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In this work, we study the propagation and absorption of plasma waves in the context of the Maxwell-
Carroll-Field-Jackiw (MCFJ) electrodynamics with a purely spacelike background playing the role of the
anomalous Hall conductivity, concerning the anomalous Hall current. Such a current is also found in an
axion field which increases linearly with a space coordinate. The Maxwell equations are rewritten for a
cold, uniform, and collisionless fluid plasma model, allowing us to determine the new refractive indices and
propagating modes. The analysis begins for propagation along the magnetic axis, examined in the cases of
chiral vectors parallel and orthogonal to the magnetic field. Two distinct refractive indices (associated with
right-handed circularly polarized [RCP] and left-handed circularly polarized [LCP] waves) are obtained
and the associated propagation and absorption zones are determined. The low-frequency regime is
discussed and we obtain RCP and LCP helicons. We scrutinize optical effects, such as birefringence and
dichroism, and observe rotatory power sign reversion, a property of chiral MCFJ plasmas. We also examine
the case of transversal propagation in the direction orthogonal to the magnetic field, providing much more
involved results.
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I. INTRODUCTION

The propagation properties of electromagnetic waves in
a cold magnetized plasma is based on the standard
Maxwell equations to describe radio-wave propagation
in the ionosphere [1–6]. The interaction of electromagnetic
waves and atmosphere has attracted the attention of
researchers over the years, including new investigations
on reflection, absorption, and transmission in topical
plasma scenarios [7]. The cold plasma limit is adopted
to study the fluid plasma behavior under the action of a
constant external magnetic field [8–13], being defined
when the excitation energies are small, so that the thermal
and collisional effects can be neglected. In this regime, the
ions can be taken as infinitely massive, in such a way that
they do not respond to electromagnetic oscillations,
especially high-frequency waves. The cold plasma behav-
ior is then described by considering first-order differential
equations written for the electron number density n and the
electron fluid velocity u, namely,

∂n
∂t

þ ∇ · ðnuÞ ¼ 0; ð1Þ

∂u
∂t

þ u ·∇u ¼ q
m
ðEþ u ×B0Þ; ð2Þ

where B0 represents the average magnetic field, and q and
m stand for the (electron) charge and mass. The linearized
version of the magnetized cold plasmas considers fluctua-
tions around average quantities, n0 and B0, which are
constant in space and time. Following the usual procedure,
assuming B0 ¼ B0ẑ, the corresponding plasma dielectric
tensor is

εijðωÞ ¼ ε0

2
64

S −iD 0

iD S 0

0 0 P

3
75; ð3Þ

where ε0 is the vacuum electric permittivity, and

S¼ 1−
ω2
p

ðω2−ω2
cÞ
; D¼ ωcω

2
p

ωðω2−ω2
cÞ
; P¼ 1−

ω2
p

ω2
; ð4Þ

with ωp ¼ n0q2=ðmϵ0Þ and ωc ¼ jqjB0=m being the
plasma and cyclotron frequencies, respectively.
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From the Maxwell theory, two distinct refractive indices
are obtained for longitudinal propagation to the magnetic
field, kkB0,

n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
p

ωðω� ωcÞ

s
; ð5Þ

which provide right-handed circularly polarized (RCP) and
left-handed circularly polarized (LCP) modes [1]. This is
the standard result of wave propagation in the usual
magnetized cold plasma. The refractive indices (5) present
the cutoff frequencies ω�,

ω� ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ 4ω2

p

q
∓ ωcÞ; ð6Þ

defining limits for the propagation and absorption zones.
As for propagation orthogonal to the magnetic field, k⊥B0,
k ¼ ðkx; ky; 0Þ, it is found that the corresponding trans-
versal mode, δE ¼ ð0; 0; δEzÞ, is associated with the
refractive index

nT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
p

ω2

s
; ð7Þ

while the extraordinary longitudinal mode, δE ¼
ðδEx; δEy; 0Þ is related to [13]

nO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSþDÞðS −DÞ

S

r
; ð8Þ

with P, S, and D given in Eq. (4). The refractive index nT
provides a linearly polarized propagating mode, whereas
nO, in general, is related to an elliptically polarized mode.
In condensed matter systems, chiral media are endowed

with optical activity [14] stemming from parity-odd
models, as bi-isotropic [15] and bi-anisotropic electrody-
namics [16–21], where circularly polarized waves propa-
gate at distinct phase velocities, yielding birefringence and
optical rotation [22]. Such an optical activity is due to
anisotropies of the matter structure or can be implied by
external fields (Faraday effect [23–25]), being measured in
terms of rotatory power (RP) [26]. Magneto-optical effects
constitute a useful tool to investigate new materials, such
as topological insulators [27–35] and graphene com-
pounds [36].
In the context of modified electrodynamics, the Maxwell-

Carroll-Field-Jackiw (MCFJ) electrodynamics was initially
proposed to examine the possibility of CPT and Lorentz
violation (LV) in free space, establishing severe constraints
on the magnitude of the LV coefficients [37]. This model
also represents the CPT-odd piece of the Uð1Þ gauge
sector of the broad Standard Model extension (SME) [38].
The SME has been extensively examined by many authors

and in a variety of scenarios, such as in radiative evalu-
ations [39,40], topological defects solutions [41], super-
symmetry [42], Cherenkov radiation [43–45], and classical
and quantum aspects [46]. The MCFJ electrodynamics
is also relevant due to its connection with the axion
Lagrangian [47,48],

L ¼ −
1

4
FμνFμν þ θðE ·BÞ; ð9Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength and the
axion term, θF̃αβFαβ, implies

L ¼ −
1

4
FμνFμν þ

1

4
ϵμναβð∂μθÞAνFαβ: ð10Þ

with the dual tensor, F̃μν ¼ ð1=2ÞϵμναβFαβ. In the case
where the axion derivative is a constant vector,
∂μθ ¼ ðkAFÞμ, the Lagrangian (10) recovers the MCFJ one,

L ¼ −
1

4
GμνFμν þ

1

4
ϵμναβðkAFÞμAνFαβ − AμJμ; ð11Þ

where ðkAFÞμ is the LV 4-vector background and Gμν ¼
1
2
χμναβFαβ is the continuous matter field strength.1 Such a

Lagrangian provides the modified electrodynamics in
matter, described by the inhomogeneous Maxwell equa-
tions,

∇ ·D ¼ J0 − kAF · B; ð12Þ

∇ ×H −
∂D
∂t

¼ J − k0AFBþ kAF ×E; ð13Þ

where Gi0 ¼ Di, Gij ¼ −ϵijkHk, and ðkAFÞμ ¼ ðk0AF;kAFÞ.
These must be considered together with the homogeneous
Maxwell equations, obtained from the Bianchi identity
∂μF̃μν ¼ 0, and suitable constitutive relations.
The timelike CFJ component, k0AF, appears in the

modified Ampère’s law (13) composing the chiral magnetic
current,

JB ¼ k0AFB; ð14Þ

which has been used to investigate electromagnetic proper-
ties of matter endowed with the chiral magnetic effect
(CME) [50]. The CME [51,52] consists of a macroscopic

1The 4-rank tensor, χμναβ, describes the medium constitutive
tensor [49], whose components provide the electric and magnetic
responses of the medium. Indeed, the electric permittivity and
magnetic permeability tensor components are written as ϵij ≡
χ0ij0 and μ−1lk ≡ 1

4
ϵijlχ

ijmnϵmnk, respectively. For isotropic polari-
zation and magnetization, it holds that ϵij ¼ ϵδij and
μ−1ij ¼ μ−1δij, providing the usual isotropic constitutive relations,
D ¼ ϵE, H ¼ μ−1B.
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linear magnetic current law, J ¼ σBB, stemming from an
asymmetry between the number density of left- and right-
handed chiral fermions. Such an effect has been inves-
tigated in a plethora of distinct contexts [53–58], including
Weyl semimetals (WSMs) [59], where the chiral current
may be different from the usual CME linear relation when
electric and magnetic fields are applied, yielding a current
effectively proportional to B2, that is, J ¼ σðE · BÞB
[33,60,61].
The spacelike vector, kAF, describes an anomalous

charge density in Gauss’ law (12) and contributes to the
current density,

JAH ¼ kAF ×E; ð15Þ

in the Ampère’s law (13), associated with the anomalous
Hall effect (AHE), with kAF playing the role of anomalous
Hall conductivity [50]. The AHE engenders an electric
current in the presence of an electric field due to the
separation between the energy-crossing points in momentum
space for right-handed and left-handed fermions [62–65]. It
has been investigated in distinct contexts, such as noncol-
linear antiferromagnets [66,67], chiral spin liquids [68], and
WSMs [69]. Optical effects of a WSM with broken time-
reversal and inversion symmetries governed by the axion
and the AHE terms were recently examined in WSM
systems, with a focus on magneto-optical (Faraday, Kerr,
and Voigt) effects [69,70]. The AHE term has also been
considered in the propagation of surface plasmon polaritons
in WSMs [71]. Optical effects induced by the current term
kAF ×E were also examined in the context of the MCFJ
electrodynamics in continuous media [72]. The anomalous
Hall current is also connected with a static axion scenario,
∂tθ ¼ 0, with a constant gradient∇θ ¼ cte, as considered to
address an axionic Casimir-like effect in Ref. [73].
In a recent investigation [74], the chiral effects of the CFJ

timelike (pseudoscalar) chiral component, k0AF, on the
electromagnetic modes in magnetized cold plasmas were
addressed. The electromagnetic and optical properties of the
propagating modes, such as birefringence, absorption, and
optical rotation, were discussed, with careful comparisons
with the usual cold plasma features allowing the identi-
fication of the role played by the chiral factor.

In this work, we study wave propagation in a magnetized
cold plasma governed by the Maxwell equations (12) and
(13) modified by the AHE current term, JAH ¼ kAF ×E,
which, using the plane-wave ansatz, read

iεijkiEj þ kAF · B ¼ 0; ð16aÞ

ik ×Bþ iμ0ωεijkiEj − μ0kAF ×E ¼ 0: ð16bÞ

We also consider anisotropic constitutive relations (in the
electric polarization sector),

Di ¼ εijðωÞEj; Bi ¼ μ0Hi; ð17Þ

where εij is the cold plasma permittivity (3) and μ0 is the
vacuum permeability. The modified wave equation for the
electric field is

MijEj ¼ 0; ð18Þ

with

Mij ¼ n2δij − ninj −
εij
ε0

−
i
ω
ϵikjVk; ð19Þ

written in terms of the refractive index n ¼ k=ω and with
Vk ¼ kkAF=ε0 appearing as the redefined components of the
chiral vector (which breaks the time-reversal symmetry and
preserves space inversion). In this scenario, the wave
equation (18) becomes

�
n2δij − ninj −

εij
ε0

− i
Vk

ω
ϵikj

�
Ej ¼ 0; ð20Þ

from which arise the dispersion relations that describe the
wave propagation in the medium (by setting detMij ¼ 0).
To obtain the electromagnetic collective modes of a cold
plasma modified by the anomalous Hall current–like term,
one implements the plasma permittivity tensor (3) in the
wave equation (20), yielding the linear homogeneous
system

2
64

n2 − n2x − S −nxny þ iDþ iðVz=ωÞ −nxnz − iðVy=ωÞ
−nxny − iD − iðVz=ωÞ n2 − n2y − S −nynz þ iðVx=ωÞ

−nxnz þ iðVy=ωÞ −nynz − iðVx=ωÞ n2 − n2z − P

3
75
2
64
δEx

δEy

δEz

3
75 ¼ 0: ð21Þ

The refractive indices and associated propagating modes
are also obtained, entailing the examination of the optical
effects of birefringence and dichroism. Each scenario is
analyzed in the cases of propagation along the magnetic

field and orthogonal to the magnetic field, also known as
the Faraday and Voigt configurations, respectively [75].
This paper is outlined as follows. In Sec. II we obtain the

general dispersion relation for a cold magnetized plasma in
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the presence of the anomalous Hall current, considering the
Faraday configuration. In Sec. III we discuss the general
properties of the cold plasma modes in the Voigt configu-
ration. The dispersion relations, refractive indices, and
optical properties, such as birefringence and absorption,
are determined in all cases examined. Finally, we summa-
rize our results in Sec. IV.

II. WAVE PROPAGATION ALONG
THE MAGNETIC FIELD AXIS

In this section, we analyze the wave propagation along
the magnetic field direction, that is, n ¼ nẑ. Then, it
holds that

2
64

n2 − S þiDþ iðjVj=ωÞ cos β −iðjVj=ωÞ sinϕ sin β

−iD − iðjVj=ωÞ cos β n2 − S þiðjVj=ωÞ sin β cosϕ
iðjVj=ωÞ sinϕ sin β −iðjVj=ωÞ sin β cosϕ −P

3
75
2
64
δEx

δEy

δEz

3
75 ¼ 0; ð22Þ

where we have used, without loss of generality, the
spherical parametrization

V ¼ jVjðsin β cosϕ; sin β sinϕ; cos βÞ; ð23Þ

with the angle β defined between the external magnetic B0

field and the background vector V. Requiring det½Mij� ¼ 0

in Eq. (22), the dispersion relations are given by

2P½D2 − ðn2 − SÞ2� þ jVj2
ω2

ðPþ S − n2Þ þ Γβ ¼ 0; ð24Þ

where

Γβ ¼
jVj2
ω2

cosð2βÞðn2 þ P − SÞ þ 4DP
jVj
ω

cosðβÞ: ð25Þ

We note that the dispersion relation (24) depends only on
the β angle. Thus, we can organize the analysis of the
dispersion relation (24) by considering two main scenarios:
(i) a chiral vector parallel to the magnetic field and (ii) a
chiral vector orthogonal to the magnetic field.

A. Chiral vector parallel to the magnetic field

For a chiral vector parallel to the magnetic field, VkB,
one sets β → 0 in Eq. (24), implying

Pððn2 − SÞ2 − ðDþ jVj=ωÞ2Þ ¼ 0: ð26Þ

Longitudinal waves, with nkδE or δE ¼ ð0; 0; δEzÞ, may
occur when P ¼ 0, with nonpropagating vibration at the
plasma frequency, ω ¼ ωp.
For transverse waves, n⊥δE or δE ¼ ðδEx; δEy; 0Þ, the

dispersion relation (26) simplifies to

ðn2 − SÞ2 − ðDþ jVj=ωÞ2 ¼ 0 ð27Þ

which, with the relations (4), provides the following
refractive indices:

ðnRÞ2 ¼ 1 −
ω2
p

ωðω − ωcÞ
−
jVj
ω

; ð28Þ

ðnLÞ2 ¼ 1 −
ω2
p

ωðωþ ωcÞ
þ jVj

ω
: ð29Þ

The indices nR and nL may be real or complex in some
frequency ranges, enriching their behavior in comparison to
the usual cold plasma one. The propagation and absorption
zones are modified by the presence of the chiral vector V,
as will be shown later.
The propagating modes associated with the refractive

indices, given in Eqs. (28) and (29), are obtained as the
corresponding eigenvectors (with a null eigenvalue) of
Eq. (22). The resulting electric fields are the LCP and RCP
modes, namely,

nL → ELCP ¼
1ffiffiffi
2

p

2
64

1

þi

0

3
75; ð30Þ

nR → ERCP ¼
1ffiffiffi
2

p

2
64

1

−i
0

3
75: ð31Þ

There are two cutoff frequencies for the refractive index
nR in (28),

ω�
R ¼ 1

2
ððωc þ jVjÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωc − jVjÞ2 þ 4ω2

p

q
Þ: ð32Þ

While the cutoff frequency ωþ
R is always positive, ω−

R is
positive only under the condition

jVj > ω2
p=ωc; ð33Þ

for which the index nR presents two (positive) roots. The
refractive index nL (29) has a single cutoff frequency,
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ωL ¼ −
1

2
ωc −

1

2
jVj þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωc − jVjÞ2 þ 4ω2

p

q
; ð34Þ

which is positive for the condition

jVj < ω2
p=ωc: ð35Þ

To examine the behavior of the refractive indices (28)
and (29), we consider two distinct scenarios, following the
conditions (33) and (35):
(1) For jVj > ω2

p=ωc, the index nL presents no positive
root (no cutoff), while the index nR has two
positive roots.

(2) For jVj < ω2
p=ωc, both indices nL and nR have one

positive cutoff.

1. About the index nR
The general behavior of the index nR is represented in

Fig. 1 in terms of the dimensionless parameter ω=ωc and
under the condition (33), as detailed below.

(i) For ω → 0, nR → þi∞, which is complex and
divergent in this limit, differing from the behavior
of the usual magnetized plasma index n−, which
provides n → ∞ near the origin.

(ii) For 0 < ω < ω−
R, an absorption zone appears, where

Im½nR� ≠ 0. This characteristic does not manifest in
the usual cold plasma index n−, which is real and
positive in this range. See the black line in this
frequency zone in Fig. 1.

(iii) For ω−
R < ω < ωc, nR is real, with Re½nR� > 0,

revealing a propagation zone.
(iv) For ω → ωc, nR → ∞, a resonance at the cyclotron

frequency occurs.

(v) For ωc < ω < ωþ
R , there is an absorption zone,

where nR is imaginary, Im½nR� ≠ 0. Such an absorp-
tion zone is larger than the usual zone shown by the
black-dashed line in Fig. 1, since ωþ

R > ω−.
(vi) For ω > ωþ

R , the index nR is real and positive,
yielding an attenuation-free propagating zone and
recovering nR → 1 in the high-frequency limit.

On the other hand, under condition (35), ω−
R < 0, so

there is only one cutoff frequency and a single absorption
zone, defined for ωc < ω < ωþ

R . The first absorption zone
is replaced by a propagation region, now defined for
0 < ω < ωc, similar to the usual case. For ω > ωc, the
behavior is similar to that pointed out in items (v) and
(vi) above. This scenario for nR is illustrated in Fig. 2.

2. About the index nL
The index nL, given in Eq. (29), has no positive root

under the condition (33) (no cutoff frequency) and one
cutoff frequency under the condition (35). Its features are
described below.

(i) For ω → 0, under the condition (33), the presence of
jVj renders the refractive index real and positively
divergent at the origin, nL → þ∞, differing from the
usual index nþ (5), which is complex and divergent,
Im½nþ� → ∞, at the origin. This behavior is similar
to what is observed in the index nL of the chiral
MCFJ model examined2 in Ref. [74].

(ii) For ω > 0, the index nL is always real, Im½nL� ¼ 0.
Thus, wave propagation occurs for any frequency.
The real and imaginary parts of nL are represented
in Fig. 3.

FIG. 1. Index of refraction nR under the condition (33). The
dashed blue (black) line corresponds to the imaginary piece of nR
(n−), while the solid blue (black) line represents the real piece of
nR (n−). Note that the chiral factor opens a new lossy window
near the origin and enlarges the second absorption zone. Here,
ωc ¼ ωp, jVj ¼ 2ωp, and ωc ¼ 1 rad s−1. The (dashed and solid)
blue lines representing nR is thicker than the black line for n−.

FIG. 2. Index of refraction nR under the condition (35). The
dashed blue (black) line corresponds to the imaginary piece of nR
(n−), while the solid blue (black) line represents the real piece of
nR (n−). The chiral factor increases the absorption zone near
resonance. Here, ωc ¼ ωp, jVj ¼ 0.5ωp, and ωc ¼ 1 rad s−1.
The (dashed and solid) blue lines representing nR is thicker than
the black line for n−.

2See Eq. (48) and Fig. 4 of Ref. [74].
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(iii) Under the condition (35), nL presents a cutoff
frequency ωL, given by Eq. (34). Therefore, an
absorption zone appears for 0 < ω < ωL, where
Im½nL� ≠ 0, as depicted in Fig. 4.

We observe that the indices nR and nL are always
positive, implying the nonexistence of negative refraction,
a phenomenon that was reported in the context of the MCFJ
cold plasmas in the presence of the chiral timelike back-
ground factor.
The results of this subsection may be compared with the

case of wave propagation along the magnetic field with
the MCFJ timelike background, examined in Sec. IV of
Ref [74], whose scenario was richer due to the attainment of
four distinct indices and negative refraction, which typically
occurs in bi-isotropic media as well [76,77]. In the present
case, however, there are only two positive indices (no
negative refraction).3 Nevertheless, regarding the propaga-
tion and absorption properties, the present chiral-vector case
is more involved since two absorption zones are opened
under the condition (33), while in the analogous situation of
Ref. [74] only one absorption zone was reported.

3. Dispersion relation behavior

The behavior of the dispersion relations can be visualized
in plots of ω × k. In this subsection, the dispersion relations
associated with the circular modes, connected to the indices
nR and nL, are presented in dimensionless plots of
ðω=ωcÞ × ðk=ωcÞ. The dispersion relation associated with
�nR, under the condition (33), is depicted in Fig. 5. The

propagation occurs for ω−
R < ω < ωc and ω > ωþ

R , while
two absorption windows appear: ωc < ω < ωþ

R and
0 < ω < ω−

R. On the other hand, the behavior for the
condition (35) is shown in Fig. 6, where the propagation
occurs for 0 < ω < ωc and ω > ωþ

R and the absorption
happens for ωc < ω < ωþ

R . Figures 5 and 6 illustrate

FIG. 3. Refractive index nL (red lines) for condition (33) and
index nþ (black lines) of Eq. (5). The dashed (solid) lines
correspond to the imaginary (real) pieces of nL and nþ. The chiral
factor suppresses the absorption window. Here, ωc ¼ ωp,
jVj ¼ 2ωp, and ωc ¼ 1 rad s−1. The (dashed and solid) red line
representing nL is thicker than the black line for nþ.

FIG. 4. Refractive index nL (red lines) for condition (35) and
refractive index nþ (black lines) of Eq. (5). The dashed (solid)
lines correspond to the imaginary (real) pieces of nL and nþ. The
chiral factor narrows the absorption zone and enhances
the attenuation-free propagation regime. Here, ωc ¼ ωp,
jVj ¼ 0.5ωp, and ωc ¼ 1 rad s−1. The (dashed and solid) red
lines representing nL is thicker than the black line for nþ.

FIG. 5. Dispersion relations related to the refractive indices nR
(solid blue line) and −nR (solid black line), under the condition
(33). The dashed black line represents the indices of the standard
case, �n−. The highlighted area in red indicates the enlargement
of the absorption zone for nR in comparison to the gray
absorption zone of the usual indices (�n−). Here we use
ωc ¼ ωp and jVj ¼ 2ωp, with ωc ¼ 1 rad s−1. Solid blue lines
occur for k=ω > 0, and solid black lines for k=ω < 0.

3Note that negative indices may also exist in the case where
one takes the negative roots of Eqs. (28) and (29), that is, −nL and
−nR, which correspond to the exact mirror image of the positive
indices (in relation to the frequency axis).
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enhanced absorption zones. Figure 7 illustrates the
dispersion relations associated with �nL for the condition
(33), where the propagation occurs for ω > 0, being
compatible with the absence of an absorption zone; see
Fig. 3. The dispersion relation for the condition (35) is
depicted in Fig. 8, where there is an unusual absorption
zone in 0 < ω < ωL, while the propagation appears for
ω > ωL. In these two latter cases, the absorption zone is
reduced in comparison to the zone of the usual indices,
�nþ, 0 < ω < ωþ.
An interesting point is that the refractive indices nR;L,

represented by blue lines in Figs. 5–8, do not become
negative under the influence of the chiral vector V,
allowing the plots of ω × k to remain centered at k ¼ 0.
This is not the case for cold plasmas under the timelike CFJ
electrodynamics [74], where the scalar chiral parameter V0

induces zones of negative refraction (negative refractive
indices), decentralizing the curves of ω × k (see Ref. [74]).

4. Low-frequency helicon modes

There are low-frequency plasma modes that propagate
along the magnetic field axis, called helicons. In a usual
magnetized plasma, there exist only RCP helicon modes,4

for which the refractive index (5) yields

FIG. 7. Dispersion relations associated with the refractive
indices nL (solid blue line) and −nL (solid black line), under
the condition (33). The dashed black line corresponds to the
indices of the usual case (�nþ). The highlighted area in gray
indicates the absorption zone for the indices �nþ, where one
notices the absence of absorption for nL. Here we use ωc ¼ ωp

and jVj ¼ 2ωp, with ωc ¼ 1 rad s−1. Solid blue lines occur for
k=ω > 0, and solid black lines for k=ω < 0.

FIG. 6. Plot of the dispersion relations related to the refractive
indices nR (solid blue line) and −nR (solid black line), under the
condition (35). The dashed black line corresponds to the indices
of the usual case (�n−). The highlighted area in red indicates
the absorption zone amplification for nR in comparison
with the one of �n−. Here we use ωc ¼ ωp and jVj ¼ 0.5ωp,
with ωc ¼ 1 rad s−1. Solid blue lines occur for k=ω > 0, and
solid black lines for k=ω < 0.

FIG. 8. Dispersion relations associated with the refractive
indices nL (solid blue line) and −nL (solid black line), under
the condition (35). The dashed black line corresponds to the
indices of the usual case (�nþ). The highlighted area in red
indicates the absorption zone for nL, narrowed in comparison to
the absorption zone associated with �nþ. Here we use ωc ¼ ωp

and jVj ¼ 0.5ωp, with ωc ¼ 1 rad s−1. Solid blue lines occur for
k=ω > 0, and solid black lines for k=ω < 0.

4See Chapter 9 of Ref. [10] and Chapter 8 of Ref. [3] for basic
details.
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n− ¼ ωp

ffiffiffiffiffiffiffiffiffi
1

ωωc

s
ð36Þ

in the low-frequency regime,

ω ≪ ωp; ωc ≪ ωp; ω ≪ ωc: ð37Þ

Considering the circular electromagnetic modes associ-
ated with the indices (28) and (29), the corresponding
helicons indices are

n̄R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p

ωωc
−
jVj
ω

s
; ð38aÞ

n̄L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVj
ω

−
ω2
p

ωωc

s
; ð38bÞ

where we have used the “bar” notation to indicate the
helicons quantities. Due to the chiral vector jVj, one obtains
expressions for both RCP and LCP helicons. As n̄2R ¼ −n̄2L,
one of these indices is imaginary when the other is real. In
fact, n̄R becomes imaginary for jVj > ω2

p=ωc, while n̄L is
imaginary for jVj < ω2

p=ωc. This means that RCP and LCP
helicons do not propagate simultaneously. Indeed, only one
of the modes in Eq. (38) can propagate for each value of jVj
adopted. In this context, note that the usual cold plasma
helicon mode is recovered in the limit jVj → 0, for which
the helicon index n̄R yields the usual result of Eq. (36),
while n̄L becomes purely imaginary, indicating the absence
of propagation.

5. Rotatory power

Chiral media possess optical activity, described in terms
of the rotation of the polarization (birefringence) that takes
place when RCP and LCP modes propagate at different
phase velocities. Such a rotation is measured in terms of
the rotatory power, which is useful for performing an
optical characterization of multiple systems, such as
crystals [78,79], organic compounds [80,81], graphene
phenomena in the terahertz band [82], the gas of fast-
spinning molecules [83], chiral metamaterials [84–86],
and chiral semimetals [87,88], and in the determination of
the rotation direction of pulsars [89]. The RP may be
dispersive (depend on the frequency) [90–92]. The RP is
defined as

δ ¼ −
ω

2
ðRe½nL� − Re½nR�Þ; ð39Þ

where nL and nR are the refractive indices for different
circular polarizations. For the case where the background
vector is parallel to the magnetic field (see Sec. II A), the
refractive indices, given by Eqs. (28) and (29), yield

δ ¼ −
ω

2
Re

h ffiffiffiffiffiffi
Rþ

p
−

ffiffiffiffiffiffi
R−

p i
; ð40Þ

where R� is given by

R� ¼ 1 −
ω2
p

ωðω� ωcÞ
� jVj

ω
: ð41Þ

The behavior of the RP (40) is depicted in Fig. 9, being
negative for the interval 0 < ω < ω̂ and positive for
ω̂ < ω < ωc. For ω > ωc, the RP is always negative,
exhibiting a sharp behavior at ω ¼ ωR, the point at which
the real piece of nR assumes nonzero values again (see
Fig. 1). The frequency ω̂,

ω̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωcðωc − ω2

p=jVjÞ
q

; ð42Þ

obtained from Eqs. (40) and (41), indicates where the RP
changes sign, as shown in Fig. 9. Note that ω̂ is real only for
the condition (33). Hence, the RP reversion only occurs in
this case, as confirmed in Fig. 9. In fact, under the condition
(35), the corresponding RP depicted in Fig. 10 is not
endowed with sign reversal, a behavior analog to the
standard RP in plasmas.
It is worth remarking that the RP reversion is observed

in graphene systems [82], Weyl metals and semimetals
with low electron density with chiral conductivity [87,88],
and bi-isotropic dielectrics with magnetic chiral conduc-
tivity [93]. Such a reversion does not occur in conventional
cold plasma, but it takes place in rotating plasmas [94] and
in the MCFJ plasma with a chiral pseudoscalar factor [74].
Therefore, RP reversion may be considered a signature of
chiral MCFJ nonrotating cold plasmas.

FIG. 9. The solid blue line represents the RP (40) defined by the
refractive index nL and nR for the condition (33). The dashed black
line corresponds to the usual RP for a conventional cold plasma.
The chiral factor determines the RP sign reversion at ω < ω̂ and a
constant asymptotic value, −jVj=2, for high frequencies. Here we
use ωc ¼ ωp, jVj ¼ 2ωp, and ωc ¼ 1 rad s−1.
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Furthermore, it is important to pay attention to the
intervals 0 < ω < ω−

R and ωc < ω < ωþ
R , where the refrac-

tive index nR is imaginary and the RP receives a contri-
bution only from the index nL, exhibiting an approximately
linearly increasing magnitude, the opposite of the nL
profile. For ω > ωþ

R , the modes associated with the nL
and nR propagate and contribute to the RP, whose magni-
tude diminishes monotonically with ω, tending to the
asymptotic value −jVj=2, as shown in Fig. 9. In fact, in
the high-frequency limit, ω ≫ ωp;ωc, the refractive indices
nL and nR provide (at first order)

nL;R ≃ 1� jVj
2ω

; ð43Þ

so the RP asymptotic value is

δ ≃ −
jVj
2

; ð44Þ

a result that holds even in the absence of the magnetic field.
This asymptotic limit differs from the behavior of a cold
usual plasma, whose RP decays as 1=ω2 for high frequen-
cies, tending to zero for ω ≫ ωp;ωc. See the dashed line
in Fig. 9.

6. Dichroism coefficients

Absorption occurs in the zones where the indices are
complex. When circularly polarized modes undergo absorp-
tion at different degrees, dichroism takes place, working as
another parameter for optical characterization. It could be
used to distinguish between Dirac and Weyl semimetals
[95], perform enantiomeric discrimination [96,97], and

develop graphene-based devices at terahertz frequencies
[98]. Dichroism for LCP and RCP waves is expressed in
terms of the coefficient

δd ¼ −
ω

2
ðIm½nL� − Im½nR�Þ: ð45Þ

For the condition (33), nR has non-null imaginary parts in
the intervals 0 < ω < ω−

R and ωc < ω < ωþ
R , while nL is

always real (for ω > 0). In this case, the dichroism
coefficient is written as

δd ¼

8>>>><
>>>>:

ω
2

ffiffiffiffiffiffi
R−

p
; for 0 < ω < ω−

R;

0; for ω−
R < ω < ωc;

ω
2

ffiffiffiffiffiffi
R−

p
; for ωc < ω < ωþ

R ;

0; for ω > ωþ
R ;

ð46Þ

with R− of Eq. (41). Such a coefficient is depicted
in Fig. 11.
Considering the condition (35), both nR and nL have

non-null imaginary parts in the intervals ωc < ω < ωþ
R and

0 < ω < ωL, respectively, in which the dichroism coeffi-
cient is non-null,

δd ¼
�− ω

2

ffiffiffiffiffiffi
Rþ

p
; for 0 < ω < ωL;

þ ω
2

ffiffiffiffiffiffi
R−

p
; for ωc < ω < ωþ

R :
ð47Þ

The general behavior of (47) is exhibited in Fig. 12.

B. Chiral vector orthogonal to the magnetic field

In the scenario where the background vector is orthogo-
nal to the magnetic field, β → π=2, and the dispersion
relation (24) reads

P½D2 − ðn2 − SÞ2� þ ðjVj2=ω2ÞðS − n2Þ ¼ 0; ð48Þ

FIG. 10. Solid blue lines: RP (40) associated with the refractive
indices nL and nR for the condition (35). The dashed line
represents the usual RP for a usual cold plasma. Small deviations
of the RP are originated from the chiral factor. The main
difference in comparison with the usual case is the non-null
asymptotical value, −jVj=2, for high frequencies. Here we use
ωc ¼ ωp, jVj ¼ 0.5ωp, and ωc ¼ 1 rad s−1.

FIG. 11. Dichroism coefficient of Eq. (46) (red solid lines)
associated with nL and nR, under the condition (33). The black
dashed line represents the dichroism coefficient of a usual cold
plasma. Here, ωc ¼ ωp, jVj ¼ 2ωp, and ωc ¼ 1 rad s−1.
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yielding two refractive indices:

ðnAÞ2 ¼ S −
jVj2
2Pω2

þ 1

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2D2 þ jVj4

4ω4

s
; ð49Þ

ðnBÞ2 ¼ S −
jVj2
2Pω2

−
1

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2D2 þ jVj4

4ω4

s
: ð50Þ

From Eq. (22), mixed elliptical polarizations are evalu-
ated for the propagating modes,

nA;B → EA;B ¼ C

2
64

−ζ
1

−ijVjðn2A;B − SÞ=ðωκ̄PÞ

3
75; ð51aÞ

where

C ¼ jκ̄jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 − SÞ2½ðjVj=ωPÞ2 þ sin2 ϕ� þD2 cos2 ϕþ jκ̄j2

p ;

ð51bÞ

ζ ¼ ððn2 − SÞ2 −D2Þ cosϕ sinϕþ iDðn2 − SÞ
jκ̄j2 ; ð51cÞ

κ̄ ¼ ðn2 − SÞ cosϕ − iD sinϕ: ð51dÞ

In Eq. (51a), one notices a longitudinal imaginary
component. The transversal sector is, in general, elliptically
polarized since ζ is a complex quantity. Starting from
Eq. (51a) and setting jVj → 0, the usual RCP and LCP
modes are recovered, which is an expected correspondence.
The refractive indices given in (49) and (50) have real

positive roots given by

ωA1;B ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ω2

c ∓ 2

ffiffiffiffiffiffiffiffi∓ 2

U
3

r
f1 þ ð∓ 2Þ2=3

ffiffiffiffi
U3

p
þ 2jVj2

s
;

ð52Þ

ωA2 ¼
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ω2

c þ
ð2Þ4=3ð−1Þ2=3f1ffiffiffiffi

U3
p − f4

s
; ð53Þ

where

U ¼ 11ω6
c þ f2 þ 3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c4ð5ω8

c þ f3Þ
q

; ð54aÞ

f1 ¼ 4ω4
c þ 2ω2

cjVj2 þ jVj4; ð54bÞ

f2 ¼ −12ω4
cjVj2 þ 6ω2

cjVj4 þ 2jVj6; ð54cÞ

f3 ¼ 24ω6
cjVj2 þ 4ω4

cjVj4 þ 12ω2
cjVj6 þ 4jVj8; ð54dÞ

f4 ¼
ffiffiffi
3

p
− 1ð2Þ2=3

ffiffiffiffi
U3

p
þ 2jVj2; ð54eÞ

where ωA1;2 is associated with nA and ωB is associated
with nB.

1. About the index nA
The refractive index nA, given in Eq. (49), has two

positive roots, ωA1 and ωA2, as illustrated in Fig. 13, where
we observe the following:

(i) For ω → 0, the index is imaginary and tends to
infinity, nA → þi∞, which is the same behavior as
for the usual magnetized plasma index nþ near the
origin.

(ii) For 0 < ω < ωA1, it holds that Re½nA� ¼ 0,
Im½nA� ≠ 0, defining an absorption zone.

FIG. 13. Refractive index nA (red lines) and nþ (black lines) of
Eq. (5). The dashed (solid) lines correspond to the imaginary (real)
pieces of nA and nþ. There is an intermediary propagation zone in
the rangeωA1 < ω < ωc and a new absorption interval defined for
ωc < ω < ωA2. Here, ωc ¼ ωp, jVj ¼ 2ωp, and ωc ¼ 1 rad s−1.
The (solid and dashed) red curves are thicker than the (solid and
dashed) black lines.

FIG. 12. Dichroism coefficient of Eq. (47) (solid red lines)
associated with nL and nR, under the condition (35). The dashed
line represents the dichroism coefficient for a conventional cold
plasma. Here, we set ωc ¼ ωp, jVj ¼ 0.5ωp, and ωc ¼ 1 rad s−1.
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(iii) For ωA1 < ω < ωc, nA is real, Re½nA� > 0 and
Im½nA� ¼ 0, opening an intermediary propagation
zone that does not appear in the usual case. Compare
the black and red lines in Fig. 13.

(iv) For ω → ωc, there is a resonance, nA → ∞, at the
cyclotron frequency, a behavior that is not seen in
the standard case. For ωc < ω < ωA2, nA is imagi-
nary, that is, Im½nA� ≠ 0, Re½nA� ¼ 0, and thus
another absorption zone is allowed.

(v) For ω > ωA2, there is a propagating zone, in which
the index nA is always positive and real, with nA → 1
in the high-frequency limit. See Fig. 13.

2. About the index nB
The index nB in Eq. (50) has only one cutoff frequency,

represented by ωB. Its real and imaginary parts are
illustrated in Fig. 14.

(i) In the limit ω → 0, the index nB is real and tends to
infinity, nB → þ∞. For 0 < ω < ωc, the index nB is
real, with Im½nB� ¼ 0, a behavior close to that of
standard magnetized plasmas.

(ii) Forω → ωc, nB → ∞, and there is a resonance at the
cyclotron frequency. This behavior also occurs in the
usual case. For ωc < ω < ωB, the index is imagi-
nary, Re½nB� ¼ 0, Im½nB� ≠ 0, describing an absorp-
tion zone that is larger than the usual one, since
ωB > ω−. See Fig. 14.

(iii) For ω > ωB, one has a propagating zone, where nB
is always real and positive, with nB → 1 in the high-
frequency limit.

The results of the present section cannot be compared
with those of Ref. [74] since the defining condition of this
section—a chiral vector orthogonal to the magnetic field—
is not possible in the scenario of a scalar chiral factor [74].

3. Optical effects

Considering the configuration of the background vector
orthogonal to the magnetic field, the refractive indices (49)
and (50) are not associated with circularly polarized modes
[see Eq. (51a)]. In this panorama, the birefringence is better
characterized in terms of the phase shift per unit length,
given by

Δ
d
¼ 2π

λ0
ðRe½nA� − Re½nB�Þ; ð55Þ

or, explicitly,

Δ
d
¼ 2π

λ0

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S−

jVj2
2Pω2

þΞAB

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S−

jVj2
2Pω2

−ΞAB

s 1
CA; ð56Þ

where

ΞABðω; jVjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ jVj4

4P2ω4

s
: ð57Þ

In the high-frequency limit ω ≫ ðωc;ωpÞ, the phase
shift is

Δ
d
≃ −

2π

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωcω

2
p

ð2ω2 − jVj2Þω

s
: ð58Þ

As for the absorption effect for noncircularly propagat-
ing modes, one can define the difference of absorption
between the two modes per unit length, written as

ΔIm

d
¼ 2π

λ0
ðIm½nA� − Im½nB�Þ: ð59Þ

For ωc < ω < ωA2, the indices nA and nB are purely
imaginary; see the corresponding dashed lines in Fig. 13
and 14. In this range, the absorption factor (59) is

ΔIm

d
¼ 2π

λ0

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVj2
2Pω2

−ΞAB−S

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVj2
2Pω2

þΞAB−S

s 3
75: ð60Þ

For ω < ωA1, only the mode associated with nA is
absorbed. In this case, we can write the absorption
coefficient γ ¼ 2ωIm½n�, which is explicitly given by

γ ¼ 2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVj2
2Pω2

− ΞAB − S

s
: ð61Þ

FIG. 14. Refractive index nB (blue lines) and n− (black lines) of
Eq. (5). The dashed (solid) lines correspond to the imaginary
(real) pieces of nB and n−. The intermediary absorption zone,
ωc < ω < ωB, has now amplified length. Here, ωc ¼ ωp,
jVj ¼ 2ωp, and ωc ¼ 1 rad s−1. The (solid and dashed) blue
curves are thicker than the (solid and dashed) black lines.
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III. WAVE PROPAGATION ORTHOGONAL
TO THE MAGNETIC FIELD

For propagation orthogonal to the magnetic field, we can
implement n ¼ ðnx; ny; 0Þ in Eq. (21). Furthermore, we
propose a parametrization for the wave propagation in the

plane orthogonal to the magnetic field in terms of the angle
α between the propagation direction and the x axis,

n ¼ nðcos α; sin α; 0Þ: ð62Þ

Thus, Eq. (20) now reads

2
664

n2 − n2cos2α− S −n2 cosα sinαþ iDþ iðjVj=ωÞcosβ −iðjVj=ωÞ sinϕ sinβ

−n2 cosα sinα− iD− iðjVj=ωÞcosβ n2 − n2sin2α− S þiðjVj=ωÞcosϕ sinβ
þiðjVj=ωÞ sinϕ sinβ −iðjVj=ωÞcosϕ sinβ n2 −P

3
775
2
664
δEx

δEy

δEz

3
775¼ 0: ð63Þ

The null determinant condition provides the following
dispersion relation:

ðn2 − PÞ½D2 þ Sðn2 − SÞÞ� − ðjVj=2ωÞ2Θ ¼ 0; ð64Þ

where

Θ ¼ ½2ðPþ SÞ− 3n2� þ 8DωðP− n2Þ cosβ=jVj
− ðn2 − 2Pþ 2SÞ cosð2βÞ þ 2n2sin2ðβÞ cosð2ðα−ϕÞÞ:

ð65Þ

A. Chiral vector parallel to the magnetic field

A chiral vector parallel to the magnetic field, VkB0,
implies β ¼ 0, whose replacement in Eq. (64) yields the
index n2T ,

n2T ¼ 1 −
ω2
p

ω2
; ð66Þ

which is also given in Eq. (7) and is associated with the
same usual linear transversal mode.
It also provides a modified refractive index,

n2χ ¼
S2 −D2

S
−
jVj2 þ 2DjVjω

Sω2
; ð67Þ

associated with the elliptical propagating mode,

nχ → E ¼ Cχ

2
64
−ζχ
1

0

3
75; ð68Þ

where

Cχ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jζχ j2 þ 1
q ; ð69aÞ

ζχ ¼
i½Dþ ðjVj=ωÞ� − n2 cos α sin α

n2sin2α − S
: ð69bÞ

The refractive index nχ has three cutoff frequencies, ω�
R

and ωL, given in Eqs. (32) and (34).

1. About the index nχ
The refractive index nχ has the refractive index nO as the

conventional cold plasma counterpart, given in (8), sharing
with it the same resonance frequency

ωcp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ ω2

p

q
: ð70Þ

Under the condition (35), nχ shows two cutoff frequencies,
ωþ
R and ωL, which are the same as those of Eqs. (32) and

(34), respectively. These frequencies are marked in Fig. 15.
Moreover, we point out the following:

(i) For 0 < ω < ωL, nχ is imaginary, corresponding to
an absorption zone smaller than the usual one,

FIG. 15. Red line: index nχ under the condition (35). Black
line: index nO. Dashed (solid) lines represent the imaginary (real)
pieces of nχ and nO. Note that the chiral vector factor shortens the
first absorption zone and slightly augments the second one. Here
we use: ωc ¼ ωp, jVj ¼ 0.5ωp, and ωc ¼ 1 rad s−1. The (solid
and dashed) red curves are thicker than the (solid and dashed)
black lines.
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0 < ω < ωþ, since ωL < ωþ. See the black dashed
line in Fig. 15.

(ii) For ωL < ω < ωcp, Re½nχ � ≠ 0 and Im½nχ � ¼ 0,
defining a propagation zone larger than the stan-
dard-case one (ωþ < ω < ωcp).

(iii) Forω → ωcp, there is a resonance, nχ → þ∞, which
is the same behavior as in the usual case. For
ωcp < ω < ωþ

R , Re½nχ � ¼ 0 and Im½nχ � ≠ 0, and
another absorption zone is allowed.

(iv) For ω > ωþ
R , the quantity nχ is always positive,

corresponding to a propagation zone, which in the
usual case begins at ω ¼ ω−.

Under the condition (33), nχ has two roots, ω�
R , and

similar characteristics to those described above, as shown
in Fig. 16.

2. Optical effects

For the configuration of a background vector parallel to
the magnetic field, the propagating modes obtained were
described by elliptical and linear polarized vectors, asso-
ciated with the refractive indices nT and nχ , respectively. In
this case, the birefringence is evaluated by employing the
phase shift per unit length,

Δ
d
¼ 2π

λ0
ðRe½nT � − Re½nχ �Þ; ð71Þ

which for the indices (66) and (67) reads

Δ
d
¼ 2π

λ0

0
B@ ffiffiffiffi

P
p

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 −D2

S
−
jVj2 þ 2DjVjω

Sω2

s 1
CA: ð72Þ

In the limit ω ≫ ðωp;ωcÞ, using the parameters S,D, and P
given in (4), such a phase shift reduces to

Δ
d
¼ 2π

λ0

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − jVj2

ω2

s �
: ð73Þ

In the usual case, where Δ=d ∝ ðnT − nOÞ, the phase shift
is null in the high-frequency limit, a result recovered for
jVj → 0 in (73). Thus, the chiral vector is responsible for an
unusual dispersive birefringence in the high-frequency
domain.
Concerning the absorption for noncircularly propagating

modes, the difference in absorption between the two modes
per unit length,

ΔIm

d
¼ 2π

λ0
ðIm½nT � − Im½nχ �Þ; ð74Þ

yields

ΔIm

d
¼ 2π

λ0

0
B@ ffiffiffiffi

P
p

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVj2 þ 2DjVjω

Sω2
−
S2 −D2

S

s 1
CA ð75Þ

for the indices in Eqs. (66) and (67). It is non-null for
0 < ω < ωL;R− and ωcp < ω < ωRþ , under the condition
(33) or (35), as shown in Figs. 15 and 16, respectively.

B. Background vector orthogonal to the magnetic field

Considering the chiral vector orthogonal to the magnetic
field, V⊥B0, we take β → π=2 in Eq. (64), yielding two
refractive indices,

ðn2ϒÞ� ¼ SðPþ SÞ −D2

2S
−
jVj2 sin2ðα − ϕÞ

2Sω2
� η

4Sω2
; ð76Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 16Sω2ðPω2ðS2 −D2Þ − SjVj2Þ

q
; ð77aÞ

Λ¼2ðD2−S2−PSÞω2− jVj2cosð2ðα−ϕÞÞþjVj2: ð77bÞ

The indices ðn2ϒÞ� are related to the following electro-
magnetic modes:

ðnϒÞ� → E� ¼ Cϒ

2
64

−ζϒ
1

jVjðcosϕþiζϒ sinϕÞ
ωðn2�−PÞ

3
75; ð78Þ

where Cϒ is a normalization constant and

FIG. 16. Red line: plot of the index nχ under the condition (33).
Black line: plot of the index nO. Dashed (solid) lines represent the
imaginary (real) pieces of nχ and nO. The chiral vector reduces
the first absorption frequency window and enhances the second
one. Here we use: ωc ¼ ωp, jVj ¼ 2ωp, and ωc ¼ 1 rad s−1. The
(solid and dashed) red curves are thicker than the (solid and
dashed) black lines.
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ζϒ ¼ ζ� þ iDðn2 sin2 α − SÞðcos2 ϕ − sin2 ϕÞ
jλ̄j2 ; ð79aÞ

with

ζ� ¼ γ þD2 cos2 ϕ − n2 cos α sin αðn2 sin2 α − SÞ; ð79bÞ

γ ¼ ½ðn2 sin2 α− SÞ2 þ ðn2 cosα sinαÞ2� sinϕcosϕ; ð79cÞ

λ̄¼ðn2 sin2α−SÞcosϕ− ðn2 cosαsinαþ iDÞsinϕ: ð79dÞ

The refractive indices in (76) have real and positive
roots ω⊥1;2 associated with ðnϒÞþ and ω⊥þ associated with
ðnϒÞ−. These frequencies are not presented here as they are
very extensive and intricate solutions of a sixth-order
equation in frequency.
In the following, some aspects of the indices ðnϒÞ� will

be discussed. Figures 17 and 18 illustrate the general
behavior of ðnϒÞ� for α − ϕ ¼ 0 (Vkn) and α − ϕ ¼
π=2 (V⊥n), shown by the red and blue lines, respectively.

1. About the index ðnϒÞ+
The refractive index ðnϒÞþ can be compared to the index

nT , given in Eq. (66), which describes the usual transversal
mode. We find that ðnϒÞþ has two cutoff frequencies, ω⊥
and ω⊥2. The behavior of ðnϒÞþ is illustrated in Fig. 17,
which shows the following features:

(i) For 0 < ω < ω⊥, ðnϒÞþ is imaginary, corresponding
to an absorption zone.

(ii) For ω⊥ < ω < ωp, there is an attenuation-free
propagation zone where Re½ðnϒÞþ� ≠ 0 and
Im½ðnϒÞþ� ¼ 0. In the standard case, there is an
absorption zone in this range.

(iii) For ω → ωp, ðnϒÞþ has an unusual discontinuity, as
shown in Fig. 17. For ωp < ω < ω⊥2, the index
ðnϒÞþ is imaginary and there is an absorption zone.
This aspect contrasts with the usual case, where nT is
always real for ω > ωp.

(iv) For ω > ω⊥2, ðnϒÞþ is real, yielding an attenuation-
free propagation zone.

2. About the index ðnϒÞ−
The index ðnϒÞ− is a modification of the index nO, given

in Eq. (8), associated with the usual extraordinary mode.
The former has a cutoff frequency at ω⊥þ, as shown in
Fig. 18. Some aspects of ðnϒÞ− are summarized below.

(i) For 0 < ω < ωp, there is an absorption zone where
Re½ðnϒÞ−� ¼ 0 and Im½ðnϒÞ−� ≠ 0. For ω → ωp,
ðnϒÞ− has a discontinuity, as noticed in Fig. 18.
For ωp < ω < ωcp, the index ðnϒÞ− is real, corre-
sponding to a propagation window. Asωp > ωþ, the
first absorption zone is enlarged while the first
propagating window is shortened.

(ii) For ω → ωcp, ðnϒÞ− → ∞, which is the same
behavior as in the usual case, as indicated in Fig. 18.
For ωcp < ω < ω⊥þ, the index ðnϒÞ− is purely
imaginary and the associated mode is absorbed.
As ω⊥þ > ω−, this second absorption zone is also
enlarged in comparison with the usual-case one.

(iii) For ω > ω⊥þ, the quantity ðnϒÞ− is always real,
corresponding to an attenuation-free propagation

FIG. 18. Red (blue) line: plot of the index ðnϒÞ− for α − ϕ ¼ 0
(α − ϕ ¼ π=2). Black line: plot of the index nO. Dashed (solid)
lines represent the imaginary (real) pieces of ðnϒÞ− and nO. The
chiral factor enhances the length of the two absorption zones.
Here we use ωc ¼ ωp, jVj ¼ 2ωp, and ωc ¼ 1 rad s−1. The black
line is the thinnest one (solid and dashed parts). The red line is
lower than the blue curve (solid and dashed pieces).

FIG. 17. Red (blue) line indicates the index ðnϒÞþ for α−ϕ¼
0 (α − ϕ ¼ π=2). The black line illustrates nT . Dashed (solid)
lines represent the imaginary (real) pieces of ðnϒÞþ and nT .
The chiral factor allows a new intermediary propagating zone
for ω⊥ < ω < ωp, which is followed by a new absorption zone
for ωp < ω < ω⊥2. Here we use ωc ¼ ωp, jVj ¼ 2ωp, and
ωc ¼ 1 rad s−1. The black line is the thinnest one (solid and
dashed parts). The blue line is lower than the red curve (solid
and dashed pieces).
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zone. In the standard case, the propagation zone
occurs for ω > ω−.

3. Optical effects

For this configuration, there are two elliptical propagat-
ing modes associated with the refractive indices ðnϒÞ�,
given in Eq. (76). Thus, the birefringence is measured in
terms of the phase shift per unit length,

Δ
d
¼ 2π

λ0
ððnϒÞþ − ðnϒÞ−Þ: ð80Þ

Using the indices (76), the latter becomes

Δ
d
¼ 2π

λ0
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π − Ξ⊥−

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π − Ξ⊥þ

p Þ; ð81Þ

where

Π ¼ SðPþ SÞ −D2

2S
; ð82aÞ

Ξ⊥�ðω; jVjÞ ¼
jVj2 sin2ðα − ϕÞ

2Sω2
� η=4: ð82bÞ

In the high-frequency limit, where ω ≫ ðωc;ωpÞ,
Eq. (81) becomes

Δ
d
¼ π

λ0
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ jVjξþ=ω2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ jVjξ−=ω2

q
Þ; ð83aÞ

with

ξ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVj2 þ 8ω2 þ γ̃ cosð2ðα − ϕÞÞ

q
− 2jVj2 sin2ðα − ϕÞ; ð83bÞ

γ̃ ¼ ð8ω2 − 2jVj2Þ þ jVj2 cosð2ðα − ϕÞÞ: ð83cÞ

In this limit, the usual-case result, Δ=d ¼ 0, is recovered
for jVj → 0.
Considering the lossy effect, one observes that electro-

magnetic modes associated with the refractive indices
ðnϒÞ� are absorbed for ω < ω⊥ (see the dashed line in
Figs. 17 and 18). In this range, we can write the difference
of absorption between the two modes per unit length,

ΔIm

d
¼ 2π

λ0
ðIm½ðnϒÞþ� − Im½ðnϒÞ−�Þ; ð84Þ

or

ΔIm

d
¼ 2π

λ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ⊥− − Π

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ⊥þ − Π

p 	
: ð85Þ

For ωcp < ω < ω⊥þ, only ðnϒÞ− has a non-null imaginary
piece. Then, the corresponding absorption coefficient
γ ¼ 2ωIm½ðnϒÞ−� in this range is

γ ¼ 2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ⊥þ − Π

p
: ð86Þ

On the other hand, for ωp < ω < ω⊥2, only ðnϒÞþ has an
imaginary piece, which implies the following absorption
coefficient:

γ ¼ 2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ⊥− − Π

p
: ð87Þ

In the usual case, the two electromagnetic modes are
absorbed for ω < ωþ, since the indices nT and nO are
purely imaginary in this range.

IV. FINAL REMARKS AND PERSPECTIVES

Electromagnetic-wave propagation and absorption in a
cold magnetized plasma were analyzed in the case of the
spacelike MCFJ theory, which entails the AHE current
term, JAH ¼ kAF ×E. Here, the background vector repre-
sents the chiral factor of the system. Using the usual cold
plasma permittivity tensor and the modified Maxwell
equations, we obtained the dispersion relation and corre-
sponding refractive indices for twomain situations: (i) wave
propagation along the magnetic axis (see Sec. II) and
(ii) wave propagation orthogonal to the magnetic axis (see
Sec. III). These two scenarios were examined for two
possible configurations of the chiral vector: longitudinal
and orthogonal to the magnetic field.
In Sec. II A, we discussed wave propagation along the

magnetic field with the chiral vector in the same direction.
The modified refractive indices nR and nL were obtained,
being associated with RCP and LCP modes, respectively.
Their properties were carefully examined in order to
determine how the conventional propagation and absorp-
tion zones are affected. Figures 1, 2, 3, and 4 display the
dispersive behavior of these indices, which are also scruti-
nized in the plots of the dispersion relations (see Figs. 5, 6,
and 7). The appearance of new absorption or propagation
zones, as well as the length increase or reduction of these
zones, are the main effects induced by the chiral vector. In
contrast with the cold plasma under a scalar chiral factor
[74], the present plasma model does not manifest negative
refraction.
In the very-low-frequency regime, the propagating

modes were analyzed and there occurs the possibility of
propagating RCP [Eq. (38a)] or LCP helicons [Eq. (38b)],
another effect stemming from the chiral vector. However,
only one of them can propagate for each choice of the chiral
vector magnitude. This is an additional point of distinction
in comparison with the cold plasma with a scalar chiral
factor of Ref. [74], where both RCP and LCP helicons
could propagate simultaneously.
The circular birefringence in Sec. II A was evaluated in

terms of the RP for the refractive indices nR and nL, under
the two conditions for the magnitude of the chiral vector,
jVj > ω2

p=ωc and jVj < ω2
p=ωc. The corresponding RPs
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are depicted in Figs. 9 and 10, respectively, being the
former endowed with sign reversion. Such an inversion
occurs in scenarios of rotating plasmas [94], where the RP
changes sign and decays as 1=ω2 for high frequencies. It
also occurs in the MCFJ chiral plasma with a timelike
component, V0 [74], where the RP reverses and tends to an
asymptotic value, −V0. In the present case, an analogous
behavior occurs: the RP reverses and tends to the asymp-
totic value −jVj=2. Therefore, it is worth discussing the
possibility of using the RP to characterize chiral plasmas
described by the effective MCFJ electrodynamics (con-
cerning the scalar or vector chiral factor). In this sense, one
can compare the RP of Fig. 9 with that of Fig. 14 of
Ref. [74] and note a substantial similarity: both are
endowed with sign reversal and asymptotic negative values.
The main difference between them takes place near the
origin when the former RP tends to zero. Concerning the
RP depicted in Fig. 10, the behavior is similar to those of
Figs. 15 and 16 of Ref. [74] in the range 0 < ω < ωc, but
different for ω > ωc, where the latter become positive due
to the negative refraction, while the present RP is negative
(see Fig. 10). Thus, we reinforce that the RP behavior may
constitute a route to distinguish between the MCFJ cold
plasmas with scalar or vector chiral factors, that is, cold
plasmas with a magnetic current (CME) and the AHE. As
for the absorption zones, the coefficient of circular dichro-
ism reveals a behavior analogous to that of the conventional
cold plasma under the condition (35).
In Sec. II B, we considered the case of propagation along

the magnetic field and the chiral vector orthogonal to it. The
refractive indices were obtained and their properties were
examined. The associated modes have mixed transversal
and longitudinal components, with elliptical polarization in
the transversal sector. Thus, the birefringence and the
dichroism were measured in terms of phase shift coef-
ficients per unit length.
The general dispersive behavior of the refractive indices

obtained in this case is represented by Figs. 13 and 14. The

zones of attenuation-free propagation and absorption are
defined by several characteristic frequencies, determined
by Eqs. (52) and (53). In comparison with the usual cold
plasma scenario, some differences are noted. The dispersive
refractive index of Fig. 13 presents two absorption zones
with a propagation regime between them. For the case
depicted in Fig. 14, the absorption zone is increased by
Δω ¼ ωB − ω− in relation to the usual case.
The scenario of propagation orthogonal to the magnetic

field was addressed in Sec. III, also considering the cases
with a chiral vector parallel and orthogonal to the magnetic
field. Besides the usual transversal mode of Eq. (66), in
Sec. III Awe obtained a second refractive index associated
with a general elliptically polarized propagating mode. Its
dispersive behavior under the condition (35) is represented
in Fig. 15, revealing that the chiral vector narrows the first
absorption zone and slightly increases the second one, in
comparison with the usual cold plasma. For condition (33),
the chiral vector shortens the first window of absorption
and greatly enhances the second one; see Fig. 16. The
birefringence and absorption effects were evaluated in
terms of the phase shift of Eq. (72) and the coefficient
of Eq. (75), respectively.
In Sec. III B, the case of the chiral vector orthogonal to

the magnetic field was discussed. The intricate dispersive
behaviors of the refractive indices obtained in this case are
represented in Figs. 17 and 18. Compared to the standard
cold plasma, we note that in Fig. 17 a new absorption zone
appears between the two propagation windows, while the
chiral vector decreases the first one. In Fig. 18, the two
absorption zones are enlarged compared to the correspond-
ing zones of the usual cold plasma.
General properties of three distinct cold plasma electro-

dynamics, namely, (i) standard cold plasma, (ii) cold
plasma with magnetic current, (iii) cold plasma with
anomalous Hall current (the present article), are sumarized
in Tables I and II for Faraday and Voigt configurations,
respectively, comparing aspects of the propagating modes,

TABLE I. Propagation properties of cold plasmas in distinct contexts for the Faraday configuration ðkkBÞ. The symbol “� � �” means
that the entry does not apply to the mentioned plasma model.

Cold plasma in usual
electrodynamics

Cold plasmas in MCFJ
theory with JB ¼ k0AFB

Cold plasmas in MCFJ theory with
anomalous Hall current (AHE)

Propagating modes RCP and LCP RCP for nR;M, LCP for
nL;E; see Ref. [74]

VkB V⊥B
LCP and RCP Elliptical

Birefringence RP,
δ ¼ − ω

2
ðRe½nþ� − Re½n−�Þ

RP δLR and
δER; see Ref. [74]

RP (40) Phase shift (56)

RP inversion No Yes Yes, under the condition (35) � � �
Absorption Yes (dichroism) Yes (dichroism) Yes, (dichroism)

coefficient (46)
Coefficients (60)

and (61)

Helicons RCP RCP and LCP, enabled by
the magnetic current

RCP or LCP
(nonsimultaneous); see Eq. (38)

� � �
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birefringence, RP inversion, absorption, and heli-
con modes.
It is important to state that the present investigation has

led to plasma solutions in a static axion scenario, ∂tθ ¼ 0,
with a spatially dependent axion field,

θðrÞ ¼ V · r; ð88Þ

such that ∇θ ¼ V ¼ cte, similar to the one considered to
examine the axionic Casimir-like effect in Ref. [73]. An
interesting future perspective consists in examining plasma
modes in the context of the axion Lagrangian,

L ¼ −
1

4
GμνFμν þ gθðE ·BÞ; ð89Þ

and the corresponding equations of motion,

∇ · D ¼ J0 − g∇θ · B; ð90Þ

∇ ×H −
∂D
∂t

¼ J − gð∂tθÞBþ g∇θ ×E; ð91Þ

in a time-dependent scenario. For an oscillating axion
field θðtÞ ¼ θ0 expðiωatÞ, considering a situation in which
the axion field oscillates at the same frequency as the

electromagnetic field, cold plasma modes may be found
by employing the same framework as in the present work.
A model with an oscillating axion background was
recently considered for examining Casimir forces [99],
with an axion field θ ¼ θ0 sinðωatÞ. A plasma investiga-
tion in this time-dependent scenario seems to be a
promising perspective. Another possibility is to examine
optical properties with astrophysical interest, such as the
time of arrival of radio waves from pulsars, in the chiral
plasma scenario of the present work and that of Ref. [74].
It may involve the evaluation of group velocity and time
delay [100], which can be accomplished in the regime of
free propagation for each of the cases examined.
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[70] O. Trépanier, R. N. Duchesne, J. J. Boudreault, and R.
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