.e., the pressure P grows
rapidly as a function of energy density ε) from low baryon
density to high density, of nB ¼ 4–7n0, which is expected
to be realized in the core of massive NSs. This stiffening
accompanies the peak of sound velocity, cs ¼ ð∂P=∂εÞ1=2;
the c2s is ≪ 1 in the nuclear domain, goes beyond the so-
called conformal value 1=3, and relaxes to 1=3 in the
relativistic limit where the quark kinetic energy dominates
over the interaction. While NS observations suggest such
nonmonotonic behaviors of cs, it is necessary to understand
the mechanisms from the microscopic physics. The sound
velocity peak was first indicated in phenomenological
interpolation of hadronic and quark matter EOS [21–24],
discussed in more general ground based on nuclear physics
and NS observations by Ref. [25], and further elucidated in
Refs. [26–28] utilizing the quark degrees of freedom.
Recently more detailed descriptions have been attempted,
see Refs. [29–38], but it is difficult to directly test the
scenarios. We use the isospin QCD for which lattice
simulations are available, and delineate the behavior of c2s .
Another interesting question is how the c2s approaches the

conformal limit, 1=3. Perturbative QCD (pQCD) [39–44],
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which is supposed to be valid at nB ≳ 40n0, predicts that the
c2s approaches 1=3 from below. The domain between nB ≃
10n0 and ≃40n0 has not been explored intensively. For this
regime it is natural to regard quarks as relevant degrees
of freedom but whose properties may be substantially
renormalized by strong interaction effects [45–47]; if such
interaction effects are properly absorbed into effective
parameters of quasiquarks, it is possible that the residual
interactionsmay be treated in the same spirit as in constituent
quark models for hadron physics. If this residual corrections
are indeed smaller than the relativistic kinetic energy of
quasiparticles, the system should show the conformal behav-
ior even before achieving weakly correlated quark matter.
How the matter reaches the conformal regime is intensively
discussed in recent works [42,48–53].
We address the nonmonotonic behavior of c2s in isospin

QCD within a renormalizable quark-meson model. The
properties of the model in isospin QCD have been analyzed
in detail by Refs. [54–56].1 We follow their renormalization
procedures. The advantage of using renormalizable effec-
tive models over models with a UV cutoff (e.g., the Nambu-
Jona-Lasinio (NJL) type models) is that one can temper the
high density artifacts. In particular, the BCS type states
have a distorted quark occupation probability whose high
momentum tail reaches very high momenta, exceeding the
UV cutoff. This is in contrast to the ideal gas case with the
occupation probability θðp − pfÞ which discontinuously
drops to zero at the Fermi momentum pf before reaching
the UV cutoff. In fact, NJL studies with BCS states exhibit
growing c2s toward the high density limit [57,58]. In the
quark-meson model such growing behaviors disappear; the
c2s relaxes to the conformal value 1=3, as it should.
While our model predicts c2s → 1=3, the conformal limit

is reached from above, not from below as predicted in
pQCD. The latter is due to the density dependence induced
through the running αs. In the weak coupling limit and at
high density, the only relevant scale is μI and the c2s ¼ 1=3
follows from ∂ðP=μ4I Þ=∂μI ¼ 0. The first important cor-
rections to the conformal limit come from the ΛQCD ≃
200–300 MeV in the running coupling constant. If we take
into account ΛQCD only in this way, the c2s is reduced from
1=3. Meanwhile, at the energy scale around ∼1 GeV, it has
been long known that power corrections of ΛQCD, which
can not be expressed as perturbative series in αs, play
important roles to capture the qualitative features in

QCD [59–61]. Parametrizing pressure with power correc-
tions as (χI: isospin susceptibility)

PðμIÞ ¼ a0μ4I þ a2μ2I ; ð1Þ

where a2 ∼ Λ2
QCD, the squared sound velocity can be

expressed as

c2s ¼
nI
μIχI

¼ 2a0μ2I þ a2
6a0μ2I þ a2

: ð2Þ

For a positive a2, the c2s is larger than 1=3, and close to 1 if
the a2 term dominates. In our quark-meson model the a2 is
related to the pion condensates. We quantify the relation
within our quark-meson model.
We briefly address the trace anomaly in dense matter

whichmeasures the breaking of the scale invariance [48–50].
We argue that changes from the nonperturbative to pertur-
bative vacua add positive contributions to the trace anomaly,
while the power corrections with a2 > 0 favors the negative
value. For large power corrections the trace anomaly can be
negative. In this respect the sign of the trace anomaly is very
useful to characterize the nonperturbative effects in dense
quark matter.
For quantitative aspects, we confront our model calcu-

lations with the lattice results from two groups [62,63].
Reference [62] has more focus on the BEC regime while
Ref. [63] covers more global nature up to the pQCD
regime. Both groups agree in the BEC regime, and our
model results are consistent with the lattice results. At high
density, our model captures the overall trend of Ref. [63],
especially the sound velocity peak and negative trace
anomaly.
Since we are not sure about the convergence of loop

expansion, as supplement studies we perform several
parametric studies of EOS to examine several qualitative
effects which we believe to be important. They are used to
delineate the results of the quark-meson model in Sec. IV.
In this paper we use nuclear saturation density in QCD,

n0 ¼ 0.16 fm−3, as our unit for isospin density. While there
is no need to address nuclear saturation in isospin QCD, our
goal is to discuss physics as a step to understand NS EOS
and n0 is useful in this phenomenological context.
This paper is organized as follows. In Sec. II we discuss

our setup for a quark-meson model. The renormalization
procedures are summarized. In Sec. III we present the
renormalized thermodynamic potential and resulting EOS,
as well as the correlation between condensates and EOS.
We emphasize the importance of quark substructure which
can be seen only after including quark loops. The numerical
results are confronted with the lattice data. In Sec. IV we
discuss the zero point energy in EOS which often appears
as the bag constant in a phenomenological model. In our
quark-meson model this quantity can be computed explic-
itly. In addition we discuss the power correction to the

1The renormalization condition described in Ref. [56] differs
from ours and Refs. [54,55]; the former demands the tree level
relations to be satisfied at each chemical potential so that the
counter terms vary with the chemical potential. In contrast, in this
paper the counter terms are completely fixed in vacuum. Because
of the difference in the renormalization procedure, the behaviors
of condensates and EOS of Ref. [56] appear to be different
from ours; in particular, we find the sound velocity peaks while
Ref. [56] did not.
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pQCD. The evolution of the sound velocity at high density
is presented. We also discuss the trace anomaly as an
indicator of the nonperturbative effects. Section V is
devoted to a summary.

II. MODEL

The Lagrangian of the two-flavor quark-meson model is

L ¼ 1

2
ð∂μϕ⃗Þ2 −

m2

2
ϕ⃗2 −

λ

24
ðϕ⃗2Þ2 þ hσ

þψ̄ ½i∂ − gðσ þ iγ5τ⃗ · π⃗Þ�ψ ; ð3Þ

where ψ is a quark field with up- and down-quark
components, ψ ¼ ðu; dÞT . The ϕ⃗ ¼ ðσ; π⃗Þ are meson fields
which correspond to the isospin 1 and 3 representations.
The τi’s are the Pauli matrices in flavor space.
We compute the thermodynamic potential at finite

isospin density nI, utilizing the isospin chemical potential
μI ¼ μu ¼ −μd as a Lagrange multiplier. To correctly
identify the corresponding Lagrangian, we should begin
with the hamiltonian formalism. The thermodynamic
potential is

Ω ¼ H − μINI; NI ¼
Z
x
nI: ð4Þ

The isospin density in terms of field variables can be
identified by the Noether theorem. Meson and quark fields
transform under isospin transformations as

πa ↦ expðiθiTiÞadjabπb; ψ ↦ eiθiτiψ ; ð5Þ

and corresponding conserved current can be written as

jμa ¼ ϵabcπb∂
μπc þ δμ0δa3ψ̄γ

0τ3ψ ; ð6Þ

where the ϵabc is the complete antisymmetric tensor with
ϵ123 ¼ 1. The isospin density is now

nI ¼ j0a¼3 ¼ πþi∂0π− − π−i∂0πþ þ ψ̄γ0τ3ψ : ð7Þ

Writing fields collectively as Φ ¼ ðϕ⃗;ψÞ, the partition
function for Φ is

Z ¼
Z

DΠΦ DΦ exp

�
i
Z
x
ðΦ̇ · ΠΦ −Hþ μInIÞ

�
; ð8Þ

where ðΠΦÞi ¼ ∂
0Φi is a field conjugate to Φi. Keeping in

mind that nI contains the conjugate fields Ππ� ¼ ∂
0π�, we

integrate Π⃗ϕ to get

Z ¼
Z

DΦ exp

�
i
Z
x
LB

�
: ð9Þ

Here the Lagrangian at finite density is

LBðϕ⃗BÞ ¼
1

2
½ð∂μσBÞ2 þ ð∂μπB3Þ2�

þ ð∂μ þ 2iμIδ0μÞπþB ð∂μ − 2iμIδ
μ
0Þπ−B

−
m2

B

2
ϕ⃗2
B −

λB
24

ðϕ⃗2
BÞ2 þ hBσB

þ ψ̄B½i=∂þ μIτ3γ
0 − gBðσB þ iγ5τ⃗ · π⃗BÞ�ψB; ð10Þ

where we attached the subscript B to emphasize that the
parameters and fields are unrenormalized.
Below we construct a one-loop effective potential within

the leading order of the 1=Nc expansion. In this approxi-
mation, meson loop effects on quarks are neglected, while
quark loop effects play crucial roles in renormalizing
meson parameters as well as the amplitude of meson
condensates. This quark substructure affects the density
evolution of meson condensates and hence the EOS.
First we rewrite the Lagrangian using the renormalized

parameters and fields. We begin with the Oð4Þ symmetric
scheme and later relate those renormalized parameters to
those in the on-shell scheme. The bare parameters are
written with Oð4Þ symmetric renormalized fields and
couplings as

ϕB ¼ Z1=2
ϕ ϕ; ψB ¼ Z1=2

ψ ψ ;

gB ¼ Z̃gZ−1
ψ Z−1=2

ϕ g ¼ Zgg;

m2
B ¼ Z̃m2Z−1

ϕ m2 ¼ Zm2m2;

λB ¼ Z̃λZ−2
ϕ λ ¼ Zλλ;

hB ¼ Z̃hZ
−1=2
ϕ h ¼ Zhh: ð11Þ

We also define δZi ¼ Zi − 1 for i ¼ ϕ;ψ ; g; � � � and so on.
The Z̃i represents the radiative corrections without those for
the external lines. In our model, the loop corrections to the
quark self-energies and quark-meson vertices appear only
through meson-loops and hence

Zψ ¼ 1þOð1=NcÞ; Z̃g ¼ 1þOð1=NcÞ: ð12Þ

Meanwhile, the meson self-energies and tadpole contain
quark loops of OðNcÞ which are combined with g2 ∼ 1=Nc
vertices to yield

Zϕ ¼ 1þOðg2NcÞ; Zm2 ¼ 1þOðg2NcÞ;
Zh ¼ 1þOðg2NcÞ; Z̃λ ¼ 1þOðg4Nc=λÞ; ð13Þ

and hence one must keep the corrections. As we see later, in
the large Nc limit Z̃m2 and Z̃h are free from radiative
corrections so that Zm2 ¼ Z−1

ϕ and Zh ¼ Z−1=2
ϕ . It is useful

to note that the relation
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gBϕB ¼ gϕ; Zg ¼ Z−1=2
ϕ ; ð14Þ

in the large Nc limit. The first relation means that the
dynamically generated quark mass and gap are renormal-
ization group (RG) invariant. The second relation tells that
we need to study the meson propagators to describe the
running of g2.
Now the Lagrangian is decomposed into the renormal-

ized part and counter terms as

LBðϕ⃗BÞ ¼ Lðϕ⃗Þ þ Lc:t:ðϕ⃗Þ: ð15Þ

Here L is the renormalized Lagrangian where all subscripts
B are omitted from LB and couplings are replaced with the
renormalized couplings. The counter terms necessary in the
large Nc limit is

Lc:t:ðϕ⃗Þ ¼
δZϕ

2
½ð∂μσÞ2 þ ð∂μπ3Þ2�

þ δZϕð∂μ þ 2iμIδ0μÞπþð∂μ − 2iμIδ
μ
0Þπ−

−
δm̃2

2
ϕ⃗2 −

δλ̃

24
ðϕ⃗2Þ2 þ δh̃σ: ð16Þ

The counter Lagrangian is used when we calculate loop
corrections.
We construct the effective potential Γðϕ0Þ with the MS

normalization of fields. The effective potentials defined at
different renormalization schemes are related as ΓRðϕRÞ ¼
ΓRðZR0ϕR0=ZRÞ ¼ ΓR0 ðϕR0 Þ where, in ΓR0 , the parameters
are replaced as ðgR; λR; � � �Þ → ðgR0 ; λR0 ; � � �Þ while the
kinetic terms are always normalized to 1. Actually, it is
more convenient to work with a Γðgϕ0Þ in which gϕ0 is the
RG invariant in the large Nc limit. We specify Mq ¼ gσ0
and Δ ¼ gðπ1Þ0 as variables for the effective potential and
then ΓRðMq;ΔÞ ¼ ΓR0 ðMq;ΔÞ, i.e., we need only to take
into account changes in ðg; λ; ; � � �Þ when we change the
renormalization conditions.

A. Parameter fixing with vacuum quantities

1. Renormalization of effective potenital

Now we fix the counter terms by renormalizing physical
parameters in vacuum. The simplest scheme to obtain the
renormalized effective potential is the MS scheme. The
effective potential takes the form

V1-loop ¼
m2

2g2
M2

q þ
λ

24g4
M4

q −
h
g
Mq þ

δm̃2

2g2
M2

q

þ δλ̃

24g4
M4

q −
δh̃
g
Mq þ Vq: ð17Þ

The Vq is the one-loop contributions from the quark energy

Vq ¼ −2NcNf

Z
p
EDðpÞ; ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
; ð18Þ

where we write Mq ¼ gσ0. We will treat these divergences
by dimensional regularization d → 3 − 2ϵ,

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd ; ð19Þ

where Λ is the renormalizing scale introduced by the MS
scheme and γE ¼ 0.577… is the Euler-Mascheroni con-
stant. The quark energy now reads

Vq ¼
4Nc

ð4πÞ2
�
eγEΛ2

M2
q

�
ϵ

Γð−2þ ϵÞM4
q

¼ 2Nc

ð4πÞ2
�
1

ϵ
þ 3

2
− ln

M2
q

Λ2

�
M4

q þOðϵÞ: ð20Þ

There is no 1=ϵ pole in the linear and quadratic terms, while
the 1=ϵ in the quartic term is canceled by δλ̃,

δh̃ ¼ 0; δm̃2 ¼ 0; δλ̃ ¼ −
48Ncg4

ð4πÞ2ϵ : ð21Þ

The effective potential in vacuum now reads

V1-loop ¼
m2

2g2
M2

q þ
λ

24g4
M4

q −
h
g
Mq

þ 2Nc

ð4πÞ2
�
3

2
− ln

M2
q

Λ2

�
M4

q: ð22Þ

We demand the effective potential to be RG invariant, i.e.,
the effective potential does not change by replacement of
Λ → Λ0. This must be valid for a given Mq, so each
coefficient of Mq must be invariant. The invariance of Mq

and M2
q terms requires ðm=g; h=gÞ do not run in the large

Nc limit, as consistent with the scaling Zm2 ¼ Z−1
ϕ and

Zh ¼ Z−1=2
ϕ deduced from Eqs. (11) and (21). Meanwhile

the M4
q terms contain the ln Λ2 factor so that

∂

∂ lnΛ2

�
λðΛÞ
g4ðΛÞ

�
¼ −

48Nc

ð4πÞ2 ; ð23Þ

or

∂ ln λ
∂ lnΛ2

− 2
∂ ln g2

∂ lnΛ2
¼ −

48Ncg4

ð4πÞ2λ : ð24Þ

The running of g2 is obtained from the analyses of field
normalizations of ϕ, thanks to the relation g2ðΛÞ ¼
g2B=ZϕðΛÞ.
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2. Renormalization of meson propagators

Now we consider the renormalization conditions for
mesons to fix the Zϕ. WewriteM0 as a solution to minimize
the effective potential and use it to compute the meson self-
energies. We demand that the σ and π have the pole at
p2 ¼ m2

σ and p2 ¼ m2
π , respectively,

m2 þ λ

2g2
M2

0 þ Σσðm2
σÞ ¼ m2

σ;

m2 þ λ

6g2
M2

0 þ Σπðm2
πÞ ¼ m2

π: ð25Þ

The self-energies include the quark one-loop contributions
Σq
σ;π and counter terms

Σσðm2
σÞ ¼ Σq

σðm2
σÞ − δZϕm2

σ þ
δλ̃

2g2
M2

0;

Σπðm2
πÞ ¼ Σq

πðm2
πÞ − δZϕm2

π þ
δλ̃

6g2
M2

0: ð26Þ

The quark loop Σq
σ;π is UV divergent. The counter term δλ̃

automatically cancels the UV divergences coupled to M0.
The δZϕ is arranged to cancel mσ- and mπ- dependent UV
divergences in Σq

σ;π,

δZϕ ¼ −
4g2Nc

ð4πÞ2ϵ ; ð27Þ

with which

Σσðp2Þ ¼ 8g2Nc

ð4πÞ2
�
M2

0 −Gσ þ
6M2

0 − p2

2
ln

Λ2

M2
0

�
;

Σπðp2Þ ¼ 8g2Nc

ð4πÞ2
�
M2

0 −Gπ þ
2M2

0 − p2

2
ln

Λ2

M2
0

�
; ð28Þ

where Gσ and Gπ are functions of p2 and M2
0,

Gσðp2Þ ¼ p2 − 4M2
0

2
Fðp2Þ; Gπðp2Þ ¼ p2

2
Fðp2Þ;

Fðp2Þ ¼ −
Z

1

0

dx ln

�
1 −

p2xð1 − xÞ
M2

0

�
: ð29Þ

It is useful to note Gσð4M2
0Þ ¼ 0 and Gπð0Þ ¼ 0. Later we

also make use of Fð0Þ ¼ 0 and Fð4M2
0Þ ¼ −2.

We note that the parameter Λ manifestly appears in the
self-energies but the pole positions should be RG invariant.
This demands

∂δZϕðΛÞ
∂ lnΛ2

≃
∂ lnZϕðΛÞ
∂ lnΛ2

¼ −
4g2Nc

ð4πÞ2 : ð30Þ

Equations (14) and (24) lead to

∂g2

∂ lnΛ2
¼ 4g4Nc

ð4πÞ2 ;
∂λ

∂ lnΛ2
¼ 8Ncg2ðλ − 6g2Þ

ð4πÞ2 : ð31Þ

The effective potential and the pole locations with running
parameters are RG invariant, so below we choose Λ ¼ M0

to get rid of the lnΛ terms.
Finally we also mention how the MS and on-shell

renormalization schemes are related. Here we discuss only
ZOS
σ as we will fix fπ by hσOSi ¼ fπ. We note

hσσi ¼
ð1 − dΣσ

dp2 jp2¼m2
σ
Þ−1

p2 −m2
σ

¼ ZOS
σ

Zϕ
hσσiOS ð32Þ

where the residue of hϕϕiOS is normalized to 1. Thus

Zϕ

ZOS
σ

− 1 ¼ 8g2Nc

ð4πÞ2
dGσ

dp2

����
p2¼m2

σ

¼ 4g2Nc

ð4πÞ2 ðFðm
2
σÞ þ ðm2

σ − 4M2
0ÞF0ðm2

σÞÞ: ð33Þ

In the parameter range of our interest, we find Zϕ < ZOS
σ .

For instance, for theories with mσ ¼ 2M0, the inequality is
verified by noting Fð4M2

0Þ ¼ −2.

3. Parameter fixing

We fix the values of parameters in our model. To evaluate
the effective potential, we need to fix four parameters
ðm; g; λ; hÞ at Λ ¼ M0. Our input is ðfπ;M0; mσ; mπÞ.
First we fix the value of g. We note that M0 is RG

invariant (in the large Nc limit),

M0 ¼ gσ0 ¼ gOSfπ: ð34Þ

We can fix gOS ¼ M0=fπ while g can be fixed by the
relation

g2 ¼
�
ZOS
g

Zg

�
2

g2OS ¼
Zϕ

ZOS
σ

g2OS ð< g2OSÞ: ð35Þ

For typical parameter setM0 ∼ 300 MeV and fπ∼90MeV,
gOS ∼ 3.3 which is large. In the MS scheme g2 is smaller
and the expansion of g2 is slightly better in systematics.
Having g fixed, we can determinem2 and λ from the pole

conditions for mσ and mπ ,

m2 ¼ −
ðm2

σ − 3m2
πÞ − ðΣσðm2

σÞ − 3Σπðm2
πÞÞ

2
;

λ ¼ 3g2
ðm2

σ −m2
πÞ − ðΣσðm2

σÞ − Σπðm2
πÞÞ

M2
0

: ð36Þ

To get analytic insights, it is again useful to consider the
case mσ ¼ 2M0 and mπ ¼ 0. Then

λ → 12g2; m2 → −2M2
0 −

8g2Nc

ð4πÞ2 M
2
0: ð37Þ
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In this limit, it is clear that m2, which drives the σ
condensation at tree level, becomes more negative than
the tree level counterpart by radiative corrections. This limit
also suggests that λ is typically large, of O(10–100).
Finally we fix h. Using the parameters defined at

Λ ¼ M0, the effective potential takes the form

V1-loop ¼
m2

2g2
M2

q þ
λ

24g4
M4

q − h
Mq

g

þ 2Nc

ð4πÞ2
�
3

2
− ln

M2
q

M2
0

�
M4

q: ð38Þ

The gap equation at Mq ¼ M0 fixes the value of h,

h ¼ M0

g

�
m2 þ λ

6g2
M2

0 þ
8Nc

ð4πÞ2M
2
0

�
: ð39Þ

Using the condition for the pion pole, one can rewrite it as

h ¼ m2
π

�
1þ 4g2Nc

ð4πÞ2 Fðm
2
πÞ
�
M0

g
¼ ZOS

h

Zh
hOS; ð40Þ

where hOS ¼ m2
πfπ , the standard expression in the

chiral EFT.

B. At finite isospin density

For a large isospin chemical potential, either π1 or π2 can
condense while π3 fields are unaffected. Without loss of
generality we assume the π1 to condense. The quark part in
the unperturbed Lagrangian acquires an extra term

Lextra
2 ¼ ψ̄ iγ5τ1Δψ ; ð41Þ

with which the quark propagator becomes the BCS type
propagator. The poles exist at

Eu ¼ Ed̄ ¼ EðμIÞ; Ed ¼ Eū ¼ Eð−μIÞ; ð42Þ

where (see the derivation in Appendix A)

EðμIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðED − μIÞ2 þ Δ2

q
: ð43Þ

The u and d̄ quark excitations cost at least the energies of
the BCS gap ∼Δ. Meanwhile d and ū quarks need large
energies of ∼M þ μI to get excited.
The effective potential in the MS scheme is

V1-loop ¼
m2

2g2
ðM2

q þ Δ2Þ þ λ

24g4
ðM2

q þ Δ2Þ2 − h
g
Mq

−
2μ2I
g2

ð1þ δZϕÞΔ2 þ δλ̃

24g4
ðM2

q þ Δ2Þ2

þ VqðμI;Mq;ΔÞ: ð44Þ

We note that the μI dependent term contains a UV divergent
counter term which is necessary to cancel a μI dependent
UV divergence from Vq.
The single particle energies depend on Mq and Δ in

medium,

Vq ¼ −Nc

Z
p
ðEu þ Ed þ Eū þ Ed̄Þ: ð45Þ

To get analytic insights, we split

Vq ¼ VR
q þ Vð0Þ

q þ Vð2Þ
q ; ð46Þ

where the upper script specifies the power of μI ,

Vð0Þ
q ¼ −4Nc

Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
D þ Δ2

q
;

Vð2Þ
q ¼ −2Nc

Z
p

μ2IΔ2

ðE2
D þ Δ2Þ3=2 ; ð47Þ

whose computations can be carried out with the dimen-
sional regularization,

Vð0Þ
q ¼ 2Nc

ð4πÞ2
�
1

ϵ
þ 3

2
− ln

M2
q þ Δ2

Λ2

�
ðM2

q þ Δ2Þ2;

Vð2Þ
q ¼ 4Nc

ð4πÞ2
�
1

ϵ
− ln

M2
q þ Δ2

Λ2

�
ð−2μ2IΔ2Þ: ð48Þ

We have extracted up to μ2I terms as they contain the UV
divergences, while VR

q is UV finite and contains terms
which scale as μ4I and vanish at μI ¼ 0. At large μI , VR

q

dominates over the other terms as far as Δ and Mq do not
grow as ∼μI. We numerically evaluate VR

q and find that
VR
q ≃ b0μ4I þ b2μ2I þ � � � with b0 ≃ −Ncμ

4
I =6π

2 and b2 ≃ 0.
Hence, the μ2I components of the effective potential are well

saturated by the Vð2Þ
q .

The effective potential in the MS scheme now reads

V1-loop ¼
m2

2g2
ðM2

q þ Δ2Þ þ λ

24g4
ðM2

q þ Δ2Þ2 − h
g
Mq

þ 2Nc

ð4πÞ2
�
3

2
− ln

M2
q þ Δ2

M2
0

�
ðM2

q þ Δ2Þ2

− 2μ2I

�
1

g2
−

4Nc

ð4πÞ2 ln
M2

q þ Δ2

M2
0

�
Δ2

þ VR
q ðμI;Mq;ΔÞ: ð49Þ

The effective potential rewritten with hadronic parameters
is shown in Appendix B and we use it to evaluate Mq and
Δ, as was done in Refs. [54,55]. The expectation valueMq�
and Δ� are determined by the gap equations,
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∂V1-loop

∂Mq

����
Mq�;Δ�

¼ 0;
∂V1-loop

∂Δ

����
Mq�;Δ�

¼ 0: ð50Þ

In the next section we examine the behaviors of conden-
sates and the relation to the thermodynamics.

III. EQUATIONS OF STATE

We now numerically examine the mean field EOS.
Unless otherwise stated, we fix the model parameters to
satisfy the following vacuum parameters2:

mπ ¼ 140 MeV; mσ ¼ 600 MeV;

fπ ¼ 90 MeV; M0 ¼ 300 MeV: ð51Þ

which correspond to the following on-shell coupling con-
stants, gOS≃3.33 and λOS≃126.3

The large couplings in the present one-loop analyses are
worrisome. Meanwhile it has been known that constituent
quark type models with couplings of Oð1Þ work remark-
ably well without rigorous justifications. In this work we
simply hope that the similar situation holds in our studies.
We also note that, in the case of the nucleon-meson model,
whose structure is very similar to the quark-meson model,
the tree and one-loop results are qualitatively different, but
the difference between one-loop results and the functional
renormalization group results are quantitative one, the order
of ∼30% [65]. Thus we expect our one-loop results to be
useful to gain some qualitative insights into the overall
trend of isospin QCD.
With this qualification in mind, we proceed to the

examination of the EOS. For comparison to the lattice
data in Ref. [63], later we also examine themπ ¼ 170 MeV

case with ðmσ; fπ;M0Þ kept the same as the mπ ¼
140 MeV case.

A. Evolution of microscopic quantities

First we examine how condensates evolve as functions of
μI . Shown in Fig. 1 are the constituent quark mass and the
gap associated with the pion condensate. For Mq, there are
no significant differences between the tree-level (dashed
blue line) and one-loop (solid blue line) results. Meanwhile,
the pion condensate Δ at tree level increases linearly with
μI , whereas, at one loop, it converges to a finite value,
Δ ≃ 300 MeV. This drastic change of behavior indicates
that the one-loop correction has more physical contents
than mere perturbative corrections.
At tree-level, the Lagrangian makes no reference to

quarks so that the mesons are treated as elementary
particles [Fig. 2 (Top)]. By adding quark loops, however,
they no longer can be regarded as purely elementary
particles. If we regard mesons as fundamental, quark loops
are regarded as corrections to the meson dynamics. But if
we regard quark descriptions as more fundamental, mesons
are intermediate states appearing in the quark-antiquark
scattering processes [Fig. 2 (Bottom)].
In this study, we keep only the leading Nc contributions

and hence the quark substructure effects on meson

FIG. 1. Chiral and pion condensates as functions of a scaled
chemical potential μI=mπ .

FIG. 2. Top: A meson propagator as an elementary particle.
Bottom: A meson propagator with a quark loop. The meson can
be interpreted as a composite particle.

2Here we have used the sigma mass as the renormalization
condition but in reality the sigma or f0ð500Þ state has a broad
width. This width has been studied and confirmed in the linear
sigma model, which is very similar to this model, by Ref. [64]
considering the σ → ππ scattering process. In our study at large
Nc, quark loops enter only condensed mesons and counter terms
for mesons, but do not affect mesonic fluctuations or meson
excitations, and hence the impacts of meson width are not
addressed.

3In the MS scheme, the couplings are smaller. The details
depend on the choice of mσ which is more uncertain than the
other input parameters. For mσ ¼ 2M0, there is simple relation

g2 ¼ g2OS

1þ 8g2OS
ð4πÞ2

;

λ ¼ 12g2
�
1 −

m2
π

4M2
0

�
1þ 4g2NcFðm2

πÞ
ð4πÞ2

��
; ð52Þ

from which g ≃ 2.03. This reduces the value of λ by a factor
∼ðg=gOSÞ2 ≃ 0.37. The value of λ becomes even smaller for
mπ → mσ .
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fluctuations are not reflected in EOS (as meson loops are
suppressed by 1=Nc). However, the quark substructure
effects do affect condensed mesons by tempering the
amplitudes. The quark loops change the structure of the
present theory and in this sense it may not be appropriate to
call quark loops as corrections; rather they should be
regarded as leading order contributions.
Now we examine how quark loops qualitatively change

the behavior of Δ. To address this question we work with
the MS expression for the moment as it takes a concise
form. We consider a large μI and assume Mq ≪ Δ. At tree
level, the effective potential behaves as

V tree → −
2μ2I
g2

Δ2 þ λ

24g4
Δ4; ð53Þ

and the solution of the gap equation is found by balancing
μ2Δ2 and Δ4 terms. Hence Δtree ∼ μI inevitably follows.
Note also that λ > 0, like the hard core repulsion, plays an
essential role to stop the growth of Δ.
Including quark loops, however, the coefficient of μ2I

term acquires the lnðΔ=M0Þ2 term which, before Δ4

becomes dominant, can stop the growth of Δ. At large
μI and assuming Δ ≪ μI ,

V1-loop ≃ −2μ2I

�
1

g2
−

4Nc

ð4πÞ2 ln
Δ2

M2
0

�
Δ2 þ VR

q ; ð54Þ

where VR
q ∼ μ4I weakly depends upon Δ. Then the gap

equation is determined by the coefficient of μ2I term,

∂V1-loop

∂Δ
≃ −

8μ2INc

ð4πÞ2
� ð4πÞ2
4g2Nc

− 1 − ln
Δ2

M2
0

�
≃ 0: ð55Þ

The solution is μI-independent,
4

Δ2� ≃M2
0e

ð4πÞ2
4g2Nc

−1
: ð56Þ

For our parameter set, ð4πÞ2=4g2Nc ∼ 1 and the exponent is
small; we find Δ ≃M0 as shown in Fig. 1.
Substituting the solution into Eq. (54), the 1=g2 and the

logarithmic terms cancel, leaving the −μ2IΔ2� term. As a
result the pressure PðμIÞ ¼ −V1-loopðM�

q;Δ�; μIÞ has the
þμ2IΔ2� term,

PðμIÞ ≃
Nc

2π2
μ2IΔ2� þ PR

q ðμIÞ; ð57Þ

where PR
q ¼ −VR

q ðM�
q;Δ�Þ. The μ2I dependence can be

interpreted as the Fermi surface effects with the phase space
∼4πp2

F with pF being the quark Fermi momentum pF ∼ μI .
In this expression for large μI , hadronic parameters

disappear. The hadronic parametersm2 and λ are neglected
because they appear as m2Δ2 and λΔ4 terms much smaller
than μ2IΔ2 and μ4I , while g

2 is absorbed into the expression
of Δ�. The resulting expression can be most naturally
understood in terms of quarks with nonperturbative effects
near the Fermi surface whose strength depends upon the
hadron physics.

B. Equations of state

Starting with the thermodyamic pressure PðμIÞ ¼
−V1-loopðM�

q;Δ�; μIÞ, the isospin and energy densities are
given by

nI ¼
∂P
∂μI

; ε ¼ μInI − P: ð58Þ

We study the sound velocity

c2s ¼
∂P
∂ε

¼ nI
μIχI

; χI ¼
∂
2P
∂μ2I

; ð59Þ

where χI is the isospin susceptibility.
In the following we compare our results with the lattice

data in Refs. [62] and [63]. The setup of the former is Nf ¼
2þ 1 flavors of rooted staggered quarks with the quark
masses at the physical point. The pion decay constant is fπ ≃
92–96 MeV for the lattice spacing explored (the definition of
fπ differs by a factor

ffiffiffi
2

p
from ours andwe have corrected it).

It should be noted that their results at T ¼ 0 are obtained by
correcting the data at small but finite T using the ChEFT.
BeyondμI ≳mπ ornI ≳ 0.5n0 the lattice data is not available
in Ref. [62]. Meanwhile, the lattice data in Ref. [63] using
mπ ≃ 170 MeV and a different formalism is more suitable to
explore high density region up to μI ∼ 7.5mπ ≃ 1.3 GeV
(our definition of μI is a half of that in Ref. [63], taken into
account in our figures).
Figure 3 shows the isospin density nI as a function of

the isospin chemical potential μI , for the global (upper
panel) and low density (lower panel) behaviors. We use
ðmσ; fπÞ ¼ ð600; 90Þ MeV and consider mπ ¼ 140 and
170 MeV for comparison with the lattice data of
Refs. [62] and [63]. The upper panel in Fig. 3 is specialized
for the examination of global features to high density. As
expected from the qualitative difference in the behavior of
condensates, the tree and one-loop results become very
different toward high density. In purely hadronic descrip-
tions, we found P ∼ λΔ4

tree ∼ λμ4I whose asymptotic behav-
ior is controlled by the hadronic coupling λ, the strength of
“hard-core repulsion” between mesons. These scaling
behaviors are changed by quark loops, with which the
scaling P ∼ cμ4I is controlled by the phase space factor for
quarks, rather than parameters for hadronic interactions.

4The g2-dependence in this expression may be confusing and
here we give supplemental comments. At large g ≫ 1, Δ2 →
M2

0e
−1 which looks smaller than M2

0. This reduction is fictitious;
if we hold ðm; λ; hÞ fixed and increase g, M0 ∼ gfπ increases and
Δ also increases. On the other hand, at small g ≪ 1, apparently Δ
becomes larger, but our assumption of μI ≫ Δ and hence our
estimate is violated. In this situation, the size of Δ is primarily
determined by the tree level relation as the hadronic and quark
sectors decouple for g → 0.
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In the lower panel of Fig. 3, we make more detailed
comparison at low density. We note that the ChEFT results
of Ref. [7] including chiral loop corrections agree well with
the lattice results of Ref. [62] (see Fig. 2 in Ref. [7] for
various comparisons), while our model results slightly
underestimate nI for a larger μI. We note that the chiral
loops in the ChEFT and quark loops cover different types
of quantum fluctuations. In Fig. 4, we also show the
relation between P and μI for the low density and global
behaviors.
Shown in Fig. 5 is the pressure as a function of energy

density. For the density range to ∼10n0, the pressure with
quark loops is larger than that in the tree level by 10–
20%. This means that the quark substructure effects
enhance the pressure from the purely hadronic one.
On the other hand, toward high density the difference
in P vs ε becomes much smaller than in nI vs μI . Such
degeneracy is reached when P enters the μ4I scaling
regime; for whatever coefficients of the μ4I term, P ≃ ε=3
is achieved when μ4I terms dominate.

We also note that the pressure is reduced for larger mσ

and fπ , as shown in Fig. 6. In other words, with stronger
chiral symmetry breaking in vacuum (which increases both
mσ and fπ), the high density EOS after the chiral restoration
becomes softer. This point is examined in Sec. IVA.
To further examine the variation of stiffness, we now turn

to the behavior of the sound velocity. Figure 7 shows the c2s
as a function of isospin chemical potential and also as a
function of isospin density. The c2s increases rapidly at low
density, makes a peak, and slowly relaxes to the conformal
limit 1=3 from above. This qualitative feature seems robust
and is consistent with the lattice results in Refs. [62]
and [63]. However, the quantitative agreement beyond the
BEC regime depends on the lattice results. The location of
the c2s peak is near μI ≃ 1.2mπ for nI ≃ 5n0 in our
calculations for the reasonable range of our parameter
set for mσ and fπ . The lattice results in Ref. [62] indicate
the peak at μI ≃ 0.8mπ or nI ∼ 0.5n0, lower than our model
results. Meanwhile our results agree better with the results
of Ref. [63], although our sound velocity peak is located
at density slightly lower than that found in the lattice
simulations, 6–7n0. We are not sure about the origin of
the discrepancy between results of Refs. [62] and [63] as
they seem to contain different systematic errors. But after
performing several parametric studies as given in Sec. IV,

FIG. 3. Isospin density nI as a function of μI , for the global
(upper panel) and low density (lower panel) behaviors. The data
points at low density are from Brandt et al. [62] (available up to
μI ≃ 0.9mπ with mπ ≃ 140 MeV) and bands are from Abbott
et al. [63] with mπ ≃ 170 MeV. (The definition of μI in Ref. [63]
differs from ours by a factor 2 and this is taken into account in
our figures).

FIG. 4. Pressure P as a function of μI for the global (upper
panel) and low density (lower panel) behaviors.
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we could not find any qualitative mechanisms to reconcile
Δ ≃ ΛQCD with the quick reduction of c2s after making the
peak as seen in Ref. [62]. Here we assume Δ ≃ ΛQCD based
on the lattice result for the melting temperature of pion
condensates, T lat

c ≃ 170 MeV, which seems more or less
constant to ∼n0 or even higher densities, (see discussions

around Eq. (78)). For this reason, in the beyond-BEC
regime, the results of Ref. [63] seem more natural to us than
those of Ref. [62] whose simulations are more optimized
for the low density region.
We note that the c2s at tree level also shows the peak in the

crossover region and then the convergence to the conformal
limit at high density. As we noted in the Introduction, these
behaviors can be acheived by PðμIÞ ∼ c2μ2IΛ2 þ c4μ4I with
Λ being some energy scale. Purely hadronic models may
achieve this condition, but this by itself does not mean that
the EOS is described correctly, as we have mentioned in
discussion of P vs ε and nI vs μI. In our standpoint, the tree
level results, which crucially depend on the scaling
Δtree ∼ μI , becomes potentially misleading at high density.
With the above qualifications in mind, in the next section

we look into more details of our model regarding it as a
model of composite particles.

C. Occupation probability

At low density the effective degrees of freedom are pions
and their internal structure may be ignored. At higher
density, the interparticle distance becomes shorter and the
quark substructure of pions becomes important.

FIG. 6. Pressure vs energy density for different ðmσ ; fπÞ in the
MeV unit. Larger chiral symmetry breaking, i.e., larger mσ and
fπ , reduces the pressure at a given energy density.

FIG. 7. Squared sound velocity c2s vs isospin chemical potential
(upper panel) and vs isospin density (lower panel).

FIG. 5. Pressure vs energy density from the tree and one-loop
effective potential, for the global (upper panel) and low density
(lower panel) behaviors.
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To estimate where the quark substructure becomes impor-
tant, we refer to the pion charge radius. It can be extracted
from the vector form factor. The experimental determination
based on the πe scattering and the eþe− → πþπ− process
[66] yields the estimate hr2iV ¼ 0.434ð5Þ fm2 [67], or

rVπ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hr2iV

q
≃ 0.66 fm; ð60Þ

which has been well reproduced by lattice calculations
[68,69]. The typical isospin density where pions overlap
is estimated through5

noverlapI ¼ 2ð4πr3π=3Þ−1 ≃ 2 × 0.83 fm−3 ≃ 10.4n0: ð61Þ

Figure 3 shows that the isospin chemical potential at noverlapI
is μI ≃ 200 MeV ≃ 1.4mπ .
We note that this overlap density noverlapI ∼ 10n0 is

substantially larger than the density 2–3n0 where the tree
and one-loop results begin to differ substantially, and the
density ∼5n0 where c2s develops a peak. This would
indicate that the quark substructure of hadrons become
important before hadrons overlap. In this respect, there
should be a more suitable measure to characterize the
location of sound velocity peak. One of the possible
explanations is the quark saturation [37,70,71]. As density
increases, quark states at low momentum are inevitably
occupied and then a newly added quark must fill a state on
top of the already occupied states. Quark states at large
momenta are the source of large pressure.
The quark occupation probability in the pion condensed

phase can be computed in the standard Nambu-Gor’kov
formalism. The derivation is reviewed in Appendix A. The
occupation probabilities for u-, d-, ū-, d̄-quarks are

fðpÞ ¼ fu;d̄ðpÞ ¼
1

2

�
1þ μI − ED

EðμIÞ
�
; ð62Þ

f̄ðpÞ ¼ fū;dðpÞ ¼
1

2

�
1þ μI þ ED

EðμIÞ
�
: ð63Þ

Roughly speaking, u- and d̄-quarks occupy states up to ≃μI
while ū- and d-quarks are almost fully occupied as in the
Dirac sea without pion condensates.
Shown in Fig. 8 is the occupation probability fðpÞ at

various densities as a function of quark momenta p. The
densities we plotted are from 0 to 10.0n0 in 0.2n0 incre-
ments for gray curves and 1.0n0 increments for red curves.

FIG. 8. (Upper) The occupation probability of u- and d̄ quarks
which corresponds to the residue of positive energy part of huūi.
The densities we plotted are from 0.2 to 10.0n0 in 0.2n0
increments for gray curves and 1.0n0 increments for red curves.
The blue dots are the locations of the surface of the distribution
where fðpÞ has the half maximum. (Lower) The evolution of the
occupation probability for the p ¼ 0 state, fðp ¼ 0Þ.

FIG. 9. The fit of the dipole function in Eq. (64) to the φvac
π

calculated in the quark-meson model.

5In our definition, we calculate nI ¼ nu − nd, a factor two
larger than the conventional definition. For pions with the isospin
1 to overlap, our nI=2 should be equated with 1=ð4πr3π=3Þ, so the
factor two must be inserted.
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The blue dots, where fðpÞ takes the half value of fðp ¼ 0Þ,
are the measure of typical momentum at the Fermi surface.
For later convenience we define the quark distribution in

a single pion as φvac
π ðpÞ≡ limnI→0fðpÞ=nI . It turns out that

φvac
π ðpÞ is approximated well by a simple monopole Ansatz

or Breit-Wigner form

φπðpÞ ∼
1

1þ p2=a2
ð64Þ

with a ≃ 87.6 MeV. This suggests that, in our quark-meson
model, the pion wave function in the coordinate space has
the exponentially decaying form.
To relate the evolution of fðpÞ to the stiffening of matter,

it is useful to decompose the evolution of fðpÞ into two
components. The first is the “vertical evolution” in which
fðpÞ just increases its magnitude as fðpÞ ≃ nIφvac

π ðpÞ
(Fig. 10, Left); this corresponds to the regime where pions
do not interact and quarks inside of pions are largely
unaffected. In this regime, ε=nI is close to a constant, and
therefore the pressure, P ¼ n2I∂ðε=nIÞ=∂nI, is very small.
While quarks can always contribute to the energy density
through the masses of pions, they do not directly contribute
to the pressure. The sound velocity is small in this regime.
The second component is the “horizontal evolution” in
which the fðpÞ increases in the high energy components
(Fig. 10, Right). This is driven by both interactions and the
Pauli blocking effects. Here, ε=nI increases as in usual
quark matter and the pressure can be large. In reality with
interactions, the evolution of fðpÞ is the mixture of these
two components.
In our quark-meson model, Fig. 9 suggests that, from 0

to ∼2n0, the magnitude of fðpÞ at p ¼ 0 grows rapidly
from 0 to ≃0.6, but at higher density the distribution fðpÞ
develops toward the horizontal direction. If we treated
pions as elementary and nonineteracting particles, the
fðp ¼ 0Þ would violate the Pauli principle around ≃2n0.
The c2s peak is located around ≃5n0 where fðp ¼ 0Þ ≃ 0.9.
Beyond this density the horizontal evolution dominates
over the vertical evolution and c2s relaxes toward 1=3 as in a
relativistic quark gas.
We note that the quark substructure effects are already

significant at 1–2n0 and develop a peak in c2s at ∼5n0, at

density substantially smaller than the naive estimate of the
pion overlap,noverlapI ∼ 10n0. This suggests that the evolution
of the occupation probability can represent two characteristic
scales; one is for the quark saturation, and the other is for the
overlap of composite particles. The distinction of such two
scales was emphasized in Ref. [72] which discriminates the
mode-by-mode percolation in momentum space from the
conventional geometric percolation.
Finally we comment on some difference between nucle-

onic matter and pionic matter in isospin QCD. In nuclear
matter the evolution of c2s is much slower than in isospin
QCD, c2s ≲ 0.1 for nB ∼ 1 − 2n0 [73]. Nucleons are much
heavier than pions and c2s is naturally small because of the
nonrelativistic regime. Two- and three-nucleon repulsions
increase c2s , but their effects basically enter as powers of
∼n2B and ∼n3B whose growth are rather slow and c2s goes
beyond 1=3 only at nB ≳ 2–3n0. This aspect differs from
pionic matter in isospin QCD where pions can be relativ-
istic already at ≃n0 and c2s ≥ 1=3 is achieved already
at nI ∼ 2n0.

IV. DISCUSSION

Herewe address several issues not detailed in the previous
sections. First we discuss how the strength of chiral sym-
metry breaking in vacuum and its restoration at high density
affect EOS. For the high density domain, we compare our
results with pQCD at high density, and conjecture the
importance of the power corrections. Then we discuss the
trace anomaly and the positivity conjecture.

A. Chiral symmetry restoration and softening

In Sec. III we have seen that larger fπ and/or mσ lead to
softer EOS at high density. Here we try to explain this
softening by focusing on the chiral symmetry breaking in
the vacuum and its restoration at high density. In this
context larger fπ and mσ mean the stronger chiral sym-
metry breaking in the QCD vacuum.
In the vacuum, the energy reduction due to the chiral

symmetry breaking is (Fig. 11)

B≡ V1-loopðMq ¼ 0Þ − V1-loopðMq ¼ M0Þ; ð65Þ

where the first term is the energy of the trivial vacuum
while the second one is the energy of the chiral symmetry
broken vacuum. This sort of energy difference is often
called the bag constant. Stronger breaking in the chiral
symmetry increases the size of the bag constant (Fig. 12). In
our model the bag constants Bðmσ; fπÞ in the m4

π ¼
ð140 MeVÞ4 ≃ 50.25 MeV fm−3 unit are given as

Bð450; 90Þ ¼ 0.874; Bð450; 100Þ ¼ 1.035;

Bð600; 90Þ ¼ 1.439; Bð600; 100Þ ¼ 1.698; ð66Þ

FIG. 10. Schematic figures for the evolution of the occupation
probability. Left: The “vertical” evolution. Right: The “horizon-
tal” evolution.
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from which one can see that larger fπ and mσ , i.e., stronger
chiral symmetry breaking, lead to a greater B.
A larger bag constant softens EOS at high density. To see

this, it is useful to recall a bag model with perturbative
corrections. We note that the perturbative expansions
are performed around the trivial vacuum. Since our
EOS is normalized to make P ¼ 0 at μ ¼ T ¼ 0 for the

nonperturbative vacuum, the perturbative evaluation of
EOS must be corrected by the nonperturbative normaliza-
tion constant. Then, the pressure and energy density are

Pnormalized
pert ¼ Ppert − B; εnormalized

pert ¼ εpert þ B: ð67Þ
The bag constant associated with the chiral restoration redu-
ces the pressure and increases the energy density, resulting in
a softer EOS at high density where the chiral symmetry is
restored. Similar conclusions have been obtained in models
with and without the Uð1ÞA anomaly [74,75].

B. Power corrections to pQCD at high density

Our quark-meson EOS predicts c2s approaching 1=3 from
above as density increases. This contradicts with the pQCD
prediction in which c2s approaches 1=3 from below. A
possible origin of such discrepancy would be the power
corrections of ∼Λ2

QCDμ
2
I which cannot be derived from

perturbative computations.
In the Introduction, we schematically showed how power

corrections can enhance the c2s in Eqs. (1) and (2). The
question is how large power corrections should be to
qualitatively change the perturbative behaviors of c2s .
For a given flavor f, the pQCD EOS up toOðα2sÞ is given

as [76] (we use the current quark mass, mu;d ≃ 5 MeV and
μI ¼ μu ¼ −μd in the present work)

Pf
0 ¼ Nc

12π2

�
jμfjuf

�
μ2f −

5

2
m2

q

�
þ 3

2
m4

q ln
jμfj þ uf

mq

�
;

Pf
1 ¼ −

αsNG

16π2

�
3

�
m2

q ln
jμfj þ uf

mq
− jμfjuf

�
2

− 2u4f

þm2
q

�
6 ln

Λreno

mq
þ 4

��
jμfjuf −m2

q ln
jμfj þ uf

mq

��
:

ð68Þ

In the isospin symmetric limit, Pu ¼ Pd. Here, Pf
0 and P

f
1 is

the zeroth and first order in OðαsÞ, with uf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

q

q
,

NG ¼ N2
c − 1, and Λreno being the renormalization scale.

The running αs is

αsðΛrenoÞ ¼
4π

β0L

�
1 − 2

β1
β20

lnL
L

þ β21
β40L

2

�
ln2L − lnL − 1þ β2β0

β21

�

þ β31
β60L

3

�
−ln3Lþ 5

2
ln2Lþ 2 lnL

−
1

2
− 3

β2β0
β21

lnLþ β3β
2
0

2β31

��
ð69Þ

with L ¼ 2 lnðΛreno=ΛMSÞ, β0 ¼ 11 − 2Nf=3, β1 ¼ 102−
19Nf=3,

FIG. 11. The energy density as a function of the chiral effective
massMq. After chiral restoration the minimum energy is realized
at Mq ¼ 0. In the broken phase the minimum is realized at
Mq ≠ 0 and the energy is smaller than that ofMq ¼ 0. This gap in
the zero-point energy density is the bag constant.

FIG. 12. The energy density with different strength of the chiral
symmetry breaking. The bag constant is larger for the stronger
chiral symmetry breaking.
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β2 ¼
2857

2
−
5033

18
Nf þ

325

54
N2

f; ð70Þ

β3 ¼
�
149753

6
þ 3564ξð3Þ

�
−
�
1078361

162
þ 6508

27
ξð3Þ

�
Nf

þ
�
50065

162
þ 6472

81
ξð3Þ

�
N2

f þ
1093

729
N3

f; ð71Þ

and ΛMS ≃ 340 MeV. The central value of Λreno is
Λreno ¼ μf, and as usual we vary Λreno from μf to 4μf.
In addition to the perturbative running coupling which

becomes unphysical toward the Landau pole, we also
examine the case with the freezing coupling in the low
energy limit. We divide the domain into three

αsðQ2Þ ¼ αlows ðQ2Þθðtlow −Q2Þ
þ αmid

s ðQ2Þθðthigh −Q2ÞθðQ2 − tlowÞ
þ αhighs ðQ2ÞθðQ2 − thighÞ; ð72Þ

where t1=2low ¼ 0.3 GeV and t1=2high ¼ 1.1 GeV. For the low
energy limit we use the form suggested byDeur et al. [77,78]

αlows ¼ αlows ð0Þe−Q2=4κ2 ; ð73Þ

with αlows ð0Þ ≃ 1.22 and κ ≃ 0.51. For the high density we
use the perturbative expression (69), and for the intermediate
region we use the interpolant

αmid
s ðQ2Þ ¼

X5
m¼0

cmμmI ; ð74Þ

where cn’s are fixed by demanding the matching

∂
nαlow=highs

ð∂Q2Þn
����
Q2¼tlow=high

¼ ∂
nαmid

s

ð∂Q2Þn
����
Q2¼tlow=high

; ð75Þ

for n ¼ 0, 1, 2. The six boundary conditions fix the six cn
uniquely. Unlike in Refs. [77,78] which needed only the
continuity up to the first derivative, in this work we use
the interpolant not to generate any discontinuities up to the
second derivative, since we compute c2s .
We set Q2 ¼ Λ2

reno and plot αsðΛrenoÞ in Fig. 13 together
with the pQCD running coupling. With the IR freezing
coupling the artificial reduction of pQCD pressure is
tempered and the pressure remains positive toward the
low density region (Fig. 14).
Now we add power corrections which are parametrized

in terms of gaps in the pion condensed phase. The phase
space factor ∼4πp2

FΔ times the gap Δ, divided by a factor
ð2πÞ3, yields the naive estimate

Pcond ¼ C
μ2IΔ2

π2
; ð76Þ

where C is a constant of Oð1Þ. For our quark meson model
C ≃ Nc=2, see Eq. (57).
In Son’s estimate [79], based on the color-magnetic long

range forces, the gap is evaluated as

Δcolor-mag ¼ bjμIjg−5s e−3π
2=2gs ð77Þ

with b ∼ 104 and gs ¼ gsðjμIjÞ being the running coupling
constant. The gap can be several hundredMeVs.Meanwhile,
in our quark-meson model, we have foundΔ ≃ 300 MeV. It
is interesting to note that such Δ seems to satisfy the BCS
relation between the gap and the critical temperature,

TBCS
c ≃ 0.57ΔBCS; ð78Þ

which implies Tc ≃ 171 MeV, in good agreement with
the lattice result T lattice

c ≃ 160–170 MeV for the interval
μI ≃ 100–300 MeV.

FIG. 13. Running coupling from pQCD (dashed) and from the
freezing coupling (solid). For the renormalization scale
Λreno ¼ XμI , we examine X ¼ 1, 2, and 4.

FIG. 14. Perturbative pressure with perturbative running with
the Landau pole and infrared freezing coupling. The pressure is
normalized by the pressure in the Stefan-Boltzmann limit.
Notations for the solid and dashed lines are the same as Fig. 13.
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We set C ¼ 1 and examine pressure (Fig. 15) and c2s
(Fig. 16) for Δ ¼ 0, 200, and 300 MeV for pQCD running
coupling (dashed) and freezing coupling (solid). For
Δ ≃ 200 MeV, the power corrections are large enough
for c2s to approach the conformal limit from above around
∼40n0. Meanwhile, at μI ∼ 1 GeV or nI ∼ 40n0, para-
metrically the power corrections in EOS are corrections
of the order

�
Δ
μI

�
2

¼ 0.09

�
Δ

300 MeV

�
2
�
1 GeV
μI

�
2

; ð79Þ

thus ∼10% corrections. It is remarkable that even such
small corrections can change the qualitative behaviors
of c2s in the domain where pQCD seems applicable.

C. Trace anomaly

Recently there has been growing interest in the trace
anomaly in the context of mechanical properties in
hadrons [72,80–82] and in neutron stars [48–50]. The
latter is essentially the relation between P vs ε and is
more fundamental than c2s which includes only the infor-
mation of dP=dε, not the overall magnitude of P. In
particular, Ref. [49] conjectured the trace anomaly to be
positive. Below we quickly mention the trace anomaly in
dense matter and examine the positivity conjecture by
considering several nonperturbative effects.
The trace anomaly measures the breaking of the scale

invariance and is given by the expectation values of the
operator

∂μJ
μ
D¼Tμ

μ ¼−
βðgsÞ
2gs

GμνGμνþ
X
f

mfð1þ γmÞq̄fqf; ð80Þ

where JμD is the dilatation current, β < 0 the QCD beta
function, and γm the anomalous dimension of the
quark mass.
For a hadronic state jKi with the momentum K, the

energy momentum tensor gives

hKjTμνðxÞjKi ¼ KμKν=mH; ð81Þ

where the RHS is x-independent6 and does not contain gμν.
The overall 1=mH factor is fixed by the condition at the rest
frame, Kμ

R ¼ ðmH; 0Þ,

hKRjHjKRi
hKRjKRi

¼ hKRj
R
x T

00ðxÞjKRi
hKRjKRi

¼ mH; ð82Þ

where we divide by hKRjKRi to cancel the volume factor in
the numerator. Thus, for a hadron at rest frame, we find

hKRjTμ
μðxÞjKRi ¼ hKRjT00ðxÞjKRi ¼ mH; ð83Þ

with vanishing spatial components, hKRjTiiðxÞjKRi ¼ 0.
The trace anomaly is positive for a single hadron.
It is interesting to extend the above arguments to a many-

body system. Unlike the previous single particle case, not
all particles stay at K ¼ 0. For instance an ideal Fermi gas
leads to

hK1; � � � jTiijK1; � � �i ∼
Z
K

K2

mH
: ð84Þ

After lowering one index, we get hTi
ii < 0. Thus, the trace

anomaly in a many-body system can be negative in
principle. In thermodynamic systems, hTμ

μi ¼ ε − 3P; the

FIG. 16. Squared sound velocity c2s for pQCDþ power cor-
rections. We use the freezing coupling and vary X from 1 to 4 to
make bands. The solid lines in the bands are the X ¼ 2 case.

FIG. 15. Perturbative pressure plus power corrections divided
by the pressure in the Stefan-Boltzmann limit. The Δ ¼ 0, 200,
and 300 MeV. The solid and dashed lines represent the freezing
coupling and perturbative running with the Landau pole, re-
spectively. The X for the Λreno is fixed to X ¼ 2.

6The state jKiwith definite momenta is a plane wave, meaning
that the hadron can exist anywhere with the probability 1=Vspace.
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negative trace anomaly means very large pressure, i.e.,
stiff EOS.
The trace anomaly characterizes the deviation from the

relativistic or conformal limit as expected at very high
density. We first examine the impact of the normalization in
EOS. In the case of a bag model, we have

hTμ
μibag ¼ ðε − 3PÞnormalized

pert ¼ ðε − 3PÞpert þ 4B: ð85Þ
Changes from the nonperturbative to perturbative vacua
enhances the trace anomaly, supporting the positivity
conjecture. Next we consider the impact of power correc-
tions using EOS similar to Eq. (1),

Pwith powers ¼ a0μ4I þ a2μ2I ; ð86Þ

but now we include the running of coefficients a0 and a2
associated with αsðμIÞ. The energy density can be com-
puted as

ε ¼ 3a0μ4I þ 2a2μ2I þ
∂a0

∂ ln μI
μ4I þ

∂a2
∂ ln μI

μ2I ; ð87Þ

and the trace anomaly is

hTμ
μiwith powers ¼ −2a2μ2I þ

∂a0
∂ ln μI

μ4I þ
∂a2

∂ ln μI
μ2I : ð88Þ

The running of αs favors the positive trace anomaly, while
the attractive power corrections (a2 > 0) favor the negative
trace anomaly.
When we examine the trace anomaly, it is useful to

divide it by 3ε,

Δtr ¼
1

3
−
P
ε
; ð89Þ

which should not be confused with the BCS gap Δ.
Shown in Fig. 17 is the Δtr as functions of nI for several
calculations, our quark-meson model (QM) and pQCD
results for the renormalization scales with X ¼ 1, 2, and 4.
For the pQCD, both the perturbative (dashed) and IR
freezing (solid) couplings are examined. Without power
corrections the Δtr are all positive. In Fig. 18, we fix X ¼ 2
for these two couplings, and the dependence of Δtr on the
power corrections. The Δ ¼ 0, 200, 300, and 400 MeV
cases are shown. With power corrections the Δtr appears
to be negative, as we expected. Our QM model predicts
Δ ≃ 300 MeV and the negative trace anomaly for wide
range. Finally we make a comparison between our QM
model results and the lattice results in Ref. [63], as shown
in Fig. 19. The QM model seems to capture the overall
trend of the lattice data.

FIG. 17. Trace anomaly Δtr ¼ 1=3 − P=ε as functions of nI for
our quark-meson model (Nf ¼ 2 QM) and pQCD with the
perturbative running coupling (dashed) and IR freezing coupling
(solid). We vary X from 1 to 4. The trace anomaly is all positive in
pQCD but negative for the quark-meson model.

FIG. 18. Trace anomaly Δtr ¼ 1=3 − P=ε as functions of nI for
the quark-meson model, the pQCDþ powers with the perturba-
tive running. The renormalization scale is fixed to X ¼ 2 while
we examine Δ ¼ 0, 200, 300, and 400 MeV. For large Δ the trace
anomaly can be negative.

FIG. 19. Trace anomaly Δtr ¼ 1=3 − P=ε as functions of
μI=mπ for the quark-meson model with mπ ¼ 140, 170 MeV
and lattice results of Ref. [63] with mπ ≃ 170 MeV for different
lattice spacing and volume.
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Since the pQCD corrections and bag constant favor the
positiveΔtr, the negativeΔtr may be taken as an indicator of
the substantial power corrections.

V. SUMMARY

In this work we study the EOS of isospin QCD within a
quark-meson model. The model describes the BEC-BCS
crossover of pion condensates. At tree level pions look
elementary, but at one-loop they acquire the status of
composite particles made of quarks and antiquarks, temper-
ing meson fields compared to the tree level amplitudes. The
model is renormalizable and we study its large density
behaviors to study the impacts of nonperturbative physics
in the quark matter domain.
Our model exhibits the sound velocity going beyond the

conformal limit c2s ¼ 1=3 at ∼2n0, and making a peak at
∼5n0, at densities substantially smaller than the density for
pions to spatially overlap, ∼10n0. The quark occupation
probability at p ¼ 0, fðp ¼ 0Þ, is ∼0.6 at 2n0 and ∼0.9 at
5n0. The sound velocity peak is located around 5n0 where
the quark states around p ¼ 0 are almost fully saturated,
and it makes sense to associate the sound velocity peak
with the saturation of quark states. After the bulk part of the
quark Fermi surface is established, the c2s approaches 1=3
as in the relativistic limit.
Our model shows that c2s approaches 1=3 from above,

mainly due to the power corrections, ∼μ2IΔ2 ∼ μ2IΛ2
QCD.

These terms are not available in pQCD calculations which
predict c2s approaching 1=3 from below. Which one,
perturbative or power corrections, dominates in c2s around
∼40n0 is a quantitative question. The existence of the power
corrections is related to the nonperturbative effects near the
quark Fermi surface and the structure of the QCD phase
diagram. The question is also related to the sign of the trace
anomaly. The pQCD favors the positive trace anomaly. If the
trace anomaly appears to be negative, it is strong indication
of nontrivial Fermi surface structure. Lattice results of
Ref. [63] seem to support the negative trace anomaly in
the domain between the BEC and the pQCD domains. Since
the presence of nonperturbative effects in quark matter is a
fundamental question, further clarifications by several
lattice calculations with different systematics are highly
desired to establish the findings in Ref. [63].
The present work left several issues and should be

extended to several directions:
(i) Our study should be extended to finite temperature

(for recent discussions on the quark contributions,
see e.g., Refs. [83,84]). Including thermal effects
into quark-meson models is straightforward, and the
results are to be compared with the lattice’s. Whether
thermal excitations out of the quark Fermi sea are
confined or deconfined is an important issue in the
context of the quark-hadron-continuity. As for phe-
nomenological applications to neutron stars and

heavy-ion-collisions, although several zero temper-
ature EOS have become available since 2012, finite
temperature EOS with the continuity at the level of
excitations has not been constructed. For example,
some difficulties have been addressed for the
nuclear-2SC continuity in Ref. [85]. The magnitude
of thermal corrections is much smaller than the cold
matter part due to ∼ðT=pFÞ2 suppression factors, but
it can be important for NSs about to collapse, e.g.,
those appearing in NS-NS mergers [86–88].

(ii) The estimate of nonperturbative power corrections as
well as the normalization of EOS (bag constant) at
high density should be improved.Nowadays there has
been increasing use of pQCD results to constrain the
EOS at ≃5 − 40n0, with the help of general causality
and thermodynamic stability conditions (e.g., see
Refs. [53,89]). But as seen in our simple exercise
in Sec. IV B, the power corrections of ∼10% in the
overall magnitude can change the qualitative trend of
quantities involving derivatives. It should be impor-
tant to see how the power corrections in general affect
the constraints at ≃5 − 40n0. The present one-loop
analyses of quark-meson models should be also
improved, using e.g., the functional renormalization
group to include quark and meson fluctuations [90].

(iii) In this work we estimate the density for pion overlap
based on the size of pions in vacuum. But in medium
pions may swell due to the quark exchange among
them. If the effective radii are larger than in the
vacuum, the quark saturation and the overlap of pions
can take place at lower densities than the estimates in
this work. Changes in hadron size may occur already
aroundnuclear saturation density [91,92], as indicated
by the comparison of the structure function for an
isolated nucleon and nucleons in nuclei. It is interest-
ing to test these concepts in isospin QCD by compar-
ing model predictions with the lattice calculations.

ACKNOWLEDGMENTS

We thank Drs. Brandt and Endrodi for kindly providing
us with their lattice data in Ref. [62], and Dr. Abbott and his
collaborators for their kindness of sending the lattice data in
Ref. [63]. TK thanks Dr. Fujimoto for discussions on c2s and
explanations of his recent works in isospin QCD [93,94].
We also thank Dr. Baym for discussions during his visit in
GPPU school, and Dr. Suenaga for sharing information of
his study on hadronic models in isospin QCD [95]. T. K. was
supported by JSPS KAKENHI Grant No. 23K03377 and
No. 18H05407 and by the Graduate Program on Physics for
the Universe (GP-PU) at Tohoku university.

APPENDIX A: QUARK PROPAGATORS

We calculate the mean field quark propagator in the
presence of the chiral and pion condensates. From the
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propagator one can read off the excitation energy from the
pole of the propagator and the occupation probability from
the residue of the propagator.
It is convenient to introduce the projection operators for

particle and antiparticles,

Λp;a ¼
1

2
� γjpj þMq

2ED
γ0; ðA1Þ

which satisfy

Λp þ Λa ¼ 1; Λp;aΛp;a ¼ Λp;a; Λp;aΛa;p ¼ 0; ðA2Þ

as they should. The propagator of quarks can be written as

i
=pþ μfγ0 −Mq

¼ SpðpÞγ0Λp þ SaðpÞγ0Λa;

Sp;aðpÞ ¼
i

p0 þ μf ∓ ED
; ðA3Þ

where Sp;a is the propagator for a particle and an anti-
particle, respectively.
The inverse of the propagator can also be separated by

Λp;a as

=pþ μfγ0 −Mq ¼ ðp0 þ μf − EDÞΛpγ0

þ ðp0 þ μf þ EDÞΛaγ0: ðA4Þ

The inverse of the Dirac operator is the quark propagator
SðpÞ, and we can write

SðpÞ−1 ≡ −i
�
=pþ μuγ0 −Mq −iγ5Δ

−iγ5Δ =pþ μdγ0 −Mq

�
ðA5Þ

and consider its inverse. To simplify the discussion, we
introduce the single-particle propagator

ðG0
u;dÞ−1 ¼ −ið=pþ μu;dγ0 −MqÞ; ðA6Þ

and write off-diagonal term Ξ ¼ γ5Δ. Then our propagator
must satisfy

SðpÞ−1SðpÞ ¼
� ðG0

uÞ−1 Ξ
Ξ ðG0

dÞ−1
�
SðpÞ ¼ 1: ðA7Þ

Introducing ðGu;dÞ−1 ≡ ðG0
u;dÞ−1 − ΞG0

d;uΞ, the propagator
SðpÞ can be written as follows.

SðpÞ ¼
�

Gu −G0
uΞGd

−G0
dΞGu Gd

�
: ðA8Þ

What we are interested in is the diagonal part of SðpÞwhich
corresponds to huūi and hdd̄i. Let us see the detail of Gu;d.
Its definition is

ðGu;dÞ−1 ≡ ðG0
u;dÞ−1 − ΞG0

d;uΞ

¼ −ið=pþ μu;dγ0 −MqÞ

− γ5Δ
i

=pþ μd;uγ0 −Mq
γ5Δ: ðA9Þ

To calculate the inverse we rewrite this formula using
the projection operators. Performing some calculations we
can find

γ5γ0Λp;aγ5 ¼ −Λa;pγ0: ðA10Þ

From the above, we obtain

ðGu;dÞ−1 ¼ −i
�
p2
0 − ðED − μu;dÞ2 − Δ2

p0 − μu;d þ ED
Λpγ0

þ p2
0 − ðED þ μu;dÞ2 − Δ2

p0 − μu;d − ED
Λaγ0

�
: ðA11Þ

Now we could separate the diagonal elements ðGu;dÞ−1 by
projection operators, and each part will not be mixed by the
inverse operation.
Introducing the excitation energy

ξfp;aðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðED ∓ μfÞ2 þ Δ2

q
; ðA12Þ

we obtain the propagator

Gf ¼ i

� jufpðpÞj2
p0 − ξfpðpÞ

þ jvfpðpÞj2
p0 þ ξfpðpÞ

�
γ0Λp

þi

� jufaðpÞj2
p0 − ξfaðpÞ

þ jvfaðpÞj2
p0 þ ξfaðpÞ

�
γ0Λa: ðA13Þ

Here we have used μu;d ¼ −μd;u. The residues are

jufp;aðpÞj2 ¼ 1

2

�
1þ�ED − μf

ξfp;a

�
ðA14Þ

jvfp;aðpÞj2 ¼ 1

2

�
1 −

�ED − μf

ξfp;a

�
: ðA15Þ

They correspond to the occupation probability and satisfy
jupj2 þ jvpj2 ¼ juaj2 þ jvaj2 ¼ 1 as expected. In the main
text we use the expressions

f ¼ fu;d̄ ¼
1

2

�
1þ μI − ED

EðμIÞ
�

¼ jvupj2 ¼ judaj2; ðA16Þ

f̄ ¼ fū;d ¼
1

2

�
1þ μI þ ED

EðμIÞ
�

¼ jvuaj2 ¼ judpj2: ðA17Þ
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APPENDIX B: FULL EXPRESSION OF THE RENORMALIZED ONE-LOOP EFFECTIVE POTENTIAL

In the main text we express the one-loop effective potential using several counter terms. Rewriting the counter terms
using the physical parameters, the final expression turns out to be

V1-loop ¼ −
1

4
m2

σf2π

�
1þ 4M2

0Nc

ð4πÞ2f2π

�
−
4M2

0

m2
σ
Fðm2

σÞ þ
4M2

0

m2
σ
− ðm2

σ − 4M2
0ÞF0ðm2

σÞ
	�

M2
q þ Δ2

M2
0

þ 3

4
m2

πf2π

�
1 −

4M2
0Nc

ð4πÞ2f2π
f−Fðm2

πÞ þ Fðm2
σÞ þ ðm2

σ − 4M2
0ÞF0ðm2

σÞg
�
M2

q þ Δ2

M2
0

− 2μ2I f
2
π

�
1 −

4M2
0Nc

ð4πÞ2f2π

�
ln
M2

q þ Δ2

M2
0

þ Fðm2
σÞ þ ðm2

σ − 4M2
0ÞF0ðm2

σÞÞ
	

Δ2

M2
0

þ 1

8
m2

σf2π

�
1 −

4M2
0Nc

ð4πÞ2f2π

�
4M2

0

m2
σ

�
ln
M2

q

M2
0

−
3

2

�
þ 4M2

0

m2
σ
Fðm2

σÞ þ ðm2
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. This parametrization suggests that the parametersmπ andmσ are restricted tomπ; mσ < 2M0 to
make r real.
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