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We apply the chiral quark-soliton model, used previously to describe baryons with one heavy quark, to
the case of heavy tetraquarks. We argue that the model is insensitive to the nature of the heavy object bound
by the soliton, i.e., to its mass and spin. Therefore, a heavy quark can be replaced by an antidiquark without
modifying the soliton background. Diquark dynamics is taken into account by means of the nonrelativistic
Schrödinger equation with the Cornell potential. We fix the Cornell potential parameters from the
charmonia and bottomonia spectra. We first compute Bc-meson masses to check our fitting procedure, and
then compute diquark masses by appropriately rescaling color factors in the Cornell potential. We then
compute tetraquark masses and confirm previous findings that only bb tetraquarks are bound.
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I. INTRODUCTION

In 2022, the LHCb Collaboration discovered the doubly
charmed tetraquark T cc [1,2] in theD0D0πþ invariant mass
distribution. The T cc mass of 3875 MeV is just below the
D0D� threshold. The LHCb discovery triggered theoretical
activity. We refer the reader to a review on multiquark
states, both experimental and theoretical, before the T þ

cc
discovery [3] and after the LHCb paper [4] (and references
therein).
Motivated by the T þ

cc discovery, one of us proposed a
model [5] where heavy tetraquarks T QQ were described as
a chiral soliton and a Q̄ Q̄ diquark. The chiral quark-soliton
model (χQSM) has been formulated to describe light
baryons (see Ref. [6] and Refs. [7–9] for review) where
the soliton is constructed from Nc light quarks. It has been
argued in Refs. [10–14] that in the large-Nc limit mean
chiral fields of the soliton do not change if one valence
quark is replaced by a heavy quark Q. Such a replacement
leads to a successful phenomenological description of
baryons with one heavy quark [10,12,13]. Since after
removing one light quark the soliton is in a color 3̄ (or,
more precisely, a color representation R corresponding to
an antisymmetric product on Nc − 1 quarks), adding a
heavy quark in color 3 leads to multiplets of heavy baryons

that are conveniently characterized by SUð3Þflavor quantum
numbers of Nc − 1 light quarks (i.e., a diquark for Nc ¼ 3).
In this respect, the χQSM is identical to a quark model.
It has been shown in Refs. [10–14] that for a successful

phenomenological description of heavy baryons, it is
enough to add the masses of a soliton and a heavy quark,
and include a spin-spin interaction between the two. The
model describes well both charm and bottom baryon
spectra [10,12,13], indicating that binding effects of the
soliton-Q system do not depend on the heavy-quark mass.
We present quantitative evidence for this independence in
Sec. II. This observation suggests that an equally good
description should hold for a system where a heavy quark is
replaced by a heavy (anti)diquark Q̄1Q̄2 in the color triplet.
In Ref. [5] and earlier in Ref. [15] we considered the case
where Q1 ¼ Q2.
In the present paper, we study a more general case where

heavy quarks1 can be either identical or different, i.e., we
consider cc, bb, and cb diquarks. The diquark dynamics is
modeled by a nonrelativistic Schrödinger equation with the
Cornell potential [16,17] and the spin-spin interaction of
heavy quarks, which was not explicitly included in Ref. [5].
Since we are only interested in the diquark ground states,
angular momentum and tensor terms are neglected. We use
as an input J=ψ , ηc,ϒ, and ηb mesons to constrain the
Cornell potential parameters and quark masses. As a result,
the masses of bc̄ or c̄b mesons are predictions and actually
test our approach. The model reproduces very well the two
known Bþ

c ð1S0; 6274.5Þ and B�
c ð2S0; 6871.2Þmesons [18].
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1In what follows, we use the term quark or diquark to refer to
either Q1, Q2 or Q̄1; Q̄2.
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Once the Cornell potential parameters are fixed, we can
compute the diquark masses by coupling quark color
charges to an antitriplet rather than to a singlet, as in the
meson case. Finally, by adding the diquark mass to the
soliton mass with the diquark-soliton spin interaction, we
obtain predictions for the tetraquark masses.
Two heavy quarks of the same flavor (say, cc or bb) can

form a color antitriplet (antisymmetric in color) provided
they are symmetric in spin [19]. Therefore, they form a
tight object of spin 1. Hence, two heavy antiquarks are in
color 3 and spin 1, behaving as a spin-1 heavy quark.
Additionally, a cb diquark can be in a state of spin 0, which
is antisymmetric in flavor.
Heavy tetraquarks were theoretically anticipated many

years ago [20,21] on the basis of heavy-quark symmetry
[22] (see also [23–29]). Probably the first estimate of the
tetraquark mass was done by Lipkin in 1986 [30] (although
the fourfold heavy tetraquarks were discussed even earlier
in 1982 [31]). A phenomenological analysis of heavy
tetraquarks was recently carried out in Ref. [32]. In fact,
our model is very reminiscent of the one in Ref. [32] where
tetraquark mass formulas are identical to those for heavy
baryons, with some modification due to the integer or zero
spin of the heavy diquark.
Our findings can be summarized as follows. The diquark

dynamics restricted to the s channel, modeled by the
Cornell potential, describes well charmonia and bottomo-
nia ground states and first excited states; however, the value
of the string tension giving the best fit is different in the c
and b channels. This is consistent with global fits [17].
Using the parameters fixed from meson spectra, we
compute diquark masses and the tetraquark masses. We
find that only bb tetraquarks are bound.
In Sec. II we introduce the χQSM and discuss its

application to heavy baryons. We present arguments that
the soliton properties do not depend on the heavy-quark
mass. Next, we introduce a classification of the tetraquark
states according to the SU(3) content of the light subsystem
and derive pertinent mass formulas. In Sec. III we solve the
Schrödinger equation for heavy mesons and fix the Cornell
potential parameters. As a test, we compute Bc mesons
masses and then the diquark masses. Numerical results for
the tetraquark masses are presented in Sec. IV. We
summarize our findings in Sec. V.

II. CHIRAL QUARK-SOLITON MODEL

In this section, we briefly recall the main features of the
χQSM (see Refs. [6–9] and references therein). We discuss
the application of the χQSM first to heavy baryons and then
to tetraquarks.

A. Heavy baryons

The soliton in the current approach corresponds to a
stable aggregate configuration of valence quarks and a fully

occupied Dirac sea. In the large-Nc limit, Nc (or Nc − 1)
relativistic valence quarks polarize the Dirac sea, which in
turn modifies the valence-quark levels, which in turn distort
the sea, until a stable soliton configuration is reached
[33,34]. Quantum numbers are generated by the quantiza-
tion of zero modes, corresponding to the rotations in the
SU(3) space and in the configuration space. In the chiral
limit, the soliton energy is given by a formula analogous to
the quantum-mechanical symmetric top [35–37],

Esol ¼ Msol þ
JðJ þ 1Þ

2I1
þ C2ðp; qÞ − JðJ þ 1Þ − 3=4Y 02

2I2
:

ð1Þ

Here Msol is a classical soliton mass, I1;2 stand for the
moments of inertia, C2ðp; qÞ is the SU(3) Casimir for the
baryon multiplet, and J corresponds to the soliton spin. In
the case of Nc − 1 valence quarks, Y 0 ¼ ðNc − 1Þ=3 ¼ 2=3
in the real world, and the allowed SU(3) representations are
3̄ with spin J ¼ 0 and 6 with spin J ¼ 1 [10].
The Hamiltonian (1) has to be supplemented by the

chiral-symmetry-breaking part (which can be found in
Ref. [38]) and the hyperfine splitting part [10],

HSQ ¼ 2

3

ϰ

mQ
J · SQ; ð2Þ

where J and SQ stand for the soliton and the heavy quark or
diquark spin, respectively. Since the spin of the 3̄ repre-
sentation is zero, there is no hyperfine splitting in this case.
The chiral-symmetry-breaking part leads to mass splittings
proportional to the baryon hypercharge, denoted below by
δ3̄;6 [10].
Therefore, the mass formulas for heavy baryons read as

follows [10,15]:

MBQ;3̄ ¼ mQ þMsol þ
1

2I2
þ δ3̄YB;

MBQ;6;s ¼ mQ þMsol þ
1

2I2
þ 1

I1
þ δ6YB

þ κ

mQ

�−2=3 for s ¼ 1=2;

þ1=3 for s ¼ 3=2:
ð3Þ

Here YB stands for the hypercharge of a given baryon. In
the case of antitriplet, soliton spin J ¼ 0 and the corre-
sponding heavy baryons have spin 1=2, for sextet J ¼ 1
and the corresponding baryons have spin 1=2 and 3=2.
It was shown in Refs. [10,12,13] that the above mass

formulas lead to a very good description of heavy baryon
spectra. Below we examine the main features of our
approach:
(1) Soliton properties are independent of the heavy-

quark mass.
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(2) Soliton properties do not depend on the spin
coupling between a soliton and a heavy quark.

(3) Hyperfine splittings are proportional to 1=mQ.
Averaging over spin and hypercharge, we define the

mean antitriplet and sextet masses:

MQ
3̄
¼mQþMsolþ

1

2I2
¼ 2408.2jc ¼ 5736.2jb;

MQ
6 ¼mQþMsolþ

1

2I2
þ 1

I1
¼ 2579.4jc ¼ 5906.5jb; ð4Þ

in MeV.
As discussed in Ref. [5], one can form differences of

average multiplet masses between the b and c sectors to
compute heavy-quark the mass difference (in MeV),

mb −mc ¼ 3328j3̄ ¼ 3327j6; ð5Þ

which illustrates properties 1 and 2 above.
Furthermore, one can estimate the hyperfine splitting

parameter entering (2):

ϰ

mc
¼ 64.6jΣc

¼ 67.2jΞc
¼ 70.7jΩc

;

ϰ

mb
¼ 19.4jΣb

¼ 18.8jΞb
ð6Þ

(in MeV). From these estimates, we get

mc

mb
≃ 0.27–0.30 ð7Þ

with the average value of 0.283, which is close to the PDG
value of 0.3 [18] in agreement with properties 2 and 3.
From Eqs. (5) and (7), one can estimate the heavy-quark

masses as

mc ¼ 1206–1426 MeV;

mb ¼ 4533–4753 MeV; ð8Þ

which are a bit higher (especiallymb) than thevalues reported
by the Particle Data Group (PDG) [18]. Formc=mb ¼ 0.283,
we getmc ¼ 1314.1 MeV andmb ¼ 4641.5 MeV, which is
still lower than the effectivevaluesused inRef. [39].However,
one should remember that the quark masses in effective
modelsmaydiffer from theQCDestimates in theMS scheme.
In Ref. [10], the heavy-quark dependence of the mass

formulas (3) was tested by computing the nonstrange
moment of inertia from the 6 − 3̄ average mass differences
where both spin and hypercharge splittings cancel:

1

I1
¼ MQ

6 −MQ
3̄
¼ 171.2jc ¼ 170.3jb ð9Þ

(in MeV). As we see from (9), the heavy-quark masses
cancel almost exactly, which again illustrates properties

1 and 2. We can therefore safely assume that the for-
mulas (5) are valid for any heavy object in a color triplet
replacing Q.

B. Heavy tetraquarks

Since heavy tetraquarks in the χQSM are formed by
replacing a heavy quark with a diquark, and since the mass
of the soliton is independent of the heavy-quark or diquark
mass and spin, very simple tetraquark mass formulas
emerge, which relate tetraquark masses to the baryon
masses [5,16]. The mass formula for the ground-state
antitriplet is particularly simple, since the soliton in this
case is spinless and the hyperfine splitting (2) is not present,

Mtetra3̄
Q̄ Q̄ ¼ MBQ;3̄ −mQ þmQ̄ Q̄: ð10Þ

Here MBQ;3̄ stands for ΛQð2286.5jc; 5619.6jbÞ or the
isospin-averaged ΞQð2469jc; 5794.5jbÞmass,mQ̄ Q̄ denotes
the antidiquark mass (to be discussed in Sec. III D), andmQ

stands for the heavy-quark mass.
In the case of a sextet, since the soliton spin is J ¼ 1,

we have to distinguish two cases when the diquark spin is
0 or 1. It is convenient to introduce spin and isospin-
averaged baryon masses:

MBQ;6 ¼
1

2T þ 1

X
T3

1

3
ðMBQ;6;T3;1=2 þ 2MBQ;6;T3;3=2Þ ð11Þ

where BQ stands for ΣQð2496.6jc; 5826jbÞ, Ξ0
Qð2623.2jc;

5947.6jbÞ, or ΩQð2742.3jc; 6065jbÞ2 in MeV. The mass
formulas read as follows:

Mtetra6
Q̄ Q̄ ¼ MBQ;6 −mQ þmQ̄Q̄ þ Cspin

2

3

ϰ

mQ

mQ

mQ̄ Q̄
; ð12Þ

where

Cspin ¼

8>>>>><
>>>>>:

−2 for s ¼ 0

−1 for s ¼ 1

1 for s ¼ 2

9>>=
>>;

for SQ̄ Q̄ ¼ 1;

0 for s ¼ 0 for SQ̄ Q̄ ¼ 0:

ð13Þ

The mass formulas (10) and (12) relate tetraquark masses
directly to heavy baryon masses and therefore are fairly
model independent. They are analogous to Eq. (1) of
Ref. [32]. The spin part was discussed in [40]; however,
the hyperfine coupling has not been specified. Here we
know the value of ϰ=mc;b [Eq. (6)], so in order to estimate
tetraquark masses we only need the heavy diquark mass
mQ̄ Q̄ for mQ in the range (8).

2For Ω�
b, we take the mass estimate from Ref. [10].
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Before proceeding to numerical calculations, we need to
know the strong decay thresholds that depend on the JP

quantum numbers, which are listed in Table I.

III. HEAVY MESONS AND DIQUARKS

A. Mass formulas

In order to predict the heavy-tetraquark masses, one
needs a reliable estimate of the heavy-diquark mass.
Following Ref. [5], we use a nonrelativistic Schrödinger
equation with the Cornell potential [16,17]

VðrÞ ¼ −
κ

r
þ σrþ 2

3
Ccolor

αs
m1m2r2

ðs1 · s2ÞδðrÞ; ð14Þ

including the spin-spin interaction, which we treat as a
perturbation. Since we are only interested in s-wave states,
we do not include tensor and spin-orbit interactions. Here
m1;2 stand for the heavy-quark masses and we also
introduce a reduced mass

μ ¼ m1m2

m1 þm2

; ð15Þ

which is equal to m=2 for quarks of identical mass m. The
string tension σ should in principle be a universal constant;
however, it is known from global analyses that good quality
fits require σ, which is different in the c and b sector [17].
Since the Coulomb part follows from the one-gluon
exchange, κ ¼ Ccolorαs, where Ccolor is a color factor.
Here we adopt units where dim½m� ¼ GeV, dim½r� ¼

1=GeV, dim½σ� ¼ GeV2, and κ is dimensionless.
There is one important practical reason to use the Cornell

potential in the present context. For a Q1Q̄2 system in a
color singlet, Ccolor ¼ CF ¼ 4=3. In order to compute the

diquark masses Q1Q2 (or Q̄1Q̄2), one has to couple quark
color charges to 3̄ (or 3), and then the color factor is
Ccolor ¼ CF=2 ¼ 2=3 (see, e.g., Table III in Ref. [39]). As
this is quite obvious for the Coulomb and spin terms, lattice
calculations suggest the same behavior for the confining
part [41].
Therefore, once the potential parameters are fixed from

the cc̄ and bb̄ meson spectra, we can compute the diquark
masses by rescaling the color factors and the string tension
in (14) by a factor of 2.
We are looking for a solution of the Schrödinger

equation in terms of a function unðrÞ defined as follows:

ψnl¼0m¼0ðr; θ;φÞ ¼ Rn
0ðrÞY00ðθ;φÞ ¼

unðrÞ
r

1ffiffiffiffiffiffi
4π

p : ð16Þ

It is convenient to introduce a dimensionless variable ρ,

r ¼
�

1

2σμ

�
1=3

ρ; ð17Þ

and rescaled dimensionless parameters λ and ζ,

λ ¼
�

2μ

σ1=2

�
2=3

κ; ζ ¼
�
2μ

σ2

�
1=3

E: ð18Þ

With these substitutions, the Schrödinger equation takes the
very simple form

u00 þ
�
λ

ρ
− ρþ ζ

�
u ¼ 0: ð19Þ

The results for the rescaled energies ζi are shown in the
upper panel of Fig. 1. We choose the normalization

Z
∞

0

dρjuðρÞj2 ¼ 1: ð20Þ

TABLE I. Thresholds for tetraquark decays in MeV. The first column shows the baryon entering the mass formulas (10) and (12),
which specifies the tetraquark SU(3) representation. The other columns indicate pertinent diquarks and their spin. If more than one
decay channel is possible, only the one with the lowest mass is shown.

fc̄c̄g1 fb̄b̄g1 fc̄b̄g1 ½c̄b̄�0
JP Channel Threshold Channel Threshold Channel Threshold JP Channel Threshold

ΛQ 1þ D̄0D�− 3875 BþB�0 10 604 D̄0B�0 7190 0þ D̄0B0 7144

ΞQ 1þ D̄�0D−
s 3976 B�þB̄0

s 10 692 D̄�0B̄0
s 7281 0þ D̄0B̄0

s 7232
0þ D0D0 3730 BþBþ 10 559 D̄0Bþ 7144 � � � � � � � � �

ΣQ 1þ D0D�0 3872 BþB�þ 10 604 D̄�0Bþ 7286 1þ D̄�0Bþ 7286
2þ D�0D�0 4014 B�þB�þ 10 649 D̄�0B�þ 7332 � � � � � � � � �
0þ D̄0D−

s 3834 BþB̄0
s 10 646 D̄0B̄0

s 7232 � � � � � � � � �
Ξ0
Q 1þ D̄�0D−

s 3976 BþB̄�0
s 10 692 D̄0B̄�0

s 7281 1þ D̄0B̄�0
s 7281

2þ D̄�0D�−
s 4120 B�þB̄�0

s 10 741 D̄�0B̄�0
s 7423 � � � � � � � � �

0þ D−
s D−

s 3938 B̄0
s B̄0

s 10 734 D−
s B̄0

s 7336 � � � � � � � � �
ΩQ 1þ D−

s D�−
s 4082 B̄0

sB̄�0
s 10 783 D�−

s B̄0
s 7480 1þ D�−

s B̄0
s 7480

2þ D�−
s D�−

s 4226 B̄�0
s B̄�0

s 10 832 D�−
s B̄�0

s 7529 � � � � � � � � �
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Now we need to compute the hyperfine splitting. In the
first order of perturbation theory, for l ¼ 0 states we have

ΔðsÞ
hf En ¼

2

3
CFαs

2σ

m1 þm2

�
unðρÞ
ρ

����
ρ¼0

�
2

ðs1 · s2Þ: ð21Þ

In Ref. [5] we solved Eq. (19) semianalytically by treating
the Coulomb part as a perturbation, since for λ ¼ 0 Eq. (19)
reduces to the Airy equation. While this method is quite
accurate as far as the eigenvalues ζn are concerned, it fails
for the hyperfine splitting (21) where the value of the
wave function in the origin is needed. Therefore, here we
have decided to solve Eq. (19) numerically. Because for
l ¼ 0 the function RðrÞ is constant at r ¼ 0, the function
unðρÞ ¼ cnρþOðρ2Þ for small ρ. In Fig. 1 we plot the
normalization constants c2n for n ¼ 1 and 2. As a result, the
mass of theQ1Q̄2 meson (and its antiparticle) of spin s reads
as follows:

ðMQ1Q̄2
Þsn ¼m1þm2þ

�
σ2

2μ

�
1=3

ζn

þ2

3
CFαs

2σ

m1þm2

c2n

8>><
>>:
−3=4 for s¼ 0;

þ1=4 for s¼ 1:

ð22Þ

As explained earlier, diquark masses can be computed
from the same formula by rescaling CF → CF=2 and
σ → σ=2. This rescaling changes the value of the parameter

λ → λ0 ¼ λ=41=3: ð23Þ
Note that the actual value of λ in Eq. (19) depends on the

system considered, as it depends on μ, both explicitly
[Eq. (18)] and implicitly, since κ is also a function of μ. For
this new value λ0, we have different energies ζ0n and new
wave functions leading to a new value of cn → c0n. The final
mass formula for a diquark is therefore given as follows:

ðMQ̄1Q̄2
Þsn ¼m1þm2þ

�
σ2

8μ

�
1=3

ζ0n

þ1

3
CFαs

σ

m1þm2

c02n

8>><
>>:
−3=4 for s¼ 0;

þ1=4 for s¼ 1:

ð24Þ

Note that for identical quarks the s ¼ 0 configuration is
Pauli forbidden. In practice, we consider only the two
lowest states: the ground state n ¼ 1 and the first radially
excited state n ¼ 2.

B. Fitting procedure

As the first step, we use Eq. (22) to fix potential
parameters from the n ¼ 1 states shown in Table II. We
have decided to perform our own dedicated fits rather than
use the global fits to all known quarkonia states. This is
because we are only interested in the ground states for both
mesons and diquarks; however, we will see that n ¼ 2
excited states are quite well reproduced within the accuracy
of the present approach.
From Table II we find the average n ¼ 1 masses,

M̄cc̄ ¼
3MJ=ψ þMηc

4
¼ 3.069 GeV;

M̄bb̄ ¼
3Mϒ þMηb

4
¼ 9.445 GeV; ð25Þ

and average n ¼ 1 spin splittings,

δhfEðcc̄Þ ¼ 113 MeV; δhfEðbb̄Þ ¼ 61 MeV: ð26Þ
We first numerically solve Eq. (19) for 0 ≤ λ ≤ 3 and

tabulate the energy levels ζ1;2ðλÞ and constants c1;2ðλÞ.

FIG. 1. Dimensionless energies ζn and normalization factors c2n
for the ground and first excited states as functions of λ.

TABLE II. Lowest quarkonia states used in the fits of the
Cornell potential parameters.

ðn; sÞ MeV MeV

(1, 0) ηcð1S0Þ 2984 ηbð1S0Þ 9399
(1, 1) J=ψð1S1Þ 3097 ϒð1S1Þ 9460
(2, 0) ηcð2S0Þ 3637 ηbð2S0Þ 9999
(2, 1) ψð2S1Þ 3686 ϒð2S1Þ 10023
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The results are shown in Fig. 1. We have checked our
numerical results by comparing them with two semian-
alytical solutions: one when we solve the Airy equation and
treat the Coulomb part as a perturbation, and another when
we solve the Coulomb part and treat the confining part as a
perturbation.
Next, we fix σ and find the c- and b-quark masses as

functions of λ from the average ground-state masses:

M̄QQ̄ ¼ 2mQ þ
�
σ2

mQ

�
1=3

ζ1ðλÞ: ð27Þ

The result is plotted in Fig. 2 for σ ¼ 0.2 GeV2. We see a
rather moderate dependence of the heavy-quark masses on
λ. The shaded areas show the mass limits of Eq. (8) that
follow from the heavy baryon phenomenology in the
present approach [5]. We see that the heavy-quark masses
extracted from charmonia or heavy baryons are compatible,
which proves the consistency of our approach.
Then, from the hyperfine splitting we find the value

of αsðmQÞ,

δhfE1ðQQ̄Þ ¼ 2

3
CFαsðmQÞ

σ

mQ
c21ðλÞ; ð28Þ

as a function of λ.
Since for a given λ the quark mass mQ is fixed by

Eq. (27), we can compute κQðλÞ for both the charm and
bottom from Eq. (18). However, κQðλÞ ¼ CFαsðmQ; λÞ,
and therefore we can find λsolQ for which this equality is
satisfied. Since there is a one-to-one correspondence
between λQ and mQ (see Fig. 2), in Fig. 3 we plot κ and
CFαs in terms of the corresponding charm (top panel) and
bottom (bottom panel) mass for σ ¼ 0.2 GeV2. Two lines
cross at the quark mass corresponding to λsolQ .
In this way, for a given σ we find unique values ofmc;bðσÞ

and αsðmc;bðσÞÞ that fit 1S ground-state quarkonia masses.
The results are plotted in Figs. 4 and 5. We see that the quark
mass dependence on σ is relatively weak, and that masses
extracted from QQ̄ mesons fall within the range (8) corre-
sponding to the baryonic fits. This proves the consistency of
our approach which combines the soliton model with the

FIG. 2. Charm (lower blue line) and bottom (upper green line)
quark masses in MeVas functions of λ extracted from Eq. (27) for
σ ¼ 0.2 GeV2. Shaded areas correspond to Eq. (8).

FIG. 3. Dependence of CFαs (red) and κ (blue) on the heavy-
quark mass for σ ¼ 0.2 GeV2, for the charm (upper panel) and
bottom (lower panel). The point where the two lines cross corre-
sponds to the model heavy-quark mass for a given string tension σ.

FIG. 4. Charm (lower blue line) and bottom (upper green line)
quark masses in GeV as functions of σ obtained from the fits to
1S states. Shaded areas correspond to Eq. (8). Vertical lines
correspond to the best fits to 2S states: charm (left) and bottom
(right); see Sec. III C.

FIG. 5. Strong coupling constants αsð2μÞ for charm (upper blue
line) and bottom (lower green line), and for μ equal to the reduced
mass of the bc system (middle red line; see Sec. III C) as
functions of the string tension σ.
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nonrelativistic theory of heavy-quark bound states.
Nevertheless, the mb −mc mass difference changes in this
σ range by about 100MeV, which (as wewill see) is a source
of uncertainty in the determination of the cb tetraquark mass.

C. Numerical results for quarkonia

Since all parameters are now fixed from the ground states,
excited-state masses are predictions. Our results are plotted
in Fig. 6. We see that first excited states in the charm and
bottom sectors cannot be fitted by the same value of σ. The
best fit for charmonia requires σc ≃ 0.19 GeV2, while in the
bottom sector σb ≃ 0.27 GeV2. This agrees quite well with
the results of global fits of Ref. [17], which give 0.164�
0.011 GeV2 and 0.207� 0.011 GeV2, respectively. Still,
the error on excited charmonia masses at σ ¼ σb or botto-
moniamasses at σ ¼ σc is of the order of 70MeV, i.e., 2% in
the case of charmonia and less than 1% for bottomonia. We
therefore restrict the range of the string tension to

0.19 GeV2 ≤ σ ≤ 0.27 GeV2; ð29Þ

which in terms of the quark masses corresponds to

1.19 GeV ≤ mc ≤ 1.31 GeV;

4.61 GeV ≤ mb ≤ 4.67 GeV; ð30Þ

which narrows the allowed range (8) following from the fits
to heavy baryons.
We should stress once again that the above result is by no

means trivial. Quark masses obtained from baryon spectra
could in principle differ from dynamical inference from the
meson sector. The fact that both sectors are compatible
reinforces confidence in the consistency of the current
approach.
We can now easily predict the masses of cb̄ or c̄b

mesons, two of which, namely, the spin-0 Bþ
c ð1S0; 6274.5Þ

and B�
c ð2S0; 6871.2Þ mesons, are listed in the PDG [18].

To this end, we need to estimate the value of αsð2μÞ, where
μ is the reduced mass (15) of the cb system. To this end, we
use the evolution formula

αsðmbÞ ¼
αsðmcÞ

1þ β0
2π αsðmcÞ lnðmb=mcÞ

; ð31Þ

which allows us to compute the model β0 as a function of
the string tension,3

β0 ¼ 2π
1=αsðmbÞ − 1=αsðmcÞ

lnðmb=mcÞ
: ð32Þ

From this we obtain αsð2μÞ, which is plotted as a red line in
Fig. 5. The resulting masses are shown in Fig. 7. For the
known spin s ¼ 0 mesons, we have

6.26 GeV ≤ mðBcð1S0; 6.275ÞÞ ≤ 6.28 GeV;

6.83 GeV ≤ mðBcð2S0; 6.871ÞÞ ≤ 6.97 GeV; ð33Þ

where the limits correspond to (29). We also predict for the
spin s ¼ 1 states

6.32 GeV ≤ mðBcð1S1ÞÞ ≤ 6.34 GeV;

6.87 GeV ≤ mðBcð2S1ÞÞ ≤ 7.02 GeV: ð34Þ

The best fit, shown by the vertical line in Fig. 7, is for
σ ¼ 0.21 GeV2, giving for spin s ¼ 1 Mbc̄ð1S1Þ ¼
6.32 GeV and Mbc̄ð2S1Þ ¼ 6.91 GeV. For the most recent
survey of Bc states, see Ref. [42].
In summary, we have fixed Cornell potential parameters

from the cc̄ charmonia and bb̄ bottomonia spectra and
computed without any further inputs the masses of the

FIG. 6. Masses of the lowest S state charmonia (upper panel)
and bottomonia (lower panel) listed in Table II. Experimental data
are shown by solid lines (from bottom to top): ηð1S0Þ (black),
J=Ψð1S1Þ orΥð1S1Þ (green), ηð2S0Þ (red) and Ψð2S1Þ orΥð2S1Þ
(blue). Dashed lines correspond to the fits described in the text
(color encoding as in the case of experimental data). 1S states are
used as input. Vertical lines indicate the values of σ for which 2S
mesons are best reproduced.

3Remember that quark masses are in one-to-one correspon-
dence with the string tension.
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ground-state cb̄ (or c̄b) mesons that for the experimentally
measured states agree very well with data.

D. Numerical results for diquarks

Having constrained the parameters of the Cornell poten-
tial, we can now—with the help of Eqs. (24) and (23)—
compute the diquarkmasses. In Fig. 8we plot cc andbb spin
s ¼ 1 diquark masses as functions ofmc;b rather than σ. The
results are very similar to those obtained previously in
Ref. [5], with one difference, namely, the slope of the
diquark masses obtained here is smaller than 1 (with respect
tomQ), whereas in Ref. [5] the slopewas slightly larger than
1. This means that the tetraquark masses, which are propor-
tional to mQ̄Q̄ −mQ, decrease with mQ, while in Ref. [5]
they were increasing as functions of the heavy-quark mass.
Numerically, however, the results are very similar and show
a slower increase than the total mass of their constituents.
InFig. 9weplotcb diquarkmasses for both spin 0 and spin

1 as functions of mc þmb. We see that, similar to mcc, the
diquark mass is smaller than the relevant meson mass. In the
case of mbb, the diquark mass is larger than the mass of ϒ.

IV. TETRAQUARK MASSES

A. Antitriplet masses

To compute tetraquark masses in flavor 3̄, we use
Eq. (10) and the numerical results for the diquark masses
from the previous section. Since identical quarks have to be
in the spin-1 state, antitriplet tetraquarks are JP ¼ 1þ. The
results are plotted in Fig. 10. We see that charm tetraquark
masses are above the threshold, while in the case of the
bottom there are rather deeply bound states for both
nonstrange and strange tetraquarks. The lightest nonstrange
charm tetraquark is approximately 70–95 MeV above the
threshold, while the strange one is 155–180 MeVabove the

FIG. 7. Predicted masses of Bc mesons as functions of the
string tension σ shown as dashed lines: (from noffom to top)
Bcð1S0Þ (magenta), Bcð1S1Þ (green), Bcð2S0Þ (red) and Bcð2S1Þ
(blue). Solid lines denote the two known spin s ¼ 0 mesons
Bþ
c ð1S0; 6274.5Þ and B�

c ð2S0; 6871.2Þ [18]. Vertical lines indi-
cate the values of σ for which both Bc mesons are best
reproduced. Shaded area corresponds to the limits of Eq. (29).

FIG. 8. Spin s ¼ 1 charm (upper panel) and bottom (lower
panel) diquark masses in GeV (green solid lines) as functions of
mc;b. Horizontal dashed lines show J=Ψ and ϒ masses, respec-
tively, while red solid lines correspond to 2mc;b. Vertical lines
indicate the values of mc;b corresponding to σ for which 2S
mesons are best reproduced. The shaded area corresponds to the
limits of Eq. (30).

FIG. 9. Masses of cb diquarks (solid lines) as functions of
mc þmb. The lower line corresponds to s ¼ 0 and the upper one
to s ¼ 1. The horizontal dashed line shows the Bcð1SÞ mass.
Vertical lines indicate the values of mb þmc corresponding to σ
for which Bc mesons are best reproduced. The shaded area
corresponds to the limits of Eq. (30).
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threshold. On the contrary, bottom tetraquarks are bound by
140–150 MeV and 50–65 MeV for nonstrange and strange
tetraquarks, respectively. These masses are in agreement
with our previous work [5], except for themc;b dependence,
which (as explained in Sec. III D) has a different slope. Our
results are also in a very good agreement with the
predictions of Ref. [32].
Our new result in the present work is predictions for

masses of cb tetraquarks. The results are plotted in Fig. 11.
Here, unlike in the case of identical quarks, both spin
configurations of the cb diquarks are possible: spin 0 is
shown in the upper panel of Fig. 11 and spin 1 is shown in
the lower panel. Moreover, we have two sets of predictions
based on Eq. (10), where one can choose forQ either c or b.
In principle, both determinations should coincide; however,
we see a difference of the order of 100–30 MeV due to the
variation of the mb −mc mass difference with σ discussed
at the end of Sec. III B. The predictions from the bottom
sector are lower and almost independent of the quark

masses, while the predictions from the charm sector
decrease with mc þmb.
The results of this section are summarized in Table III,

where we quote our predictions for the tetraquark masses at
quark masses corresponding to σ for which 2S mesons are
best reproduced. This means that for each sector we have in
fact different σ. It is therefore surprising that the mc þmb
mass for cb tetraquarks is practically equal to the sum ofmc
and mb masses determined from the c and b sectors
separately (i.e., for different σ).
We see from Table III that only bb tetraquarks, both

strange and nonstrange, are bound, confirming results from
Refs. [5,32]. Interestingly, the cb nonstrange tetraquark of
spin 1 is only 17–61 MeV above the threshold, which—
given the accuracy of the model—does not exclude a
weakly bound state. This is mainly due to the fact that the
hyperfine splitting between spin-1 and spin-0cb diquarks is
only 10 MeV, while the difference of pertinent thresholds is
45 MeV. The fact that the 0þ cb tetraquark could be bound
was raised in Ref. [43].

FIG. 11. Nonstrange (solid blue, bottom) and strange (solid red,
top) antitriplet cb tetraquark masses (spin 0: upper panel; spin 1:
lower panel) as functions of mc þmb. Upper solid lines corre-
spond to masses computed from the charm sector, while lower
ones correspond to the b sector. Horizontal dashed lines corre-
spond to the pertinent thresholds (nonstrange: bottom; strange:
top) given in Table I. Shaded areas show the heavy-quark mass
ranges (30). Vertical lines indicate the values of mc þmb
corresponding to σ for which 2S mesons are best reproduced.

FIG. 10. Lightest nonstrange (solid blue, bottom) and strange
(solid red, top) antitriplet tetraquark masses (charm: upper panel;
bottom: lower panel) as functions of the heavy-quark mass.
Horizontal dashed lines correspond to the pertinent thresholds
(nonstrange: bottom; strange: top) given in Table I. Shaded areas
correspond to the heavy-quark mass ranges (30). Vertical lines
indicate the values of mc;b corresponding to σ for which 2S
mesons are best reproduced.
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B. Sextet masses

In the case of sextet tetraquarks, we have several spin
states, since the soliton spin is J ¼ 1 and the QQ diquark
spin is SQQ ¼ 1, and additionally 0 in the case of the cb
diquark. However, the pertinent spin splittings are very
small. Indeed, for the bc diquarks, spin splitting is of the

order of 10 MeV (see Fig. 9) and the diquark-soliton spin
splitting, depending on the diquark mass, is of the order of
60, 20, and 15 MeV for cc, bc, and bb tetraquarks,
respectively.
Therefore, in the following we show only some repre-

sentative plots for nonstrange sextet tetraquarks. For tetra-
quarks with nonzero strangeness, these curves have to be
shifted upwards by the mass difference between heavy
baryons used as a reference [see Eq. (12)] and the pertinent
thresholds have to be replaced by the ones from Table I.
In Fig. 12 we plot nonstrange cc and bb tetraquark

masses. In this case, tetraquarks have spin 0, 1, or 2, and they
are shown by blue, orange, and green (from bottom to top),
respectively. Pertinent thresholds are marked by dashed
lines. In both cases, no bound states exist. These results are
in agreement with our previous estimates from Ref. [5].
In Fig. 13 we plot the nonstrange cb tetraquark mass for

a diquark of spin 0, and therefore the tetraquark spin is
s ¼ 1. We see again that two different mass estimates based
on c or b baryons in Eq. (12) differ by 15–95 MeV. In order
to illustrate the pattern of spin splittings, in Table IV we
show predictions for all spin combinations at the aggregate
mass mc þmb ¼ 5.932 GeV. We see that the spin split-
tings at this mass are of the order of 10 MeV, whereas the
uncertainty due to the reference baryon (charm or bottom)
is of the order of 50 MeV. All states are above the threshold.

TABLE III. Tetraquark masses in GeV at quark masses corre-
sponding to σ for which 2Smesons are best reproduced. The index
S refers to the diquark spin, which in the 3̄ case is equal to the
baryon spin. States below the threshold are displayed in boldface.

Baryon QQS Mass Threshold mQ or mc þmb

ΛQ cc1 3.948 3.887
1.307ΞQ 4.130 3.976

ΛQ bb1 10.467 10.604
4.609ΞQ 10.642 10.692

ΛQ cb0 7.197–7.241 7.145

5.932
cb1 7.207–7.251 7.190

ΞQ cb0 7.327–7.424 7.232
cb1 7.382–7.334 7.281

FIG. 12. Masses of Tcc (upper panel) and Tbb (lower panel)
nonstrange sextet tetraquarks of spin 0, 1, and 2 (from bottom
upwards) as functions of mQ. Dashed lines show pertinent
thresholds. Vertical lines indicate the values ofmQ corresponding
to σ for which 2S mesons are best reproduced. The shaded area
corresponds to the limits of Eq. (30).

FIG. 13. Mass of the Tcb nonstrange sextet tetraquark of spin 0
as a function ofmc þmb. The upper line corresponds to the mass
computed from the charm baryon spectrum, whereas the lower
line corresponds to the bottom baryon (12). The dashed line
shows the pertinent threshold. Vertical lines indicate the values of
mc þmb corresponding to σ for which the 2S Bc meson is best
reproduced. The shaded area corresponds to the limits of Eq. (30).

TABLE IV. Masses (in GeV) of nonstrange sextet cb tetra-
quarks of spin s for c̄ b̄ diquark of spin Sc̄ b̄.

Sc̄ b̄ 0 1

s ¼ 0 � � � 7.39–7.44
s ¼ 1 7.40–7.45 7.40–7.45
s ¼ 2 � � � 7.42–7.47
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V. SUMMARY AND CONCLUSIONS

In this work, we have calculated the masses of heavy
tetraquarks in a model in which the light sector is described
by a chiral quark-soliton model, while the mass of the
heavy diquark is calculated from the Schrödinger equation
with the Cornell potential including spin interactions. In
this way, we extended our previous analysis [5] where the
explicit spin interaction was ignored and only tetraquarks
with identical heavy antiquarks were considered. Since we
have been interested in 1S ground states only, there was no
need to include tensor and spin-orbit couplings. We have
developed our own fitting procedure to fix the parameters
of the Cornell potential, including heavy-quark masses,
from the charmonium and bottomonium spectra. The
resulting quark masses are in agreement with the quark
masses extracted from the heavy baryon spectra calculated
in the framework of the χQSM; see Fig. 4. This proves the
consistency of our approach. Moreover, our parameters are
in a reasonable agreement with the results from the global
fits [17].
Furthermore, having all parameters fixed, we calculated

Bc-meson masses with no additional input. These predic-
tions agree very well with two experimentally known cases;
see Eq. (33). This reassured us that the parameters of the
Cornell potential were correctly extracted from the c̄c and
b̄b spectra, and that the interpolation to the c̄b system was
correctly performed. We also predicted masses of the Bc
vector mesons (34).

In order to compute diquark masses, we appropriately
rescaled the color factors entering the Cornell potential,
since the two antiquark color charges couple in this case to
an SU(3) triplet rather than to a singlet. The results are
given in Sec. III D.
Heavy tetraquarks can be characterized according to the

SU(3) classification of heavy baryons, in which the heavy
quark Q has been replaced by an antidiquark. Therefore,
the mass formulas (10) and (12) include heavy baryon
masses and diquark masses and the spin-spin interaction.
They are analogous to the phenomenological mass for-
mulas of Ref. [32].
Our main conclusion is that only the bb tetraquarks are

bound, both nonstrange and strange. Unfortunately, the cb
system is not heavy enough to create a bound state. One of
the main motivations of the present paper was to check
whether cb tetraquarks exist. There is still a possibility that
a strange cb tetraquark might exist, since—given the
accuracy of the present approach—our predictions lie very
close to the D̄�0B̄0

s threshold.
In view of these findings, it seems likely that the LHCb

charm tetraquark is a kind of molecular configuration
[44,45], which is beyond our present approach.
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bb;ūd̄
, Phys. Rev. D

99, 033002 (2019).
[30] H. J. Lipkin, A model independent approach to multi-quark

bound states, Phys. Lett. B 172, 241 (1986).
[31] J. P. Ader, J. M. Richard, and P. Taxil, Do narrow heavy

multi-quark states exist?, Phys. Rev. D 25, 2370 (1982).

[32] E. J. Eichten and C. Quigg, Heavy-quark symmetry implies
stable heavy tetraquark mesons QiQjq̄kq̄l, Phys. Rev. Lett.
119, 202002 (2017).

[33] E. Witten, Baryons in the 1=N expansion, Nucl. Phys. B160,
57 (1979).

[34] E. Witten, Current algebra, baryons, and quark confinement,
Nucl. Phys. B223, 422 (1983); B223, 433 (1983).

[35] E. Guadagnini, Baryons as solitons and mass formulae,
Nucl. Phys. B236, 35 (1984).

[36] P. O. Mazur, M. A. Nowak, and M. Praszalowicz, SUð3Þ
extension of the Skyrme model, Phys. Lett. 147B, 137
(1984).

[37] S. Jain and S. R. Wadia, Large N baryons: Collective
coordinates of the topological soliton in SU(3) chiral model,
Nucl. Phys. B258, 713 (1985).

[38] A. Blotz, D. Diakonov, K. Goeke, N. W. Park, V. Petrov, and
P. V. Pobylitsa, The SU(3) Nambu-Jona-Lasinio soliton in
the collective quantization formulation, Nucl. Phys. A555,
765 (1993).

[39] M. Karliner and J. L. Rosner, Baryons with two heavy
quarks: Masses, production, decays, and detection, Phys.
Rev. D 90, 094007 (2014).

[40] M. Karliner and J. L. Rosner, Doubly charmed strange
tetraquark, Phys. Rev. D 105, 034020 (2022).

[41] A. Nakamura and T. Saito, QCD color interactions between
two quarks, Phys. Lett. B 621, 171 (2005).

[42] X. J. Li, Y. S. Li, F. L. Wang, and X. Liu, Spectroscopic
survey of higher-lying states of Bc meson family, Eur. Phys.
J. C 83, 1080 (2023).

[43] X. Z. Weng, W. Z. Deng, and S. L. Zhu, Doubly heavy
tetraquarks in an extended chromomagnetic model, Chin.
Phys. C 46, 013102 (2022).

[44] D. Janc and M. Rosina, The Tcc ¼ DD� molecular state,
Few-Body Syst. 35, 175 (2004).

[45] N. Li, Z. F. Sun, X. Liu, and S. L. Zhu, Coupled-channel
analysis of the possible Dð�ÞDð�Þ; B̄ð�ÞB̄ð�Þ and Dð�ÞB̄ð�Þ
molecular states, Phys. Rev. D 88, 114008 (2013).

MACIEJ KUCAB and MICHAŁ PRASZAŁOWICZ PHYS. REV. D 109, 076005 (2024)

076005-12

https://doi.org/10.1140/epjc/s10052-019-6808-2
https://doi.org/10.1140/epjc/s10052-019-6808-2
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/S0370-2693(02)03069-1
https://doi.org/10.1103/PhysRevD.37.744
https://doi.org/10.1016/0550-3213(93)90614-U
https://doi.org/10.1103/PhysRevLett.66.1130
https://doi.org/10.1016/j.physletb.2007.04.010
https://doi.org/10.1103/PhysRevD.74.094003
https://doi.org/10.1103/PhysRevD.88.054029
https://doi.org/10.1140/epja/i2019-12906-0
https://doi.org/10.1103/PhysRevLett.119.202001
https://doi.org/10.1103/PhysRevLett.119.202001
https://doi.org/10.1016/j.nuclphysb.2018.12.021
https://doi.org/10.1103/PhysRevD.99.033002
https://doi.org/10.1103/PhysRevD.99.033002
https://doi.org/10.1016/0370-2693(86)90843-9
https://doi.org/10.1103/PhysRevD.25.2370
https://doi.org/10.1103/PhysRevLett.119.202002
https://doi.org/10.1103/PhysRevLett.119.202002
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/0550-3213(83)90063-9
https://doi.org/10.1016/0550-3213(83)90064-0
https://doi.org/10.1016/0550-3213(84)90523-6
https://doi.org/10.1016/0370-2693(84)90608-7
https://doi.org/10.1016/0370-2693(84)90608-7
https://doi.org/10.1016/0550-3213(85)90632-7
https://doi.org/10.1016/0375-9474(93)90505-R
https://doi.org/10.1016/0375-9474(93)90505-R
https://doi.org/10.1103/PhysRevD.90.094007
https://doi.org/10.1103/PhysRevD.90.094007
https://doi.org/10.1103/PhysRevD.105.034020
https://doi.org/10.1016/j.physletb.2005.06.053
https://doi.org/10.1140/epjc/s10052-023-12237-9
https://doi.org/10.1140/epjc/s10052-023-12237-9
https://doi.org/10.1088/1674-1137/ac2ed0
https://doi.org/10.1088/1674-1137/ac2ed0
https://doi.org/10.1007/s00601-004-0068-9
https://doi.org/10.1103/PhysRevD.88.114008

