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In this paper, we study all transport coefficients of second-order dissipative fluid dynamics derived by
V. E. Ambrus et al. [Phys. Rev. D 106, 076005 (2022)] from the relativistic Boltzmann equation in the
relaxation-time approximation for the collision integral. These transport coefficients are computed for a
classical ideal gas of massive particles, with and without taking into account the conservation of intrinsic
quantum numbers. Through rigorous comparison between kinetic theory, second-order dissipative fluid
dynamics, and leading-order anisotropic fluid dynamics for a (0þ 1)-dimensional boost-invariant flow
scenario, we show that both fluid-dynamical theories describe the early far-from-equilibrium stage of the
expansion reasonably well.
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I. INTRODUCTION

During the last decades, relativistic fluid dynamics has
assumed an important role in describing the space-time
evolution of matter created in ultrarelativistic heavy-ion
collisions, in binary mergers of neutron stars, as well as in
the early Universe [1]. Relativistic fluid dynamics is an
effective field theory based on the local conservation of
energy and momentum, ∂μTμν ¼ 0, where Tμν is the
energy-momentum tensor of the fluid, and of multiple
conserved charges, e.g., electric charge, baryon number,
strangeness, etc., ∂μN

μ
i ¼ 0, where Nμ

i is the four-current
associated with the ith charge.
For the sake of simplicity, in this paper we will consider a

single species of particle of rest mass m0. In this case, there
is at most one independent conserved charge, to which—in a
slight abuse of notation—we refer to as “particle number” in
the following. Therefore, the five conservation equations
contain in general 14 dynamical fields, five of which occur
for dissipative as well as for ideal fluids: the particle-number
density n, the energy density e, and the fluid four-velocity uμ,
chosen for instance as the timelike eigenvector of the energy-
momentum tensor. The pressure P is not an independent
field, as it is given by an equation of state, Pðe; nÞ, for the
matter under consideration. For an ideal fluid, i.e., a fluid in
local thermodynamical equilibrium, the five conservation
equations contain five dynamical fields and are thus closed.
For dissipative fluids, however, there are nine additional
fields that account for irreversible processes: the bulk

viscous pressure Π, the particle diffusion current Vμ, and
the shear-stress tensor πμν. In order to close the system of
equations of motion, additional equations, sometimes called
constitutive relations, have to be specified. The simplest
example is Navier-Stokes theory, where Π, Vμ, and πμν are
proportional to first-order gradients of e, n, and uμ, and
which therefore belongs to the class of so-called first-order
fluid-dynamical theories. The proportionality coefficients
are the three first-order transport coefficients related to
different nonequilibrium transport phenomena: the bulk-
viscosity coefficient ζ, the particle-diffusion coefficient κ,
and the shear-viscosity coefficient η. Relativistic Navier-
Stokes theory is, however, acausal and unstable [2–4]. One
way to cure this problem is to derive fluid dynamics from the
relativistic Boltzmann equation, applying Grad’s method of
moments [5], leading to the 14-moment approximation of
Israel and Stewart for relativistic systems [6].
The moment equations up to tensor-rank 2 are truncated

based on a power-counting scheme in Knudsen and inverse
Reynolds numbers [7]. The Knudsen number Kn is the ratio
of the particle mean free path and a characteristic macro-
scopic scale, while the inverse Reynolds number Re−1 is
the ratio of an out-of-equilibrium and a local-equilibrium
macroscopic field. The resulting equations of motion
contain terms up to second-order in Knudsen and/or inverse
Reynolds numbers.
In these so-called second-order theories of relativistic

dissipative fluid dynamics, dynamical equations of motion
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for the dissipative fields provide closure for the conserva-
tion laws and, under certain conditions, also ensure
causality and stability [3,4,8]. These equations of motion
are of relaxation type, i.e., the dissipative fields relax onto
their respective values given by first-order Navier-Stokes
theory on certain timescales. In addition to the first-order
transport coefficients ζ, κ, and η, these relaxation equations
contain additional second-order transport coefficients: five
in the equation for bulk viscous pressure, eight in the
equation for the particle diffusion current, and six in the
equation for the shear-stress tensor.
In this paper, we will study all first- and second-order

transport coefficients appearing in relativistic second-order
dissipative fluid dynamics with 14 dynamical moments
obtained from the Boltzmann equation in the Anderson-
Witting relaxation-time approximation (RTA) of the colli-
sion integral [9], using the method of moments coined
DNMR [7]. These transport coefficients explicitly depend
on the approximations made for the moments which are
nondynamical and lie outside of the truncation. In order to
compare the magnitude of various terms and the coefficients
accompanying them we assume that the Knudsen and the
inverse Reynolds numbers are of the same magnitude,
Kn ∼ Re−1, as for instance is the case in Navier-Stokes
theory. This has lead to the so-called order-of-magnitude
approximation, where nondynamical moments are replaced
by dynamical moments of order Re−1 [10–14].
When approximating the collision term in RTA all

equations of motion up to tensor-rank 2 contain first-order
terms ∼OðKnÞ or ∼OðRe−1Þ, while all second-order terms
in these equations are of order OðKnRe−1Þ; i.e., there are
no terms of order OðKn2Þ or OðRe−2Þ. Moreover, the
diagonal nature of the RTA collision term allows the
negative-order nondynamical moments to be represented
by dynamical moments of order Re−1, without reference to
a specific basis of moments. This leads to the so-called
basis-free (BF) approximation of Ref. [14], which we also
adopt here.
For the sake of completeness here we will review and

compare both the BF and the standard DNMR approxima-
tions for the transport coefficients for a classical ideal gas of
massive particles. Furthermore, with these new results we
will also inspect the evolution of the bulk viscous and shear-
stress pressure components, including all cross-coupling
coefficients, the so-called bulk-shear coupling in second-
order fluid dynamics. Earlier studies [15] only computed the
second-order coefficients of the bulk viscous pressure
without taking into account the consequences of particle-
number conservation and particle diffusion. Similarly, the
effects of bulk-shear coupling was discussed for noncon-
formal fluids without explicit particle-number conservation
in Ref. [16]. Therefore, here we also aim to fill these gaps
and study all transport coefficients both with and without
explicit particle-number conservation in both the BF and the
DNMR approximations.

For systems with large initial momentum anisotropy, the
framework of anisotropic fluid dynamics was recently
developed [17–29]. This framework implicitly includes
the bulk viscous and shear-stress viscous pressure compo-
nents; hence we will also study the bulk-shear coupling in
leading-order anisotropic fluid dynamics. The results are
also compared to an exact solution of Boltzmann equation
in the context of a (0þ 1)-dimensional boost-invariant
expansion both with and without explicit particle-number
conservation.
This paper is organized as follows. For reasons of

completeness, in Sec. II we review the DNMR method
of moments to obtain the equations of relativistic dissipa-
tive second-order fluid dynamics in the 14-moment
approximation from the Boltzmann equation. The first-
and second-order transport coefficients are listed in both
the BF and the DNMR approximations in Sec. II A. In
Sec. II B, we obtain the transport coefficients in case there
are no conserved charges, while for the purpose of supple-
menting Ref. [14], in Sec. II C we also list the transport
coefficients of magnetohydrodynamics for a massive ideal
gas. Next, in Sec. III, we present the equations of leading-
order anisotropic fluid dynamics. The explicit calculations
of the transport coefficients for a classical ideal gas of
massive particles are presented in Sec. IV. Their properties
and graphical representations are discussed in Sec. V. The
methods and applications in the case of a (0þ 1)-dimen-
sional boost-invariant expansion are described in Sec. VI.
The results and comparisons to the exact numerical solution
of the Boltzmann equation of second-order fluid dynamics
as well as to leading-order anisotropic fluid dynamics are
discussed in Sec. VII. We conclude this work in Sec. VIII.
For reasons of brevity additional computations and useful
relations are relegated to the Appendixes.

A. Notation, conventions, and definitions

In this paper, we will work in flat space-time with metric
tensor gμν ¼ diagð1;−1;−1;−1Þ and adopt natural units
ℏ ¼ c ¼ kB ¼ 1. The rank-four Levi-Civitá symbol is
ϵμναβ ¼ �1 for ðμναβÞ an even/odd permutation of
(0123), and zero otherwise. Symmetrization of a tensor
Aμν is denoted as AðμνÞ ≡ 1

2
ðAμν þ AνμÞ, while antisymmet-

rization is denoted as A½μν� ≡ 1
2
ðAμν − AνμÞ. Symmetrization

can also be done with respect to more than two indices, in
which case the normalization factor has to be adjusted
accordingly, for details see, e.g., Ref. [30]. The timelike
normalized fluid-flow four-velocity is denoted by
uμ ¼ γð1; vÞ, where γ ¼ ð1 − v2Þ−1=2 and uμuμ ¼ 1. The
local rest frame (LRF) of the fluid is defined by
uμLRF ¼ ð1; 0Þ. The projection operator orthogonal to uμ

is defined asΔμν ≡ gμν − uμuν. The symmetric and traceless
projection tensors of rank 2l orthogonal to uμ, Δμ1���μl

ν1���νl , are
constructed using rank-two projection operators Δμν, for
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details see, e.g., Ref. [31]. The respective projection of a
tensor Aμ1���μl is denoted as Ahμ1���μli ≡ Δμ1���μl

ν1���νlA
ν1���νl .

The spacelike normalized anisotropy four-vector ortho-
gonal to the fluid four-velocity is denoted by lμ, with
uμlμ ¼ 0 and lμlμ ¼ −1. The projection operator orthogo-
nal to both uμ and lμ is denoted by Ξμν ≡ gμν − uμuν þ lμlν.
The rank 2l symmetric and traceless projection tensors
orthogonal to both uμ and lμ, Ξμ1���μl

ν1���νl , are constructed using
the projection operators Ξμν in a similar way as for Δμ1���μl

ν1���νl ,
for details see Refs. [27,31]. The respective projection of a
tensor Aμ1���μl is denoted as Afμ1���μlg ≡ Ξμ1���μl

ν1���νlA
ν1���νl .

The particle four-momentum is kμ ¼ ðk0;kÞ, where
k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

p
is the on shell energy with the three-

momentum k and the rest mass m0 ¼
ffiffiffiffiffiffiffiffiffi
kμkμ

p
. The four-

momentum is decomposed as kμ ≡ Ekuuμ þ khμi ¼
Ekuuμ þ Ekllμ þ kfμg, where Eku ¼ kμuμ is the energy
of the particle, while khμi ¼ Δμνkν is the momentum
orthogonal to the flow velocity. Furthermore, Ekl ¼
−kμlμ is the particle momentum in the direction of the
anisotropy, and kfμg ¼ Ξμνkν are the components of the
momentum orthogonal to both uμ and lμ.
The four-gradient is decomposed as ∂μ ≡ uμDþ∇μ,

where D≡ uμ∂μ is the comoving derivative (sometimes
also denoted by an overdot, DA≡ Ȧ), and ∇μ ≡ Δα

μ∂α ¼
∂hμi is the gradient operator. Therefore, ∂μuν ≡ uμDuνþ
∇μuν ¼ uμu̇ν þ 1

3
θΔμν þ σμν þ ωμν, where θ≡∇μuμ is the

expansion scalar, σμν ≡∇hμuνi ¼ ∇ðμuνÞ − 1
3
θΔμν is the

shear tensor, and ωμν ≡∇½μuν� is the fluid vorticity.
Similarly, one can decompose ∂μ with respect to uμ, lμ,

and Ξμν, as ∂μ ¼ uμDþ lμDl þ e∇μ, where Dl ¼ −lμ∂μ ande∇μ ≡ Ξμν∂
ν ¼ ∂fμg are gradient operators.

The state of local equilibrium is specified by the Jüttner
distribution [32],

f0k ¼ ½exp ðβEku − αÞ þ a�−1; ð1Þ

with α ¼ μβ, where μ is the chemical potential and
β ¼ 1=T is the inverse temperature, while a ¼ �1 for
fermions/bosons and a → 0 for Boltzmann particles.
Furthermore, we define the abbreviation f̃0k ≡ 1 − af0k.
The equilibrium moments of tensor-rank n of power i in

energy Eku are defined as [6]

Iμ1���μn
i ≡ hEi

kuk
μ1 � � � kμni0 ¼

Xbn=2c
q¼0

ð−1ÞqbnqIiþn;q

× Δðμ1μ2 � � �Δμ2q−1μ2quμ2qþ1 � � � uμnÞ; ð2Þ

where the angular brackets denote the momentum-
space integrals h� � �i0 ≡

R
dK � � � f0k over the local-

equilibrium distribution. Here, dK ≡ gd3k=½ð2πÞ3k0� is

the Lorentz-invariant measure, while g is the degeneracy
factor of a momentum state.
The equilibrium moments (2) were expanded with the

help of uμ, Δμν, and the thermodynamic integrals Iiþn;q,
where n and q are natural numbers, while the sum runs up
to bn=2c denoting the largest integer which is less than or
equal to n=2. The total number of symmetrized tensors
Δð � � � uÞ is given by bnq ¼ n!

2qq!ðn−2qÞ!, while

Inqðα; βÞ≡ ð−1Þq
ð2qþ 1Þ!! hE

n−2q
ku ðΔαβkαkβÞqi0; ð3Þ

where ð2qþ 1Þ!! ¼ ð2qþ 1Þ!=ð2qq!Þ is the double facto-
rial of odd numbers.
The derivatives of Inq with respect to α and β lead to

auxiliary thermodynamic integrals,

Jnqðα; βÞ≡
�
∂Inq
∂α

�
β

¼ −
�
∂In−1;q
∂β

�
α

¼ ð−1Þq
ð2qþ 1Þ!!

Z
dKEn−2q

ku ðΔαβkαkβÞqf0kf̃0k
¼ β−1½In−1;q−1 þ ðn − 2qÞIn−1;q�: ð4Þ

Following Refs. [27,28] the local distribution function of
an anisotropic state as a function of α̂, β̂u, and β̂l, as well as
of Eku and Ekl, is denoted by f̂0kðα̂; β̂uEku; β̂lEklÞ. In the
limit of vanishing anisotropy parameter β̂l the anisotropic
distribution converges to the distribution function in local
equilibrium,

lim
β̂l→0

f̂0kðα̂; β̂uEku; β̂lEklÞ ¼ f0kðα̂; β̂uEkuÞ: ð5Þ

In analogy to the equilibrium moments (2), the moments
of tensor rank n of the anisotropic distribution function f̂0k
are defined as [27]

Îμ1���μn
ij ≡ hEi

kuE
j
klk

μ1 � � �kμni0̂

¼
X½n=2�
q¼0

Xn−2q
r¼0

ð−1ÞqbnrqÎiþjþn;jþr;q

×Ξðμ1μ2 � � �Ξμ2q−1μ2q lμ2qþ1 � � �lμ2qþruμ2qþrþ1 � � �uμnÞ; ð6Þ

where h� � �i0̂ ≡
R
dKð� � �Þf̂0k, and the number of permu-

tations leading to the symmetrized tensors Ξð � � � l � � � uÞ is
bnrq ¼ n!ð2q − 1Þ!!=½ð2qÞ!r!ðn − 2q − rÞ!�. The aniso-
tropic thermodynamic integrals Înrq are defined as

Înrqðα̂; β̂u; β̂lÞ ¼
ð−1Þq
ð2qÞ!! hE

n−r−2q
ku Er

klðΞμνkμkνÞqi0̂; ð7Þ

where ð2qÞ!! ¼ 2qq! is the double factorial of even
numbers.
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II. FLUID DYNAMICS FROM
THE BOLTZMANN EQUATION

The space-time evolution of the single-particle distribu-
tion function without external forces is given by the
relativistic Boltzmann equation [30,33],

kμ∂μfk ¼ C½f�; ð8Þ

where C½f� is the collision term representing the interaction
among particles through collisions. The collision term is a
nonlinear momentum integral in the single-particle distri-
bution function with only a few analytical solutions known
in the linearized regime [34–36].
For the sake of simplicity, from here on we will use the

Anderson-Witting relaxation-time approximation (RTA)
for the linearized collision integral [9,30,33],

C½f�≡ −
Eku

τR
δfk; ð9Þ

where the deviation of the single-particle distribution from
local equilibrium is defined as

δfk ¼ fk − f0k; ð10Þ

and where the relaxation time τR ≡ τRðxμÞ is a momentum-
independent parameter proportional to the mean free time
between collisions. The relaxation time allows to introduce
a power-counting scheme in terms of the Knudsen number
Kn≡ τR=L, where L is a typical fluid-dynamical length or
timescale, for the derivation of fluid dynamics from the
equations of motion for the irreducible moments,

ρμ1���μlr ≡ hEr
kuk

hμ1 � � � kμliiδ; ð11Þ

where h� � �iδ ≡
R
dK � � � δfk, and r denotes the power of

energy, while the irreducible tensors, khμ1 � � � kμli ¼
Δμ1���μl

ν1���νl k
ν1 � � � kνl , form an orthogonal basis [7,30].

Using the comoving derivative of the irreducible

moments, ρ̇hμ1���μlir ≡ Δμ1���μl
ν1���νlDρν1���νlr , the equations of fluid

dynamics are derived from the various moments of the
Boltzmann equation (8). Up to tensor rank 2, these
equations of motion are

ρ̇r − Cr−1 ¼ αð0Þr θ þ ðhigher-order termsÞ; ð12Þ

ρ̇hμir − Chμi
r−1 ¼ αð1Þr ∇μαþ ðhigher-order termsÞ; ð13Þ

ρ̇hμνir − Chμνi
r−1 ¼ 2αð2Þr σμν þ ðhigher-order termsÞ; ð14Þ

where the irreducible moments Chμ1���μli
r−1 of the collision

term are computed substituting Eq. (9),

Chμ1���μli
r−1 ≡

Z
dKEr−1

ku khμ1 � � �kμliC½f� ¼ −
1

τR
ρμ1���μlr : ð15Þ

The higher-order contributions to Eqs. (12)–(14) are found
in Eqs. (35)–(37) of Ref. [7], but are not listed here for the

sake of brevity. Furthermore, the coefficients αðlÞr are
defined by, see also Eqs. (42)–(46) of Ref. [7],

αð0Þr ¼ −βJrþ1;1 −
n
D20

ðhG2r − G3rÞ; ð16Þ

αð1Þr ¼ Jrþ1;1 −
Jrþ2;1

h
; ð17Þ

αð2Þr ¼ βJrþ3;2; ð18Þ

where h≡ ðeþ PÞ=n is the enthalpy per particle and

Gnm ¼ Jn0Jm0 − Jn−1;0Jmþ1;0; ð19Þ

Dnq ¼ Jnþ1;qJn−1;q − J2nq: ð20Þ

A. Second-order fluid dynamics
with particle-number conservation

The conservation laws of fluid dynamics read

∂μNμ ¼ 0; ∂μTμν ¼ 0; ð21Þ

where the particle four-current and energy-momentum
tensor are

Nμ ≡ hkμi0 þ hkμiδ ¼ ðnþ ρ1Þuμ þ Vμ; ð22Þ

Tμν ≡ hkμkνi0 þ hkμkνiδ
¼ ðeþ ρ2Þuμuν − ðPþ ΠÞΔμν þ πμν: ð23Þ

The energy-momentum tensor is defined in the Landau
frame [37] where the timelike eigenvector of the energy-
momentum tensor is uμ ¼ Tμνuν=ðuαTαβuβÞ, and hence
ρμ1 ≡ hEkukhμiiδ ¼ 0. The chemical potential and the
temperature are determined from the Landau matching
conditions [9],

ρ1 ≡ hEkuiδ ¼ 0; ρ2 ≡ hE2
kuiδ ¼ 0: ð24Þ

The particle density, energy density, and isotropic pressure
in equilibrium are

n≡ hEkui0; e≡ hE2
kui0; P≡−

1

3
hΔμνkμkνi0: ð25Þ

Since f0k only depends on two thermodynamic state
variables, α and β, the first two equations can be solved
for the latter, yielding αðe; nÞ and βðe; nÞ. Inserting this
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into the last equation defines the equation of state of
matter under consideration, Pðαðe; nÞ; βðe; nÞÞ≡ Pðe; nÞ.
The bulk viscous pressure, the particle diffusion four-

current, and the shear-stress tensor are defined by

Π≡ −
1

3
hΔμνkμkνiδ ¼ −

m2
0

3
ρ0; ð26Þ

Vμ ≡ hkhμiiδ ¼ ρμ0; ð27Þ

πμν ≡ hkhμkνiiδ ¼ ρμν0 : ð28Þ

Second-order fluid dynamics in the approximation with
14 dynamical moments contains 1þ 4 conservation equa-
tions (21), and additionally 1þ 3þ 5 equations of motion
for the lowest-order moments, i.e., r ¼ 0, in Eqs. (12)–(14).
These irreducible moments, ρ0, ρ

μ
0, and ρμν0 , identified in

Eqs. (26)–(28), are then dynamical moments. The remaining
nondynamical moments for r ≠ 0 can be determined from
the dynamical moments using an expansion of the single-
particle distribution function around f0k, see Ref. [7] for
details,

δfk ¼ f0kf̃0k
X∞
l¼0

XNl

n¼0

ρμ1���μln khμ1 � � � kμliHðlÞ
kn : ð29Þ

The coefficient HðlÞ
kn is a polynomial in energy of order Nl,

where in principle Nl → ∞, see Appendix A for details,
and it is used to define,

F ðlÞ∓rn¼ l!
ð2lþ1Þ!!

Z
dKE�r

k ðΔαβkαkβÞlHðlÞ
kn f0kf̃0k: ð30Þ

Therefore any irreducible moment with tensor rank l of
arbitrary order r can be expressed as a linear combination of
rank-l moments with positive order n ≥ 0,

ρμ1���μl�r ¼
XNl

n¼0

ρμ1���μln F ðlÞ∓r;n: ð31Þ

Using these steps and approximations the general form
of the second-order equations of motion for Π, Vμ, and πμν

reads, for more details see the derivation of Eqs. (70)–(72)
of Ref. [7],

τΠΠ̇þ Π ¼ −ζθ − lΠV∇μVμ − τΠVVμu̇μ

− δΠΠΠθ − λΠVVμ∇μαþ λΠππ
μνσμν; ð32Þ

τVV̇hμi þ Vμ ¼ κ∇μα − τVVνω
νμ − δVVVμθ

− lVΠ∇μΠþ lVπΔμν∇λπ
λ
ν þ τVΠΠu̇μ

− τVππ
μνu̇ν − λVVVνσ

μν

þ λVΠΠ∇μα − λVππ
μν∇να; ð33Þ

τππ̇
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ

− τπππ
λhμσνiλ þ λπΠΠσμν − τπVVhμu̇νi

þ lπV∇hμVνi þ λπVVhμ∇νiα; ð34Þ

where τΠ, τV , and τπ are different relaxation times. Note
that in the RTA the relaxation times are strictly equal to
the model parameter, τR ≡ τΠ ¼ τV ¼ τπ. However, for the
sake of clarity we will use different subscripts for the
corresponding relaxation times.
From Eqs. (12)–(14) the first-order transport coefficients

for the moments with energy index r are

ζr ¼ τΠ
m2

0

3
αð0Þr ; κr ¼ τVα

ð1Þ
r ; ηr ¼ τπα

ð2Þ
r : ð35Þ

while ζ ¼ ζ0, κ ¼ κ0, and η ¼ η0 are the first-order trans-
port coefficients of the bulk viscosity, the particle diffusion,
and the shear viscosity, respectively.
For the sake of completeness, we recall all transport

coefficients in RTA; see Eqs. (96)–(112) of Ref. [14]. The
coefficients appearing in Eq. (32) are

ζ ¼ τΠ
m2

0

3
αð0Þ0 ; ð36Þ

δΠΠ ¼ τΠ

�
2

3
−
m2

0

3

G20

D20

þm2
0

3
Rð0Þ

−2;0

�
; ð37Þ

lΠV ¼ τΠ
m2

0

3

�
G30

D20

−Rð1Þ
−1;0

�
; ð38Þ

τΠV ¼ −τΠ
m2

0

3

�
G30

D20

−
∂Rð1Þ

−1;0

∂ ln β

�
; ð39Þ

λΠV ¼ −τΠ
m2

0

3

�
∂Rð1Þ

−1;0

∂α
þ 1

h

∂Rð1Þ
−1;0

∂β

�
; ð40Þ

λΠπ ¼ −τΠ
m2

0

3

�
G20

D20

−Rð2Þ
−2;0

�
: ð41Þ

The transport coefficients in the diffusion equation are

κ ¼ τVα
ð1Þ
0 ; δVV ¼ τV

�
1þm2

0

3
Rð1Þ

−2;0

�
; ð42Þ

lVΠ ¼ τV
h
ð1−hRð0Þ

−1;0Þ; lVπ ¼
τV
h
ð1−hRð2Þ

−1;0Þ; ð43Þ

τVΠ ¼ τV
h

�
1 − h

∂Rð0Þ
−1;0

∂ ln β

�
; ð44Þ

RELATIVISTIC SECOND-ORDER DISSIPATIVE AND … PHYS. REV. D 109, 076001 (2024)

076001-5



τVπ ¼
τV
h

�
1 − h

∂Rð2Þ
−1;0

∂ ln β

�
; ð45Þ

λVV ¼ τV

�
3

5
þ 2m2

0

5
Rð1Þ

−2;0

�
; ð46Þ

λVΠ ¼ τV

�
∂Rð0Þ

−1;0

∂α
þ 1

h

∂Rð0Þ
−1;0

∂β

�
; ð47Þ

λVπ ¼ τV

�
∂Rð2Þ

−1;0

∂α
þ 1

h

∂Rð2Þ
−1;0

∂β

�
: ð48Þ

Finally, the transport coefficients appearing in the
equation for the shear-stress tensor (34) are

η ¼ τπα
ð2Þ
0 ; δππ ¼ τπ

�
4

3
þm2

0

3
Rð2Þ

−2;0

�
; ð49Þ

τππ ¼ τπ

�
10

7
þ 4m2

0

7
Rð2Þ

−2;0

�
; ð50Þ

λπΠ ¼ τπ

�
6

5
þ 2m2

0

5
Rð0Þ

−2;0

�
; ð51Þ

τπV ¼ −τπ
2m2

0

5

∂Rð1Þ
−1;0

∂ ln β
; lπV ¼ −τπ

2m2
0

5
Rð1Þ

−1;0; ð52Þ

λπV ¼ −τπ
2m2

0

5

�
∂Rð1Þ

−1;0

∂α
þ 1

h

∂Rð1Þ
−1;0

∂β

�
: ð53Þ

Here, the ratio RðlÞ
r0 in the so-called basis-free approach of

Ref. [14] is defined as

RðlÞ
r0 ¼ αðlÞr

αðlÞ0

: ð54Þ

As the name suggests, in this approximation the negative-
order moments can be obtained without employing basis-
dependent representations as in Eq. (29).
Therefore, in the approximation with 14 dynamical

moments, for any r ≠ 0, both positive and negative, we
use the following approximation for the nondynamical
moments,

ρr≠0 ≃ −
3

m2
0

Rð0Þ
r0 Π; ð55Þ

ρμr≠0 ≃Rð1Þ
r0 V

μ; ð56Þ

ρμνr≠0 ≃Rð2Þ
r0 π

μν; ð57Þ

where

Rð0Þ
r0 ¼ ζr

ζ
; Rð1Þ

r0 ¼ κr
κ
; Rð2Þ

r0 ¼ ηr
η
: ð58Þ

Note that these second-order transport coefficients can
also be obtained in the case of a linearized binary collision

integral [7], where Chμ1���μli
r−1 ¼ −

PNl
n¼0A

ðlÞ
r;nρ

μ1���μl
n , with the

following replacements:

Rð0Þ
−r;0 → γð0Þr0 ¼

XN0

n¼0;≠1;2
F ð0Þ

rn Ωð0Þ
n0 ; ð59Þ

Rð1Þ
−r;0 → γð1Þr0 ¼

XN1

n¼0;≠1
F ð1Þ

rn Ωð1Þ
n0 ; ð60Þ

Rð2Þ
−r;0 → γð2Þr0 ¼

XN2

n¼0

F ð2Þ
rn Ωð2Þ

n0 ; ð61Þ

where ΩðlÞ
rn diagonalizes the binary collision matrix AðlÞ

rn .

The RTA collision term (9) leads to AðlÞ
rn ¼ δrn

τR
and

ΩðlÞ
rn ¼ δrn, while the moments with negative order,

ρμ1���μlr<0 , according to the DNMR approach [7] read

ρ−r ≃ −
3

m2
0

γð0Þr0 Π; ð62Þ

ρμ−r ≃ γð1Þr0 V
μ; ð63Þ

ρμν−r ≃ γð2Þr0 π
μν: ð64Þ

Without going through the detailed derivation of Ref. [14],
the difference between these two approaches is due to a
slightly different treatment of the negative-order moments.
As such, in the standard DNMR approximation, the basis-

free ratios RðlÞ
−r;0 are replaced by γðlÞr;0 . The corresponding

γðlÞr0 ¼ F ðlÞ
r0 coefficients are calculated in Appendix A.

B. Second-order fluid dynamics without
particle-number conservation

The casewhere there are no conserved quantum charges is
equivalent to setting μ ¼ α ¼ 0. Thus, the particle four-flow

Nμ is no longer conserved, ∂μNμ ≠ 0, while αð1Þr ∇μα ¼ 0

in Eq. (13) also vanishes identically. This implies that the
vector moments ρμr become of second order with respect to
the Knudsen and inverse Reynolds numbers. This in turn
leads to third-order contributions to the equations of motion
for the scalar and tensor moments, ρr and ρ

μν
r , which are then

ignored in second-order fluid dynamics.
The conservation equation for energy and momentum,

∂μTμν ¼ 0, is closed by the relaxation equations for ρ0 ¼
− 3

m2
0

Π and ρμν0 ¼ πμν. The evolution equation for the tensor
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moments ρμνr remains unchanged compared to Eq. (37) of
Ref. [7]. However, the equation for the scalar moments, see
Eq. (35) of Ref. [7], including that for the bulk viscous
pressure changes due to fact that the chemical potential is
kept constant; i.e., dα ¼ dμ ¼ 0. Hence this leads to the
following equation of motion:

ρ̇r −Cr−1 ¼ ᾱð0Þr θþ
�
ðr− 1Þρμνr−2 −

Jrþ1;0

J30
πμν

�
σμν

þ θ

3

�
m2

0ðr− 1Þρr−2 − ðrþ 2Þρr þ 3
Jrþ1;0

J30
Π
�
:

ð65Þ

In this case, the definition of the transport coefficient αð0Þr

changes from Eq. (16), and it will be denoted by ᾱð0Þr in the
following. Thus,

ᾱð0Þr ¼ −βJrþ1;1 þ c̄2sβJrþ1;0; ð66Þ

where c̄2s ≡ ð∂P
∂eÞμ ¼ J31=J30 is the speed of sound squared.

The above equation and the value of the coefficient are
obtained by replacing

G2r

D20

⟶
μ¼0

−
Jrþ1;0

J30
;

G3r

D20

⟶
μ¼0

0; ð67Þ

in Eqs. (12) and (16), which also leads to the following
replacements:

αð0Þr ⟶
μ¼0

ᾱð0Þr ; Rð0Þ
−r;0⟶

μ¼0
R̄ð0Þ

−r;0 ≡ ᾱð0Þ−r

ᾱð0Þ0

: ð68Þ

We stress that the notation “⟶
μ¼0

” employed in Eqs. (67)
and (68) does not mean the μ → 0 limit of the expressions
on the left-hand side, but rather the result when particle
number is not conserved. Note that now the nondynamical
scalar moments from Eq. (55) are expressed through

ρr≠0 ≃ − 3
m2

0

R̄ð0Þ
r0 Π, while Eq. (57) stays unchanged in

the basis-free approximation. Furthermore, the second-
order DNMR coefficients follow using the replacements

R̄ð0Þ
−r;0 → γð0Þr0 and Rð2Þ

−r;0 → γð2Þr0 .
The second-order relaxation equations corresponding to

bulk viscous pressure and shear-stress tensor are different
from Eqs. (32)–(34), and now reduce to

τΠΠ̇þ Π ¼ −ζ̄θ − δ̄ΠΠΠθ þ λ̄Πππ
μνσμν; ð69Þ

τππ̇
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ

− τπππ
λhμσνiλ þ λ̄πΠΠσμν: ð70Þ

These equations and coefficients were first obtained in
Ref. [15] in the standard DNMR approximation. The
transport coefficients in the basis-free approximation in
the equation of the bulk viscous pressure are defined as

ζ̄ ¼ τΠ
m2

0

3
ᾱð0Þ0 ; ð71Þ

δ̄ΠΠ ¼ τΠ

�
2

3
þm2

0

3

J10
J30

þm2
0

3
R̄ð0Þ

−2;0

�
; ð72Þ

λ̄Ππ ¼ τΠ
m2

0

3

�
J10
J30

þRð2Þ
−2;0

�
: ð73Þ

These also follow from Eqs. (36), (37), and (41) under the
replacements given in Eqs. (67) and (68).
The coefficients in the relaxation equation for the shear-

stress tensor remain the same as listed in Eqs. (49) and (50),
except for the second-order shear-bulk coupling coefficient,
which now reads

λ̄πΠ ¼ τπ

�
6

5
þ 2m2

0

5
R̄ð0Þ

−2;0

�
: ð74Þ

The standard DNMR coefficients of Ref. [15] are obtained
from these formulas using the following replacements,

R̄ð0Þ
−r;0 → γð0Þr0 and Rð2Þ

−r;0 → γð2Þr0 . Also note that in Ref. [15],

the negative scalar moments ρ−r ¼ γð0Þr0 Π, differ by a factor
of −3=m2

0 from our definitions in Eq. (62).

C. Transport coefficients for magnetohydrodynamics

For the sake of completeness, here we also list the
transport coefficients in the equations of nonresistive
and resistive magnetohydrodynamics derived from the
Boltzmann-Vlasov equation in Refs. [38,39]. The addi-
tional J μ1���μl

em terms that appear on the right-hand sides
of Eqs. (32)–(34) due to the coupling of the electric
charge q to the electromagnetic field are obtained from
Eqs. (24)–(26) of Ref. [39] in the Landau frame,

J em ¼ −qδΠVEVνEν; ð75Þ

J μ
em ¼ qðδVEEμ þ δVΠEΠEμ þ δVπEπ

μνEνÞ
− qδVBBbμνVν; ð76Þ

J μν
em ¼ −qðδπBBbαβΔμν

ακπκβ þ δπVEEhμVνiÞ; ð77Þ

where bμν ¼ −ϵμναβuαbβ, bμ ¼ Bμ=B, and B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−BμBμ

p
is the magnitude of the magnetic field. The electric and
magnetic fields Eμ and Bμ are defined through the Faraday
tensor Fμν and the fluid four-velocity uμ via
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Eμ ¼ Fμνuν; Bμ ¼ 1

2
ϵμναβFαβuν: ð78Þ

The transport coefficients in the RTA proportional to the
electric field, see Eqs. (117)–(121) of Ref. [14], are

δVE ¼ τV

�
−
n
h
þ βJ11

�
; ð79Þ

δΠVE ¼ −τΠ
m2

0

3

�
G20

D20

−Rð1Þ
−2;0 þ

1

h

∂Rð1Þ
−1;0

∂ ln β

�
; ð80Þ

δVΠE ¼ −τV
�

2

m2
0

þRð1Þ
−2;0 −

1

h

∂Rð0Þ
−1;0

∂ ln β

�
; ð81Þ

δπVE ¼ τπ

�
8

5
þ 2m2

0

5
Rð1Þ

−2;0 −
2m2

0

5h

∂Rð1Þ
−1;0

∂ ln β

�
; ð82Þ

δVπE ¼ τV

�
Rð2Þ

−2;0 −
1

h

∂Rð2Þ
−1;0

∂ ln β

�
; ð83Þ

while the coefficients proportional to the magnetic field, see
Eqs. (122) of Ref. [14], are

δVB ¼ τV

�
−
1

h
þRð1Þ

−1;0

�
; δπB ¼ 2τπR

ð2Þ
−1;0: ð84Þ

III. ANISOTROPIC FLUID DYNAMICS

Anisotropic fluid dynamics is based on an expansion of
fk around a local anisotropic distribution function f̂0k,
as follows:

fk ≡ f̂0k þ δf̂k ¼ f0k þ δfk; ð85Þ

where instead of jδfkj ≪ f0k, we now assume that
jδf̂kj ≪ f̂0k. In the case of a strong anisotropy, a suitable
choice of f̂0k can lead to jδf̂kj ≪ jδfkj and consequently,
the convergence properties of a series expansion in δf̂k are
significantly improved compared to an expansion in terms
of δfk.
The irreducible moments of δf̂k are defined as

ρ̂μ1���μlij ≡ hEi
kuE

j
klk

fμ1 � � � kμlgiδ̂; ð86Þ

where h� � �iδ̂ ≡
R
dKð� � �Þδf̂k. Similarly as indicated in the

previous section, one can also derive the equations of motion
for the comoving derivative of the anisotropic moments,

Dρ̂fμ1���μlgij ≡ Ξμ1���μl
ν1���νlDρ̂ν1���νlij , from the Boltzmann equa-

tion (8); see Ref. [27] for more details.
Now, focusing on a simpler case, we are explicitly

neglecting the δf̂k corrections by setting ρ̂μ1���μlij ≡ 0, such

that fk ≡ f̂0k. Thus the conservation laws of leading-order
anisotropic fluid dynamics are solely based on the moments
of the anisotropic distribution function f̂0k and read

∂μN̂
μ ¼ Ĉ00 ≡ 0; ∂μT̂

μν ¼ Ĉν00 ≡ 0: ð87Þ

Here we once again assume that the collision term is given
by the RTA,

C½f̂0�≡ −
Eku

τR
ðf̂0k − f0kÞ: ð88Þ

The irreducible moments of the collision term are such that

Ĉfμ1���μlgi−1;j ¼ 0 for l ≥ 1, while

Ĉi−1;j ≡
Z

dKEi−1
ku E

j
klC½f̂0�

¼ −
1

τR
ðÎiþj;j;0 − Iiþj;j;0Þ; ð89Þ

where Înrq was introduced in Eq. (7).
Using the expansion from Eq. (6), N̂μ ≡ Îμ

00 and T̂μν ≡
Îμν
00 are tensor-decomposed as

N̂μ ≡ hkμi0̂ ¼ n̂uμ þ n̂llμ; ð90Þ

T̂μν ≡ hkμkνi0̂ ¼ êuμuν þ P̂llμlν − P̂⊥Ξμν; ð91Þ

where the particle-number density, the energy density, the
particle diffusion current in the direction of the anisotropy,
and the pressure components in the direction of and
transverse to the anisotropy are

n̂≡ Î100 ¼ Î10; ê≡ Î200 ¼ Î20; ð92Þ

n̂l ≡ Î110 ¼ Î01; P̂l ≡ Î220 ¼ Î02; ð93Þ

P̂⊥ ≡ Î201 ¼ −
1

2
ðm2

0Î00 − Î20 þ Î02Þ; ð94Þ

with Îμ1���μn
ij defined in Eq. (6). Here we once again chose

the LRF according to Landau’s definition, rendering
M̂≡ −T̂μνuμlν ¼ Î210 ¼ Î11 ¼ 0. The isotropic pressure
is defined as

P̂ðα̂; β̂u; β̂lÞ≡ −
1

3
T̂μνΔμν ¼

1

3
ðP̂l þ 2P̂⊥Þ; ð95Þ

and hence the bulk viscous pressure is

Π̂ðα̂; β̂u; β̂lÞ≡ P̂ðα̂; β̂u; β̂lÞ − Pðα; βÞ

¼ 1

3
ðP̂l þ 2P̂⊥ − 3PÞ; ð96Þ
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where P is the isotropic pressure in equilibrium defined in
Eq. (25). Similarly to Eqs. (24) the Landau matching
conditions require that the particle-number density and
energy density calculated through f̂0k are equal to those of
a fictitious local-equilibrium state,

n̂ðα̂; β̂u; β̂lÞ ¼ nðα; βÞ; êðα̂; β̂u; β̂lÞ ¼ eðα; βÞ; ð97Þ

where the equilibrium particle-number density and energy
density were defined in Eq. (25).
For practical purposes and explicit comparisons to the

existing literature, we apply the spheroidal distribution
function introduced by Romatschke and Strickland (RS) in
Ref. [40],

f̂RS ≡
2
4exp

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ku þ ξE2

kl

q
Λ

− α̂

1
CAþ a

3
75
−1

; ð98Þ

where ξ denotes the so-called anisotropy parameter. A
direct comparison to Eq. (5) leads to the identifications
β̂u ≡ 1=Λ and β̂l ≡ ffiffiffi

ξ
p

=Λ. Therefore we introduce a new
set of thermodynamic integrals, ÎRSnrqðα̂;Λ; ξÞ, with the

replacement f̂0k → f̂RSðα̂;Λ; ξÞ in Eq. (7); i.e.,

ÎRSnrq ¼
ð−1Þq
ð2qÞ!!

Z
dKEn−r−2q

ku Er
klðΞμνkμkνÞqf̂RS: ð99Þ

Therefore, the first and second moments of the RS
distribution function are

N̂μ
RS ≡ n̂uμ ¼ ÎRS100u

μ; ð100Þ

T̂μν
RS ≡ êuμuν þ P̂llμlν − P̂⊥Ξμν

¼ ÎRS200u
μuν þ ÎRS220l

μlν − ÎRS201Ξμν: ð101Þ

The five conservation equations (87) must be closed by an
additional equation of motion. In this work, we are
following Refs. [28,41] and employ the equation of motion
for P̂l to supplement the conservation equations.

IV. RELATIVISTIC IDEAL GAS
OF CLASSICAL PARTICLES

The equilibrium momentum distribution of a classical
ideal gas of particles with nonzero mass m0 is given by the
Maxwell-Jüttner distribution (1),

f0k ¼ eα−βEku : ð102Þ

Since a ¼ 0, we have ∂αf0k ¼ f0k, such that Jrq ¼ Irq,
while Irq from Eq. (3) now reads

Irq ¼
geα

2π2
mrþ2

0

ð2qþ 1Þ!!
Z

∞

1

dxxr−2qðx2 − 1Þqþ1
2e−zx; ð103Þ

where z≡m0=T ¼ m0β. The thermodynamic integrals
obey the recursion relation,

Irþ2;q ¼ m2
0Ir;q þ ð2qþ 3ÞIrþ2;qþ1: ð104Þ

In analogy to these equilibrium thermodynamic integrals,
the integral representation of the modified Bessel functions
of the second kind KqðzÞ for q > 1=2, see Eq. (9.6.23) of
Ref. [42], reads

KqðzÞ≡ zq

ð2q − 1Þ!!
Z

∞

1

dxðx2 − 1Þq−1
2e−zx

¼ zq

ð2q − 1Þ!!
Z

∞

0

dx sinh2q xe−z cosh x; ð105Þ

where the double factorial of odd numbers is defined as
ð2q − 1Þ!! ¼ 2qΓðqþ 1=2Þ= ffiffiffi

π
p

. These Bessel functions of
second kind satisfy the following recurrence relation for
q > 0, see Eq. (9.6.26) of Ref. [42],

Kqþ2ðzÞ ¼ KqðzÞ þ
2qþ 2

z
Kqþ1ðzÞ: ð106Þ

Using these formulas and recursive relations we express
all thermodynamic integrals of interest in terms of Bessel
functions. The particle-number density is expressed as

n≡ I10 ¼
geα

2π2
T3z2K2ðzÞ; ð107Þ

while the isotropic pressure is

P≡ I21 ¼ nT: ð108Þ

This is the equation of state of an ideal gas of classical
particles. The energy density is given by

e≡ I20 ¼ P

�
3þ z

K1ðzÞ
K2ðzÞ

�
¼ P½zHðzÞ − 1�; ð109Þ

and therefore the enthalpy per particle reads

h≡ eþ P
n

¼ m0

K3ðzÞ
K2ðzÞ

≡m0HðzÞ; ð110Þ

where the enthalpy per particle divided by the rest mass is
HðzÞ≡ K3ðzÞ=K2ðzÞ ¼ h=m0, or equivalently, HðzÞ ¼
K1ðzÞ=K2ðzÞ þ 4=z.
Using these results together with the recurrence relations

(104) and (106), it can be shown that
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I00 ≡ n
m0

K1ðzÞ
K2ðzÞ

¼ e − 3P
m2

0

; ð111Þ

and similarly,

I30 ≡m0P½zþ 3HðzÞ� ¼ T

�
cvPþ e2

P

�
; ð112Þ

I31 ≡m0PHðzÞ ¼ Tðeþ PÞ: ð113Þ

Here the heat capacities at constant volume cv, and at
constant pressure cp are defined as

cv ≡ 1

n

�
∂e
∂T

�
V
¼ 3þ z2 −

e
P2

ðe − 3PÞ; ð114Þ

cp ≡
�
∂h
∂T

�
P
¼ cv þ 1: ð115Þ

The speed of sound squared reads

c2s ≡
�
∂P
∂e

�
n
þ 1

h

�
∂P
∂n

�
e
¼ cpP

cvðeþ PÞ ; ð116Þ

where

�
∂P
∂e

�
n
¼ 1

cv
;

�
∂P
∂n

�
e
¼ T −

e
ncv

: ð117Þ

Without particle-number conservation, the speed of sound
squared c̄2s ¼ ð∂P

∂βÞμð∂e∂βÞ−1μ , see Eq. (22) of Ref. [15], is given

by the following expression:

c̄2s ≡
�
∂P
∂e

�
μ

¼ I31
I30

¼ Pðeþ PÞ
cvP2 þ e2

; ð118Þ

and hence,

c2s c̄2s ¼
cp

cvðcv þ e2=P2Þ : ð119Þ

While in the massless limit, both c̄2s and c2s are equal to 1=3,
at finite values of z ¼ m0=T, these quantities will in general
differ. As shown in Fig. 1, both c̄2s and c2s exhibit a similar
monotonously decreasing trend, with c̄2s approaching 0
faster than c2s . At small values of z ≪ 1, c2s and c̄2s have a
similar behavior,

c2sðz ≪ 1Þ ≃ 1

3
−
z2

36
þ 11z4

864
þOðz6Þ;

c̄2sðz ≪ 1Þ ≃ 1

3
−
z2

36
þ 5z4

864
þOðz6Þ: ð120Þ

At large values of z ≫ 1, c2s and c̄2s develop a difference that
can be highlighted in the following form:

βhðc2s − c̄2sÞcz≫1 ≃
2

3
−
11

3z
þ 61

6z2
þOðz3Þ: ð121Þ

This is illustrated with the solid black line in Fig. 1.
Finally, recalling Eqs. (19) and (20) we expressG2r,G3r,

and D20, as follows:

G2r ¼ eIr0 − nIrþ1;0; G3r ¼ I30Ir0 − eIrþ1;0; ð122Þ

D20 ≡ I30I10 − I220 ¼ cvP2: ð123Þ

In the particular case where r ¼ 0, we find

G20 ¼
P2

m2
0

ð3 − cvÞ; G30 ¼
3TP2

m2
0

�
e
P
− cv

�
; ð124Þ

therefore the ratios become

G20

D20

¼ 1

m2
0

�
3

cv
− 1

�
;

G30

D20

¼ 3T
m2

0

�
e

Pcv
− 1

�
: ð125Þ

A. First- and second-order transport coefficients

In the classical Boltzmann limit, the first-order transport
coefficients from Eqs. (16)–(18) reduce to

αð0Þr ¼ ð1 − rÞIr1 þ
nIrþ1;0 − eIr0

cvP
; ð126Þ

FIG. 1. Speed of sound squared, represented as a function of
z ¼ m0=T for the case of a classical ideal gas without (dashed red
line and circles) or with (solid blue line and squares) conserved
particle number. The solid line shows βhðc2s − c̄2sÞ, which
approaches 2=3 as z → ∞.
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αð1Þr ¼ Irþ1;1 − h−1Irþ2;1; ð127Þ

αð2Þr ¼ βIrþ3;2: ð128Þ

If the particle number is not conserved, i.e., μ ¼ 0, then

αð0Þr ⟶
μ¼0

ᾱð0Þr is given by Eq. (66), leading to

ᾱð0Þr ¼ −βIrþ1;1 þ c̄2sβIrþ1;0: ð129Þ

Here we evaluate the αð0Þ0 coefficient from Eq. (126)
proportional to the coefficient of bulk viscosity,

αð0Þ0 ¼ ð1 − 3c2sÞ
eþ P
m2

0

−
2

3

e − 3P
m2

0

−
m2

0

3
I−2;0; ð130Þ

where c2s is the speed of sound squared from Eq. (116).
Evaluating Eq. (129) corresponding to the case without
particle-number conservation leads to a formally identical

expression to that for αð0Þ0 , but with c2s replaced by c̄2s from
Eq. (118),

ᾱð0Þ0 ¼ ð1 − 3c̄2sÞ
eþ P
m2

0

−
2

3

e − 3P
m2

0

−
m2

0

3
I−2;0: ð131Þ

The transport coefficients related to the particle diffusion
and shear viscosity are

αð1Þ0 ¼ e − 2P
3h

−
m2

0

3
I−1;0; ð132Þ

and

αð2Þ0 ¼ eþ 9P
15

−
m4

0

15
I−2;0: ð133Þ

Using these results we find the following important

relationship between αð2Þ0 and αð0Þ0 or ᾱð0Þ0 :

αð2Þ0 ¼m2
0

5
αð0Þ0 þ3c2sðeþPÞ

5
¼m2

0

5
ᾱð0Þ0 þ3c̄2sðeþPÞ

5
: ð134Þ

Recalling the definitions of the first-order transport coef-
ficients from Eqs. (35) we obtain, see also Eq. (41) of
Ref. [15],

ζ

τΠ
¼ 5

3

η

τπ
− c2sðeþ PÞ; ζ̄

τΠ
¼ 5

3

η

τπ
− c̄2sðeþ PÞ: ð135Þ

These relate the ratio of the bulk-viscosity coefficient to the
bulk relaxation time, ζ=τΠ as well as ζ̄=τΠ, to the ratio of
the shear viscosity coefficient to shear relaxation time,
η=τπ . Both relations are formally identical but involve

different speeds of sound. In terms of thermodynamic
quantities these ratios are expressed as

ζ

τΠ
¼

�
1

3
− c2s

�
ðeþ PÞ − 2

9
ðe − 3PÞ −m4

0

9
I−2;0; ð136Þ

ζ̄

τΠ
¼

�
1

3
− c̄2s

�
ðeþ PÞ − 2

9
ðe − 3PÞ −m4

0

9
I−2;0; ð137Þ

and

η

τπ
¼ eþ 9P

15
−
m4

0

15
I−2;0: ð138Þ

The latter two expressions are identical to Eqs. (20) and
(21) of Ref. [15], while the thermodynamic integrals in
these formulas are listed in Appendix C. Also note that
all first-order transport coefficients are positive as shown
explicitly in Appendix B.
Furthermore, one can also find simple relations between

the second-order transport coefficients of the bulk viscous
pressure,

δΠΠ
τΠ

¼ 2 − c2s
eþ P
P

þm2
0

3
Rð0Þ

−2;0; ð139Þ

λΠπ
τΠ

¼ 4

3
− c2s

eþ P
P

þm2
0

3
R̄ð2Þ

−2;0; ð140Þ

and similarly,

δ̄ΠΠ
τΠ

¼ 1 − c̄2s þ
m2

0

3
R̄ð0Þ

−2;0; ð141Þ

λ̄Ππ
τΠ

¼ 1

3
− c̄2s þ

m2
0

3
R̄ð2Þ

−2;0: ð142Þ

These latter relations are similar to Eqs. (33) and (34) of
Ref. [15]. The remaining second-order transport coeffi-
cients divided by the relaxation time are

δππ
τπ

¼ 4

3
þm2

0

3
Rð2Þ

−2;0; ð143Þ

τππ
τπ

¼ 10

7
þ 4m2

0

7
Rð2Þ

−2;0; ð144Þ

λπΠ
τπ

¼ 6

5
þ 2m2

0

5
Rð0Þ

−2;0; ð145Þ

and

λ̄πΠ
τπ

¼ 6

5
þ 2m2

0

5
R̄ð0Þ

−2;0: ð146Þ
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In the DNMR approximation these were also first reported
in Eqs. (35)–(37) of Ref. [15]. One also finds the following
useful relations between these coefficients:

δππ
τπ

¼ 7

12

τππ
τπ

þ 1

2
; ð147Þ

and

δΠΠ
τΠ

¼ 5

6

λπΠ
τπ

− c2s
eþ P
P

þ 1; ð148Þ

δ̄ΠΠ
τΠ

¼ 5

6

λ̄πΠ
τπ

− c̄2s ; ð149Þ

as well as

λΠπ
τΠ

¼ 7

12

τππ
τπ

− c2s
eþ P
P

þ 1

2
¼ δππ

τπ
− c2s

eþ P
P

; ð150Þ

λ̄Ππ
τΠ

¼ 7

12

τππ
τπ

− c̄2s −
1

2
¼ δππ

τπ
− c̄2s − 1: ð151Þ

V. THE TRANSPORT COEFFICIENTS
OF THE RELAXATION EQUATIONS

In this section we will investigate all first- and second-
order transport coefficients found in the equations of
motion for the bulk viscous pressure (32), the diffusion
current (33), and the shear-stress tensor (34). Based on the
results of Sec. II A we compare the coefficients obtained
from the basis-free approximation with those obtained
using the standard DNMR approximation. These choices
will be denoted by BF and DNMR in the legends, and
plotted with solid red and solid blue lines with symbols,
respectively.
The DNMR functions γðlÞr0 do not explicitly depend on

whether the particle number is conserved or not. This is

also true for the basis-free coefficients Rð1Þ
−r;0 and Rð2Þ

−r;0.

However, the coefficientsRð0Þ
−r;0 and α

ð0Þ
−r computed for a gas

with conserved particle number change into R̄ð0Þ
−r;0 and ᾱð0Þ−r

when the particle number is not conserved, as shown in
Eqs. (68). Therefore, even the first-order transport coef-
ficients ζr change into ζ̄r, since they explicitly depend on

αð0Þr or ᾱð0Þr ; see Sec. II B. The results for the case without
particle-number conservation, obtained within the BF and
the DNMR approaches, are plotted with dashed red and
dashed blue lines and empty symbols, respectively.
Furthermore, we also present the small z ¼ m0=T ≪ 1

approximations of all transport coefficients in the second-
order equations of motion (32)–(34). Using the series
expansion of the Bessel functions for z ≪ 1, we obtain all
transport coefficients up to Oðz4Þ. Note that in most cases
the series approximations lose validity beyond z > 0.5.

The relevant terms appearing in these series approxima-
tions are summarized in Tables II–V of Appendix D and
are plotted with solid black lines in all figures.
The results for all transport coefficients will be shown as

dimensionless ratios, by dividing by the corresponding
relaxation times (and sometimes functions of T and z), such
that they become functions of z only. Therefore, even if the
relaxation times are computed not in RTA but in some other
approximation, e.g., using the binary collision integral for a
constant cross section, the results for the transport coef-
ficients, scaled in the same way, are identical.

A. The coefficients of the equation
for the bulk viscous pressure

Figure 2(a) shows the dimensionless ratios ζ=½τΠP� and
ζ̄=½τΠP�. Since these are first-order transport coefficients,
both the BF and the DNMR approaches lead to the same
result. However, comparing the results corresponding to
μ ≠ 0 and μ ¼ 0, i.e., with and without particle-number
conservation, we see that ζ is smaller than ζ̄ by more than 2
orders of magnitude. Note that we multiply ζ by a factor of
X ¼ 150 to show it on the same scale as ζ̄. This order-
of-magnitude discrepancy develops around z ≃ 1, where
neither the small-z nor the large-z expansions are reliable.
Indeed, Table II indicates that for small z, the diffe-
rence ðζ̄ − ζÞ=τΠP ≃ z4=36; i.e., it increases ∼z4. Using
Eqs. (136) and (137) we obtain

ζ̄

τΠP
¼ ζ

τΠP
þ hβðc2s − c̄2sÞ; ð152Þ

where βh ¼ 1þ e=P, while the large-z behaviours of ζ̄
and ζ are fundamentally different,

ζ

τΠP

�
z≫1

¼ 5

6z2
þOðz−3Þ;

ζ̄

τΠP

�
z≫1

¼ 2

3
−
11

3z
þ 11

z2
þOðz−3Þ: ð153Þ

Panel (a) of Fig. 2 confirms that ζ̄=ðτΠPÞ indeed
approaches 2=3 as z → ∞, while ζ=ðτΠPÞ drops to 0.
The coefficients δΠΠ=τΠ and δ̄ΠΠ=τΠ, given in Eqs. (139)

and (141), respectively, are shown in Fig. 2(b). The results
corresponding to the BF and the DNMR approaches are in
very good agreement when μ ≠ 0, but they differ substan-
tially when μ ¼ 0 and the particle number is not conserved.
Furthermore, Fig. 2(c) shows λΠπ=τΠ and λ̄Ππ=τΠ from
Eqs. (140) and (142). Significant differences can be seen in
the behavior between the cases μ ≠ 0 and μ ¼ 0. The
absolute values of λΠπ are almost an order of magnitude
smaller than those of λ̄Ππ , and their sign is different, the
former is negative and the latter positive. The sign mis-
match is consistent between the two approaches, as both the
basis-free and the DNMR expressions for λΠπ (λ̄Ππ) yield a
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negative (positive) value in the z → 0 limit. Please note that
the sign of λΠπ is negative in the z → 0 limit also in the
more realistic case of 2 → 2 hard-sphere interaction model;
see last column in Table V of Ref. [36].
Figures 2(d)–2(f) show the second-order coefficients

from Eq. (32) that couple to the diffusion current, lΠV ,
τΠV , and λΠV , respectively. Here, the coefficients τΠV
computed in the BF and the DNMR approaches are in
very good agreement with each other, while lΠV and λΠV
differ in the two approaches.
The series approximations for the first- and second-order

transport coefficients in the equation for the bulk viscous
pressure, i.e., Eqs. (36)–(41) and Eqs. (71)–(73) are
presented in Table II for the BF (middle column) and
the DNMR (right column) approaches, and are plotted with
solid black lines in Fig. 2.
The bulk-viscosity coefficient, ζ or ζ̄, is of order Oðz4Þ,

while δΠΠ and δ̄ΠΠ have well-defined nonvanishing mass-
less limits up to OðzÞ or Oðz2 ln zÞ, depending on the
method employed to obtain this second-order coefficient.
Note that those limits are identical for δΠΠ and δ̄ΠΠ. All

other coefficients vanish in the massless limit. Similarly,
lΠV and τΠV show differences already at Oðz2Þ due to the
choice of negative moments in these transport coefficients.
The remaining transport coefficients, λΠV , λΠπ , and λ̄Ππ are
of order Oðz2Þ and exhibit similar characteristics.

B. The coefficients of the particle diffusion equation

The dimensionless ratio of the particle diffusion
coefficient and the product of relaxation time and
particle density, κ=½τVn�, is shown in Fig. 3(a). One
observes perfect agreement between the BF and DNMR
approaches.
The second-order coefficients, λVV and δVV , shown in

Figs. 3(b) and 3(c), are in reasonably good agreement
between the BF and the DNMR approaches. Similarly, this
conclusion also holds true for the coefficients lVΠ, τVΠ,
and λVΠ, presented in Figs. 3(d)–3(f), although they have
slightly different values in the massless limit. The remain-
ing second-order coefficients lVπ, τVπ , and λVπ , presented
in Figs. 3(g)–3(i), start from very different values at z ¼ 0,
but approach similar values for z ≫ 1. The differences

FIG. 2. The bulk-viscosity coefficients ζ and ζ̄, and the second-order transport coefficients, δΠΠ, δ̄ΠΠ, λΠπ , λ̄Ππ , lΠV , τΠV , λΠV , from
Eqs. (36)–(41), and Eqs. (71)–(73), for a classical ideal gas with conserved particle number (solid lines and solid symbols) and without
conserved particle number (dashed lines and empty symbols), as a function of z ¼ m0=T. The coefficient ζ is multiplied by 150 for
better visibility. All coefficients corresponding to the basis-free (BF) approximation are represented by red lines and circles, those
computed within the standard DNMR approximations are represented by blue lines and squares, respectively. The solid black lines show
the series approximation of the respective coefficients.
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seen in the massless limits of lVπ , τVπ , and λVπ , also shown
in Table III, were already clarified in Ref. [14], where it
was concluded that the proper massless limits of these
coefficients are those of the basis-free approximation, and
not of the DNMR approach.
The small-z approximations for the transport coefficients

appearing in the particle diffusion equation, Eqs. (42)–(48),
are presented in Table III. All transport coefficients have
well-defined numerical values in the massless limit z → 0.
The coefficients lVπ and τVπ differ by Oðz2Þ, hence, in the
basis-free approximation these coefficients vanish when
z → 0 as they should, see Ref. [14] for more details, while
the DNMR results stay finite.

C. The coefficients of the equation
for the shear-stress tensor

We now discuss the transport coefficients of the equation
for the shear-stress tensor. Figure 4(a) shows the dimen-
sionless ratio η=½τπP�, which is identical in the BF and the
DNMR approaches, also independently on whether particle
number is conserved or not. Figure 4(b) shows λπΠ and λ̄πΠ.
We observe that the BF and the DNMR approximations
give similar results for μ ≠ 0. On the other hand, the
coefficient λπΠ in the basis-free approximation is signifi-
cantly different without particle-number conservation,
being about a factor of 2 lower at z ¼ 100 than its value
with conserved particle number.

FIG. 3. Same as Fig. 2 for the transport coefficients κ, λVV , δVV , lVΠ, τVΠ, λVΠ, lVπ , τVπ , and λVπ appearing in the particle-diffusion
equation (33) and defined in Eqs. (42)–(48).
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Figures 4(c) and 4(d) show δππ=τπ and τππ=τπ , respec-
tively. These ratios are independent of particle-number

conservation, since they do not involve the coefficients αð0Þr

or Rð0Þ
−r;0; therefore the results coincide when μ ¼ 0 and

μ ≠ 0, as expected. Both coefficients are also in an
excellent agreement when comparing the BF and the
DNMR approaches. Figures 4(e), 4(f), and 4(g) show
the second-order coefficients lπV , τπV , and λπV , which
couple to the diffusion current. Similarly as before, these
last three coefficients are also in good agreement between
the BF and the DNMR approximations.
Finally, the small-z approximations for the transport

coefficients from Eqs. (49)–(53) and Eq. (74) are presented

in Table IV. Most coefficients related to the evolution of the
shear-stress tensor differ by a few percent at Oðz2Þ, while
λπΠ and λ̄πΠ are different at OðzÞ when comparing the BF
and the DNMR approximations.

D. The magnetohydrodynamic coefficients

Here we provide the magnetohydrodynamic coefficients
listed in Sec. II C. Figure 5(a) shows the dimensionless
ratio δVE=½τVnβ�. The coefficients δΠVE, δVΠE, and δπVE,
shown in panels (b)–(d) of the same figure, corroborate
the good agreement between the BF and the DNMR
approximations.
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z
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π
/τ

π
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z

FIG. 4. Same as Fig. 2 for the transport coefficients η, λπΠ, λ̄πΠ, δππ , τππ , lπV , τπV , and λπV listed in Eqs. (49)–(53) and (74).
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Figures 5(e)–5(g) show the second-order coefficients
δVπE, δVB, and δπB These coefficients have very different
values at z ¼ 0 but approach the same values at large
z ≫ 1, similarly to the lower row of Fig. 3. The small-z
approximations for these transport coefficients are pre-
sented in Table V.

VI. APPLICATIONS

In this section, we will consider the (0þ 1)-dimensional
boost-invariant expansion, also known as the Bjorken-flow
solution [43]. We will study the properties of this system
using various approaches discussed below. The relativistic

Boltzmann equation in RTA and the details of our numeri-
cal solver are discussed in Sec. VI A and in Appendix D 1,
respectively. The equations of second-order fluid dynamics
with transport coefficients derived using both the BF and
the DNMR approximations are summarized in Sec. VI B.
The equations of leading-order anisotropic fluid dynamics
(aHydro), based on the Romatschke-Strickland anisotropic
distribution function are discussed in Sec. VI C, while
details of our numerical implementation are given in
Appendix D 2.
The transformation from the usual space-time coordi-

nates xμ ¼ ðt; x; y; zÞ to the proper time and space-time
rapidity coordinates x̃μ ¼ ðτ; x; y; ηsÞ reads τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p

FIG. 5. Same as Fig. 2 for the transport coefficients δVE, δΠVE, δVΠE, δπVE, δVπE, δVB, and δπB, of a charged fluid in an external
electromagnetic field.
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and ηs ¼ 1
2
ln½ðtþ zÞ=ðt − zÞ�, while the inverse transfor-

mation corresponds to t ¼ τ cosh ηs and z ¼ τ sinh ηs.
For a longitudinally boost-invariant expansion, vzs≡

z=t ¼ tanh ηs, such that

uμ ≡
�
t
τ
; 0; 0;

z
τ

�
¼ ðcosh ηs; 0; 0; sinh ηsÞ; ð154Þ

lμ ≡
�
z
τ
; 0; 0;

t
τ

�
¼ ðsinh ηs; 0; 0; cosh ηsÞ; ð155Þ

and all thermodynamic quantities are independent of ηs.
In this case, D≡ uμ∂μ ¼ ∂

∂τ, Dl ≡ −lμ∂μ ¼ − ∂

τ∂ηs
, while

Duμ ¼ Dlμ ¼ 0, Dluμ ¼ − 1
τ l

μ, Dllμ ¼ − 1
τ u

μ.
Furthermore, the expansion rates are θ≡∇μuμ ¼ 1=τ,

θ̃≡ e∇μuμ ¼ 0, and θ̃l ≡ e∇μlμ ¼ 0. The vorticity tensors

also vanish, ωμν ≡∇½μuν� ¼ 0 and ω̃μν ≡ e∇½μuν� ¼ 0.
The four-momentum is expressed in terms of the rapidity

variable, y≡ 1
2
ln½ðk0 þ kzÞ=ðk0 − kzÞ�; hence the longi-

tudinal velocity of the particle is vzp ¼ tanh y. Thus, the
four-momentum kμ ¼ ðk0; kx; ky; kzÞ is expressed in terms
of the particle rapidity as

kμ ≡ ðm⊥ cosh y; kx; ky; m⊥ sinh yÞ; ð156Þ

where m⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ k2⊥
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ k2x þ k2y
q

denotes the

transverse mass. Therefore, the energy of the particle
is Eku ≡ kμuμ ¼ m⊥ coshðy − ηsÞ, while its momentum
in the direction of the anisotropy is Ekl ≡ −kμlμ ¼
m⊥ sinhðy − ηsÞ.
The coordinate transformation k̃μ ¼ ð∂x̃μ

∂xνÞkν of the four-
momentum to proper time and space-time rapidity coor-
dinates k̃μ ¼ ðkτ; kx; ky; kηsÞ leads to

k̃μ ≡
�
m⊥ coshðy − ηsÞ; kx; ky;

m⊥
τ

sinhðy − ηsÞ
�
; ð157Þ

hence kτ ¼ m⊥ coshðy − ηsÞ and kηs ¼ m⊥
τ sinhðy − ηÞ.

A. The Boltzmann equation for the (0 + 1)-dimensional
boost-invariant expansion

The relativistic Boltzmann equation (8) in RTA (9) for a
longitudinally boost-invariant system reduces to

∂fk
∂τ

−
vz

τ
ð1 − v2zÞ

∂fk
∂vz

¼ −
1

τR
ðfk − f0kÞ; ð158Þ

where we assumed homogeneity in the transverse plane,
such that fk ≡ fkðτ;m⊥;φ⊥; vzÞ is a function of the proper
time τ. The momentum space is parametrized using m⊥ ¼
ðk2x þ k2y þm2

0Þ1=2 and φ⊥ ¼ arctanðky=kxÞ, while the

longitudinal component of the three-velocity relative to
the flow velocity vzs ¼ tanh ηs is defined as

vz ≡ tanhðy − ηsÞ: ð159Þ

We are interested in tracking the evolution of the
conserved particle four-current Nμ, and the energy-momen-
tum tensor Tμν. These are obtained via the following
momentum-space integrals,

Nμ ¼ g
ð2πÞ3

Z
∞

m0

dm⊥m⊥
Z

2π

0

dφ⊥
Z

1

−1

dvz

1 − v2z
kμfk; ð160Þ

and

Tμν¼ g
ð2πÞ3

Z
∞

m0

dm⊥m⊥
Z

2π

0

dφ⊥
Z

1

−1

dvz

1−v2z
kμkνfk; ð161Þ

where we used d3k=k0 ≡m⊥dm⊥dφ⊥dy.
Taking into account the above form of the particle-four

current and the diagonal structure of the energy-momentum
tensor, Tμν

LRF ¼ diagðe; P⊥; P⊥; τ−2PlÞ, the particle number
density and energy density can be obtained via

n ¼
Z

1

−1
dvzF1; e ¼

Z
1

−1
dvzF2; ð162Þ

while the pressure in the longitudinal and transverse
directions are given by

Pl ¼
Z

1

−1
dvzv2zF2; P⊥ ¼ 1

2
ðe − Pl − Tμ

μÞ; ð163Þ

where Tμ
μ ¼ m2

0

R
1
−1 dv

zF0.
The functions Fn appearing in Eqs. (162)–(163) are

obtained by integrating over fk,

Fn ≡ g
ð2πÞ3

Z
2π

0

dφ⊥
Z

∞

m0

dm⊥mnþ1⊥
ð1 − v2zÞðnþ2Þ=2 fk; ð164Þ

and satisfy the following equation:

∂Fn

∂τ
þ 1

τ
½1þ ðn − 1Þv2z �Fn −

1

τ

∂½vzð1 − v2zÞFn�
∂vz

¼ −
1

τR
ðFn − Feq

n Þ: ð165Þ

The functions Feq
n are obtained substituting the equilibrium

distribution function (1) into Eq. (164),

Feq
n ¼ geα

4π2
Tnþ2Γ

�
nþ 2;

m0=Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
�
; ð166Þ
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where Γðn; xÞ ¼ R
∞
x tn−1e−tdt denotes the incomplete

Gamma function. Note that the numerical algorithm for
solving Eq. (165) is presented in detail in Appendix D 1.

B. Second-order fluid dynamics for the
(0 + 1)-dimensional boost-invariant expansion

In the (0þ 1)-dimensional boost-invariant expansion of
matter, the fluid-dynamical equations simplify substan-
tially. The conservation equations (21) reduce to

Dnþ n
τ
¼ 0; ð167Þ

Deþ 1

τ
ðeþ PlÞ ¼ 0: ð168Þ

Here, the particle-number density and energy density were
defined in Eq. (25), while Pl is the pressure component in
the longitudinal direction. The latter and the transverse
pressure component P⊥ are related to the thermodynamic
pressure P, bulk pressure Π, and the shear-stress tensor
component π ≡ πηsηs via

Pl ≡ Pþ Π − π; P⊥ ≡ Pþ Πþ π

2
: ð169Þ

The second-order relaxation equations (32) and (34)
reduce to, see Eqs. (9), (10) in Ref. [16],

τRDΠþ Π ¼ −
ζ

τ
− δΠΠ

Π
τ
þ λΠπ

π

τ
; ð170Þ

τRDπ þ π ¼ 4η

3τ
− δππ

π

τ
− τππ

π

3τ
þ λπΠ

2Π
3τ

; ð171Þ

where we replaced τΠ ¼ τπ ¼ τR. The transport coefficients
for the above equations are given in Eqs. (136), (138), (139)
and (140), and (143)–(145). We note again that, for a
chosen rest mass m0, all transport coefficients only depend
on μ and T.
In the case without explicit particle-number conserva-

tion, we do not consider Eq. (167), but we solve Eq. (168)
together with the relaxation equations that follow from
Eqs. (69) and (70). For a (0þ 1)-dimensional boost-
invariant expansion these correspond to the relaxation
equations (170) and (171), but with different coefficients
as explained in Sec. II B. Therefore, in this case the
corresponding transport coefficients are given in
Eqs. (137), (138), (141)–(144), and (146). In Sec. VII A
we will study the solutions of second-order fluid dynamics
in the case of explicit particle-number conservation as well
as without it, using both the BF and the DNMR approaches
for the transport coefficients.

C. Anisotropic fluid dynamics for the
(0 + 1)-dimensional boost-invariant expansion

In this section, we turn our attention to study the
equations of leading-order anisotropic fluid dynamics in
the case of the boost-invariant expansion scenario. The
Romatschke-Strickland distribution function given in
Eq. (98) reduces to

f̂RS ¼ exp

�
α̂ −

kτ

Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξv2z

q �
: ð172Þ

The corresponding equation of motion for the irreducible
moments, Îiþj;j;0, was derived in Eqs. (53) and (54) of
Ref. [28] and is reproduced below,

DÎiþj;j;0 þ
1

τ
½ðjþ 1ÞÎiþj;j;0 þ ði − 1ÞÎiþj;jþ2;0�

¼ −
1

τR
ðÎiþj;j;0 − Iiþj;j;0Þ: ð173Þ

The equations for the particle-number density, the energy
density, and the longitudinal pressure component follow by
setting ði; jÞ ¼ ð1; 0Þ, (2, 0), and (0, 2) in Eq. (173),
respectively,

Dn̂þ n̂
τ
¼ −

1

τR
ðn̂ − nÞ; ð174Þ

Dêþ 1

τ
ðêþ P̂lÞ ¼ −

1

τR
ðê − eÞ; ð175Þ

and

DP̂l þ
1

τ
ð3P̂l − ÎRS240Þ ¼ −

1

τR
ðP̂l − PÞ; ð176Þ

where ÎRS240 is

ÎRS240 ¼
Z

dKE−2
kuE

4
klf̂RS: ð177Þ

Note that in the case of particle-number conservation, the
Landau matching conditions from Eq. (97) require n̂ ¼ n,
as well as ê ¼ e; hence the right-hand side of Eqs. (174)
and (175) vanish. If the particle number is not conserved,
then in general n̂ ≠ n. However, we still impose Landau
matching for the energy, ê ¼ e, such that the right-hand
side of Eq. (175) vanishes.
Note that instead of using Eq. (176) there are other

choices to close the conservation equations, e.g., using
higher moments of the Boltzmann equation. It was shown
in Refs. [28,41,44] that some of these choices lead to very
similar results as when using Eq. (176).
Furthermore, similarly to Eqs. (169), the bulk viscous

pressure from Eq. (97) and the shear-stress tensor compo-
nent π̂ are given by
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Π̂ ¼ 1

3
ðP̂l þ 2P̂⊥Þ − P; π̂ ¼ 2

3
ðP̂⊥ − P̂lÞ; ð178Þ

where the transverse pressure component is

P̂⊥ ≡ ÎRS201 ¼
1

2
ðe − P̂l −m2

0Î
RS
000Þ; ð179Þ

where ÎRS000 ¼
R
dKf̂RS.

Now introducing the integrals of the anisotropic distri-
bution function, F̂RS

n , similar to Eq. (164),

F̂RS
n ≡ g

ð2πÞ3
Z

2π

0

dφ⊥
Z

∞

m0

dm⊥mnþ1⊥
ð1 − v2zÞðnþ2Þ=2 f̂RS

¼ geα̂

4π2

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξv2z
p

�
nþ2

Γðnþ 2; λÞ; ð180Þ

where λ ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξv2z

p
=ðΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
Þ, the quantities ÎRS000,

n̂, ê, P̂l, and ÎRS240 can be obtained via

ÎRS000 ¼
Z

1

−1
dvzF̂RS

0 ; n̂ ¼
Z

1

−1
dvzF̂RS

1 ;
0
B@

ê

P̂l

ÎRS240

1
CA ¼

Z
1

−1
dvz

0
B@

1

v2z
v4z

1
CAF̂RS

2 : ð181Þ

The integrals over vz must be computed numerically,
except for the case of n̂, for which similarly to
Eq. (107) an exact analytical result can be derived [44],

n̂ ¼ geα̂

2π2
m2

0Λffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p K2

�
m0

Λ

�
: ð182Þ

Note that compared to the above result, Eq. (25) of
Ref. [44] differs by a factor of 2 accounting for spin
degeneracy. The strategy for solving the equations of
anisotropic fluid dynamics is presented in Appendix D 2.

D. Initial and matching conditions

We now discuss the initial conditions for all approaches
presented in this section. At the initial time, τ0, we assume
that the momentum distribution function fk ¼ f̂RS is given
by the Romatschke-Strickland distribution, Eq. (172), with
parameters ðα̂0;Λ0; ξ0Þ describing the initial number density
(in the case of the fluid with conserved particle number), the
energy density, and the pressure anisotropy Pl=P⊥.
Now applying the Landau matching conditions we look

for the connection between the parameters ðα̂;Λ; ξÞ and
ðα; TÞ through the initial particle number and energy
densities ðn0; e0Þ, computed via Eq. (181). If the particle
number is conserved, we use the e0=n0 ratio in order to
eliminate α̂0, leading to

Z
1

−1

dvzΓð4; λ0Þ
ð1þ ξ0v2zÞ2

¼ 2e0ðm0=Λ0Þ2
n0Λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p K2

�
m0

Λ0

�
; ð183Þ

with λ0 ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0v2z

p
=ðΛ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
Þ. In the case where

the particle number is not conserved, α̂ ¼ 0, while Λ0

follows from

e0 ¼
gΛ4

0

4π2

Z
1

−1

dvzΓð4; λ0Þ
ð1þ ξ0v2zÞ2

: ð184Þ

Both Eqs. (183) and (184) are solved using a bisection
algorithm, as follows. Starting from Λ0 ¼ T0, we look for a
valid pair ΛminðΛmaxÞ such that the right-hand sides are
smaller (larger) than the left-hand sides when Λ0 ¼ Λmin
(Λmax). We start the search for this window by setting
Λmin ¼ Λmax ¼ Λ0 and subsequently halving Λmin or dou-
bling Λmax. Finally, the integrals with respect to vz are
computed using the adaptive Simpson integration of
third order.

VII. RESULTS AND DISCUSSIONS

In this section, we present and discuss the temporal
evolution of a classical ideal gas of massive particles and
relevant quantities using second-order fluid dynamics in the
14-moment approximation as well as the leading-order
anisotropic fluid-dynamics framework, both with and with-
out particle-number conservation. These fluid-dynamical
results are directly compared to the exact solutions of the
Boltzmann transport equation also obtained in RTA.
In what follows, in all cases we have initialized the

system at τ0 ¼ 0.5 fm=c, with temperature T0 ¼ 0.5 GeV
and chemical potential μ0 ¼ α0T0 ¼ 0 GeV. We have
fixed the relaxation times in both the fluid-dynamical
and transport calculations to τR ¼ τΠ ¼ τπ ¼ 0.5 fm=c.
For the particle rest mass we will use the following values:
m0 ¼ 0.01 GeV to approximate the massless limit, as well
as 1 GeV and 10 GeV. At the initial time, 4πη=s evaluates
to 3.18, 2.63, and 0.68 for m0 ¼ 0.01, 1, and 10 GeV,
respectively. Furthermore, we will consider two different
values for the initial anisotropy, ξ0 ¼ 0 and 100, corre-
sponding to an isotropic and oblate spheroidal distribution
in momentum space, respectively. The initial values for
the bulk viscous pressure and shear stress are obtained
from the initial Romatschke-Strickland distribution
through Eq. (178).

A. Second-order fluid dynamics vs Boltzmann
equation in RTA

In this section we compare the results of second-order
fluid dynamics discussed in Sec. VI B with the exact
numerical solution of the Boltzmann equation. The results
are presented in Figs. 6 and 7 for fluids with and without
particle-number conservation, respectively. Here, Figs. 2
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and 4 can be used to estimate the corresponding transport
coefficients as functions of z.
The solutions of the Boltzmann equation are shown

with black lines in all figures. The solutions of second-
order fluid dynamics with transport coefficients derived

using the BF and the DNMR approaches are plotted using
red lines with circles and blue lines with squares,
respectively.
The evolution of Pl=P⊥ is shown on the top rows of

Figs. 6 and 7. The middle row shows the time evolution of

FIG. 6. The time evolution of Pl=P⊥ (top row), bulk viscous pressure τΠ (middle row), and shear viscous pressure τπ (bottom row) of
an ideal gas with conserved particle number. The particle masses correspond to m0 ¼ 0.01 GeV=c2 (left column), m0 ¼ 1 GeV=c2

(middle column), and m0 ¼ 10 GeV=c2 (right column). The results with an initial anisotropy parameter ξ0 ¼ 0 and ξ0 ¼ 100 are
represented with empty and solid symbols, respectively. The exact numerical solutions of the Boltzmann equation in RTA are shown
with black lines. The solutions of second-order fluid dynamics with transport coefficients derived using the basis-free approach are
shown as red lines with circles, while those of the DNMR approach are shown as blue lines with squares, respectively. In all cases, we
have fixed the relaxation times τR ¼ τΠ ¼ τπ ¼ 0.5 fm=c, while the initial temperature and chemical potential are set to
T0 ¼ 0.5 GeV and μ0 ¼ 0 GeV, respectively, at τ0 ¼ 0.5 fm=c.
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the bulk viscous pressure multiplied by the proper time, τΠ,
while the bottom row shows the shear-stress pressure
multiplied by the proper time, τπ. The particle rest masses
from the left column to the right column are fixed to
m0 ¼ 0.01, 1, and 10 GeV=c2, respectively.
The case with explicit particle-number conservation is

shown in Fig. 6. The evolution of Pl=P⊥ is equally well
reproduced by second-order fluid dynamics with either
choice of transport coefficients, especially at later times

when the gradients have already decreased. Significant
discrepancies can be observed between second-order fluid
dynamics and the exact kinetic results for the early-time
behavior of the bulk pressure. This is when the gradients as
well as the temperature are largest, while the ratio z ¼
m0=T is smallest. We also note that using the basis-free
transport coefficients brings the fluid-dynamical results
closer to the exact kinetic solutions than when the standard
DNMR transport coefficients are used.

FIG. 7. The same as Fig. 6 but for an ideal gas without particle-number conservation; i.e., μðτÞ ¼ 0 GeV.
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On the other hand, the evolution of the shear-stress
tensor component stays in a reasonably good agreement
with the exact kinetic results in all cases presented, for both
the BF and the DNMR coefficients. This favorable agree-
ment between these two approaches is not entirely unex-
pected, since both the BF and the DNMR transport
coefficients that govern the shear-stress tensor evolution
are very similar during the whole evolution; see Figs. 4.
Notice also that the bulk viscous pressure is at least 2 orders
of magnitude smaller than the shear-stress tensor; hence its

contribution to the Pl=P⊥ ratio is less significant for the
overall evolution of the system.
We now turn our attention to the case when the particle

number is not conserved. The evolution of the Pl=P⊥ ratio
is again in very good agreement between the exact kinetic
results and our two variants of second-order transport
coefficients, as apparent from the first row of Fig. 7.
However, at very large rest mass, the fluid-dynamical
results with the BF coefficients show a better agreement
with the kinetic results. Moreover, the early-time behavior

FIG. 8. Same as Fig. 6. Here we compare the results of the Boltzmann equation in RTA (black lines) with the results of leading-order
anisotropic fluid dynamics (blue lines with symbols).
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of the bulk viscous pressure is in much better agreement
now than for the case with particle-number conservation.
The results improve when using the BF coefficients while
the deviation of the DNMR results from the exact kinetic
results becomes more pronounced at larger particle masses,
as can be seen in panels (e) and (f) of Fig. 7. Finally, the
evolution of shear-stress tensor is in very good agreement
with the exact solution in all cases, as shown in panels (g)
and (i) of Fig. 7.

B. Anisotropic fluid dynamics vs the Boltzmann
equation in the RTA

In this section we compare the results of leading-order
anisotropic fluid dynamics (aHydro) with the exact numeri-
cal solution of the Boltzmann equation in RTA. These
results are presented in Figs. 8 and 9 for fluids with and
without particle-number conservation, respectively. Here
we also considered two values for the initial anisotropy
parameter, namely ξ0 ¼ 0 and ξ0 ¼ 100, represented with

FIG. 9. The same as Fig. 8 but without particle-number conservation; i.e., α̂ðτÞ ¼ μðτÞ ¼ 0.
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empty and filled symbols. The numerical solutions of the
Boltzmann equation are shown with black lines.
Similarly to the second-order fluid-dynamical results, the

aHydro results (blue lines with squares) agree very well
with exact kinetic results (black lines) at the level of P̂l=P̂⊥
(top row) and τπ̂ (bottom row), in all cases presented. The
agreement with the kinetic results are far better when the
particle number is conserved than otherwise. Comparing
Figs. 8 to Figs. 6 we also observe that the aHydro results are
in a better agreement with the exact kinetic solutions than
they are with second-order fluid dynamics in case the
particle number is conserved.
Furthermore, in case the particle number is not con-

served, large deviations can be observed between the exact
kinetic and the aHydro results in the bulk viscous pressure
τΠ̂ shown in the middle rows of Figs. 8 and 9. Similarly,
comparing Figs. 9 to Figs. 7, the aHydro results are in a far
worse agreement with kinetic theory than those of second-
order fluid dynamics.
This was expected since the anisotropic fluid-dynamical

framework considered in this paper employs only two or
three free parameters, namely ξ, Λ, and/or α̂, the latter only
in the case with particle-number conservation. This also
means that aHydro describes the evolution of dissipative
quantities with one equation of motion fewer than second-
order fluid dynamics. However, as shown in Ref. [45], an
additional parameter modifying the distribution function in
Eq. (98) denoted Φ may be used to improve the aHydro
results for the bulk viscous pressure.

VIII. CONCLUSIONS

In this paper we studied all first- and second-order
transport coefficients of second-order fluid dynamics with
14 dynamical moments. Through explicit computations for
the case of a classical, massive ideal gas, with and without
taking into account particle-number conservation, we
compared the basis-free and the standard DNMR approx-
imations for the second-order transport coefficients arising
from the Boltzmann equation in the Anderson-Witting

relaxation-time approximation. We found that most trans-
port coefficients are insensitive to the chosen approxima-
tion for the negative-order moments, but some of them
differ in the ultrarelativistic to mildly relativistic regions, as
described by the ratio z ¼ m0=T between the particle rest
mass and the temperature.
Using these transport coefficients, we reasserted the

validity of second-order fluid dynamics in the well-known
(0þ 1)-dimensional boost-invariant Bjorken expansion
scenario for a massive ideal gas. By contrasting the
second-order transport coefficients in the BF and the
DNMR approximations, we showed that the agreement
between kinetic theory and second-order fluid dynamics is
improved in the far-from-equilibrium regime when the BF
coefficients are used. This notable improvement can be
traced back to the distinct behavior of the various transport
coefficients as function of the z ¼ m0=T ratio. Specifically,
we observed significant differences in the bulk pressure
self-coupling δ̄ΠΠ and shear-bulk coupling λ̄πΠ coefficients
for a gas without conserved particle number, which in turn
lead to slightly different outcomes.
Finally, we also considered the equations of leading-

order anisotropic fluid dynamics (aHydro). The formu-
lation considered in this paper employs as degrees of
freedom the energy scale Λ, the anisotropy parameter ξ,
as well as the term α̂ for the case when particle number is
conserved. We found very good agreement between the
aHydro and kinetic results at the level of the ratio Pl=P⊥
between the longitudinal and transverse pressure and the
shear-stress component τπ̂ for a large range of particle
masses. The results for the evolution of the bulk viscous
pressure, τΠ̂, showed discrepancies compared to the RTA
results, as expected since our aHydro implementation does
not provide a separate degree of freedom for the bulk
viscous pressure.
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TABLE I. Values employed for the Romatschke-Strickland
distribution for a classical ideal gas without (Λ̄0) and with
(Λ0, α̂0) particle-number conservation. The energy density e0
and particle-number density n0 (for the latter case) correspond to
an initial temperature T0 ¼ 0.5 GeV and vanishing chemical
potential μ0 ¼ 0 GeV in the case when ξ0 ¼ 100. Note that when
ξ0 ¼ 0, we have Λ0 ¼ T0.

m0 [GeV] Λ̄0 [GeV] Λ0 [GeV] α̂0

0.01 0.945 0.634 1.596
1 0.878 0.653 1.267
10 0.560 0.718 −4.338
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APPENDIX A: THE DNMR COEFFICIENTS γðlÞr0

In this appendix we compute the coefficients γðlÞr0 ¼ F ðlÞ
r0

defined in Eq. (30) and applied in the 14-moment
approximation.
The coefficientHðlÞ

kn in Eqs. (30), (31) is a polynomial in
energy of order Nl → ∞,

HðlÞ
kn ¼ ð−1Þl

l!J2l;l

XNl

m¼n

aðlÞmnP
ðlÞ
km; ðA1Þ

where the polynomials of order m in energy are

PðlÞ
km ¼

Xm
r¼0

aðlÞmrEr
k: ðA2Þ

The coefficients aðlÞmn are obtained through the Gram-
Schmidt procedure imposing the following orthogonality
condition:

Z
dKωðlÞPðlÞ

kmP
ðlÞ
kn ¼ δmn; ðA3Þ

where the weight ωðlÞ is

ωðlÞ ¼ ð−1Þl
ð2lþ 1Þ!!

1

J2l;l
ðΔαβkαkβÞlf0kf̃0k: ðA4Þ

Using these results together with Eq. (30), the coefficients

γðlÞr0 are defined as

γð0Þr0 ≡F ð0Þ
r0 ¼ J−r;0D30 þ J−rþ1;0G23 þ J−rþ2;0D20

J20D20 þ J30G12 þ J40D10

; ðA5Þ

γð1Þr0 ≡ F ð1Þ
r0 ¼ J−rþ2;1J41 − J−rþ3;1J31

D31

; ðA6Þ

γð2Þr0 ≡ F ð2Þ
r0 ¼ J−rþ4;2

J42
: ðA7Þ

APPENDIX B: FIRST-ORDER TRANSPORT
COEFFICIENTS

In this appendix we discuss the positivity of the first-
order transport coefficients from Eq. (35). The shear

viscosity coefficient η ¼ τRα
ð2Þ
0 , where αð2Þ0 ¼ βJ32 from

Eq. (18). Replacing the thermodynamic integral from
Eq. (4), using n ¼ 3 and q ¼ 2, we obtain

η ¼ βτR
15

Z
dK
Ek

f0kf̃0kðE2
k −m2

0Þ2: ðB1Þ

This integrand is positive definite, and hence η > 0.

The diffusion coefficient is given by κ ¼ τRα
ð1Þ
0 , where

αð1Þ0 ¼ J11 − J21=h from Eq. (17), where h ¼ ðeþ PÞ=n is
the enthalpy per particle. This can be rewritten as

αð1Þ0 ¼ J11 −
2

h
J21 þ

1

h2
J31; ðB2Þ

where we used that J21 ¼ nT and J31 ¼ Tðeþ PÞ, while
we added and subtracted J21=h ¼ J31=h2. Now, substitut-
ing Jnq from Eq. (4), we arrive at

κ ¼ τV
3

Z
dK
Ek

f0kf̃0kðE2
k −m2

0Þ
�
1 −

Ek

h

�
2

; ðB3Þ

where the integrand is positive definite, and hence κ > 0.
Recalling the thermodynamic relations obtained from

integration by parts, see Eq. (4),

dInqðα; βÞ≡
�
∂Inq
∂α

�
β

dαþ
�
∂Inq
∂β

�
α

dβ

¼ Jnqdα − Jnþ1;qdβ; ðB4Þ

and using this relation for I10 ¼ n and I20 ¼ e, we obtain

dα ¼ 1

D20

ðJ30dn − J20deÞ; ðB5Þ

dβ ¼ 1

D20

ðJ20dn − J10deÞ: ðB6Þ

Using these relations the partial derivatives of the pressure,
P ¼ I21, at constant particle number density and constant
energy density can be written as

�
∂P
∂e

�
n
¼ J31

D20

�
J10 −

1

h
J20

�
;

�
∂P
∂n

�
e
¼ J31

D20

�
−J20 þ

1

h
J30

�
: ðB7Þ

Therefore the speed of sound squared, cf. Eq. (116), reads

c2s ≡ J31
D20

�
J10 −

2

h
J20 þ

1

h2
J30

�

¼ 1

3
þ m2

0

3hD20

ðhG20 −G30Þ; ðB8Þ

where we used that m2
0Jn0 ¼ Jnþ2;0 − 3Jnþ2;1. Similarly, in

the case without particle-number conservation, the speed of
sound squared reads
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c̄2s ≡ J31
J30

¼ 1

3

�
1 −m2

0

J10
J30

�
: ðB9Þ

The bulk viscosity coefficient, ζ ¼ τΠm2
0α

ð0Þ
0 =3, with αð0Þr

given in Eq. (16), can be written using Eq. (B8) as

ζ ¼ τΠ
3
½−m2

0βJ11 þ ð1 − 3c2sÞðeþ PÞ�: ðB10Þ

Replacing m2
0J11 ¼ J31 − 5J32, we arrive at

ζ ¼ τΠ

�
5

3
βJ32 − c2sðeþ PÞ

�
; ðB11Þ

where the first term inside the square brackets is

5

3
J32 ¼

1

9

Z
dK
Ek

f0kf̃0kðE2
k −m2

0Þ2: ðB12Þ

We now consider the relations,

Z
dK
Ek

f0kf̃0kðE2
k −m2

0ÞTk ¼ 3ðeþ PÞ
β

; ðB13Þ

Z
dK
Ek

f0kf̃0kT2
k ¼ eþ P

βc2s
; ðB14Þ

where we introduced the notation,

Tk ¼ E2
kðJ10 − 1

h J20Þ − EkðJ20 − 1
h J30Þ

J10 − 2
h J20 þ 1

h2 J30
: ðB15Þ

Inserting and subtracting the term c2sðeþ PÞ in Eq. (B11),
one arrives at

ζ ¼ τΠ

�
5

3
βJ32 − 2c2sðeþ PÞ þ c2sðeþ PÞ

�

¼ βτΠ
9

Z
dK
Ek

f0kf̃0kðE2
k −m2

0 − 3c2sTkÞ2: ðB16Þ

This integrand is always positive and so ζ > 0. Note that
this expression agrees with Eq. (A26) of Ref. [46].

We also remark that ζ̄ ¼ τΠm2
0ᾱ

ð0Þ
0 =3 > 0, where ᾱð0Þr

was defined in Eq. (66). To show this, we use the recurrence
relation 3J11 ¼ J10 −m2

0J−1;0 to rewrite ζ̄ as

ζ̄ ¼ τΠ
βm2

0

9
½ð3c̄2s − 1ÞJ10 þm2

0J−1;0�: ðB17Þ

Now adding and subtracting m2
0J10ð1 − 3c̄2sÞ ¼ J30ð1−

3c̄2sÞ2 inside the square brackets leads to

ζ̄ ¼ τΠ
β

9
½ð1 − 3c̄2sÞ2J30 − 2m2

0ð1 − 3c̄2sÞJ10 þm4
0J−1;0�:

ðB18Þ

Finally, restoring the integral expression for the Jnq’s, we
arrive at

ζ̄ ¼ τΠβ

9

Z
dK
Ek

f0kf̃0k½ð1 − 3c̄2sÞ2E2
k −m2

0�2; ðB19Þ

which generalizes Eq. (58) of Ref. [47] to the case of
quantum statistics.

APPENDIX C: USEFUL THERMODYNAMIC
INTEGRALS

The thermodynamic integrals with negative power, I−r;0,
can be obtained in terms of the functions Kir as

I−r;0 ¼
βnm−r

0

K2ðzÞ
½Kir−2ðzÞ − KirðzÞ�; ðC1Þ

where the Bickley function KiqðzÞ is defined as the
repeated integral of the Bessel function K0ðzÞ, having
the following integral representation, see Eq. (11.2.10) of
Ref. [42] and Eq. (10.43.11) of Ref. [48]:

KiqðzÞ ¼
Z

∞

1

dx
e−zx

xq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p ¼
Z

∞

0

dx
e−z cosh x

coshq x
; ðC2Þ

such that

Ki0ðzÞ≡ K0ðzÞ ¼ K2ðzÞ
�
1 −

2

z
K1ðzÞ
K2ðzÞ

�
; ðC3Þ

while for the negative orders we have, see Eq. (11.2.9) of
Ref. [42],

Ki−qðzÞ ¼ ð−1Þq dq

dzq
K0ðzÞ: ðC4Þ

More generally, one can derive the recurrence relation, see
Eq. (11.2.14) of Ref. [42],

qKiqþ1ðzÞ¼ zKiq−2ðzÞþðq−1ÞKiq−1ðzÞ− zKiqðzÞ; ðC5Þ

which holds for any non-negative integer q ≥ 0 and allows
the higher-order functions KinðzÞ to be expressed in terms
of Ki1ðzÞ. An integration by parts of K0ðzÞ leads to

K0ðzÞ≡
Z

∞

1

dxe−zxffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

¼ zK1ðzÞ − zKi1ðzÞ þ K0ðzÞ − Ki2ðzÞ; ðC6Þ

which then provides in agreement with Eq. (C4),
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Ki−1ðzÞ ¼ Ki1ðzÞ þ
Ki2ðzÞ

z
≡ K1ðzÞ: ðC7Þ

The function Ki1ðzÞ can be expressed [15,49] in terms of
the modified Bessel functions and of the modified Struve
functions LνðzÞ, see Eq. (12.2.2) of Ref. [42],

Ki1ðzÞ ¼
π

2
−
πz
2
½K0ðzÞL−1ðzÞ þ K1ðzÞL0ðzÞ�: ðC8Þ

Introducing a notation similar to that used in Eq. (110),
HiðzÞ ¼ Ki1ðzÞ=K2ðzÞ, Eq. (C7) leads to

Ki2ðzÞ ¼ K2ðzÞ½zHðzÞ − zHiðzÞ − 4�: ðC9Þ

Similarly, using these formulas together with the recursion
relation (C5) we calculate

Ki3ðzÞ ¼
K2ðzÞ
2z

½8þ 5z2 − zð2þ z2ÞHðzÞ
þ zð1þ z2ÞHiðzÞ�; ðC10Þ

Ki4ðzÞ ¼ −
K2ðzÞ
6

½24þ 5z2 − zð6þ z2ÞHðzÞ
þ zð3þ z2ÞHiðzÞ�: ðC11Þ

Now substituting into Eq. (C1) leads to

I−1;0 ¼ −
n
m2

0

½4 − zHðzÞ þ zHiðzÞ�; ðC12Þ

I−2;0 ¼
nT
m4

0

½8þ 5z2 − zð2þ z2ÞHðzÞ þ z3HiðzÞ�; ðC13Þ

I−3;0 ¼ −
n

2m4
0

½8þ 5z2 − zð2þ z2ÞHðzÞ− zð1− z2ÞHiðzÞ�;

ðC14Þ

I−4;0 ¼
n

6m4
0T

½5z2 − z3HðzÞ − zð3 − z2ÞHiðzÞ�: ðC15Þ

Using these results together with Eq. (106) for q ¼ 1 and
−2 ≤ r ≤ 1 we obtain

I1;1 ¼
n
3
½5 − zHðzÞ þ zHiðzÞ�; ðC16Þ

I0;1 ¼−
nT
3m2

0

½12þ 5z2 − zð3þ z2ÞHðzÞþ z3HiðzÞ�; ðC17Þ

I−1;1 ¼
n

6m2
0

½5z2 − z3HðzÞ − zð3 − z2ÞHiðzÞ�

¼ m2
0T I−4;0; ðC18Þ

I−2;1 ¼
nT
18m4

0

½48þ 30z2 − 5z4 − zð12þ 6z2 − z4ÞHðzÞ

þ z3ð9 − z2ÞHiðzÞ�: ðC19Þ

Finally, the functions Irq with q ¼ 2 and 0 ≤ r ≤ 2 are

I22 ¼
nT
15

½15þ 5z2 − zð3þ z2ÞHðzÞ þ z3HiðzÞ�; ðC20Þ

I12 ¼
n
30

½10 − 5z2 − zð2 − z2ÞHðzÞ þ zð5 − z2ÞHiðzÞ�;
ðC21Þ

I02 ¼ −
nT
90m2

0

½120þ 60z2 − 5z4 − zð30þ 12z2 − z4ÞHðzÞ

þ z3ð15 − z2ÞHiðzÞ�: ðC22Þ

Here we also list the remaining coefficients of interest,

αð0Þ−1 ¼ 2I−1;1 −
eI−1;0
cvP

þ I00
cvT

; ðC23Þ

αð0Þ−2 ¼ 3I−2;1 −
eI−2;0
cvP

þ I−1;0
cvT

; ðC24Þ

and

ᾱð0Þ−1 ¼ 2I−1;1 − I−1;0 þ c̄2s
I00
T

; ðC25Þ

ᾱð0Þ−2 ¼ 3I−2;1 − I−2;0 þ c̄2s
I−1;0
T

: ðC26Þ

These are followed by the relations,

αð1Þ−1 ¼ I0;1 −
I1;1
h

; αð1Þ−2 ¼ I−1;1 −
I0;1
h

; ðC27Þ

αð2Þ−1 ¼ I1;1 − 2I1;2; αð2Þ−2 ¼ I0;1 − 3I0;2: ðC28Þ

Using the explicit form of the thermodynamic integrals
we evaluate the first-order transport coefficients. Using
Eq. (130) together with (C13) we obtain

ζ

τΠ
¼ z2

P
3

�
HðzÞ
z

ð1− 3c2sÞ−
1

3
þ z
3

K1ðzÞ−Ki1ðzÞ
K2ðzÞ

�
; ðC29Þ

and similarly,

ζ̄

τΠ
¼ z2

P
3

�
c̄2s −

1

3
þ z
3

K1ðzÞ − Ki1ðzÞ
K2ðzÞ

�
: ðC30Þ

Furthermore, using Eq. (133), together with Eq. (C13)
we obtain
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η

τπ
¼ eþ 9P

15
−
m4

0

15
I−2;0

¼ z3
P
15

�
3

z2
K3ðzÞ
K2ðzÞ

−
1

z
þ K1ðzÞ − Ki1ðzÞ

K2ðzÞ
�
: ðC31Þ

These latter two results were found by Anderson and
Witting, see Eqs. (75) and (76) of Ref. [9], as well as by
Florkowski et al., see Eqs. (37) and (45) of Ref. [49].
The ratio of the diffusion coefficient and the relaxation

time follows from Eqs. (132) and (C12),

κ

τV
≡ e − 2P

3h
−
m2

0

3
I−1;0

¼ z
P
3T

�
1

z
−

3

z2
K2ðzÞ
K3ðzÞ

−
K1ðzÞ − Ki1ðzÞ

K2ðzÞ
�
: ðC32Þ

APPENDIX D: NUMERICAL METHODS

In this section we briefly present the details of the
discrete-velocity method employed to solve the Boltzmann
equation (165) of Sec. D 1. Similarly, the strategy
employed to solve the equations of anisotropic fluid
dynamics as well as the Runge-Kutta time-stepping algo-
rithm are presented in Secs. D 2 and D 3, respectively. A
note on the code that we employed can be found in
Sec. D 4.

1. Discrete-velocity algorithm

The algorithm employed in this paper to solve the
relativistic Boltzmann equation is based on the relativistic
lattice-Boltzmann method introduced in Refs. [50,51] for
massless particles and in Refs. [52,53] for the case of
massive particles; see also Ref. [54] for details.
In particular, the only remaining degree of freedom vz is

discretized according to the Gauss-Legendre quadrature
method of order Q, by which vzj (1 ≤ j ≤ Q) are the roots
of the Legendre polynomial PQðvzÞ of order Qz. This
prescription ensures the exact integration of any polyno-
mial in vz of order less than or equal to 2Q − 1; i.e.,

Z
1

−1
dvzðvzÞn ≃

XQ
j¼1

wjðvzjÞn; ðD1Þ

where equality is achieved when 0 ≤ n < 2Q. The quad-
rature weights wj are computed via

wj ¼
2½1 − ðvzjÞ2�

½ðQþ 1ÞPQþ1ðvzjÞ�2
: ðD2Þ

In our case, we have to deal with nonpolynomial
functions of vz; however the integration method becomes
systematically more accurate as Qz is increased. On the

other hand, there is a limit on the achievable accuracy due
to loss of precision in floating-point arithmetic. For
practical purposes, we employ Qz ¼ 200 for the simula-
tions presented in this paper. The necessary roots of the
Legendre polynomials together with the corresponding
Gauss-Legendre quadrature weights can be found in the
supplementary material to Ref. [51].
Following the discretization of vz, the continuous

distributions FnðvzÞ are replaced by a discrete set Fn;j,
defined as

Fn;j ¼ wjFnðvzjÞ: ðD3Þ

With the above discrete distributions, the macroscopic
quantities e, Pl, and Tμ

μ are obtained via

e¼
XQ
j¼1

F2;j; Pl ¼
XQ
j¼1

ðvzjÞ2F2;j; Tμ
μ ¼m2

0

XQ
j¼1

F0;j:

ðD4Þ

Finally, the gradient with respect to vz appearing in
Eq. (165) is evaluated by projecting it onto the space of
Legendre polynomials, as described in Ref. [51],

�
∂½vzð1 − v2zÞFn�

∂vz

�
j
¼

XQ
j0¼1

Kj;j0Fn;j0 ; ðD5Þ

where the matrix elements of the kernel Kj;j0 can be found
in Eq. (3.54) of Ref. [54] and are not repeated here for the
sake of brevity. To summarize, Eq. (165) becomes

∂Fn;j

∂τ
þ 1

τ
½1þ ðn − 1ÞðvzjÞ2�Fn;j −

1

τ

XQ
j0¼1

Kj;j0Fn;j0

¼ −
1

τR
ðFn;j − Feq

n;jÞ: ðD6Þ

2. Anisotropic fluid-dynamics algorithm

In this section, we discuss the solutions to the equations
of anisotropic fluid dynamics, Eqs. (174)–(176).
While these equations can be directly solved for n̂, ê, and

P̂l, for the sake of convenience we recast them as evolution
equations for the parameters ðα̂; ξ;ΛÞ. This is done generi-
cally by considering that a function f∈ fn̂; ê; P̂lg describ-
ing the fluid properties depends only on the above
parameters, such that

Df ¼ ∂α̂fDα̂þ ∂ξfDξþ ∂ΛfDΛ; ðD7Þ

where ∂Af ¼ ∂f=∂A. This leads to the matrix equation,
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0
B@

∂α̂n̂ ∂ξn̂ ∂Λn̂

∂α̂ê ∂ξê ∂Λê

∂α̂P̂l ∂ξP̂l ∂ΛP̂l

1
CA
0
B@

Dα̂

Dξ

DΛ

1
CA ¼

0
B@

Sn
Se
Sl

1
CA; ðD8Þ

with source functions,

Sn ¼ −
n̂
τ
−
n̂ − neq
τR

; Se ¼ −
êþ P̂l

τ
;

Sl ¼ −
3P̂l − ÎRS240

τ
−
P̂l − P
τR

: ðD9Þ

The derivatives with respect to α̂ are simply

∂α̂n̂ ¼ n̂; ∂α̂ê ¼ ê; ∂α̂P̂l ¼ P̂l: ðD10Þ

Taking into account the expression (182), the derivatives of
n̂ with respect to ξ and Λ can be obtained as

dn̂
dξ

¼ −
n̂

2ð1þ ξÞ ;
dn̂
dΛ

¼ n̂
Λ

�
m0

Λ
H

�
m0

Λ

�
− 1

�
; ðD11Þ

with HðzÞ ¼ K3ðzÞ=K2ðzÞ. Starting from Eq. (181), the
derivatives of ê and P̂l with respect to ξ and Λ can be
obtained as

�
∂ξê

∂ξP̂l

�
¼ −

geα̂Λ4

8π2

Z
1

−1

dvzv2z
ð1þ ξv2zÞ3

�
1

v2z

�

× ½ð4þ λÞΓð4; λÞ − 3λΓð3; λÞ�;�
∂Λê

∂ΛP̂l

�
¼ geα̂Λ3

4π2

Z
1

−1

dvz

ð1þ ξv2zÞ2
�

1

v2z

�

× ½ð4þ λÞΓð4; λÞ − 3λΓð3; λÞ�: ðD12Þ

In deriving the above results, we employed the relations,

∂Γð4; λÞ
∂λ

¼ 3Γð3; λÞ − Γð4; λÞ;

∂ξλ ¼
v2zλ

2ð1þ ξv2zÞ
; ∂Λλ ¼ −

λ

Λ
: ðD13Þ

In the case where the particle number is not conserved,
α̂ ¼ Dα̂ ¼ 0, such that only the equations for ê and P̂l have
to be taken into account from Eq. (D8). Inverting the matrix
on the left-hand side of Eq. (D8) gives

�
Dξ

DΛ

�
¼ ∂ðξ;ΛÞ

∂ðê; P̂lÞ

�
∂ΛP̂l −∂Λê
−∂ξP̂l ∂ξê

��
Se
Sl

�
: ðD14Þ

The prefactor appearing on the right-hand side of the above
equation represents the Jacobian of the transformation from
ðξ;ΛÞ to ðê; P̂lÞ,

∂ðξ;ΛÞ
∂ðê; P̂lÞ

¼ 1

∂ξê∂ΛP̂l − ∂Λê∂ξP̂l
: ðD15Þ

In the case of particle-number conservation, n̂ ¼ neq and
Sn ¼ −n̂=τ, such that the equation for n̂ admits the simple
solution,

n̂ðτÞ ¼ τ0n̂0
τ

: ðD16Þ

We can view this equation as fixing the α̂ degree of
freedom, which we now seek to eliminate. Using
Eq. (D8), Dα̂ can be obtained as

Dα̂ ¼ −
1

τ
−
n̂ξ
n̂
Dξ −

n̂Λ
n̂
DΛ: ðD17Þ

With the above, Eq. (D7) becomes

Df ¼ −
f
τ
þ ΔξfDξþ ΔΛfDΛ; ðD18Þ

where we introduced the following notation:

Δξf ¼ ∂ξf −
∂ξn̂
n̂

f; ΔΛf ¼ ∂Λf −
∂Λn̂
n̂

f: ðD19Þ

We are now left with 2 degrees of freedom, ξ and Λ, whose
equations of motion read

�
Dξ

DΛ

�
¼ Δðξ;ΛÞ

Δðê; P̂lÞ

�
ΔΛP̂l −ΔΛê

−ΔξP̂l Δξê

�� ΔSe
ΔSL

�
; ðD20Þ

where

Δðξ;ΛÞ
Δðê; P̂lÞ

¼ 1

ΔξêΔΛP̂l−ΔΛêΔξP̂l
;

ΔSe ¼−
P̂l

τ
; ΔSL ¼−

2P̂l− ÎRS420
τ

−
P̂l−P
τR

: ðD21Þ

3. Runge-Kutta time integrator

In this section we give a brief description of the time
stepping algorithm. In this paper, we employ the explicit
third-order total-variation diminishing (TVD) Runge-
Kutta algorithm involving two intermediate stages; see
Refs. [51,55,56] for details. For the model equation,

∂f
∂τ

¼ L½τ; f�; ðD22Þ

this scheme allows f to be advanced from time step τn to
τnþ1 ¼ τn þ δτ as follows:
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TABLE III. The small-z expansion of the transport coefficients from Eqs. (42)–(48) and (74). The left-column corresponds to the
expansion of the coefficients obtained using the basis-free method, the right-column corresponds to the DNMR coefficients.

Basis-free coefficients DNMR coefficients

κ=τV n
12
½1 − 13z2

8
þ πz3 − ð131

64
− 19

16
LÞz4�

δVV=τV 1þ z2
2
− πz3

2
þ ð4

3
− 5L

4
Þz4 1þ z2

6
þ ð14

15
þ LÞ 5z4

12

lVΠ=τV 3β½23
12
þ Lþ ð7

6
þ LÞ 3π

2
zþ ð252π2−229

96
þ 9π2þ24

4
Lþ 9

2
L2Þz2

þð63π2−121
8

þ 27π2þ105
4

Lþ 27L2Þ π
2
z3

þð189π4−545π2
8

þ 9925
576

þ ð27π4þ142π2

4
− 399

16
Þ3Lþ 486π2þ347

4
L2 þ 87L3Þ z4

4
�

− 11β
4
½1 − 12π

11
zþ ð227

24
− 56LÞ z2

11

þð29þ 72LÞ π
22
z3

þð1117
192

þ 337
16

Lþ 168L2Þ z4
11
�

lVπ=τV βz2

48
½1þ ð31

12
þ 3LÞz2 − 5πz3

4
þ ð877

72
þ LÞ z4

8
� β

20
½1 − 7z2

24
− ð 5

12
þ LÞ 5z4

16
�

τVΠ=τV 3β½35
12
þ Lþ ð5

3
þ LÞ3πzþ ð972π2−109

96
þ 4þπ2

4
27Lþ 27L2

2
Þz2

þð153π2−137
8

þ 53þ9π2

2
3Lþ 54L2Þπz3 þ ð1107π4

32
− 1873π2

32
þ 6533

2304

þð405π4
16

þ 1551π2

8
− 9623

192
ÞLþ 2430π2þ2779

16
L2 þ 435L3

4
Þz4�

− 11β
4
½1 − 24πz

11
− ð223

8
þ 168LÞ z2

11

þð94þ 144LÞ πz3
11

þð9629
192

þ 7057
16

Lþ 840L2Þ z4
11
�

τVπ=τV βz2

8
½1þ 191þ216L

72
z2 − 5πz3

4
þ ð719

432
þ L

3
Þz4� β

20
½1þ 3z2

8
− ð37þ 12LÞ 5z4

192
�

λVV=τV 3
5
½1þ z2 − πz3 þ ð16

15
− LÞ 5z4

2
� 3

5
½1þ z2

3
þ ð14

15
þ LÞ 5z4

6
�

λVΠ=τV − 3β
4
½17
6
þ Lþ ð5

3
þ LÞ3πzþ ð81π2

4
− 71

24
þ 54π2þ215

4
Lþ 27L2Þ z2

2

þð153π2−142
8

þ 36π2þ211
8

3Lþ 54L2Þπz3 þ ð1107π4
32

− 3827π2

64
þ 1739

576

þð810π4þ6177π2

32
− 10301

192
ÞLþ 810π2þ917

16
3L2 þ 435L3

4
Þz4�

3β
4
½1 − 2πz − ð59

24
þ 14LÞz2

þð97
12
þ 12LÞπz3

þð2585
576

þ 615L
16

þ 70L2Þz4�
λVπ=τV β

16
½1 − 3z2

4
− ð701

576
þ 13L

8
Þz4� β

20
½1 − 3z2

8
þ ð 59

192
− L

16
Þz4�

TABLE II. The small-z expansion of the transport coefficients from Eqs. (36)–(41) and Eqs. (71)–(73), with L ¼ lnðeγz=2Þ and
γ ≃ 0.577 being the Euler-Mascheroni constant. The left column corresponds to the expansion of the coefficients obtained using the
basis-free method, the right column corresponds to the DNMR coefficients.

Basis-free coefficients DNMR coefficients

ζ=τΠ P z4
54
½1 − 3πz

2
þ ð29

12
− 9

2
LÞz2 − 3πz3

8
þ ð43

36
− 27

8
L − 3

2
L2Þz4�

ζ̄=τΠ P 5z4
108

½1 − 3πz
5
þ ð149

120
− 3

5
LÞz2 − 3πz3

20
þ ð 791

2880
− 7

80
LÞz4�

δΠΠ=τΠ 2
3
þ πz

4
þ ð10

9
þ 3π2

8
þ 2LÞz2 þ 3π

16
ð2þ 3π2 þ 22LÞz3

−ð263
216

þ π2

4
− 27π4

32
− 50þ189π2

24
L − 10L2Þz4

2
3
− ð29

9
þ 2LÞz2 þ 5πz3

3

þð445
216

þ 157
12

Lþ 6L2Þz4

δ̄ΠΠ=τΠ 2
3
þ πz

10
þ ð54π2−5

180
þ 2LÞ z2

5
þ ð24π2−135

200
þ LÞ 3πz3

10

þð1879
864

− 181π2

40
þ 27π4

50
þ ð27π2

5
− 65

6
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fnþ1 ¼
1

3
fn þ

2

3
fð2Þn þ 2

3
δτL

�
τn þ

δτ

2
; fð2Þn

�
;

fð2Þn ¼ 3

4
fn þ

1

4
fð1Þn þ 1

4
δτL½τn þ δτ; fð1Þn �;

fð1Þn ¼ fn þ δτL½τ; fn�: ðD23Þ

The algorithm applies straightforwardly to systems of
equations, in particular to the equations of second-order
fluid dynamics, those of leading-order anisotropic hydro-
dynamics, as well as to the Boltzmann equation written in
the form (D6).

For the Bjorken-flow simulations considered in this
paper, we employed an adaptive time step δτn ≡ δτðτnÞ,
determined via

δτn ≡minðαττn; αRτRÞ; ðD24Þ

where we used ατ ¼ 10−3 and αR ¼ 1=2 in all considered
setups (second-order hydrodynamics, leading-order aniso-
tropic hydrodynamics, kinetic theory).

4. Note on code availability

The numerical code, raw data, and scripts to generate
the plots shown in this manuscript are available as a

TABLE V. The small-z expansion of the transport coefficients from Eqs. (79)–(84) arising from the coupling of a charged fluid with
external electric and magnetic fields. The left column corresponds to the expansion of the coefficients obtained using the basis-free
method, while the right-column corresponds to the DNMR coefficients.

Basis-free coefficients DNMR coefficients
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TABLE IV. The small-z expansion of the transport coefficients from Eqs. (49)–(53) and (74). The left-column corresponds to the
expansion of the coefficients obtained using the basis-free method, the right-column corresponds to the DNMR coefficients.

Basis-free coefficients DNMR coefficients
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code capsule on Code Ocean [57]. Note that a key
ingredient in this code is the fast and accurate evaluation
of the modified Bessel functions KnðzÞ, as well as of the
Bickley function Ki1ðzÞ, which is performed using the
algorithms derived by D.E. Amos [58,59]. We are grateful
to OpenSpecfun for providing the AMOS package of

functions required for the evaluation of the modified
Bessel functions KnðzÞ.1

[1] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics
(Oxford University Press, Oxford, United Kingdom, 2013).

[2] W. A. Hiscock and L. Lindblom, Generic instabilities in
first-order dissipative relativistic fluid theories, Phys. Rev. D
31, 725 (1985).

[3] G. S. Denicol, T. Kodama, T. Koide, and P. Mota, Stability
and causality in relativistic dissipative hydrodynamics,
J. Phys. G 35, 115102 (2008).

[4] S. Pu, T. Koide, and D. H. Rischke, Does stability of
relativistic dissipative fluid dynamics imply causality?,
Phys. Rev. D 81, 114039 (2010).

[5] H. Grad, On the kinetic theory of rarefied gases, Commun.
Pure Appl. Math. 2, 331 (1949).

[6] W. Israel and J. M. Stewart, Transient relativistic thermo-
dynamics and kinetic theory, Ann. Phys. (N.Y.) 118, 341
(1979).

[7] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke,
Derivation of transient relativistic fluid dynamics from the
boltzmann equation, Phys. Rev. D 85, 114047 (2012); 91,
039902(E) (2015).

[8] F. S. Bemfica, M.M. Disconzi, V. Hoang, J. Noronha,
and M. Radosz, Nonlinear constraints on relativistic
fluids far from equilibrium, Phys. Rev. Lett. 126, 222301
(2021).

[9] J. L. Anderson and H. R. Witting, A relativistic relaxation-
time for the Boltzmann equation, Physica 74, 466 (1974).

[10] H. Struchtrup, Stable transport equations for rarefied gases
at high orders in the Knudsen number, Phys. Fluids 16, 3921
(2004).

[11] E. Molnár, H. Niemi, G. S. Denicol, and D. H. Rischke,
On the relative importance of second-order terms in rela-
tivistic dissipative fluid dynamics, Phys. Rev. D 89, 074010
(2014).

[12] J. A. Fotakis, E. Molnár, H. Niemi, C. Greiner, and D. H.
Rischke, Multicomponent relativistic dissipative fluid dy-
namics from the Boltzmann equation, Phys. Rev. D 106,
036009 (2022).

[13] D. Wagner, A. Palermo, and V. E. Ambruş, Inverse-
Reynolds-dominance approach to transient fluid dynamics,
Phys. Rev. D 106, 016013 (2022).

[14] V. E. Ambrus, E. Molnár, and D. H. Rischke, Transport
coefficients of second-order relativistic fluid dynamics in
the relaxation-time approximation, Phys. Rev. D 106,
076005 (2022).

[15] G. S. Denicol, S. Jeon, and C. Gale, Transport coefficients
of bulk viscous pressure in the 14-moment approximation,
Phys. Rev. C 90, 024912 (2014).

[16] G. S. Denicol, W. Florkowski, R. Ryblewski, and M.
Strickland, Shear-bulk coupling in nonconformal hydro-
dynamics, Phys. Rev. C 90, 044905 (2014).

[17] W. Florkowski and R. Ryblewski, Highly-anisotropic and
strongly-dissipative hydrodynamics for early stages of
relativistic heavy-ion collisions, Phys. Rev. C 83, 034907
(2011).

[18] R. Ryblewski and W. Florkowski, Non-boost-invariant
motion of dissipative and highly anisotropic fluid, J. Phys.
G 38, 015104 (2011).

[19] R. Ryblewski and W. Florkowski, Highly-anisotropic
hydrodynamics in 3þ 1 space-time dimensions, Phys.
Rev. C 85, 064901 (2012).

[20] M. Martinez and M. Strickland, Dissipative dynamics of
highly anisotropic systems, Nucl. Phys. A848, 183 (2010).

[21] M. Martinez and M. Strickland, Non-boost-invariant aniso-
tropic dynamics, Nucl. Phys. A856, 68 (2011).

[22] M. Martinez, R. Ryblewski, and M. Strickland, Boost-
invariant (2þ 1)-dimensional anisotropic hydrodynamics,
Phys. Rev. C 85, 064913 (2012).

[23] D. Bazow, U.W. Heinz, and M. Strickland, Second-order
(2þ 1)-dimensional anisotropic hydrodynamics, Phys. Rev.
C 90, 054910 (2014).

[24] D. Bazow, U.W. Heinz, and M. Martinez, Nonconformal
viscous anisotropic hydrodynamics, Phys. Rev. C 91,
064903 (2015).

[25] L. Tinti and W. Florkowski, Projection method and new
formulation of leading-order anisotropic hydrodynamics,
Phys. Rev. C 89, 034907 (2014).

[26] L. Tinti, Anisotropic matching principle for the hydro-
dynamic expansion, Phys. Rev. C 94, 044902 (2016).

[27] E. Molnar, H. Niemi, and D. H. Rischke, Derivation of
anisotropic dissipative fluid dynamics from the Boltzmann
equation, Phys. Rev. D 93, 114025 (2016).

[28] E. Molnár, H. Niemi, and D. H. Rischke, Closing the
equations of motion of anisotropic fluid dynamics by a
judicious choice of a moment of the Boltzmann equation,
Phys. Rev. D 94, 125003 (2016).

[29] M. Alqahtani, M. Nopoush, and M. Strickland, Relativistic
anisotropic hydrodynamics, Prog. Part. Nucl. Phys. 101,
204 (2018).

[30] S. R. de Groot, W. A. van Leeuwen, and C. G. van Weert,
Relativistic Kinetic Theory: Principles and Applications
(North-Holland Publishing Company, Amsterdam, 1980).

[31] G. S. Denicol and D. H. Rischke, Microscopic Foundations
of Relativistic Fluid Dynamics (Springer International Pub-
lishing AG, New York, 2022).

1Source files downloaded from https://github.com/JuliaMath/
openspecfun, commit number 70239b8d1fe351042a-
d3321e33ae97923967f7b9.

AMBRUŞ, MOLNÁR, and RISCHKE PHYS. REV. D 109, 076001 (2024)

076001-32

https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1088/0954-3899/35/11/115102
https://doi.org/10.1103/PhysRevD.81.114039
https://doi.org/10.1002/cpa.3160020403
https://doi.org/10.1002/cpa.3160020403
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevLett.126.222301
https://doi.org/10.1103/PhysRevLett.126.222301
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1063/1.1782751
https://doi.org/10.1063/1.1782751
https://doi.org/10.1103/PhysRevD.89.074010
https://doi.org/10.1103/PhysRevD.89.074010
https://doi.org/10.1103/PhysRevD.106.036009
https://doi.org/10.1103/PhysRevD.106.036009
https://doi.org/10.1103/PhysRevD.106.016013
https://doi.org/10.1103/PhysRevD.106.076005
https://doi.org/10.1103/PhysRevD.106.076005
https://doi.org/10.1103/PhysRevC.90.024912
https://doi.org/10.1103/PhysRevC.90.044905
https://doi.org/10.1103/PhysRevC.83.034907
https://doi.org/10.1103/PhysRevC.83.034907
https://doi.org/10.1088/0954-3899/38/1/015104
https://doi.org/10.1088/0954-3899/38/1/015104
https://doi.org/10.1103/PhysRevC.85.064901
https://doi.org/10.1103/PhysRevC.85.064901
https://doi.org/10.1016/j.nuclphysa.2010.08.011
https://doi.org/10.1016/j.nuclphysa.2011.02.003
https://doi.org/10.1103/PhysRevC.85.064913
https://doi.org/10.1103/PhysRevC.90.054910
https://doi.org/10.1103/PhysRevC.90.054910
https://doi.org/10.1103/PhysRevC.91.064903
https://doi.org/10.1103/PhysRevC.91.064903
https://doi.org/10.1103/PhysRevC.89.034907
https://doi.org/10.1103/PhysRevC.94.044902
https://doi.org/10.1103/PhysRevD.93.114025
https://doi.org/10.1103/PhysRevD.94.125003
https://doi.org/10.1016/j.ppnp.2018.05.004
https://doi.org/10.1016/j.ppnp.2018.05.004
https://github.com/JuliaMath/openspecfun
https://github.com/JuliaMath/openspecfun
https://github.com/JuliaMath/openspecfun


[32] F. Jüttner, Das Maxwellsche Gesetz der Geschwindigkeits-
verteilung in der Relativtheorie, Ann. Phys. 339, 856 (1911).

[33] C. Cercignani and G.M. Kremer, The Relativistic Boltz-
mann Equation: Theory and Applications (Springer, New
York, 2002).

[34] D. Bazow, G. S. Denicol, U. Heinz, M. Martinez, and
J. Noronha, Nonlinear dynamics from the relativistic Boltz-
mann equation in the Friedmann-Lemaître-Robertson-
Walker spacetime, Phys. Rev. D 94, 125006 (2016).

[35] G. S. Denicol and J. Noronha, Exact results for the Boltz-
mann collision operator in λϕ4 theory, Phys. Lett. B 850,
138487 (2024).

[36] D. Wagner, V. E. Ambruş, and E. Molnár, Analytical
structure of the binary collision integral and the ultra-
relativistic limit of transport coefficients of an ideal gas,
arXiv:2309.09335.

[37] L. Landau and E. M. Lifshitz, Fluid Dynamics, 2nd Edition
(Butterworth-Heinemann, 1987).

[38] G. S. Denicol, X.-G. Huang, E. Molnár, G. M. Monteiro, M.
Gustavo, H. Niemi, J. Noronha, D. H. Rischke, and Q.
Wang, Non-resistive dissipative magnetohydrodynamics
from the Boltzmann equation in the 14-moment approxi-
mation, Phys. Rev. D 98, 076009 (2018).

[39] G. S. Denicol, E. Molnár, H. Niemi, and D. H. Rischke,
Resistive dissipative magnetohydrodynamics from the
Boltzmann-Vlasov equation, Phys. Rev. D 99, 056017
(2019).

[40] P. Romatschke and M. Strickland, Collective modes of an
anisotropic quark gluon plasma, Phys. Rev. D 68, 036004
(2003).

[41] H. Niemi, E. Molnár, and D. H. Rischke, The right choice of
moment for anisotropic fluid dynamics, Nucl. Phys. A967,
409 (2017).

[42] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs and Mathematical
Tables, 10th Printing (National Bureau of Standards,
Washington DC, USA, 1972).

[43] J. D. Bjorken, Highly relativistic nucleus-nucleus collisions:
The central rapidity region, Phys. Rev. D 27, 140 (1983).

[44] W. Florkowski, R. Ryblewski, M. Strickland, and L. Tinti,
Leading-order anisotropic hydrodynamics for systems with
massive particles, Phys. Rev. C 89, 054909 (2014).

[45] M. Nopoush, R. Ryblewski, and M. Strickland, Bulk
viscous evolution within anisotropic hydrodynamics, Phys.
Rev. C 90, 014908 (2014).

[46] M. Albright and J. I. Kapusta, Quasiparticle theory of
transport coefficients for hadronic matter at finite temper-
ature and baryon density, Phys. Rev. C 93, 014903
(2016).

[47] P. Chakraborty and J. I. Kapusta, Quasi-particle theory of
shear and bulk viscosities of hadronic matter, Phys. Rev. C
83, 014906 (2011).

[48] F. W. Olver, D.W. Lozier, R. F. Boisvert, and C.W. Clark,
NIST Handbook of Mathematical Functions Hardback
and CD-ROM (Cambridge University Press, Cambridge,
England, 2010).

[49] W. Florkowski, E. Maksymiuk, R. Ryblewski, and M.
Strickland, Exact solution of the (0þ 1)-dimensional Boltz-
mann equation for a massive gas, Phys. Rev. C 89, 054908
(2014).

[50] P. Romatschke, M. Mendoza, and S. Succi, A fully
relativistic lattice Boltzmann algorithm, Phys. Rev. C 84,
034903 (2011).

[51] V. E. Ambrus and R. Blaga, High-order quadrature-based
lattice Boltzmann models for the flow of ultrarelativistic
rarefied gases, Phys. Rev. C 98, 035201 (2018).

[52] A. Gabbana, M. Mendoza, S. Succi, and R. Tripiccione,
Kinetic approach to relativistic dissipation, Phys. Rev. E 96,
023305 (2017).

[53] A. Gabbana, D. Simeoni, S. Succi, and R. Tripiccione,
Relativistic lattice Boltzmann methods: Theory and appli-
cations, Phys. Rep. 863, 1 (2020).

[54] V. Ambrus, L. Bazzanini, A. Gabbana, D. Simeoni, R.
Tripiccione, and S. Succi, Fast kinetic simulator for rela-
tivistic matter, NATO ASI series Series F, Computer and
system sciences 2, 641 (2022).

[55] C.-W. Shu and S. Osher, Efficient implementation
of essentially non-oscillatory shock-capturing schemes,
J. Comput. Phys. 77, 439 (1988).

[56] S. Gottlieb and C.-W. Shu, Total variation diminishing
Runge-Kutta schemes, Math. Comput. 67, 73 (1998).

[57] Victor E. Ambruş, Non-conformal Bjorken flow: Second-
order viscous hydrodynamics, anisotropic hydrodynamics
and RTA kinetic theory (Code Ocean, 2023), 10.24433/
CO.1942625.v2.

[58] D. E. Amos, Computation of Bessel functions of complex
argument and large order, 10.2172/5903937 (1983).

[59] D. E. Amos, Algorithm 609: A portable FORTRAN sub-
routine for the Bickley functions Kin (x), ACM Trans. Math.
Softw. 9, 480 (1983).

RELATIVISTIC SECOND-ORDER DISSIPATIVE AND … PHYS. REV. D 109, 076001 (2024)

076001-33

https://doi.org/10.1002/andp.19113390503
https://doi.org/10.1103/PhysRevD.94.125006
https://doi.org/10.1016/j.physletb.2024.138487
https://doi.org/10.1016/j.physletb.2024.138487
https://arXiv.org/abs/2309.09335
https://doi.org/10.1103/PhysRevD.98.076009
https://doi.org/10.1103/PhysRevD.99.056017
https://doi.org/10.1103/PhysRevD.99.056017
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1016/j.nuclphysa.2017.05.038
https://doi.org/10.1016/j.nuclphysa.2017.05.038
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevC.89.054909
https://doi.org/10.1103/PhysRevC.90.014908
https://doi.org/10.1103/PhysRevC.90.014908
https://doi.org/10.1103/PhysRevC.93.014903
https://doi.org/10.1103/PhysRevC.93.014903
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevC.89.054908
https://doi.org/10.1103/PhysRevC.89.054908
https://doi.org/10.1103/PhysRevC.84.034903
https://doi.org/10.1103/PhysRevC.84.034903
https://doi.org/10.1103/PhysRevC.98.035201
https://doi.org/10.1103/PhysRevE.96.023305
https://doi.org/10.1103/PhysRevE.96.023305
https://doi.org/10.1016/j.physrep.2020.03.004
https://doi.org/10.1038/s43588-022-00333-x
https://doi.org/10.1038/s43588-022-00333-x
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.24433/CO.1942625.v2
https://doi.org/10.24433/CO.1942625.v2
https://doi.org/10.2172/5903937
https://doi.org/10.1145/356056.356064
https://doi.org/10.1145/356056.356064

