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Quantum field theory in the presence of strong background fields contains interesting problems where
quantum computers may someday provide a valuable computational resource. In the noisy intermediate-scale
quantum era it is useful to consider simpler benchmark problems in order to develop feasible approaches,
identify critical limitations of current hardware, and build new simulation tools. Here we perform quantum
simulations of strong-field QED (SFQED) in 3þ 1 dimensions, using real-time nonlinear Breit-Wheeler pair
production as a prototypical process. The strong-field QEDHamiltonian is derived and truncated in the Furry-
Volkov mode expansion, and the interactions relevant for Breit-Wheeler are transformed into a quantum
circuit. Quantum simulations of a “null double slit” experiment are found to agree well with classical
simulations following the application of various error mitigation strategies, including an asymmetric
depolarization algorithm which we develop and adapt to the case of Trotterization with a time-dependent
Hamiltonian. We also discuss longer-term goals for the quantum simulation of SFQED.
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I. INTRODUCTION

Quantum computing technology is rapidly developing.
At present, real quantum devices do not offer useful
advantage over classical computers, but in the not terribly
distant future, quantum computing may mature into a
valuable tool with diverse applications. In high energy
physics (HEP), it is hoped that quantum computers will be
able to simulate phenomena in models where classical
simulation techniques are limited by sign problems or the
need to explore a large Hilbert space [1–3]. In the near term,
it is important to develop the tools to maximize the power
of noisy intermediate-scale quantum (NISQ) devices on
simulation problems, and to flesh out the space of target
problems for which systematic improvements in quantum
computing power would lead to clear advantage over
classical simulations [4,5].
The Schwinger process, eþe− pair creation in 1þ 1

dimensions in a strong background electric field [6], is a
widely used benchmark for quantum simulations in HEP
(see, e.g., [7–17].) As a nonperturbative, dynamical process
in a confining gauge theory, it captures some of the
essential physics of four-dimensional QCD-like theories

in a simpler setting more tractable for NISQ-era devices.
The potential applications of quantum computing to QCD
are well known [18–23]. Perhaps less widely appreciated
are the potential applications of quantum simulation to
QED, particularly in the presence of strong background
electromagnetic fields (commonly referred to as strong-
field quantum electrodynamics, or SFQED—for a recent
review, see [24].) Indeed the Schwinger process [25–27] is
a simple example of an SFQED phenomenon, but the
richness and complexity of the theory arises in the presence
of dynamical photons. Remarkably, although QED near the
perturbative vacuum has been tested with unparalleled
precision, there are still aspects of QED—most dramati-
cally in the regime of ultrastrong fields—where the
behavior is not fully understood (see, e.g., [24,28]).
Qualitatively, ultrastrong fields should yield explosive
particle production and backreaction, leading rapidly to a
complicated quantum state. Thus, quantum computers
may one day provide a unique probe of the most extreme
regimes of QED. Similarly, quantum computers could
provide a valuable tool to study phenomena in moderately
intense fields. In this regime, which will be probed in
upcoming experiments [29], analytic techniques are avail-
able for studying few-particle scattering amplitudes, at low
loop order, in idealized background fields. As in QCD,
quantum simulations could provide complementary access
to real-time phenomena in more complex states.
These are future goals. Near-term quantum computers

will be limited by size, connectivity, and noise. Therefore
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the present task is to design general simulation frameworks
and test them on simple benchmark processes, tractable on
present-day hardware.
In this paper we study real-time digital quantum simu-

lations of 3þ 1D SFQED. Unlike the discretized-space
approach generally used to study Hamiltonian lattice gauge
theories [30,31], we use the discretized momentum-space
SFQED Hamiltonian in the light-front formalism [32–34].
We perform quantum simulations by mapping Fock states
onto qubits and ladder operators onto Pauli gates.1 As a
simple but nontrivial benchmark process, we examine
nonlinear Breit-Wheeler pair production [38–45]. In this
process, a photon “decays” into an electron-positron pair
via an interaction with a strong background electromag-
netic field. We study the real-time interference effects in
pair-production probability due to two fields separated in
time, a sort of “null double-slit” experiment [46–50].
Currently, quantum noise is unavoidable in simulations,

and error mitigation is a powerful tool to “fit and subtract”
various sources of noise. Fortunately, the past decade has
seen rapid progress in the development of a suite of effective
mitigation techniques [51–56]. Here we employ measure-
ment mitigation, Pauli twirling [53], and depolarization
mitigation. For depolarization mitigation, we improve on
so-called “self-mitigation” [19,57,58] by relaxing the sym-
metric depolarization assumption. We find that at present
these techniques are essential to obtain acceptable results.
Without the combination of these mitigation techniques, our
quantum simulations would yield unusable data.
This paper is organized as follows. In Sec. II we derive

the momentum-space SFQED Hamiltonian and describe the
truncation approach we use for quantum simulations. In
Sec. III we translate the nonlinear Breit-Wheeler process into
quantum circuits. In Sec. IV we describe the specific
benchmark process of interest and develop a theoretical
understanding of the relevant interference phenomena using
time-dependent perturbation theory. We also perform real-
time classical simulations in order to compare with quantum
simulation results. In Sec. V we show raw quantum data and
its comparison with Qiskit noisy simulations. In Sec. VI
we describe the error mitigation strategies used to obtain the
final mitigated results, which are found to be in good
agreement with the classical simulations. Finally, in
Sec. VII we describe some directions for future work.

A. Conventions

We work in natural units with ℏ ¼ c ¼ 1 and report
values in MeV. m ¼ 0.511 MeV is the mass of the electron
and e ¼ 0.303 is the electric charge.
It is convenient to work in light-front coordinates

[33,59,60]. The coordinate four-vector is xμ ¼ ðxþ; x−;
x1; x2Þ ¼ ðxþ; x−; x⊥Þ, where x� ≡ x0 � x3. Similar

notation holds for other four-vectors. The Minkowski
metric and inverse are

gμν¼

0
BBB@
0 1

2
0 0

1
2
0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA gμν¼

0
BBB@
0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA: ð1Þ

To alleviate the subsequent bookkeeping of factors of
two or one-half, we work mainly with raised indices, so
that x∓ → x�

2
and xi → −xi (for i ¼ 1, 2). In other words,

the covariant coordinate form is xμ ¼ ðxþ; x−; x⊥Þ ¼
ðx−
2
; x

þ
2
;−x⊥Þ. An exception to this convention is with the

four-gradient, which will be written as ∂μ ¼ ð∂þ; ∂−; ∂⊥Þ.
We take xþ to be the light-front time coordinate. The

spatial three-vector and kinetic momentum are

x ¼ ðx−; x1; x2Þ p ¼ ðpþ; p1; p2Þ: ð2Þ

We define their inner product as px ¼ 1
2
pþx− − p1x1−

p2x2. p− is light-front energy, and free particles satisfy the
dispersion relation

p− ¼ ðp⊥Þ2 þm2

pþ : ð3Þ

In the light front, pþ and hence p− are positive semi-
definite. We will work in a Fock space constructed from
a momentum lattice, and the zero mode pþ ¼ 0 does not
propagate. Therefore we will take pþ > 0.
Because of the conventions in Eq. (1), the integration

measure on a slice of constant light-front time xþ incurs a
factor of one-half:

d3x ¼ 1

2
dx−dx⊥: ð4Þ

We work with the chiral basis for the gamma matrices, so
that with μ ¼ 0, 1, 2, 3

γμ ¼
�

0 σμ

σ̄μ 0

�
; ð5Þ

where σμ ¼ ðI; σ⃗Þ and σ̄μ ¼ ðI;−σ⃗Þ. Light-front gamma
matrices are defined as γ� ¼ γ0 � γ3. They obey the usual
anticommutation relations with the light-front metric,
fγμ; γνg ¼ 2gμν.

II. SFQED HAMILTONIAN

Given a quantum state jψi, the generator of light-front
time xþ translations is Pþ, i∂þjψi ¼ Pþjψi. Equivalently,
∂þjψi ¼ − i

2
P−jψi where we identify P− ≡H as the

1For additional discussion of quantum simulations in the light
front, see Refs. [35–37].
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Hamiltonian. The Hamiltonian density is given by the
Legendre transform

H ¼ ∂L
∂ð∂þφαÞ

∂þφα − L; ð6Þ

where L is the Lagrangian density

L ¼ −
1

4
FμνFμν þ ψ̄ði=D −mÞψ : ð7Þ

Within the covariant derivativeDμ ¼ ∂μ þ ieAμ þ ieAμ we
make explicit the electromagnetic gauge field Aμ and the
classical2 background field Aμ. ψ is the Dirac field and the
Dirac adjoint is defined as usual by ψ̄ ¼ ψ†γ0.
We work in the gauge Aþ ¼ 0 for the photon field and

assume the Lorenz gauge ∂μAμ ¼ 0 for the background
field. For plane waves, Aμ is a function of a light-front
wave vector κμ: Aμ ¼ AμðκμxμÞ. If the background field
is a null field propagating in the −ẑ direction, κμ ¼
ð0; 2ω; 0; 0Þ, then the Lorenz gauge reduces to Aþ ¼ 0.
Here ω is the frequency of the background wave.
Under these gauge conditions the Euler-Lagrange equa-

tions for Aμ and ψ reveal two constraint equations. For the
electromagnetic field, we have

∂
2
−A− ¼ −∂−∂iAi −

1

2
eψ̄γþψ : ð8Þ

For the Dirac field, we obtain the Dirac equation
ði=D −mÞψ ¼ 0, but defining the projectors

Λþ ¼ 1

4
γþγ− ¼ diagð1; 0; 0; 1Þ

Λ− ¼ 1

4
γ−γþ ¼ diagð0; 1; 1; 0Þ; ð9Þ

and applying Λ− from the left, we obtain the constraint

∂−ψþ ¼ i
4
γþðiγi∂i þ eγiAi þ eγiAi −mÞψ−; ð10Þ

where ψ� ¼ Λ�ψ and ψþ þ ψ− ¼ ψ . We will solve the
constraints exactly for ψþ and A−,

ψþ ¼ iγþðiγi∂i þ eγiAi þ eγiAi −mÞψ−

4∂−

A− ¼ −
∂−∂iAi þ eψ†

−ψ−

∂
2
−

: ð11Þ

Note that γ0γþ ¼ 2Λ− and Λ2
− ¼ Λ−, resulting in the

appearance of ψ− in the solution for A−.

In defining the Green functions appearing in Eq. (11), it
is customary to take antisymmetric boundary conditions for
fields at the longitudinal boundaries [32,34,61]. As a
consequence the zero mode is omitted from the spectral
decomposition.
Having fixed the gauge and solved the constraints exactly,

the Hilbert space we construct is a physical one, with no
additional non-gauge-invariant sectors. This approach
minimizes the number of qubits needed to represent the
degrees of freedom, at the expense of introducing additional
interactions.
Inserting Eq. (11) into Eq. (6) we obtain a nonlocal

expression for the Hamiltonian density in terms of the
dynamical fields Ai and ψ−. The full Hamiltonian density
can be separated into several terms: the fermion energy

Hψ ¼ −
im2

2
ψ†
−

�
ψ−

∂−

�
þ i
2
ψ†
−

�
∂i∂iψ−

∂−

�
; ð12Þ

the photon energy

HA ¼ 1

2
ð∂1A2 − ∂2A1Þ2 − 1

2
ð∂−∂iAiÞ

�
∂iAi

∂−

�
; ð13Þ

the fermion-background energy

HψA ¼ eA−ψ†
−ψ−þ eAiψ†

−

�
∂iψ−

∂−

�
−
ie2

2
ψ†
−AiAi

�
ψ−

∂−

�
;

ð14Þ
the fermion-photon-background interaction

HψAA ¼ ie2

2
ψ†
−AiγiγjAj

�
ψ−

∂−

�
þ ie2

2
ψ†
−Aiγiγj

�
Ajψ−

∂−

�
;

ð15Þ
the fermion-photon interaction

HψA ¼ ime
2

ψ†
−γ

i

�
Aiψ−

∂−

�
−
ime
2

ψ†
−γ

iAi

�
ψ−

∂−

�

−
e
2
ð∂−∂iAiÞ

�
ψ†
−ψ−

∂
2
−

�
−
e
2
ðψ†

−ψ−Þ
�
∂iAi

∂−

�

−
e
2
ψ†
−γ

iγj
�
∂iðAjψ−Þ

∂−

�
−
e
2
ψ†
−Aiγiγj

�
∂jψ−

∂−

�
;

the four-fermion interaction

H4ψ ¼ −
e2

2
ðψ†

−ψ−Þ
�
ψ†
−ψ−

∂
2
−

�
; ð16Þ

and the double fermion-photon interaction

H2ψA ¼ ie2

2
ψ†
−Aiγiγj

�
Ajψ−

∂−

�
: ð17Þ

2Equation (7) lacks a kinetic term for the background field Aμ
because we consider cases where it obeys Maxwell’s equations in
vacuum.
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A. Momentum-space Hamiltonian and discretization

Most simulations of quantum field theories on quantum
computers use a real-space lattice discretization. We instead
use a mode decomposition and construct the corresponding
Fock space in the usual way. This approach has the advantage
that it makes extracting physical quantities much easier with
noisy, low-qubit-number devices. In terms of asymptotic
scaling, the mode expansion results in a Hamiltonian with
Oðn4Þ terms, compared withOðn3Þ terms for a spatial lattice.
We define creation and annihilation operators a†=a,

b†=b, and c†=c for the electron, positron, and photon,
respectively. These respect the (anti)commutation relations

fasp; ar†p0 g ¼ ð2πÞ3δs;rδ3ðp − p0Þ
fbsp; br†p0 g ¼ ð2πÞ3δs;rδ3ðp − p0Þ
½cjk; cj

0†
k0 � ¼ ð2πÞ3δj;j0δ3ðk − k0Þ: ð18Þ

Here, s; r ¼ � 1
2
are helicity indices for the fermions and

λ ¼ 1, 2 are polarization indices for the photon. The Fock
states are labeled by occupation numbers and require an
ordering, particularly for the fermions. We write the states
in the following order:

j…; e−
þ1

2
pn ;…; eþþ1

2
pn ;…; γ1pn

;…; e−
−1
2

pn;…; eþ−1
2

pn;…; γ2pn
;…i;
ð19Þ

where the superscript is the helicity/polarization, the sub-
script is the four-momentum, and n is an index for all
allowed four-momenta for a given particle and helicity/
polarization. (For a given three-momentum, p− is deter-
mined by the dispersion relation.) We note that the fermion
creation and annihilation operators induce a phase factor of
ð−1Þζ, where ζ is the sum of the number of fermions to the
left of the operand as written in Eq. (19). The fermion states
can be at most singly occupied, while the photon states can
be arbitrarily highly occupied.
The mode expansion of the fields also requires helicity

bispinors for the Dirac field and polarization vectors for the
electromagnetic field. Since ψ− is projected with Λ−, it is
convenient to define basis bispinors for each helicity as

wþ1
2 ¼

0
BBB@

0

1

0

0

1
CCCA w−1

2 ¼

0
BBB@

0

0

1

0

1
CCCA: ð20Þ

We define linear polarization four-vectors

ϵμ1 ¼ ð0; ϵ−1 ; 1; 0Þ ϵμ2 ¼ ð0; ϵ−2 ; 0; 1Þ: ð21Þ
In the free limit e ¼ 0 the constraint equation determines
ϵ−j ¼ 2kj

kþ , and the photon is transversely polarized,
ϵμj kμ ¼ 0.

With these definitions, the Schrödinger picture mode
expansions are

ψ− ¼
Z

dpþdp⊥
ð2πÞ3

X
s¼�1

2

e−ipxwsasp þ eipxw−sbs†p

Aj ¼
Z

dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p ðe−ikxcjk þ eikxcj†k Þ: ð22Þ

In this context, s is the positron helicity, and the electron
has helicity −s. These fields can then be substituted into the
Hamiltonian densities to obtain the Schrödinger-picture
Hamiltonian:

H ¼ 1

2

Z
Hd3x: ð23Þ

Subsequent integrals may be evaluated by usingZ
d3xeiðp−p0Þx ¼ 2ð2πÞ3δ3ðp − p0Þ: ð24Þ

After constructing the Hamiltonian in this way, one takes
the additional step of normal ordering the creation and
annihilation operators. (See Appendix A for sample cal-
culations.) This procedure renormalizes away the simplest
“ear diagram” divergences, and it clarifies that the Fock
vacuum is the exact ground state in the light front.
Simulating the theory requires discretizing the momenta,

truncating the set of single-particle states, and truncating
the photon state occupation numbers. We use a momentum
lattice with lattice spacing 2π

L . The creation and annihilation
operators then obey discrete (anti)commutation relations:

fasp;ar†p0 g¼δs;rδp;p0 fbsp;br†p0 g¼δs;rδp;p0 ½cjk;cj
0†
k0 �¼δj;j0δk;k0 :

ð25Þ
As a result, they are scaled by a factor of

ffiffiffiffiffiffi
L3

p
relative to the

infinite volume case. For example, asp →
ffiffiffiffiffiffi
L3

p
asp in passing

from the continuum to discretized single-particle state space.

B. Interaction picture

The SFQED Schrödinger-picture Hamiltonian can be
split into a “free” piece, quadratic in the fluctuating fields,
and an “interaction” piece, accounting for interactions of
order e and e2. The free Hamiltonian H0 ¼ Hψ þHA þ
HψA is composed of number operators, so it is diagonal in
the Fock basis, whereas the interaction Hamiltonian
V ¼ HψAA þHψA þH4ψ þH2ψA is not. As a result it is
convenient to work in an interaction picture. Since even the
Schrödinger-picture Hamiltonian is time dependent in the
present context, let us review the derivation of the inter-
action picture time evolution operator.
The Schrödinger-picture time evolution operator is

U ¼ T e−
i
2

R
xþ
0

HSðyþÞdyþ ; ð26Þ
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where HSðxþÞ is the complete time-dependent
Schrödinger-picture Hamiltonian. The lower limit of inte-
gration is set to zero but in general denotes some initial
fiducial time at which the Schrödinger-, interaction-, and
Heisenberg-picture states are the same. Schrödinger-picture
states are evolved withU, jψSðxþÞi ¼ Ujψð0Þi, and satisfy
the Schrödinger equation with HS. Now define the free
evolution operator

U0 ¼ T e−
i
2

R
xþ
0

H0ðyþÞdyþ ð27Þ
and the interaction picture states

jψ intðxþÞi ¼ U†
0jψSðxþÞi

¼ U†
0Ujψð0Þi

¼ UintðxþÞjψð0Þi: ð28Þ
In the last line we have defined the interaction-picture time
evolution operator Uint ¼ U†

0U. It can be shown to satisfy

i∂þUint ¼
1

2
ðU†

0VU0ÞUint

¼ 1

2
HintUint; ð29Þ

where the second line defines the interaction-picture
interaction Hamiltonian Hint. (Essentially it amounts to
inserting the Volkov mode solutions [62] into the
Schrödinger-picture interaction Hamiltonian V—see
Appendix A.) The solution to Eq. (29) is

Uint ¼ T e−
i
2

R
xþ
0

HintðyþÞdyþ : ð30Þ
The Schrödinger picture time evolution operator can be
written as U ¼ U0Uint, where U0 is entirely diagonal and
amounts to phases when acting on free-particle basis states,
so the typical probability between these states can be
calculated just using Uint.

III. QUANTUM CIRCUIT DESIGN

There are many ways to build the same unitary as a
quantum circuit, but in the NISQ era we must be careful to
minimize the use of noisy gates, particularly CNOTs and
SWAPs. At present we cannot afford to simulate the most
scientifically interesting SFQED processes with many
degrees of freedom. However, as a first step toward the
long-term goal and as a proof of principle, we will show that

a simple example process, a tree-level three-body process
with exclusive final states, is reliably simulated. In this
section we build three-qubit circuits that optimally simulate
the parts of the SFQEDHamiltonian responsible for the tree-
level nonlinear Breit-Wheeler process, shown in Fig. 1.
We encode each particle in a qubit q. For the processes

considered here it is sufficient to truncate boson occupation
numbers at one. If q is in the j0i state, then the particle state
is unoccupied; if q is in the j1i state, the particle state is
occupied. For a truncated Hilbert space built from one
single-particle state each for an electron, positron, and
photon, the encoding is given by a bitstring of three qubits,
such as j001i, written as a Fock state according to Eq. (19).
Thus the state j001i is a single photon and j110i is an
electron-positron pair. We follow Qiskit’s little-endian
notation, so that the qubits are numbered jq2; q1; q0i.
That is, the photon is qubit zero, q0.
The terms in the Hamiltonian that describe the transition

between these states are those with the operators a†b†c and
c†ba. We transcribe these two operator monomials into
quantum gates with the Jordan-Wigner transformation.
For example,

b ¼ 1

2
ðZ2ÞðX1 þ iY1Þ c† ¼ 1

2
ðX0 − iY0Þ; ð31Þ

where Xi, Yi, and Zi are the Pauli operators acting on the ith
qubit. Z gates account for the fermion ζ factor. By using
Pauli identities, we can write the monomials as a linear
combination of Pauli strings, each written purely with X
and Y gates. In the case of three qubits, there are 23 ¼ 8
different terms in the linear combination, since each qubit
can be acted on with either an X gate or a Y gate. The
resulting truncated Hamiltonion for three qubits is

H ¼ −
2em

8pþ ffiffiffiffiffiffiffiffiffiffiffi
kþL3

p e−ip
−xþe−2ifðpÞ½XXX − iXXY þ iXYX þ XYY þ iYXX þ YXY − YYX þ iYYY�

−
2em

8pþ ffiffiffiffiffiffiffiffiffiffiffi
kþL3

p eip
−xþe2ifðpÞ½XXX þ iXXY − iXYX þ XYY − iYXX þ YXY − YYX − iYYY�: ð32Þ

FIG. 1. Nonlinear Breit-Wheeler pair production. Double lines
indicate eþe− propagation on the background field. This “decay”
proceeds at tree level in SFQED in the Furry expansion [63] [see
Eq. (A19)]. Applying the Jordan-Wigner transformation to
represent three one-particle states by qubits, we translate the
time evolution operator into a quantum circuit.
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Here, fðpÞ is a function of light-front time defined in
Eq. (A16), and pμ and kμ are the electron and photon
momenta, respectively. See Appendix A for a derivation of
the Hamiltonian. The upper set of operators corresponds
to c†ba while the lower set corresponds to a†b†c. In the
following discussion we will write

a†b†c∼ cXXXXXXþ cXXYXXY þ cXYXXYXþ cXYYXYY

þ cYXXYXXþ cYXYYXY þ cYYXYYXþ cYYYYYY

ð33Þ

and similar for c†ba.
We emphasize that because the interactions in the

Hamiltonian are limited to three- and four-body, the
Pauli string scaling is not exponential but rather polynomial
in the number of qubits. (The nonlocality in momentum
space increases the connectivity and therefore the power of
the polynomial; however, by solving the constraints explic-
itly, even a position-space lattice implementation would
have higher connectivity.)
Although the true time evolution operator is given in

Eq. (30), this operator must be discretized as well to
digitally simulate time evolution [64,65]. The typical
prescription is to use the Lie-Trotter approximation, also
referred to as first-order Trotterization. Although higher
order Trotterizations such as the second-order Suzuki-
Trotter formula lead to better accuracy for longer time
steps, the circuit length is increased per time step, leading to
more quantum error. It is a problem-dependent question
whether it is worthwhile to implement the second-order
formula, and in our case, we found that first order is
preferable. Additionally, we wish to see fine-grained details
not found using long time steps. Therefore we write

UintðxþÞ ≈ e−
i
2
Hintðxþn ÞΔxþ � � � e−i

2
Hintðxþ1 ÞΔxþ ; ð34Þ

where n denotes the number of time steps used in the
approximation, so xþ

n ¼ Δxþ and xþn ¼ nΔxþ.
As a result, we must build a quantum circuit representing

the matrix exponential of Eq. (33). Here again we opt for a
first-order as opposed to second-order Trotterization for the
same reasons discussed above, so that

e−
i
2
Δxþa†b†c ∼ e−

i
2
ΔxþcXXXXXXe−

i
2
ΔxþcXXYXXYe−

i
2
ΔxþcXYXXYX

× e−
i
2
ΔxþcXYYXYYe−

i
2
ΔxþcYXXYXXe−

i
2
ΔxþcYXYYXY

× e−
i
2
ΔxþcYYXYYXe−

i
2
ΔxþcYYYYYY: ð35Þ

Each exponential factor now forms a subcircuit.
Importantly, the order of these factors does not matter in
the approximation, and it is very useful to shift certain
subcircuits around and apply quantum gate identities to
minimize the number of gates, particularly CNOTs.
There are numerous ways to simulate each subcircuit.

We employ the GHZ diagonalization used in previous
literature [19,66]. Subcircuits for Pauli strings with an odd
number of X (Y) gates can be diagonalized with a GHZ
transformation circuit. The transformation circuits are
shown in Fig. 2 and the diagonalization relations are shown
in Table I. We note that the qubit that is acted on by X- or
Y-basis transformation gates is the qubit that will always
have a Z gate upon diagonalization. Therefore, to reduce
the use of long-ranged CNOT gates, it is ideal to place these
transformation gates at a middle qubit, making the middle
qubit the control qubit.
Since SX and SY are unitary, we may write eS

†
XASX ¼

S†Xe
ASX. Then by rearranging the matrix exponentials in

Eq. (35), we can write the Trotterization with one half
diagonalized by SX and the other half diagonalized by SY.
This way Eq. (35) becomes

e−
i
2
Δxþa†b†c ∼ S†Xe

−i
2
ΔxþcXXXIZIe

i
2
ΔxþcYYXZZIe

i
2
ΔxþcYXYZZZ

× e
i
2
ΔxþcXYYIZZSXS

†
Ye

−i
2
ΔxþcYYYZZZe

i
2
ΔxþcXXYIZZ

× e
i
2
ΔxþcXYXIZIe

i
2
ΔxþcYXXZZISY: ð36Þ

FIG. 2. GHZ diagonalization circuits for Pauli strings with an odd number of Xs (left) or odd number of Ys (right). Diagonalization
facilitates implementation of the time evolution subcircuits with minimal gate counts.

TABLE I. Diagonalizations of Pauli strings consisting of X and
Y operators by the operators of Fig. 2.

Odd Xs SXðstringÞS†X Odd Ys SYðstringÞS†Y
XXX IZI YYY ZZZ
YYX −ZZI XXY −IZZ
YXY −ZZZ XYX −IZI
XYY −IZZ YXX −ZZI
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Each matrix exponential can now be simulated solely with
CNOTs and RZ gates. The four relevant circuits are shown
in Fig. 3 and the final circuit is shown in Fig. 4.
In practice, IBM quantum computers use a limited set of

native quantum gates: X, RZðθÞ, CNOT, I, and
ffiffiffiffi
X

p
. Thus,

the final step in circuit creation is to translate the circuit into
these gates. For example, the Hadamard gate becomes
H ¼ RZðπ2Þ

ffiffiffiffi
X

p
RZðπ2Þ with an overall phase of ei

π
4, which

falls out of the probability.

IV. NONLINEAR BREIT-WHEELER AND THE
NULL DOUBLE SLIT EXPERIMENT

In the previous section we constructed a gate imple-
mentation for a truncation of the SFQED Hamiltonian. The
truncation was drastic, but designed to capture the tree-
level Breit-Wheeler interaction of Fig. 1 with fixed arbi-
trary initial and final states, and arbitrary null background
fields. With this simple first-order interaction, it is possible
to realize interesting quantum dynamics. An elegant
example is a null version of the double-slit interference
pattern [46,47]. We will use this process as a benchmark for
quantum simulation of the truncated SFQED Hamiltonian,
computing the real-time probabilities and comparing with
classical simulation.
First, to build intuition, we describe the process using first

order perturbation theory. Actually, although the truncated
Hamiltonian operates on an eight dimensional Fock space,
for the purposes of the Breit-Wheeler process, we need only
consider a two-level subsystem corresponding to the basis

states je−eþi ¼ ð1; 0Þ and jγi ¼ ð0; 1Þ. We are interested in
the amplitude he−eþjUjγi.
The simplest Hamiltonian truncation corresponds to the

Hilbert subspace where the electron and positron have
opposite helicities with equal and opposite transverse
momenta. Let the positron have helicity þ 1

2
and the

electron have helicity − 1
2
, and let the photon polarization

be λ ¼ 1. We take the photon momentum to beKμ ¼ ð2pþ;
0; 0; 0Þ, the electron momentum to be Pμ¼ðpþ;p−;p1;0Þ,
and the positron momentum to be Qμ ¼ ðpþ; p−;−p1; 0Þ.
In the latter two cases the mass shell condition fixes

p− ¼ ðp1Þ2þm2

pþ .
The background field we will consider corresponds

to a linearly polarized plane wave AμðκμxμÞ ¼ ð0; 0;
A1ðκμxμÞ; 0Þ. For a null field traveling in the −ẑ-direction,
we have κμxμ ¼ ωxþ. The electric field strength E can
be nondimensionalized as ξ ¼ eE

mω, where e is the gauge
coupling [67]. A simple case to consider is a very short-
duration pulse. An example is given by the gauge potential

eA1ðωxþÞ ¼ mξð1þ tanhðωxþÞÞ: ð37Þ

Analytical treatment becomes straightforward if we take
the limit of ω → ∞, creating a delta-function pulse and a
Heaviside-function potential:

lim
ω→∞

eA1ðωxþÞ ¼ mξθðxþÞ: ð38Þ

FIG. 4. First-order Trotterization circuit for a single time evolution step. By alternating the SX and SY halves of the circuit in
subsequent time steps, cancellations can be used to minimize the gate count. The first step has 16 CNOT gates, but only 12 CNOT gates
are added with each succeeding step.

FIG. 3. Time evolution subcircuits after diagonalization. In Qiskit’s convention RZðθÞ≡ e−
iθ
2
Z. The CNOT gates in each subcircuit

compute/uncompute the parity of the incoming bitstring.
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In the null double-slit process of [46], we allow the photon
to collide with two such pulses separated in light-front time.
Let one pulse appear at xþ ¼ 0 and the other appear at
xþ ¼ T. Then our background field is

eA1ðxþÞ ¼ mξ½θðxþÞ þ θðxþ − TÞ�: ð39Þ

Figure 5 shows a spacetime diagram of this nonlinear Breit-
Wheeler process.

A. Perturbation theory

Since the process is relatively simple, we can describe
the dynamics with first-order perturbation theory. This
analysis is somewhat tangent to the main purpose of the
paper, for which we could make do merely with a quantum
simulation and a classical exact diagonalization numerical
treatment for comparison. However, it is helpful to have an
analytic description in order to understand the physics of
the results and the limitations of perturbation theory.
To calculate the probability jhe−eþjUðxþÞjγij2 we

expand the interaction-picture time evolution operator to
first order,

UðxþÞ → 1 −
i
2

Z
xþ

0

HintðyþÞdyþ: ð40Þ

The interaction-picture Hamiltonian consists of

HintðyþÞ ¼ −
2meffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ3L3

p eip
−yþeiðfðPÞþgðQÞÞaþ

1
2
†

P b
þ1

2
†

Q cþ1
K :

ð41Þ

Here

fðPÞ þ gðQÞ ¼
Z

yþ

0

dzþ

pþ ½−2p1eA1ðzþÞ þ ðeA1ðzþÞÞ2�:

ð42Þ

Using
R yþ
0 θðzþ − TÞndzþ ¼ ðyþ − TÞθðyþ − TÞ, we can

evaluate the phase to be

fðPÞþgðQÞ¼mξ

pþ ½ðmξ−2p1ÞyþθðyþÞ

þð3mξ−2p1Þðyþ−TÞθðyþ−TÞ�: ð43Þ

Now let us define the parameter combinations

α ¼ mξðmξ − 2p1Þ
pþ ;

β ¼ mξð3mξ − 2p1Þ
pþ : ð44Þ

Rewriting eaθðyþÞ ¼ ðea − 1ÞθðyþÞ þ 1, eiðfðPÞþgðQÞÞ is
expressed compactly as

eiðfðpÞþgðqÞÞ ¼ eiαy
þð1 − θðyþ − TÞÞ

þ eiðαþβÞyþe−iβTθðyþ − TÞ: ð45Þ

Note that θðyþÞ → 1 since we are considering yþ ≥ 0.
Putting together the pieces we find

he−eþjHintðyþÞjγi ¼
2meffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ3L3

p ½eiðαþp−Þyþðθðyþ−TÞ− 1Þ

− eiðαþβþp−Þyþe−iβTθðyþ−TÞ�: ð46Þ

Integrating over light-front time, we have the probability
amplitude

he−eþjUðxþÞjγi ≈ meffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ3L3

p
�
eiðαþp−Þxþ

αþ p− ð1 − θðxþ − TÞÞ

−
1

αþ p− þ eiðαþp−ÞT

αþ p− θðxþ − TÞ

þ eiðαþβþp−Þxþ

αþ β þ p− e−iβTθðxþ − TÞ

−
eiðαþp−ÞT

αþ β þ p− θðxþ − TÞ
�
: ð47Þ

FIG. 5. Two delta-function laser pulses propagate in the −ẑ
direction, separated in time. A photon collides head-on with the
first pulse, leading to a superposition of the je−eþi and jγi states.
Collision with the second pulse may cause attenuation or enhance-
ment of the je−eþi state, depending on the pulse separation.
Sketched is a case of total destructive interference in pair-
production probability for a given electron-positron momentum
mode. Light-front coordinates are convenient because all particles
interact with the laser pulses at the same light-front time xþ.
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We can find separate probabilities for xþ≷T. If xþ < T, then the probability of pair production is

Pγ→e−eþðxþ < TÞ ¼ 2m2e2

ðαþ p−Þ2pþ3L3
sin2

�
αþ p−

2
xþ

�
: ð48Þ

If xþ > T, then the probability is

Pγ→e−eþðxþ > TÞ ¼ m2e2

ðαþ p−Þ2ðαþ β þ p−Þ2pþ3L3
½α2 þ β2 þ p−2 þ αðβ þ 2p−Þ þ βp−

− βðαþ β þ p−Þ cos½ðαþ p−ÞT� þ βðαþ p−Þ cos½ðαþ β þ p−Þðxþ − TÞ�
− ðαþ p−Þðαþ β þ p−Þ cos½ðαþ β þ p−Þxþ − βT��: ð49Þ

Let us now inspect Eq. (48), the probability after the
first pulse has arrived. Time averaging over a cycle, the
probability is

hPiγ→e−eþðxþ < TÞ ¼ m2e2

ðαþ p−Þ2pþ3L3
; ð50Þ

which is maximized with respect to the background field
strength when α is minimized. This corresponds to

mξ ¼ p1, or α ¼ − ðp1Þ2
pþ and β ¼ −α. Consequently, if

we tune p1 near to mξ we maximize the conversion
probability. Furthermore, we note that since α is parabolic
in mξ, there will always be pairs of momenta modes that
reach the same level of enhancement.
Restoring the oscillating part of Eq. (48), we also see that

the maximum probability is achieved when xþ ¼ ð2nþ1Þπ
αþp−

for n∈Zþ.
Let us now inspect Eq. (49). Taking β ¼ −α and time

averaging, we find the following ratio with Eq. (48):

hPiγ→e−eþðxþ > TÞ
hPiγ→e−eþðxþ < TÞ ¼ 1þ α2

ðp−Þ2 þ
2α

p− cos
2

�
αþ p−

2
T

�
:

ð51Þ

To maximize this ratio, we recognize that α < 0, so we

need T ¼ ð2nþ1Þπ
αþp− . If we further take the high-energy limit

p1 ≫ m, then α ¼ −p− and we obtain

hPiγ→e−eþðxþ > TÞ
hPiγ→e−eþðxþ < TÞ ¼ 2: ð52Þ

This gives the factor of enhancement from the first time-
averaged probability to the next.

B. Classical simulation

In the near-term the accuracy of quantum computations
must be benchmarked against classical simulations. We
begin by configuring the momentum lattice. The lattice

spacing is 2π
L and, to approximate the continuum limit, we

need this spacing to be less than the typical momentum in
the processes of interest. We will take a large L ¼ 50π

m .
Let us now investigate the pair production of electron-

positron pairs with differing transverse momenta. As
discussed above, the electron four-momentum is given by
Pμ ¼ ðpþ; p−; p1; 0Þ, the positron four-momentum is
Qμ ¼ ðqþ; q−; q1; 0Þ, and the photon four-momentum
Kμ ¼ ðkþ; 0; 0; 0Þ. Here pþ ¼ qþ, so kþ ¼ 2pþ, and
q1 ¼ −p1. Because of equal and opposite transverse
momenta, we can classify an electron-positron pair by
the produced electron transverse momentum p1.
For concreteness we will take ξ ¼ 6, so that the

maximum possible enhancement is seen for p1 ¼ 6m. In
addition to simulating this momentum mode, we simulate
also p1 ¼ 0 and p1 ¼ 12m modes, which should have
equal enhancements to each other. pþ is arbitrary and we
fix it to 7.2m. Correspondingly, the light-front energies are
k− ¼ 0 for the photon, and p− þ q− ≈ ð0.3; 10; 40Þm for
p1 ¼ ð0; 6; 12Þm, respectively. Physically, the sign of the
momentum results from a negative transverse electric field
E⊥ ¼ −∂þA⊥. Positive particles will experience a force in
the −x̂1 direction while negative particles will be accel-
erated in the þx̂1 direction.
In addition to momentum, the Fock states possess helicity

and/or polarization quantum numbers. We let the initial
photon be an equal superposition of both polarizations. We
will simulate the production of electron-positron pairs with
all four different helicity configurations, and sum their
probabilities to obtain the final pair-production probability.
Accordingly, we keep two photon polarization states for a
single momentum mode and four electron-positron helicity
states for three electron-positron momentum modes. This
creates a 14-dimensional Hilbert space.
Lastly, let us discuss state preparation. The Fock states

are not eigenstates of the interacting Hamiltonian. During
time evolution, Fock states evolve into superpositions of
the true eigenstates. We use adiabatic state preparation to
map the initial and final states back and forth between these
bases, adiabatically turning on/off the electric coupling e.

QUANTUM SIMULATIONS FOR STRONG-FIELD QED PHYS. REV. D 109, 076004 (2024)

076004-9



Adiabatic turn-on/off is performed linearly over 1000 time
units, compared to the physical evolution time of 100 units
during the two-pulse encounter, where the coupling is
constant. However, the effects of adiabatic turn-on are
negligible for the finite p1 modes due to kinematic
suppression (these modes are of high light-front energy).
Since adding thousands of Trotter steps is prohibitive in
the NISQ era, we will focus on the p1 ¼ 6m mode in the
quantum simulations, for which adiabatic turn-on can be

neglected.3 Furthermore, we measure probabilities just after
the collision with the second pulse, neglecting adiabatic
turn-off, which is also a good approximation for this mode.
Figure 6 shows the classical real-time Hamiltonian

simulation. As expected, the pair-production probability

FIG. 6. Classical simulations of nonlinear Breit-Wheeler pair-production differential probabilities as a function of light-front time. The
three curves represent three different electron-positron pairs, labeled by the p1 electron transverse momentum. The vertical light gray lines
enclose the physical evolution period when the coupling is held constant. Each dark gray line represents a collision of the incoming photon
with the background laser pulse. Only the p1 ¼ mξ mode sees significant constructive or destructive interference. Top: two delta pulses
with ξ ¼ 6, spaced to show constructive interference in the production eþe− pairs with p1 ¼ 6m. Bottom: the same, but spaced to show
destructive interference. (In the quantum simulations shown below, evolution is performed only between the dark gray lines.).

3This remains true even with the artificially inflated value of the
coupling used in the quantum simulation, since mixing with the
incoming photon state is still strongly kinematically suppressed.
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for the p1 ¼ 6m mode can experience constructive or
destructive interference depending on the light-front time
delay T separating the pulses. The p1 ¼ 0 and p1 ¼ 12m
modes experience equal enhancements asymptotically. The
various oscillatory behaviors appearing before and after the
second pulse are captured by the perturbative formulas.
After the first pulse, Eq. (48) shows that both the frequency
and amplitude of oscillations are sensitive to the combi-
nation αþ p−, which is quadratic in p1. If p1 ¼ mξ, then
αþ p− is minimized and we see relatively shorter frequen-
cies and larger amplitudes. If p1 ≠ mξ, then we see longer
frequency and shorter amplitude oscillations (as in the
p1 ¼ 0 and p1 ¼ 12m modes). From Eq. (49) we see that
the oscillation frequencies after the second pulse depend
on the combination αþ β þ p−. Although still quadratic
in p1, this expression is minimized and equal to m2

pþ,

independent of ξ, when p1 ¼ 2mξ. This is why the
p1 ¼ 12m mode has a lower frequency than the p1 ¼ 0

and p1 ¼ 6m modes. The amplitudes of the modes now
have a more complicated dependence in p1. Roughly
speaking, a factor of 1

ðαþβþp−Þ2 leads to large amplitudes

for p1 ≈ 2mξ. Away from this minimum, however, the
amplitudes are suppressed by Oð1=ξ2Þ. Correspondingly,
for the p1 ¼ 0 and p1 ¼ 6m modes we see much smaller
amplitudes: the second pulse effectively “stops” the oscil-
lations. For these modes far from 2mξ, adiabatic turn-off is
therefore less significant.
The simulations allow us to visualize interference effects

in real time, which are most important in the p1 ¼ mξ
mode. The first pulse gives a kick to the p1 ¼ mξmode and

its probability starts to oscillate. The second pulse stabilizes
the oscillation of this mode near its maximum. At the same
time, the application of two kicks also yields an amplitude
in the p1 ¼ 2mξ mode.
As a side note, if we introduce a third field with strength

−mξ, we might expect to obtain further constructive
interference in the p1 ¼ mξ mode. In other words, if we
vary the net field between mξ with consecutive pulses, we
expect to see multiple constructive interference enhance-
ments in the p1 ¼ mξ mode pair-production probabilities.
Figure 7 exhibits this qualitative behavior4 using a back-
ground field of the form

eA1ðxþÞ ¼ mξ½θðxþÞ þ θðxþ − T1Þ − θðxþ − T2Þ
− θðxþ − T3Þ þ θðxþ − T4Þ
þ θðxþ − T5Þ − � � ��: ð53Þ

The light-front time differences Todd − Teven and
Teven − Todd were kept constant. Subsequent enhancements
exhibit somewhat shorter frequency oscillations, so fine-
tuning the pulse separations could lead to greater net
constructive interference.

V. QUANTUM RESULTS

Near-term quantum devices are limited by quantum
noise. This means we cannot precisely perform the same

FIG. 7. Eight consecutive delta pulses with ξ ¼ 6 are represented by dark gray vertical lines. The signs of the pulses appear in the order
þþ − −þþ − − : A careful selection of pulse spacings can lead to substantial enhancement of the pair production probability in
specific momentum modes.

4For the reasons discussed above, we did not include adiabatic
turn-on or turn-off in making Fig. 7, and so we only display the
dynamical time between pulses.
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classical simulation on a quantum device. The equivalent
number of qubits needed for the Breit-Wheeler simulation
of Fig. 6 is n ¼ 14.5 Based on the discussion below
Eq. (33), we would then expect of order 3ð2 × 2Þð2 × 2Þ
ð2 × 2Þ ¼ 192 distinct Pauli strings in the Hamiltonian. For
a rough lower bound estimate, a single Trotter step could
be implemented with ≳600 gates. Moreover, the majority
of Trotter steps would require long-reaching CNOT gates
which would introduce many SWAP gates and hence
more noise. For this reason, we will return to the three
qubit quantum simulation discussed in Sec. III, achieved
by truncating to fewer helicities and polarizations and
momenta.
Beyond gate errors, the probabilities we can actually

measure are limited by shot noise. This is a problem
particularly for real theories characterized by a weak
coupling, like QED, where interesting processes may have
quite low probabilities. To avoid requiring an infeasible
number of shots, we artificially boost the coupling constant
e ¼ 0.303 → 60 and decrease the lattice parameter L → 6π

m.
For the electron momentum, we let pþ ¼ p1 ¼ 8m

3
. (It still

is the case that the positron momentum has qþ ¼ pþ and
q1 ¼ −p1. For the photon, kþ ¼ 2pþ as before.) With
these choices we are still effectively near the continuum
limit, since the momentum lattice spacing 2π

L ¼ m
3
is an

eighth of the typical momentum magnitude.
Although taking e ¼ 60 appears decidedly nonperturba-

tive, what our simulations compute are exclusive proba-
bilities in small cells of Fock space, or effectively
differential probabilities times small phase space factors.
By retaining only a few states in the full Fock space, each
with a small volume ð2πL Þ3, the truncated quantum mechani-
cal model is still perturbative despite the large value of e.
Tree-level results in the full QFT may then be obtained by
rescaling. We emphasize however that this approach will
break down if many more Fock states are kept in the
simulation (increasing the amplitudes of second-order and
higher transitions in the truncated model.) Expanding the
truncated theory in this way is of course essential to match
with continuum SFQED beyond the leading order and to
see more interesting dynamics, so care will have to be
taken to design simulations that can operate at the physical
coupling without requiring prohibitively large shot
counts. In any event, for our purposes an upscaling of
the coupling is sufficient. Figure 8 shows that for e ¼ 60
we still obtain qualitatively reasonable agreement between
Trotterization and first-order perturbation theory in the
truncated quantum mechanics (or the tree level prediction
of full SFQED) in this case.
The single Trotter step circuit in Fig. 4, once expressed in

native IBM gates, is 40 gates long. While the classical

simulation discussed previously was performed over
21000 time steps, most of which were adiabatic turn-
on/turn-off steps, the quantum simulation must be limited
to a few hundred gates total in order to avoid total
decoherence. To this end, we omit adiabatic turn-on/
turn-off in the quantum simulations. Instead, we fix the
initial state to the free photon state j001i, which as we
have discussed previously is a good approximation for the
physics of interest. We also begin the time evolution at the
(light-front) time of collision between the photon and
the first pulse and end it just after the collision with the
second pulse (e.g., the quantum simulation is performed
only between the dark gray lines of Fig. 6). Within this
region, the pair-production probability oscillates. Because
of NISQ limitations, we can only afford to capture a small
portion of these oscillations, such as half a period. Using
ten Trotter steps, we show how the probability changes
from minimum to maximum. To fully capture the noisy
dynamics, we also record the γ → γ probabilities.
It is convenient to estimate the impact of noise first on a

classical simulator, using a noise model based on historical
measurements. Results using Qiskit’s FakeNairobiv2 noisy
simulator [68] are shown in Fig. 9(a). The data suggest that
we should expect at least 10% errors already in the initial
time step, increasing with time.
Figure 9(b) shows raw quantum data from IBM_NAIROBI

[69]. The real noise level we observe is higher than seen in
the noisy FakeNairobiv2 simulator. At xþ ¼ 4 the error in the
γ → γ probability is already 60%. Such results are not

FIG. 8. Comparison of real-time pair-production probabilities
computed with perturbation theory and “exact” time evolution
(performed numerically via Trotterization with infinitesimal time
step) for artificially large coupling. An initial delta pulse is
encountered at time zero, and then the probability oscillation
amplitudes change when the second pulse is encountered. At
e ¼ 60, perturbation theory still yields probabilities below one,
and the two methods agree qualitatively. Perturbation theory
provides a useful understanding of the process, despite the large
coupling, because the phase space volume is small (both for the
final state and the Hilbert space truncation as a whole, which
prevents higher order effects from becoming large.).

5n ¼ 14 qubits ¼ ð2 photon momentaÞ × ð2 polarizationsÞþ
ð3 electron momentaÞ × ð2 helicitiesÞ þ ð3 positron momentaÞ×
ð2 helicitiesÞ.
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uncommon from NISQ devices and can be substantially
cleaned by mitigation algorithms.

VI. ERROR MITIGATION

Mitigating against specific sources of device noise is
critical to extract useful information from near-term

quantum simulations. We employ measurement mitigation
and Pauli twirling [53], as well as a modified version of
self-mitigation [19,57,58] (mitigation of depolarization
noise). The combination of these three error mitigation
techniques significantly improved the quantum data as
shown in Fig. 13(b). For completeness we discuss each
mitigation algorithm in some detail.

FIG. 9. Unmitigated quantum results for nonlinear Breit-Wheeler pair production. Pulses withmξ ¼ 8m
3
are encountered at xþ ¼ 1 and

xþ ¼ 10. The coupling is held fixed at e ¼ 60. The electron transverse momentum mode is p1 ¼ mξ.
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A. Measurement mitigation

With measurement mitigation we account for readout
errors of bitstrings. For example, there is the probability
that upon readout, the measured bitstring is the computa-
tional basis state j000i as opposed to j001i. For n qubits,
the mitigation strategy is to run 2n circuits that prepare
individual computational basis states and derive statistics
for how many counts there are for the 2n possible results.
Let fjψ iig for i ¼ 0; 1;…; 2n − 1 be the computational

basis. Prepare circuits C0; C1;…; C2n−1 that prepare each
computational basis state as in Fig. 10. For each circuit Cj,
measure jhψ ijCjjψ0ij2. These probabilities are entries
Ci;j ¼ jhψ ijCjjψ0ij2 of the calibration matrix C. That is,
the measurement probabilities from Cj form the jth
column of C.
For a general quantum circuit, let c⃗true be the column

vector of noiseless measurement counts of each basis state.
The product Cc⃗true distributes the true measurement
counts among other basis states such that the calibration
matrix models the effects of readout noise. Thus, define
c⃗meas ¼ Cc⃗true.
In reality, noisy quantum measurements yield c⃗meas, so in

principle we can obtain the mitigated counts by matrix
inversion: c⃗true ¼ C−1c⃗meas. However, simply inverting C
can lead to negative counts and counts that do not sum to
the number of shots N. Therefore, we utilize a least-squares

minimization protocol. This method takes advantage of the
notion that c⃗meas − Cc⃗true ¼ 0. Let x⃗ be an estimate for c⃗true.
Then the problem becomes finding

min
x⃗
½ðc⃗meas − Cx⃗ÞTðc⃗meas − Cx⃗Þ� ð54Þ

subject to the constraints that 0 ≤ xi ≤ N and jx⃗j ¼ N. The
minimization will yield the best estimate of c⃗true as
predicted by C. The mitigated probabilities are then 1

N c⃗
true.

B. Pauli twirling

CNOT gates may have different errors depending on the
state that is fed to them. Pauli twirling implements gate
identities around CNOTs in order to feed them different
states, thus “symmetrizing” the noise. Figure 11 shows
examples of CNOT identities. In total there are 16 ways to
twirl a CNOT gate with extra Pauli gates. We randomly
twirl all CNOTs with different identities in each run, then
average over the twirled results in postprocessing.

C. Depolarization mitigation

The quantum channel often used to describe depolarizing
noise [70] is

ρ̃ ¼ p
I
2n

þ ð1 − pÞρ: ð55Þ

Under this channel a state ρ may turn into the fully
decohered state I

2n
with probability p, and with probability

1 − p the state remains unchanged. This type of depolariz-
ing noise model is called symmetric depolarization and is
the basis for many implementations of “self-mitigation”
[19,57,58]. A more general noise model could take ρ not
just to I

2n
, but to other general mixed states, which is what

we will now consider.

FIG. 10. The measurement mitigation circuit C1 for preparing
jψ1i ¼ j001i when n ¼ 3 qubits. The initial state is jψ0i ¼ j000i
so C1j000i ¼ j001i.

FIG. 11. Sample Pauli twirls of the CNOT gate. For error mitigation, each circuit was randomly compiled with every CNOT twirled
using these equivalent gates.

FIG. 12. The depolarizing mitigation circuit C1ðxþ2 Þ for the second time step, preparing jψ1i ¼ j001i when n ¼ 3 qubits. The noisy
identity is the time evolution circuit used for the quantum simulation followed by its Hermitian conjugate.
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We generalize the depolarizing noise model by intro-
ducing a transfer matrix M:

X2n−1
j¼0

MijPtrue
j ≡ Pmeas

i ; ð56Þ

where Ptrue
i (Pmeas

i ) is the true (noisy measurement) prob-
ability of computational basis state jψ ii. (Symmetric
depolarizing noise is the case where M is a one-parameter
matrix with entries Mij ¼ δijð1 − 2nϵÞ þ ϵ for ϵ ¼ p

2n
. ϵ

may be estimated by preparing circuits with similar
noise elements as the circuit of interest.) Asymmetric

FIG. 13. Mitigated quantum results for nonlinear Breit-Wheeler pair production. Pulses with mξ ¼ 8m
3
are encountered at xþ ¼ 1 and

xþ ¼ 10. Robust measurement and depolarization mitigation techniques suppress errors at early time steps, but become less effective at
late time steps. The unmitigated simulation is shown with the faded data for comparison.
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depolarizing noise corresponds, for example, to the follow-
ing quantum channel:

ρ̃ ¼
X2n−1
i¼0

X2n−1
j¼0

Mijjψ iihψ jjρjψ jihψ ij; ð57Þ

where the Kraus operators convert the jth computational
basis state jψ ji to the ith state jψ ii with weight

ffiffiffiffiffiffiffiffi
Mij

p
.

To estimate the elements ofMij in our model, we construct
circuits C0; C1;…; C2n−1, similar to those for measurement
mitigation. However, in addition to preparing each
computational basis state, the circuit applies an identity
operator with the same gates and the physics circuit, as
shown in Fig. 12. Each noisy identity is the current time
evolution operator followed by its inverse. This means that
the mitigation circuits Ci are time dependent CiðxþÞ,
allowing us to mitigate against time-dependent noise.
The transfer matrix elements are then estimated as
MijðxþÞ ¼ jhψ ijCjðxþÞjψ0ij2.
We emphasize that in both the symmetric case and our

case, Pauli twirling is essential to convert more general
types of noise from the CNOTs into depolarization noise.
Thus, depolarization mitigation is the last step of the error
mitigation pipeline. Both the physics and mitigation cir-
cuits are twirled and the results are averaged before
depolarization mitigation.
Furthermore, since the inserted identity operators are

effectively “twice the physics circuit,” each mitigation
circuit is practically a measure for the noise “squared.”
This implies that we should be taking

ffiffiffiffiffi
M

p
as the calibration

matrix.6 That is,

c⃗meas ¼
ffiffiffiffiffi
M

p
c⃗true: ð58Þ

As before, to determine c⃗true, we solve an optimization
problem

min
x⃗
½ðc⃗meas −

ffiffiffiffiffi
M

p
x⃗ÞTWðc⃗meas −

ffiffiffiffiffi
M

p
x⃗Þ� ð59Þ

subject to the same constraints on x⃗ as before. The weights
W are taken to beW ¼ diagð 1

p2
i
Þ, where pi ¼ jhψ ijCijψ0ij2.

We checked that symmetric depolarization noise miti-
gation following Pauli twirling did not perform well on
our problem: the noise profile indicated some states
“thermalize” with each other, but not all together. On
the other hand, the construction of a complete calibration
matrix for depolarization mitigation is computationally
expensive and does not scale well with problem size.
For the small size studied here it was not critical to

optimize it further, but it would be interesting to explore
the performance restricted classes of calibration trans-
formations constructed from fewer parameters and miti-
gation circuit measurements.

D. Mitigated results

For each time step, we performed ten Pauli twirls on the
quantum simulation circuit as well as each of the 23 ¼ 8
mitigation circuits. Each time step was sent as a different
set of circuits to IBM_NAIROBI at different times, so in
addition we ran eight measurement mitigation circuits each
time step. Therefore, 98 circuits were sent to IBM_NAIROBI

at each time step.
As before we can compare with Qiskit’s noisy

FakeNairobiv2 simulator. Figure 13(a) shows the mitigated
noisy simulator results. The mitigation is substantial and
suggests that the real quantum simulation should also see
improved results versus the raw data.
Figure 13(b) shows mitigated quantum data. As expected,

the error mitigation protocol greatly improves the simulation
results. The largest percent error we see is about 15% of
the classical simulation. However, substantial errors do not
occur until the last two time steps. This suggests that had we
performed a longer or finer time evolution, decoherence may
have been too strong to be well mitigated. (See Appendix B
for a comparison between mitigation against symmetric
versus asymmetric depolarizing noise.)

VII. CONCLUSION

Quantum field theory in the presence of strong back-
ground fields is a rich arena where quantum computers
may provide valuable new access. We have seen that for a
simple strong-field QED process—nonlinear Breit-
Wheeler pair production in a sequence of laser pulses—
the noisy quantum computers of today are already able to
simulate the dynamics reliably with the help of error
mitigation routines. Because of the polynomial scaling in
circuit depth, the simulation of SFQED with many particles
and strong backreaction presents an interesting, plausible
long-term goal.
Capturing more complex electromagnetic cascade proc-

esses requires retaining a much larger Hilbert space. With a
less drastic truncation, one could also study helicity and
polarization effects in cascades, as well as begin to tackle
the regime of ultrastrong fields, where few other tools exist.
The light-front Fock space formulation used in this work
can be applied directly to more complicated processes with
bigger Hilbert spaces, and the operator-circuit map can be
straightforwardly extended.
It is also possible to simulate O(30-50) qubit quantum

computers with state-of-the-art GPUs and supercomputers
[71]. Larger-scale SFQED quantum circuits could be
designed on these simulators with adjustable noise. This
capability could be useful to develop efficient circuits for

6This is also why the measurement mitigation and depolari-
zation mitigation cannot be done at the same time in our problem,
despite both being formulated in terms of a calibration matrix.
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future quantum computers, and to establish noise targets for
interesting physics processes. Investigations in this direc-
tion are ongoing.
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APPENDIX A: QUANTIZED HAMILTONIAN

The SFQED Hamiltonian density was derived in Sec. II.
Integrating the density over light-front space yields the
Hamiltonian. We also expand the fields in momentum
modes. The fields are given in Eq. (22) and the commu-
tation relations are given in Eq. (18). In this Appendix, we

derive a few sample terms in the mode expansion of the
Hamiltonian.

1. Fermion energy Hamiltonian

We begin with the free fermion energy Hψ. We will need

to compute expressions of the form fðx−Þ
∂−

. In momentum

space the Green function contributes factors of 1
ipþ. We have

ψ−

∂−
¼

Z
dpþdp⊥
ð2πÞ3

X
s¼�1

2

2e−ipx

−ipþ wsasp þ
2eipx

ipþ w−sbs†p ðA1Þ

and

∂i∂iψ−

∂−
¼

Z
dpþdp⊥
ð2πÞ3

X
s¼�1

2

2ðip⊥Þ2e−ipx
−ipþ wsasp

þ 2ð−ip⊥Þ2eipx
ipþ w−sbs†p : ðA2Þ

Here, s is the positron helicity, and the electron has helicity
−s. Using orthogonality of the spinors,

w�s†w�s0 ¼ δs;s0 w�s†w∓s0 ¼ δ−s;s0 ; ðA3Þ
and integrating over space, we find

Hψ ¼m2

Z
dpþdp⊥
ð2πÞ3

Z
dp0þdp0⊥X

s¼�1
2

�
δ3ðp−p0Þ

p0þ as†p asp0 −
δ3ðp−p0Þ

p0þ bspb
s†
p0 −

δ3ðpþp0Þ
p0þ as†p b

−s†
p0 þ δ3ðpþp0Þ

p0þ bspa−sp0

�

þ
Z

dpþdp⊥
ð2πÞ3

Z
dp0þdp0⊥X

s¼�1
2

ðp0⊥Þ2
�
δ3ðp−p0Þ

p0þ as†p asp0 −
δ3ðp−p0Þ

p0þ bspb
s†
p0 −

δ3ðpþp0Þ
p0þ as†p b

−s†
p0 þ δ3ðpþp0Þ

p0þ bspa−sp0

�
:

ðA4Þ

The delta functions enforce momentum conservation, pþ ¼ p0þ and p⊥ ¼ p0⊥. However, δ3ðpþ p0Þ and pþ > 0 indicates
that integrals with pþ ≤ 0 vanish. Only δ3ðp − p0Þ terms contribute:

Hψ ¼ m2

Z
dpþdp⊥
ð2πÞ3

X
s¼�1

2

�
1

pþ as†p asp −
1

pþ bspb
s†
p

�
þ
Z

dpþdp⊥
ð2πÞ3

X
s¼�1

2

ðp⊥Þ2
�

1

pþ as†p asp −
1

pþ bspb
s†
p

�

¼
Z

dpþdp⊥
ð2πÞ3

X
s¼�1

2

�ðp⊥Þ2 þm2

pþ as†p asp −
ðp⊥Þ2 þm2

pþ bspb
s†
p

�

¼
Z

dpþdp⊥
ð2πÞ3

X
s¼�1

2

p−ðas†p asp − bspb
s†
p Þ: ðA5Þ

Finally, we normal order by anticommuting the positron operators in the usual way. The final result for this term is

∶Hψ∶ ¼
Z

dpþdp⊥
ð2πÞ3

X
s¼�1

2

p−ðas†p asp þ bs†p bspÞ ðA6Þ

which sums the light-front energies of the fermions.
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2. Fermion-photon interaction Hamiltonian

The other terms for which we will derive the explicit mode expansion are the interaction Hamiltonian used in our
simulations. These terms come from

HψA ⊃
ime
2

ψ†
−γ

j

�
Ajψ−

∂−

�
−
ime
2

ψ†
−γ

jAj

�
ψ−

∂−

�
: ðA7Þ

(Here repeated indices, although all raised, are understood to be summed over.) It is convenient to define the following
coefficients R:

Rs;j ≡ ws†γjw−s Rþ1
2
;j ¼

�
1 j ¼ 1

i j ¼ 2
R−1

2
;j ¼

�−1 j ¼ 1

i j ¼ 2:
ðA8Þ

Integrating over light-front space we obtain

1

2

Z
d3xψ†

−γ
j

�
Ajψ−

∂−

�
¼ 2i

Z
dpþdp⊥
ð2πÞ3

Z
dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p
Z

dp0þdp0⊥X
s¼�1

2

X
j¼1;2

×

�
δ3ð−pþ kþ p0Þ

kþ þ p0þ Rs;jas†p c
j
ka

−s
p0 −

δ3ðpþ kþ p0Þ
kþ þ p0þ Rs;jas†p c

j†
k b

s†
p0 þ δ3ð−pþ k − p0Þ

kþ − p0þ Rs;jas†p c
j
kb

s†
p0

−
δ3ðpþ k − p0Þ

kþ − p0þ Rs;jas†p c
j†
k a

−s
p0 þ δ3ðpþ kþ p0Þ

kþ þ p0þ R−s;jbspc
j
ka

s
p0 −

δ3ð−pþ kþ p0Þ
kþ þ p0þ R−s;jbspc

j†
k b

−s†
p0

þ δ3ðpþ k − p0Þ
kþ − p0þ R−s;jbspc

j
kb

−s†
p0 −

δ3ð−pþ k − p0Þ
kþ − p0þ R−s;jbspc

j†
k a

s
p0

�
ðA9Þ

and

1

2

Z
d3xψ†

−γ
jAj

�
ψ−

∂−

�
¼ 2i

Z
dpþdp⊥
ð2πÞ3

Z
dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p
Z

dp0þdp0⊥X
s¼�1

2

X
j¼1;2

×

�
δ3ð−pþ kþ p0Þ

p0þ Rs;jas†p c
j
ka

−s
p0 −

δ3ðpþ kþ p0Þ
p0þ Rs;jas†p c

j†
k b

s†
p0 −

δ3ð−pþ k − p0Þ
p0þ Rs;jas†p c

j
kb

s†
p0

þ δ3ðpþ k − p0Þ
p0þ Rs;jas†p c

j†
k a

−s
p0 þ δ3ðpþ kþ p0Þ

p0þ R−s;jbspc
j
ka

s
p0 −

δ3ð−pþ kþ p0Þ
p0þ R−s;jbspc

j†
k b

−s†
p0

−
δ3ðpþ k − p0Þ

p0þ R−s;jbspc
j
kb

−s†
p0 þ δ3ð−pþ k − p0Þ

p0þ R−s;jbspc
j†
k a

s
p0

�
: ðA10Þ

Now let us integrate p0 while keeping explicit the momentum conservation in each integrand. Once again integrals with
δ3ðpþ kþ p0Þ vanish since they require a longitudinal momentum component to be nonpositive. We obtain

1

2

Z
d3xψ†

−γ
j

�
Ajψ−

∂−

�
¼ 2i

Z
dpþdp⊥
ð2πÞ3

Z
dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p
X
s¼�1

2

X
j¼1;2

×

�
1

kþ þ p0þ Rs;jas†p c
j
ka

−s
p0

���
p0¼p−k

þ 1

kþ − p0þ Rs;jas†p c
j
kb

s†
p0

���
p0¼k−p

−
1

kþ − p0þ Rs;jas†p c
j†
k a

−s
p0

���
p0¼pþk

−
1

kþ þ p0þ R−s;jbspc
j†
k b

−s†
p0

���
p0¼p−k

þ 1

kþ − p0þ R−s;jbspc
j
kb

−s†
p0

���
p0¼pþk

−
1

kþ − p0þ R−s;jbspc
j†
k a

s
p0

���
p0¼k−p

�
ðA11Þ
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and

1

2

Z
d3xψ†

−γ
jAj

�
ψ−

∂−

�
¼ 2i

Z
dpþdp⊥
ð2πÞ3

Z
dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p
X
s¼�1

2

X
j¼1;2

×

�
1

p0þ Rs;jas†p c
j
ka

−s
p0

���
p0¼p−k

−
1

p0þ Rs;jas†p c
j
kb

s†
p0

���
p0¼k−p

þ 1

p0þ Rs;jas†p c
j†
k a

−s
p0

���
p0¼pþk

−
1

p0þ R−s;jbspc
j†
k b

−s†
p0

���
p0¼p−k

−
1

p0þ R−s;jbspc
j
kb

−s†
p0

���
p0¼pþk

þ 1

p0þ R−s;jbspc
j†
k a

s
p0

���
p0¼k−p

�
: ðA12Þ

As a cosmetic change, we write Eq. (A11) in terms of 1
pþ. Combining terms we obtain

HψA ⊃
Z

dpþdp⊥
ð2πÞ3

Z
dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p
X
s¼�1

2

X
j¼1;2

em

×

��
1

p0þ −
1

pþ

�
Rs;jas†p c

j
ka

−s
p0

���
p0¼p−k

−
�

1

p0þ þ 1

pþ

�
Rs;jas†p c

j
kb

s†
p0

���
p0¼k−p

þ
�

1

p0þ −
1

pþ

�
Rs;jas†p c

j†
k a

−s
p0

���
p0¼pþk

−
�

1

p0þ −
1

pþ

�
R−s;jbspc

j†
k b

−s†
p0

���
p0¼p−k

−
�

1

p0þ −
1

pþ

�
R−s;jbspc

j
kb

−s†
p0

���
p0¼pþk

þ
�

1

p0þ þ 1

pþ

�
R−s;jbspc

j†
k a

s
p0

���
p0¼k−p

�
: ðA13Þ

Once again we normal order. As an arbitrary convention we write the photon creation (annihilation) operators in the
leftmost (rightmost) position. In this case, the delta functions in the normal ordering process produce terms that vanish.
Rearranging terms to place Hermitian conjugates next to each other, the contribution to the normal-ordered Schrödinger-
picture interaction Hamiltonian reads

∶HψA∶ ⊃
Z

dpþdp⊥
ð2πÞ3

Z
dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p
X
s¼�1

2

X
j¼1;2

em

×

��
1

p0þ −
1

pþ

�
Rs;jcj†k a

s†
p a−sp0

���
p0¼pþk

þ
�

1

p0þ −
1

pþ

�
Rs;jas†p a−sp0 c

j
k

���
p0¼p−k

þ
�

1

p0þ −
1

pþ

�
R−s;jcj†k b

−s†
p0 bsp

���
p0¼p−k

þ
�

1

p0þ −
1

pþ

�
R−s;jb−s†p0 bspc

j
k

���
p0¼pþk

þ
�

1

p0þ þ 1

pþ

�
R−s;jcj†k b

s
pasp0

���
p0¼k−p

−
�

1

p0þ þ 1

pþ

�
Rs;jas†p b

s†
p0c

j
k

���
p0¼k−p

�
: ðA14Þ

To pass to the interaction picture, we evolve the creation and annihilation operators with U0 [see Eq. (27)]:

U†
0a

s
pU0 ¼ e−

ip−xþ
2 e−ifðpÞasp U†

0a
s†
p U0 ¼ e

ip−xþ
2 eifðpÞas†p

U†
0b

s
pU0 ¼ e−

ip−xþ
2 e−igðpÞbsp U†

0b
s†
p U0 ¼ e

ip−xþ
2 eigðpÞbs†p

U†
0c

j
kU0 ¼ e

−ik−xþ
2 cjk U†

0c
j†
k U0 ¼ e

ik−xþ
2 cj†k : ðA15Þ

It turns out that fðpÞ and gðpÞ are the Volkov phases

fðpÞ ¼
Z

xþ

0

dyþ

2

�
eA− −

2epi

pþ Ai þ e2AiAi

pþ

�
gðpÞ ¼

Z
xþ

0

dyþ

2

�
−eA− þ 2epi

pþ Ai þ e2AiAi

pþ

�
: ðA16Þ
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These are part of the solutions to the Dirac equation in the presence of a background vector fieldAμ (specifically a null field,
for which FF ¼ FF̃ ¼ 0):

ðið=∂þ ie=AÞ −mÞψ ¼ 0: ðA17Þ

Such solutions are called Volkov modes [62,72], and our interaction picture Hamiltonian can also be obtained by simply
using (projected) expansions in Volkov modes. In any case, the interaction-picture interaction Hamiltonian is

U†
0∶ HψA∶U0 ⊃

Z
dpþdp⊥
ð2πÞ3

Z
dkþdk⊥

ð2πÞ3
ffiffiffiffiffiffi
kþ

p
X
s¼�1

2

X
j¼1;2

em

×

��
1

p0þ −
1

pþ

�
e
ixþ
2
ðk−þp−−p0−ÞeiðfðpÞ−fðp0ÞÞRs;jcj†k a

s†
p a−sp0

���
p0¼pþk

þ
�

1

p0þ −
1

pþ

�
e
ixþ
2
ðp−−p0−−k−ÞeiðfðpÞ−fðp0ÞÞRs;jas†p a−sp0 c

j
k

���
p0¼p−k

þ
�

1

p0þ −
1

pþ

�
e
ixþ
2
ðk−þp0−−p−Þe−iðgðpÞ−gðp0ÞÞR−s;jcj†k b

−s†
p0 bsp

���
p0¼p−k

þ
�

1

p0þ −
1

pþ

�
e
ixþ
2
ðp0−−p−−k−Þe−iðgðpÞ−gðp0ÞÞR−s;jb−s†p0 bspc

j
k

���
p0¼pþk

þ
�

1

p0þ þ 1

pþ

�
e
ixþ
2
ðk−−p−−p0−Þe−iðgðpÞþfðp0ÞÞR−s;jcj†k b

s
pasp0

���
p0¼k−p

−
�

1

p0þ þ 1

pþ

�
e
ixþ
2
ðp−þp0−−k−ÞeiðfðpÞþgðp0ÞÞRs;jas†p b

s†
p0c

j
k

���
p0¼k−p

�
: ðA18Þ

Finally, we discretize assuming a momentum lattice with spacing Δpi ¼ 2π
L . Including factors associated with discretizing

the ladder operators [see Eq. (25)], we obtain the final result:

U†
0∶HψA∶U0 ⊃

X
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For general SFQED processes, the complete mode-expanded Hamiltonian can be derived similarly to the terms discussed in
this Appendix. For the Breit-Wheeler simulation considered in the main body of the work, only the last two lines of
Eq. (A19) were needed.
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APPENDIX B: SYMMETRIC DEPOLARIZATION
MITIGATION

In this section we describe how our generalized depo-
larization mitigation improves upon the symmetric case.
In the symmetric case, the transfer matrix Mij ¼ δijð1 −
2nϵÞ þ ϵ depends on the single parameter ϵ. The noisy

probabilities Pmeas
i for measuring the ith computational

basis state are related to the ideal probabilities Ptrue
i by

Pmeas
i ¼ ð1 − 2nϵÞPtrue

i þ ϵ.
Previous implementations of symmetric depolarization

mitigation use additional mitigation circuits to estimate the
value of ϵ [19,57]. These circuits both mimic the noise of

FIG. 14. Mitigated quantum results for nonlinear Breit-Wheeler pair production. Square data represent the use of single-parameter (ϵ)
depolarization mitigation. Triangle data represent the use of a more general transfer matrix (Mij) in depolarization mitigation.
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the original physics circuit of interest and have a known
noiseless final state. Call pmeas

i the noisy probabilities from
the mitigation circuit and ptrue

i the known ideal probabil-
ities. One can then estimate ϵ via

ϵ ¼ 1

2n
ptrue
i − pmeas

i

ptrue
i − 1

2n
: ðB1Þ

This allows us to calculate the ideal physics probability

Ptrue
i ¼ Pmeas

i

�
ptrue
i − 1

2n

pmeas
i − 1

2n

�
−

1

2n

�
ptrue
i − pmeas

i

pmeas
i − 1

2n

�
: ðB2Þ

It is possible to write this in the form used by Refs. [19,57]:

Ptrue
i − 1

2n

Pmeas
i − 1

2n
¼ ptrue

i − 1
2n

pmeas
i − 1

2n
: ðB3Þ

In practice any computational basis state can be used to
estimate ϵ in the mitigation circuit. In this study the

mitigation circuit will consist of the state j000i evolved
by the identity operator in the form of forwards and
backwards time evolution, similar to the setup shown
in Fig. 12. Evidently, ptrue ¼ 1. However, the mitigation
circuit measures the noise for “twice the physics circuit,” so
we input

ffiffiffiffiffiffiffiffiffiffiffi
pmeasp

into Eq. (B3).
Using Qiskit’s FakeNairobiv2 noisy simulator, we can see a

comparison between using an ϵ-mitigated simulation versus
a general Mij-mitigated simulation. Figure 14(a), shows
near 30% improvements inMij mitigation over ϵmitigation
of γ → e−eþ data. These results encouraged us to use the
generalized depolarization mitigation in our final quantum
simulation.
Figure 14(b) shows real quantum data from

IBM_NAIROBI. The success of our asymmetric depolariza-
tion mitigation is more varied than the Qiskit simulation,
but we still see near 30% improvements in asymmetric
mitigation over symmetric mitigation of γ → e−eþ prob-
abilities in the middle of the simulation. Regardless of the
mitigation strategy, the final time step with the largest gate
count suffers the most error.
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