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In this paper, we study all transport coefficients of second-order dissipative fluid dynamics derived by
V.E. Ambrus et al. [Phys. Rev. D 106, 076005 (2022)] from the relativistic Boltzmann equation in the
relaxation-time approximation for the collision integral. These transport coefficients are computed for a
classical ideal gas of massive particles, with and without taking into account the conservation of intrinsic
quantum numbers. Through rigorous comparison between kinetic theory, second-order dissipative fluid
dynamics, and leading-order anisotropic fluid dynamics for a (0 + 1)-dimensional boost-invariant flow
scenario, we show that both fluid-dynamical theories describe the early far-from-equilibrium stage of the

expansion reasonably well.
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I. INTRODUCTION

During the last decades, relativistic fluid dynamics has
assumed an important role in describing the space-time
evolution of matter created in ultrarelativistic heavy-ion
collisions, in binary mergers of neutron stars, as well as in
the early Universe [1]. Relativistic fluid dynamics is an
effective field theory based on the local conservation of
energy and momentum, 9,7*" =0, where T* is the
energy-momentum tensor of the fluid, and of multiple
conserved charges, e.g., electric charge, baryon number,
strangeness, etc., ,N? = 0, where N¥ is the four-current
associated with the ith charge.

For the sake of simplicity, in this paper we will consider a
single species of particle of rest mass m. In this case, there
is at most one independent conserved charge, to which—in a
slight abuse of notation—we refer to as “particle number” in
the following. Therefore, the five conservation equations
contain in general 14 dynamical fields, five of which occur
for dissipative as well as for ideal fluids: the particle-number
density n, the energy density e, and the fluid four-velocity u*,
chosen for instance as the timelike eigenvector of the energy-
momentum tensor. The pressure P is not an independent
field, as it is given by an equation of state, P(e, n), for the
matter under consideration. For an ideal fluid, i.e., a fluid in
local thermodynamical equilibrium, the five conservation
equations contain five dynamical fields and are thus closed.
For dissipative fluids, however, there are nine additional
fields that account for irreversible processes: the bulk
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viscous pressure I1, the particle diffusion current V¥, and
the shear-stress tensor z#*. In order to close the system of
equations of motion, additional equations, sometimes called
constitutive relations, have to be specified. The simplest
example is Navier-Stokes theory, where I1, V¥, and 7/ are
proportional to first-order gradients of e, n, and u”, and
which therefore belongs to the class of so-called first-order
fluid-dynamical theories. The proportionality coefficients
are the three first-order transport coefficients related to
different nonequilibrium transport phenomena: the bulk-
viscosity coefficient {, the particle-diffusion coefficient «,
and the shear-viscosity coefficient 7. Relativistic Navier-
Stokes theory is, however, acausal and unstable [2—4]. One
way to cure this problem is to derive fluid dynamics from the
relativistic Boltzmann equation, applying Grad’s method of
moments [5], leading to the 14-moment approximation of
Israel and Stewart for relativistic systems [6].

The moment equations up to tensor-rank 2 are truncated
based on a power-counting scheme in Knudsen and inverse
Reynolds numbers [7]. The Knudsen number Kn is the ratio
of the particle mean free path and a characteristic macro-
scopic scale, while the inverse Reynolds number Re! is
the ratio of an out-of-equilibrium and a local-equilibrium
macroscopic field. The resulting equations of motion
contain terms up to second-order in Knudsen and/or inverse
Reynolds numbers.

In these so-called second-order theories of relativistic
dissipative fluid dynamics, dynamical equations of motion
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for the dissipative fields provide closure for the conserva-
tion laws and, under certain conditions, also ensure
causality and stability [3,4,8]. These equations of motion
are of relaxation type, i.e., the dissipative fields relax onto
their respective values given by first-order Navier-Stokes
theory on certain timescales. In addition to the first-order
transport coefficients £, k, and #, these relaxation equations
contain additional second-order transport coefficients: five
in the equation for bulk viscous pressure, eight in the
equation for the particle diffusion current, and six in the
equation for the shear-stress tensor.

In this paper, we will study all first- and second-order
transport coefficients appearing in relativistic second-order
dissipative fluid dynamics with 14 dynamical moments
obtained from the Boltzmann equation in the Anderson-
Witting relaxation-time approximation (RTA) of the colli-
sion integral [9], using the method of moments coined
DNMR [7]. These transport coefficients explicitly depend
on the approximations made for the moments which are
nondynamical and lie outside of the truncation. In order to
compare the magnitude of various terms and the coefficients
accompanying them we assume that the Knudsen and the
inverse Reynolds numbers are of the same magnitude,
Kn ~Re™!, as for instance is the case in Navier-Stokes
theory. This has lead to the so-called order-of-magnitude
approximation, where nondynamical moments are replaced
by dynamical moments of order Re™' [10-14].

When approximating the collision term in RTA all
equations of motion up to tensor-rank 2 contain first-order
terms ~O(Kn) or ~O(Re™!), while all second-order terms
in these equations are of order O(KnRe™!); i.e., there are
no terms of order O(Kn?) or O(Re™?). Moreover, the
diagonal nature of the RTA collision term allows the
negative-order nondynamical moments to be represented
by dynamical moments of order Re~!, without reference to
a specific basis of moments. This leads to the so-called
basis-free (BF) approximation of Ref. [14], which we also
adopt here.

For the sake of completeness here we will review and
compare both the BF and the standard DNMR approxima-
tions for the transport coefficients for a classical ideal gas of
massive particles. Furthermore, with these new results we
will also inspect the evolution of the bulk viscous and shear-
stress pressure components, including all cross-coupling
coefficients, the so-called bulk-shear coupling in second-
order fluid dynamics. Earlier studies [15] only computed the
second-order coefficients of the bulk viscous pressure
without taking into account the consequences of particle-
number conservation and particle diffusion. Similarly, the
effects of bulk-shear coupling was discussed for noncon-
formal fluids without explicit particle-number conservation
in Ref. [16]. Therefore, here we also aim to fill these gaps
and study all transport coefficients both with and without
explicit particle-number conservation in both the BF and the
DNMR approximations.

For systems with large initial momentum anisotropy, the
framework of anisotropic fluid dynamics was recently
developed [17-29]. This framework implicitly includes
the bulk viscous and shear-stress viscous pressure compo-
nents; hence we will also study the bulk-shear coupling in
leading-order anisotropic fluid dynamics. The results are
also compared to an exact solution of Boltzmann equation
in the context of a (0 + 1)-dimensional boost-invariant
expansion both with and without explicit particle-number
conservation.

This paper is organized as follows. For reasons of
completeness, in Sec. II we review the DNMR method
of moments to obtain the equations of relativistic dissipa-
tive second-order fluid dynamics in the 14-moment
approximation from the Boltzmann equation. The first-
and second-order transport coefficients are listed in both
the BF and the DNMR approximations in Sec. [T A. In
Sec. II B, we obtain the transport coefficients in case there
are no conserved charges, while for the purpose of supple-
menting Ref. [14], in Sec. IIC we also list the transport
coefficients of magnetohydrodynamics for a massive ideal
gas. Next, in Sec. III, we present the equations of leading-
order anisotropic fluid dynamics. The explicit calculations
of the transport coefficients for a classical ideal gas of
massive particles are presented in Sec. IV. Their properties
and graphical representations are discussed in Sec. V. The
methods and applications in the case of a (0 4 1)-dimen-
sional boost-invariant expansion are described in Sec. VI.
The results and comparisons to the exact numerical solution
of the Boltzmann equation of second-order fluid dynamics
as well as to leading-order anisotropic fluid dynamics are
discussed in Sec. VII. We conclude this work in Sec. VIIL
For reasons of brevity additional computations and useful
relations are relegated to the Appendixes.

A. Notation, conventions, and definitions

In this paper, we will work in flat space-time with metric
tensor g,, = diag(1,—1,—1,—-1) and adopt natural units
h=c=kp=1. The rank-four Levi-Civitd symbol is
e = +1 for (uvaP) an even/odd permutation of
(0123), and zero otherwise. Symmetrization of a tensor
A" is denoted as A = % (A* + A¥), while antisymmet-
rization is denoted as A} = % (A — A¥"). Symmetrization
can also be done with respect to more than two indices, in
which case the normalization factor has to be adjusted
accordingly, for details see, e.g., Ref. [30]. The timelike
normalized fluid-flow four-velocity is denoted by
w =y(1,v), where y = (1 —v*)""/2 and w'u, = 1. The
local rest frame (LRF) of the fluid is defined by
uf e = (1,0). The projection operator orthogonal to u*
is defined as A" = ¢"* — u#u’. The symmetric and traceless
projection tensors of rank 2Z orthogonal to u¥, Ay!}7, are
constructed using rank-two projection operators A*, for
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details see, e.g., Ref. [31]. The respective projection of a
tensor A¥1#¢ is denoted as AW #e) = AR AV e,

The spacelike normalized anisotropy four-vector ortho-
gonal to the fluid four-velocity is denoted by ¢, with
u,l" =0 and [,I" = —1. The projection operator orthogo-
nal to both u# and [* is denoted by B = ¢ — utu + M1V
The rank 2¢ symmetric and traceless projection tensors
orthogonal to both u* and [/, E’y‘l‘ ., are constructed usmg
the projection operators Z#* in a similar way as for AJ!}7,
for details see Refs. [27,31]. The respective projection of a
tensor A¥1"# is denoted as Alwineh = Zhh Avive,

The particle four-momentum is k* = (k% k), where
kY = \/k? + m} is the on shell energy with the three-
momentum K and the rest mass my = /k*k,. The four-
momentum is decomposed as k¥ = Ey, u" + k) =
Ey i + Egl* + k", where Ey, = k‘u, is the energy
of the particle, while KW = Ak, is the momentum
orthogonal to the flow velocity. Furthermore, Ey; =
—k*1, is the particle momentum in the direction of the
anisotropy, and k{#} = 2k, are the components of the
momentum orthogonal to both u* and /¥.

The four-gradient is decomposed as 9, =u,D +V,,
where D = u#9, is the comoving derivative (sometimes
also denoted by an overdot, DA = A), and V” =Aj0, =
dyyy is the gradient operator. Therefore, d,u, = u,Du,+
V,u, = u,it, +4 30A,, + 06, + @, Where 6 = V, u# is the

v = Vyy) — 3«9A”” is the
shear tensor, and " = VWFu is the fluid vorticity.
Similarly, one can decompose 9, with respect to u”, I*,

and B, as d, = u,D + [,D; + 6,4, where D; = -9, and
Y

expansion scalar, o' = V<”

4 = E,,0° = 0y, are gradient operators.
The state of local equilibrium is specified by the Jiittner
distribution [32],

fox = [exp (BEx, —a) +a]™", (1)

with a = pp, where u is the chemical potential and
p=1/T is the inverse temperature, while a = +1 for
fermions/bosons and a — 0 for Boltzmann particles.
Furthermore, we define the abbreviation fo = 1 — afoy.

The equilibrium moments of tensor-rank n of power i in
energy Ey, are defined as [6]

/2]
T = (Bl k- k) = Z (=1)by 10y
q=0
x AW Lo AR 1Fog yFogi .. uﬂn)’ (2)

where the angular brackets denote the momentum-
space integrals (---)o= [dK---fo, over the local-
equilibrium distribution. Here, dK = gd’k/[(27)*k"] is

the Lorentz-invariant measure, while ¢ is the degeneracy
factor of a momentum state.

The equilibrium moments (2) were expanded with the
help of w*, A", and the thermodynamic integrals /;., ;.
where n and ¢ are natural numbers, while the sum runs up
to |n/2] denoting the largest integer which is less than or
equal to n/2. The total number of symmetrized tensors
AC... 1) is given by bng = W'—M)" while
(=17

3o i G Ak, ()

Inq ((Z, /B)
where (2g + 1)!! = (2¢ + 1)!/(244!) is the double facto-
rial of odd numbers.

The derivatives of 1,, with respect to a and f lead to
auxiliary thermodynamic integrals,

ol o1,
(52), =),

—1)¢ n— a b
(251 +)1)u/dKEkuzq(A Pkakp)*foif o

= ﬂ [ n—1,q—1 + (}’l - 2q)ln—l,q]' (4)

Following Refs. [27,28] the local distribution function of
an anisotropic state as a function of &, ﬁu, and ﬁl, as well as
of Ey, and Ey,, is denoted by fox (&, BuExu. B1Ex;). In the
limit of vanishing anisotropy parameter ﬁ[ the anisotropic
distribution converges to the distribution function in local
equilibrium,

Tugla. p) =

1im foi (&, BuExs BiExi) = fox (6. BuEx)- (5)

=0
In analogy to the equilibrium moments (2), the moments

of tensor rank n of the anisotropic distribution function fy
are defined as [27]

jﬂ:]]ﬂ = (Ei E{(lkﬂl ekt

(n/2)n— 2(1
- E E nrq 1+j+n.j+r,q
q=0 r=0
X E(Hlﬂz <o BHag-1H2g [H2g+1 oL [Hagir Mgl uﬂn) , (6)

where ()5 = f dK(-- fOk, and the number of permu-

tations leadmg to the symmetrized tensors Z(---[--- 1) is
by = n!(2g —1)1'/[(2¢)!r!(n —2q —r)!]. The aniso-
tropic thermodynamic integrals fn,q are defined as

(=1)¢

jnrq(d7ﬁuuél> = —><Eﬁur_2qE£l(—lwk k ) > (7)
where (2¢)!! =29q! is the double factorial of even
numbers.
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II. FLUID DYNAMICS FROM
THE BOLTZMANN EQUATION

The space-time evolution of the single-particle distribu-
tion function without external forces is given by the
relativistic Boltzmann equation [30,33],

ko, fi = Cf]. (8)

where C[f] is the collision term representing the interaction
among particles through collisions. The collision term is a
nonlinear momentum integral in the single-particle distri-
bution function with only a few analytical solutions known
in the linearized regime [34-36].

For the sake of simplicity, from here on we will use the
Anderson-Witting relaxation-time approximation (RTA)
for the linearized collision integral [9,30,33],

E
Clf] = =6/, ©)
TR
where the deviation of the single-particle distribution from
local equilibrium is defined as

6fx = fx = fox (10)

and where the relaxation time 7z = 7(x*) is a momentum-
independent parameter proportional to the mean free time
between collisions. The relaxation time allows to introduce
a power-counting scheme in terms of the Knudsen number
Kn = 7, /L, where L is a typical fluid-dynamical length or
timescale, for the derivation of fluid dynamics from the
equations of motion for the irreducible moments,

Pl = <Eﬁuk<ﬂl "‘k””>>5» (11)

where (---)s= [dK ---8f), and r denotes the power of
energy, while the irreducible tensors, K. o) =
AL k- ke, form an orthogonal basis [7,30].

Using the comoving derivative of the irreducible

moments, pﬁ”"""” = A} Dpyt ", the equations of fluid

dynamics are derived from the various moments of the
Boltzmann equation (8). Up to tensor rank 2, these
equations of motion are

(0)

pr—C,_1 = a6 + (higher-order terms), (12)

p@ - C§”_>1 = aVVrg + (higher-order terms), (13)

e —c S’i ”1) = 2aP o™ + (higher-order terms), (14)
(i1t

where the irreducible moments C,”, of the collision

term are computed substituting Eq. (9),

r—1

Loy
Cclte) E/dKE{(;le" k) Clf] = ——pi M (15)
TR

The higher-order contributions to Eqs. (12)—(14) are found
in Egs. (35)—(37) of Ref. [7], but are not listed here for the

sake of brevity. Furthermore, the coefficients a(f) are

defined by, see also Egs. (42)-(46) of Ref. [7],

0 n
o = I, —— (hG,, — Gs,), (16)
Dy
J
atl) = Jri11 — rzz’l ’ (17)
0552) = ﬁ‘]r+3,2v (18)

where h = (e + P)/n is the enthalpy per particle and
Gnm :JnOJmO _Jn—l,OJm+l.09 (19)

an = JnJrl,qJn—l.q - J}%C] (20)

A. Second-order fluid dynamics
with particle-number conservation

The conservation laws of fluid dynamics read

9,N* =0, 0,T" =0, (21)
where the particle four-current and energy-momentum
tensor are

Nt = (k) + (k)5 = (n+pu + V¥, (22)

T = (1) + (R,
= (e + py)utu” — (P + I)A* + gz, (23)

The energy-momentum tensor is defined in the Landau
frame [37] where the timelike eigenvector of the energy-
momentum tensor is u* = T"u,/(u,T%uz), and hence

P = (Ex,k")s =0. The chemical potential and the
temperature are determined from the Landau matching
conditions [9],

p1 = (Ex)s =0, pr = (Eg,); = 0. (24)
The particle density, energy density, and isotropic pressure
in equilibrium are

1
n= (B e=(B)y  P=-3(8uk)  (29)
Since f( only depends on two thermodynamic state
variables, a and f, the first two equations can be solved

for the latter, yielding a(e,n) and f(e, n). Inserting this
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into the last equation defines the equation of state of

matter under consideration, P(a(e, n), f(e,n)) = P(e, n).
The bulk viscous pressure, the particle diffusion four-

current, and the shear-stress tensor are defined by

2

1
M= -~ (A, k), = =20 py. (26)

3 3
VH = (kW) = pf, (27)
o = (k) = pl, 28)

Second-order fluid dynamics in the approximation with
14 dynamical moments contains 1 + 4 conservation equa-
tions (21), and additionally 1 + 3 + 5 equations of motion
for the lowest-order moments, i.e., r = 0, in Egs. (12)—(14).
These irreducible moments, py, pf, and pj’, identified in
Egs. (26)—(28), are then dynamical moments. The remaining
nondynamical moments for r # 0 can be determined from
the dynamical moments using an expansion of the single-
particle distribution function around fy, see Ref. [7] for
details,

o Ny
~ L %
5fi = foufox D D P kyy -k HiGL (29)
=0 n=0

The coefficient an) is a polynomial in energy of order N,
where in principle N, — oo, see Appendix A for details,
and it is used to define,

£
S S )

Therefore any irreducible moment with tensor rank ¢ of
arbitrary order r can be expressed as a linear combination of
rank-Z moments with positive order n > 0,

Ng

p/:ltl':””f _ Zpﬁ]m”ffgz’n. (31)

n=0

Using these steps and approximations the general form
of the second-order equations of motion for I1, V¥, and 7*¥
reads, for more details see the derivation of Egs. (70)—(72)
of Ref. [7],

THH + 1= —5;9 - fHVVMV” - THVvMI;l”

- 5[11‘[1_[9 - ﬂnvvﬂvﬂa + ﬂnﬂﬂﬂbdﬂy, (32)

Tvv<”> + V” = KV”a - TVVUa)”” - 5\/Vvﬂ9
- fVHV”H + z,”VﬂA””Vﬂz’ly + Tvnnuﬂ
- Tvﬂﬂ"wl;ll, - XVVVDO"”’

+ ﬂvnnv’la - /lvn.ﬂ'lwvya, (33)

7,7 4 g = 2pet + 21 71'/<1 L

- Tﬂﬂﬂ’1</‘0'/1> + AIle™ — 7, V¥

+ £y VEVE 4 ) VeV g, (34)

where 7, 7y, and 7, are different relaxation times. Note
that in the RTA the relaxation times are strictly equal to
the model parameter, 7z = r; = 7y = 7,. However, for the
sake of clarity we will use different subscripts for the
corresponding relaxation times.

From Eqgs. (12)—(14) the first-order transport coefficients
for the moments with energy index r are

2
(= Tnﬂago), K, = Tvagl), n, = T”aﬁz). (35)

3

while § = {, k = kg, and n = 5 are the first-order trans-
port coefficients of the bulk viscosity, the particle diffusion,
and the shear viscosity, respectively.

For the sake of completeness, we recall all transport
coefficients in RTA; see Eqs. (96)—(112) of Ref. [14]. The
coefficients appearing in Eq. (32) are

m
(= THTOa(()O), (36)
2 m G20 m2 0
O = o <3 30 DZO"‘?OR(—%O ) (37)
my (Gao ()
fHV:TH? D—ZO_R_]’O . (38)
2 (1)
my (G IR-i
nv = — T 3 (D20 oI j ) (39)
m2 1>0 ] aR
Iy = =1 =2 ~ , 40
v m 3 < h op > ( )
m2
g = =0 ( r9), ) (41)

The transport coefficients in the diffusion equation are
mg o)
+?R_2’0 , (42)

K = Tvagn, 5VV =Ty <1

T
fn= (1=hRG ). ¢y,

(0)
Ty IR 1o
(o pe 44
v h( aln/}>’ (44)

=2L(1-hRE,). (@3)

076001-5



AMBRUS, MOLNAR, and RISCHKE

PHYS. REV. D 109, 076001 (2024)

(2)
Ty IR 1o
=—\(1-h = |, 45
Tvr h < 6lnﬁ ) ( )
3 2m?
Ayy =1y —+ﬂR(—12)0 , (46)
5 5
(R R
vil = Ty P hop ) ( )
oR%, 10R%,
/1V TV a h aﬂ . (48)

Finally, the transport coefficients appearing in the
equation for the shear-stress tensor (34) are

4 2
n= TﬂaE)Z) ) Onn = Tz <§ + %R(—?O) ’ (49)
10 4
Tor = Tn < 7 mO R—Z 0> (50)
6 2m3
’IJIH =1z (5 == R—Z O) (51)
2m} 573(_11).0 2m§ )
WSS Gy (v = g Rele ()
(1)
2mg R —10 , 19R 4
Ay = T s ( e T op (53)

Here, the ratio R%) in the so-called basis-free approach of
Ref. [14] is defined as

0 _a’
RY :af)”)' (54)

As the name suggests, in this approximation the negative-
order moments can be obtained without employing basis-
dependent representations as in Eq. (29).

Therefore, in the approximation with 14 dynamical
moments, for any r # 0, both positive and negative, we
use the following approximation for the nondynamical
moments,

0
prio = =3 R, (55)
0
Prso = Ry V-, (56)
Pl = R m, (57)

where

RO= UK @) M sy
r0 C r0 K r0 n ( )

Note that these second-order transport coefficients can
also be obtained in the case of a linearized binary collision

integral [7], where C = Z p” R with the
following replacements

No
RO 79— 35 FU0.  (59)
n=0,#1,2
Ny
R(—lr),o - y(ré) = F &}1)95,10), (60)
n=0,#1
N,
R0 =10 =Y Frg. (61)
n=0

where Q%) diagonalizes the binary collision matrix .A(ri).

The RTA collision term (9) leads to Am = T: and

Q%) =0,,, while the moments with negative order,
PiLE, according to the DNMR approach [7] read

3
por = 7oL (62)
0
Pl ylg v, (63)
Py . (64)

Without going through the detailed derivation of Ref. [14],
the difference between these two approaches is due to a
slightly different treatment of the negative-order moments.
As such, in the standard DNMR approximation, the basis-

free ratios R(_f;)’o are replaced by y(fo). The corresponding

y(r? =F %) coefficients are calculated in Appendix A.

B. Second-order fluid dynamics without
particle-number conservation

The case where there are no conserved quantum charges is
equivalent to setting 4 = a = 0. Thus, the particle four-flow
N* is no longer conserved, d,N* # 0, while asl)vﬂa =0
in Eq. (13) also vanishes identically. This implies that the
vector moments p, become of second order with respect to
the Knudsen and inverse Reynolds numbers. This in turn
leads to third-order contributions to the equations of motion
for the scalar and tensor moments, p, and p}”, which are then
ignored in second-order fluid dynamics.

The conservation equation for energy and momentum,
0,T" =0, is closed by the relaxation equations for p, =

—3 T and p}’ = 7. The evolution equation for the tensor
”10 0
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moments p,” remains unchanged compared to Eq. (37) of
Ref. [7]. However, the equation for the scalar moments, see
Eq. (35) of Ref. [7], including that for the bulk viscous
pressure changes due to fact that the chemical potential is
kept constant; i.e., da = du = 0. Hence this leads to the
following equation of motion:

J
pr=Coy =0+ [(r= 12ty =0,
30

0 J,
+3 m(z)(r_l)pr—Z_(r+2)pr+3Ll’0H .

(65)

In this case, the definition of the transport coefficient a£°)

0

changes from Eq. (16), and it will be denoted by &; "’ in the

following. Thus,

_(0 .
a) = ~BJ i1 + BT 0, (66)

oP
de

The above equation and the value of the coefficient are
obtained by replacing

where ¢2 = ( )ﬂ = J31/J30 is the speed of sound squared.

@”_:O) _ 10 &”_:0)0’ (67)

D20 JSO ’ D20

in Egs. (12) and (16), which also leads to the following
replacements:

(68)

We stress that the notation «t5 employed in Egs. (67)
and (68) does not mean the ¢ — 0 limit of the expressions
on the left-hand side, but rather the result when particle
number is not conserved. Note that now the nondynamical
scalar moments from Eq. (55) are expressed through

p#oz—%fzﬁ?n, while Eq. (57) stays unchanged in
0
the basis-free approximation. Furthermore, the second-
order DNMR coefficients follow using the replacements
RO = 79 and R = 7,5,
The second-order relaxation equations corresponding to

bulk viscous pressure and shear-stress tensor are different
from Egs. (32)—(34), and now reduce to

tll + 11 = =0 — Sppl16 + A, 16, (69)

T, 7W) + g = 2pott + 21',,77&” WV — 5, 70

- TME’WO'Z) + AqIlo™. (70)

These equations and coefficients were first obtained in
Ref. [15] in the standard DNMR approximation. The
transport coefficients in the basis-free approximation in
the equation of the bulk viscous pressure are defined as

2
. m
[=m~ay. (71)
- 2 miJy  mi .-
O = 7t <§+TOJ—3O+?OR(_2).0) (72)

210 R(_22)!0> . (73)

These also follow from Egs. (36), (37), and (41) under the
replacements given in Eqs. (67) and (68).

The coefficients in the relaxation equation for the shear-
stress tensor remain the same as listed in Egs. (49) and (50),
except for the second-order shear-bulk coupling coefficient,
which now reads

_ 6 2m? _
/1711'[ =1z (g + %R@Z),O) . (74)

The standard DNMR coefficients of Ref. [15] are obtained
from these formulas using the following replacements,
7_€<_0,)y0 - yﬁ‘(? and R(_zr).o - y(r?)). Also note that in Ref. [15],

the negative scalar moments p_, = ygg)l'[, differ by a factor

of —=3/m} from our definitions in Eq. (62).

C. Transport coefficients for magnetohydrodynamics

For the sake of completeness, here we also list the
transport coefficients in the equations of nonresistive
and resistive magnetohydrodynamics derived from the
Boltzmann-Vlasov equation in Refs. [38,39]. The addi-
tional J&,L ™ terms that appear on the right-hand sides
of Egs. (32)-(34) due to the coupling of the electric
charge q to the electromagnetic field are obtained from
Egs. (24)-(26) of Ref. [39] in the Landau frame,

jem = _q5HVEVyEw (75)

Tem = q(6ypEF + SynpllE* + 6y, g E,)
— qoypBb"V,, (76)

i = —q(8,BbY Nogn* s + 8,y EH V), (77)

where b = —e"*u,b,, b* = B*/B, and B = /—B"B,
is the magnitude of the magnetic field. The electric and
magnetic fields E# and B* are defined through the Faraday
tensor F* and the fluid four-velocity u* via
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1
E* = F*u,, Bt = Eeﬂ“’/”F(,,}uy. (78)

The transport coefficients in the RTA proportional to the
electric field, see Eqs. (117)—(121) of Ref. [14], are

5VE:TV<_%+ﬂJ11>v (79)
e = - (2R, 4+ f;‘)) (50)
Ove =7 (2 + %m(z) (_12)0 - %rfaggio)’ (82)
Synr = Ty <7z<_22>.0 _ ;la;f;o) (83)

while the coefficients proportional to the magnetic field, see
Egs. (122) of Ref. [14], are

1
Oy = Ty (— 7 + R(_ll),0> ,

III. ANISOTROPIC FLUID DYNAMICS

5713 - 2TJTR(—2]).O . (84)

Anisotropic fluid dynamics is based on an expansion of

fi around a local anisotropic distribution function fy,
as follows:

fk5f0k+5fk:f0k+5fkv (85)

where instead of |5fy| < fox, Wwe now assume that
|5 fk| < fox. In the case of a strong anisotropy, a suitable
choice of foy can lead to |6fy| < |6fk| and consequently,
the convergence properties of a series expansion in & fk are
significantly improved compared to an expansion in terms
of 6f. .

The irreducible moments of §f are defined as

Py = (B Bk - k), (86)
where (--)s= [dK(---)5 f k- Similarly as indicated in the
previous sectlon one can also derive the equations of motion

for the comoving derivative of the anisotropic moments,
Dﬁz{Jﬂ' Heh = g v, Dy, from the Boltzmann equa-
tion (8); see Ref. [27] for more details.

Now, focusing on a simpler case, we are explicitly

neglecting the & fk corrections by setting p “H =0, such

that fj = f ok- Thus the conservation laws of leading-order
anisotropic fluid dynamics are solely based on the moments

of the anisotropic distribution function f()k and read
9,N* =Coo =0 9,T" =Chy=0.  (87)

Here we once again assume that the collision term is given
by the RTA,

Clfo) = -2t

(fOk f()k)' (88)

The irreducible moments of the collision term are such that
C{”‘ et =0 for Z > 1, while

i-1.j
Ciiy= / dKEIZVE] C[fo

1.

= (Livjj0=Titjjo0)s (89)
R

where I,,,q was introduced in Eq. (7).
Using the expansion from Eq. (6), N¥ = Zﬁo and TW =
Z’SO are tensor-decomposed as

Nt = (k) = iuk + Ayl-, (90)
T = (k'k*)y = éu'u” + Pl'IY — P EF, (91)
where the particle-number density, the energy density, the
particle diffusion current in the direction of the anisotropy,

and the pressure components in the direction of and
transverse to the anisotropy are

e =l = fzo, (92)

Isz = Iy =L, (93)
1 2 Py A A
=5 (mgZog —Loo +Zn). (94)

with ZAf‘j‘” " defined in Eq. (6). Here we once again chose
the LRF according to Landau’s definition, rendering
1= —T"”u I, =10= I“ = 0. The isotropic pressure
is defined as

and hence the bulk viscous pressure is

ﬁ(d7ﬁ’\u’ﬁ,\l)z (a ﬂu’ﬂl) (avﬁ)

(B, +2P, —3P), (96)

p
1
3
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where P is the isotropic pressure in equilibrium defined in
Eq. (25). Similarly to Egs. (24) the Landau matching
conditions require that the particle-number density and
energy density calculated through f()k are equal to those of
a fictitious local-equilibrium state,

ﬁ(d’ﬁu’ﬂl) :n(a,ﬁ), é(d’ﬁu’ﬂl) = e(a,ﬁ), (97)
where the equilibrium particle-number density and energy
density were defined in Eq. (25).

For practical purposes and explicit comparisons to the
existing literature, we apply the spheroidal distribution
function introduced by Romatschke and Strickland (RS) in

Ref. [40],
-1
E2u +§E2
V ke TR S (98)

frs = |exp A —-al| +a ,

where £ denotes the so-called anisotropy parameter. A
direct comparison to Eq. (5) leads to the identifications
p.,=1/A and f§, = \/E/A. Therefore we introduce a new

set of thermodynamic integrals, fl,frsq(o?, A, &), with the

replacement fo — frs(d, A, ) in Eq. (7); i.e.,
RS _ (_1)q

n—r=2q y-r (=uy £
nrq = W/dKEku TEL (k) frs (99)

Therefore, the first and second moments of the RS
distribution function are

Vis = it = Iigout, (100)
f’f{s = éutu® + P,IIY — P B
== IA];&)M”M” + i}égolﬂlb - izROSIE”y. (101)

The five conservation equations (87) must be closed by an
additional equation of motion. In this work, we are
following Refs. [28,41] and employ the equation of motion
for P, to supplement the conservation equations.

IV. RELATIVISTIC IDEAL GAS
OF CLASSICAL PARTICLES

The equilibrium momentum distribution of a classical
ideal gas of particles with nonzero mass m, is given by the
Maxwell-Jiittner distribution (1),

fox = e PFu, (102)
Since a =0, we have 9d,fok = fok, such that J,, =1
while 7,, from Eq. (3) now reads

rq»

a r+2

_ﬂ Mg « r=2q (2 _ +L -z
1"'2ﬂ2(2q+1)!z[ x5 (x* = 1)772e™=, - (103)

where z=my/T = myf. The thermodynamic integrals
obey the recursion relation,

Ir+2$q = m(z)lr.q + (2q + 3)Ir+2,q+l' (104)
In analogy to these equilibrium thermodynamic integrals,
the integral representation of the modified Bessel functions
of the second kind K ,(z) for ¢ > 1/2, see Eq. (9.6.23) of
Ref. [42], reads

— ! 0 2 gt —zx
K,(z) = i dx(x? = 1)472¢7%

(2¢-1)

q 0o
= %2 - - 1)”/ dxsinh2 xe=2eoshx (105)
q—1)--Jo

where the double factorial of odd numbers is defined as
(2q — 1) =29T(q + 1/2)/+/=. These Bessel functions of
second kind satisfy the following recurrence relation for
q > 0, see Eq. (9.6.26) of Ref. [42],

2g +2
Kyin(2) = K, (2) + 2

Kpa(). (106)

Using these formulas and recursive relations we express
all thermodynamic integrals of interest in terms of Bessel
functions. The particle-number density is expressed as

ge(l 3 5
n=1ly=>-5T2K,(z), (107)
2n
while the isotropic pressure is
P = 121 = nT. (108)

This is the equation of state of an ideal gas of classical
particles. The energy density is given by

K(z)
K> (z)

ezle:P[S—i—z } =P[zH(z) - 1], (109)

and therefore the enthalpy per particle reads

_e+P K;5(z)

h =m
n OKz(Z)

= myH(z). (110)

where the enthalpy per particle divided by the rest mass is
H(z) = K5(z)/K»(z) = h/my, or equivalently, H(z) =
K (2)/K>(z) +4/z.

Using these results together with the recurrence relations
(104) and (106), it can be shown that
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n K(z) e—3P

00 ="

, 111
my K> (z) mg (11

and similarly,
&2
;0 =mgP[z+3H(z)] = T(C1/‘P+P>’ (112)

I3lEm0PH(Z):T(€+P). (113)
Here the heat capacities at constant volume c,, and at

constant pressure ¢, are defined as

1 [ oe , €
J=—1=] = ——(e—-3P 114
=y (5) =3+ -palemann a1y
oh
=(— =c, + 1. 115
on (8) o e
The speed of sound squared reads
opP 1 (0P c,P
2=(— =) =—— 116
“ (()e>n * h <0n>e c,(e +P)° (116)
where
opP 1 oP e
—) =—, — | =T- . 117
<ae>n c, (0n>e nc, (117)

Without particle-number conservation, the speed of sound

squared ¢ = (g—z)ﬂ(g—/‘;);l, see Eq. (22) of Ref. [15], is given

by the following expression:

o (0PN _Iu_ PletP)
§ de u 130 C,}P2+€2’

(118)

and hence,

S A (119)

While in the massless limit, both &2 and ¢? are equal to 1/3,
at finite values of z = m /T, these quantities will in general
differ. As shown in Fig. 1, both &2 and ¢? exhibit a similar
monotonously decreasing trend, with ¢2 approaching 0
faster than c¢2. At small values of z < 1, ¢ and &2 have a
similar behavior,

1 22 11t
2 ~_ s 6
cs(z<<1)_3 36+864+0(z),

1 2 5%
2 l) e m e 6 120
2z 1) 3 36+864+ (z°%) (120)

N ®»
Q
o B
10
0.1 1 10 100 1000
z=my/T
FIG. 1. Speed of sound squared, represented as a function of

z = my/T for the case of a classical ideal gas without (dashed red
line and circles) or with (solid blue line and squares) conserved
particle number. The solid line shows ph(c? —¢2), which
approaches 2/3 as z — oo.

Atlarge values of z > 1, ¢Z and ¢2 develop a difference that
can be highlighted in the following form:

_ 2 11 61
Ph(cs = E3) ] 2373, e " 0(2). (121)
This is illustrated with the solid black line in Fig. 1.
Finally, recalling Egs. (19) and (20) we express G,,, G3,.,
and D,, as follows:

Gy, =el,g—nl, i, Gy, = Il 0 —el 1o, (122)
Doy = T30l 10 — I%o =c, P (123)
In the particular case where r = 0, we find
2 3TP? (¢
Gy=—03-c¢,), Gy = — o s 124
20 m(z)( cy) 30 m(z) <P C) (124)

therefore the ratios become

G 1 /3 G 3T

ﬂ:_z 2 1), ﬁ:_z £ 1), (125)
D20 mo Cy D20 mo PCU

A. First- and second-order transport coefficients

In the classical Boltzmann limit, the first-order transport
coefficients from Egs. (16)—(18) reduce to

nlyp10— el

(0)
B 1—nr)1,+
o ( i c,P

, (126)
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1 -
a(,) =l —h 11r+2,17 (127)

(1&2) =pli3,. (128)
If the particle number is not conserved, i.e., 4 = 0, then

LS

is given by Eq. (66), leading to

_(0 _
a) = ~Ploi1y + Pl o (129)

Here we evaluate the a(()o) coefficient from Eq. (126)
proportional to the coefficient of bulk viscosity,

e+P 2e-3P m]

1
2 2 -2,00
mg 3 my, 3

o) = (1-3c2) (130)

where c¢? is the speed of sound squared from Eq. (116).
Evaluating Eq. (129) corresponding to the case without

particle-number conservation leads to a formally identical

expression to that for aéo), but with ¢2 replaced by ¢2 from

Egq. (118),

e+P 2e-3P mj

1
2 2 -2,0
mg 3 mg 3

a) = (1-3e2) (131)

The transport coefficients related to the particle diffusion
and shear viscosity are

(l)ze—ZP_m_(Q)

% 3 3 -y, (132)
and
y e+9P mg

Using these results we find the following important
(2) 0) 0)

relationship between o, and «a, " or a; :
3c2(e+P) mj 3c2(e+P
a(()Z) _ % (()0) Cs (65+ ) _ %(—Z(()O) + Cs (65+ ) ) (134)

Recalling the definitions of the first-order transport coef-
ficients from Egs. (35) we obtain, see also Eq. (41) of
Ref. [15],

ros
$ 30 ey p). (135)
m 37,

5
C 302 yp),
m 37,

These relate the ratio of the bulk-viscosity coefficient to the
bulk relaxation time, /7y as well as /7y, to the ratio of
the shear viscosity coefficient to shear relaxation time,
n/t,. Both relations are formally identical but involve

different speeds of sound. In terms of thermodynamic
quantities these ratios are expressed as

¢ (1, 2 m_g
S (1 ( +P)_%( _3P)_m_31 (137)
il E R I ole o [0
and
4
no_erdOP m (138)

T, 15 15
The latter two expressions are identical to Egs. (20) and
(21) of Ref. [15], while the thermodynamic integrals in
these formulas are listed in Appendix C. Also note that
all first-order transport coefficients are positive as shown
explicitly in Appendix B.

Furthermore, one can also find simple relations between
the second-order transport coefficients of the bulk viscous
pressure,

511_“:2_ %ﬂ+m_%73(0)

, 139
o ¢ P 3 "-20 (139)
A 4 ,e+P m% = (2)
M2 Dog® 140
w3 G—p T3 0 (140)
and similarly,
o 2 _
TLH“ —1-2 +?R(_02).0, (141)
e 10 Mg (142)
w3 3

These latter relations are similar to Egs. (33) and (34) of
Ref. [15]. The remaining second-order transport coeffi-
cients divided by the relaxation time are

= =3 +0R0, (143)

% _ 17_0 47”1572(_2{0, (144)
and

b _ 84 2R, (146)
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In the DNMR approximation these were also first reported
in Egs. (35)—(37) of Ref. [15]. One also finds the following
useful relations between these coefficients:

1) Tz 1
L 147
7, 121',,+2’ (147)
and
51‘11‘1 5/1”1'[ 2€+P
. LE QU 2 1, 148
m 671, “Tp * (148)
dun _ 5 _ o (149)
m 61, .
as well as
iz T T e+ P 1 6, e+ P
Az _ ~ ‘2z 2 — =TT _ 2 , (150
P TP A e - (150)
y 7 1 6
Mx_ Ll _g2 C 0w 22 g (151)
s 121'” 2 (7

V. THE TRANSPORT COEFFICIENTS
OF THE RELAXATION EQUATIONS

In this section we will investigate all first- and second-
order transport coefficients found in the equations of
motion for the bulk viscous pressure (32), the diffusion
current (33), and the shear-stress tensor (34). Based on the
results of Sec. Il A we compare the coefficients obtained
from the basis-free approximation with those obtained
using the standard DNMR approximation. These choices
will be denoted by BF and DNMR in the legends, and
plotted with solid red and solid blue lines with symbols,
respectively.

The DNMR functions y%) do not explicitly depend on
whether the particle number is conserved or not. This is
also true for the basis-free coefficients R(_lr)yo and R(_Zr)’o.
However, the coefficients R@,o and a@ computed for a gas

with conserved particle number change into 7_2(_02’0 and &(_0,)

when the particle number is not conserved, as shown in
Eqgs. (68). Therefore, even the first-order transport coef-
ficients ¢, change into £,, since they explicitly depend on
aso) or 6150) ; see Sec. II B. The results for the case without
particle-number conservation, obtained within the BF and
the DNMR approaches, are plotted with dashed red and
dashed blue lines and empty symbols, respectively.
Furthermore, we also present the small z = my/T < 1
approximations of all transport coefficients in the second-
order equations of motion (32)—(34). Using the series
expansion of the Bessel functions for z < 1, we obtain all
transport coefficients up to O(z*). Note that in most cases
the series approximations lose validity beyond z > 0.5.

The relevant terms appearing in these series approxima-
tions are summarized in Tables II-V of Appendix D and
are plotted with solid black lines in all figures.

The results for all transport coefficients will be shown as
dimensionless ratios, by dividing by the corresponding
relaxation times (and sometimes functions of T and z), such
that they become functions of z only. Therefore, even if the
relaxation times are computed not in RTA but in some other
approximation, e.g., using the binary collision integral for a
constant cross section, the results for the transport coef-
ficients, scaled in the same way, are identical.

A. The coefficients of the equation
for the bulk viscous pressure

Figure 2(a) shows the dimensionless ratios {/ [z P] and
/[t P). Since these are first-order transport coefficients,
both the BF and the DNMR approaches lead to the same
result. However, comparing the results corresponding to
u#0 and u =0, i.e., with and without particle-number
conservation, we see that ¢ is smaller than £ by more than 2
orders of magnitude. Note that we multiply { by a factor of
X = 150 to show it on the same scale as C. This order-
of-magnitude discrepancy develops around z ~ 1, where
neither the small-z nor the large-z expansions are reliable.
Indeed, Table II indicates that for small z, the diffe-
rence (£ —¢)/tnP ~z*/36; i.e., it increases ~z*. Using
Egs. (136) and (137) we obtain

¢

— > B2 =),
P THP+ p(cs —c5)

(152)

where fh = 1 + ¢/P, while the large-z behaviours of ¢
and ¢ are fundamentally different,

¢ J 5 3

— =—+0(z7),
P 67> &
¢

J 2 11+11+0( _3)
= —_c_ -, 773).
P z>1 3 3z 72

(153)

Panel (a) of Fig. 2 confirms that {/(z;P) indeed
approaches 2/3 as 7 — oo, while {/(zyP) drops to 0.
The coefficients &y /7 and Sy /7. given in Egs. (139)
and (141), respectively, are shown in Fig. 2(b). The results
corresponding to the BF and the DNMR approaches are in
very good agreement when u # 0, but they differ substan-
tially when ¢ = 0 and the particle number is not conserved.
Furthermore, Fig. 2(c) shows Ap,/7; and Ap,/7n from
Egs. (140) and (142). Significant differences can be seen in
the behavior between the cases u #0 and p = 0. The
absolute values of Ay, are almost an order of magnitude
smaller than those of ZH,,, and their sign is different, the
former is negative and the latter positive. The sign mis-
match is consistent between the two approaches, as both the
basis-free and the DNMR expressions for Ay, (Ar,) yield a
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0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01
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FIG. 2. The bulk-viscosity coefficients ¢ and Z, and the second-order transport coefficients, Sp, Ot Aies Aties £11vs Trivs Ary, from
Egs. (36)—(41), and Egs. (71)—(73), for a classical ideal gas with conserved particle number (solid lines and solid symbols) and without
conserved particle number (dashed lines and empty symbols), as a function of z = m/T. The coefficient { is multiplied by 150 for
better visibility. All coefficients corresponding to the basis-free (BF) approximation are represented by red lines and circles, those
computed within the standard DNMR approximations are represented by blue lines and squares, respectively. The solid black lines show

the series approximation of the respective coefficients.

negative (positive) value in the z — 0 limit. Please note that
the sign of Ap, is negative in the z — 0 limit also in the
more realistic case of 2 — 2 hard-sphere interaction model;
see last column in Table V of Ref. [36].

Figures 2(d)-2(f) show the second-order coefficients
from Eq. (32) that couple to the diffusion current, ¢y,
Ty, and Apy, respectively. Here, the coefficients
computed in the BF and the DNMR approaches are in
very good agreement with each other, while #fy and Apy
differ in the two approaches.

The series approximations for the first- and second-order
transport coefficients in the equation for the bulk viscous
pressure, i.e., Egs. (36)—(41) and Egs. (71)—(73) are
presented in Table II for the BF (middle column) and
the DNMR (right column) approaches, and are plotted with
solid black lines in Fig. 2.

The bulk-viscosity coefficient, ¢ or £, is of order 0(z%),
while &y and &y have well-defined nonvanishing mass-
less limits up to O(z) or O(z*Inz), depending on the
method employed to obtain this second-order coefficient.
Note that those limits are identical for &y and op. All

other coefficients vanish in the massless limit. Similarly,
Znv and tp, show differences already at O(z?) due to the
choice of negative moments in these transport coefficients.
The remaining transport coefficients, Ay, A, and Ay, are
of order O(z?) and exhibit similar characteristics.

B. The coefficients of the particle diffusion equation

The dimensionless ratio of the particle diffusion
coefficient and the product of relaxation time and
particle density, «/[ryn], is shown in Fig. 3(a). One
observes perfect agreement between the BF and DNMR
approaches.

The second-order coefficients, Ay, and &y, shown in
Figs. 3(b) and 3(c), are in reasonably good agreement
between the BF and the DNMR approaches. Similarly, this
conclusion also holds true for the coefficients £y, Ty,
and Ay, presented in Figs. 3(d)-3(f), although they have
slightly different values in the massless limit. The remain-
ing second-order coefficients ¢y, 7y, and 4y, presented
in Figs. 3(g)-3(i), start from very different values at z = 0,
but approach similar values for z > 1. The differences

076001-13



AMBRUS, MOLNAR, and RISCHKE

PHYS. REV. D 109, 076001 (2024)

0.10

(a) 1.80 + BF —e— (b) 200 | BF —e— (c)
0.08 ® 160 | DNMR —8— DNMR —g—
Small z 1.80 L Small z
1.40 t
— 0.06
s S & 1.60 |
£ T 120 f S
~ 0.04 t = =~
< B L
z Loo | 1.40
0.02 BF —e— 0.80 1.20 +
DNMR —a— ’ 7
0.00 ,Slllftllg ‘ ‘ 0.60 ‘ ‘ 1.00 ‘ ‘ ‘
0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100
z=my/T z=my/T z=my/T
2,00 : : Lo0 T : : 0.20 : :
00 r BF —e— : BF —e— (e) BF —e— (f)
DNMR —&— 0.80 | DNMR —a— DNMR —&—
1.60 } Small z Small 7 —— 0.15 + Small z
> 0.60
(S ~ l}
= 120 | = 040 B
£ g v =
£ ~ =
S £ 0.20 S
= 080 ¢ g v S
0.00
0.40
—0.20
0.00 2 —0.40
0.01 100 0.01 100
z=my/T
0.08 ; ; ; ; . ‘
BF —e— () 0.10 BF —e— (h) 1 BF —e— (i)
DNMR —8— DNMR —8— 0.08  DNMR —8— 1
0.06 + Small z —— F Small z Small z
& & &
~ ~ ~
S N S
s & &

0.00 +

FIG. 3.
equation (33) and defined in Eqgs. (42)—(48).

seen in the massless limits of £y, 7y, and 4y, also shown
in Table III, were already clarified in Ref. [14], where it
was concluded that the proper massless limits of these
coefficients are those of the basis-free approximation, and
not of the DNMR approach.

The small-z approximations for the transport coefficients
appearing in the particle diffusion equation, Eqs. (42)—(48),
are presented in Table III. All transport coefficients have
well-defined numerical values in the massless limit z — 0.
The coefficients #y, and 7y, differ by O(z?), hence, in the
basis-free approximation these coefficients vanish when
z — 0 as they should, see Ref. [14] for more details, while
the DNMR results stay finite.

0.1 1
z=mgy/T

0.01

Same as Fig. 2 for the transport coefficients x, Ayy, dyv, £y, Ty, Avits £vas Tva, and Ay, appearing in the particle-diffusion

C. The coefficients of the equation
for the shear-stress tensor

We now discuss the transport coefficients of the equation
for the shear-stress tensor. Figure 4(a) shows the dimen-
sionless ratio #/[z,P], which is identical in the BF and the
DNMR approaches, also independently on whether particle
number is conserved or not. Figure 4(b) shows 4, and ;.
We observe that the BF and the DNMR approximations
give similar results for y # 0. On the other hand, the
coefficient A, in the basis-free approximation is signifi-
cantly different without particle-number conservation,
being about a factor of 2 lower at z = 100 than its value
with conserved particle number.
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FIG. 4. Same as Fig. 2 for the transport coefficients 1, A1, Az Orz> Tar> Exvs Toyvs and A,y listed in Egs. (49)—(53) and (74).

Figures 4(c) and 4(d) show 6,,/7, and 7,,/7,, respec-
tively. These ratios are independent of particle-number

conservation, since they do not involve the coefficients a£0>

or R(_Or).o; therefore the results coincide when g = 0 and
u #0, as expected. Both coefficients are also in an
excellent agreement when comparing the BF and the
DNMR approaches. Figures 4(e), 4(f), and 4(g) show
the second-order coefficients ¢y, 7.y, and Ay, which
couple to the diffusion current. Similarly as before, these
last three coefficients are also in good agreement between
the BF and the DNMR approximations.

Finally, the small-z approximations for the transport
coefficients from Eqs. (49)—(53) and Eq. (74) are presented

in Table I'V. Most coefficients related to the evolution of the
shear-stress tensor differ by a few percent at O(z?), while
Aqn1 and A, are different at O(z) when comparing the BF
and the DNMR approximations.

D. The magnetohydrodynamic coefficients

Here we provide the magnetohydrodynamic coefficients
listed in Sec. II C. Figure 5(a) shows the dimensionless
ratio Syg/[tynp]. The coefficients Syyg, Syne, and S,y g,
shown in panels (b)-(d) of the same figure, corroborate
the good agreement between the BF and the DNMR
approximations.
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FIG. 5. Same as Fig. 2 for the transport coefficients éyg, dnve, Svies OzvE> OvzEes Oy, and .5, of a charged fluid in an external

electromagnetic field.

Figures 5(e)-5(g) show the second-order coefficients
OvqEs Ovp, and 6,5 These coefficients have very different
values at z =0 but approach the same values at large
z> 1, similarly to the lower row of Fig. 3. The small-z
approximations for these transport coefficients are pre-
sented in Table V.

VI. APPLICATIONS

In this section, we will consider the (0 + 1)-dimensional
boost-invariant expansion, also known as the Bjorken-flow
solution [43]. We will study the properties of this system
using various approaches discussed below. The relativistic

Boltzmann equation in RTA and the details of our numeri-
cal solver are discussed in Sec. VI A and in Appendix D 1,
respectively. The equations of second-order fluid dynamics
with transport coefficients derived using both the BF and
the DNMR approximations are summarized in Sec. VI B.
The equations of leading-order anisotropic fluid dynamics
(aHydro), based on the Romatschke-Strickland anisotropic
distribution function are discussed in Sec. VIC, while
details of our numerical implementation are given in
Appendix D 2.

The transformation from the usual space-time coordi-
nates x* = (¢,x,y,z) to the proper time and space-time

rapidity coordinates # = (t,x,y,7,) reads 7 = V1’ — 7
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and 7, = 1In[(r + z)/(r — z)], while the inverse transfor-
mation corresponds to # = rcoshz, and z = zsinh;.

For a longitudinally boost-invariant expansion, vi=
z/t = tanhy,, such that

t
W= <-,o,o,5> = (coshn,,0,0,sinhy,),  (154)
T T

t
W= (;,0, 0,;> — (sinh7,.0,0,coshr,),  (155)

and all thermodynamic quantities are independent of 7.
In this case, D = u#9, = 2, D; = —I"9, while

Du" = DI* =0, Dt = ——l” Dl = ——u"
Furthermore, the expansmn rates are 9 V,u' =1/1,

0= V u* =0, and 0, = V " = 0. The vorticity tensors

also vanish, @ = VltyY) = 0 and @ = Vi = 0.

The four-momentum is expressed in terms of the rapidity
variable, y =1In[(k° + k%)/(k® — k%)]; hence the longi-
tudinal velocity of the particle is v}, = tanhy. Thus, the
four-momentum & = (k°, k*, k, k%) is expressed in terms
of the particle rapidity as

a >

k* = (m, coshy, k*, k¥, m sinhy), (156)

where m, = \/m§+ ki = \/m§ + ki + k} denotes the

transverse mass. Therefore, the energy of the particle
is Ey, = k"u, = m, cosh(y —#,), while its momentum
in the direction of the anisotropy is Ey; =—k'l, =
m . sinh(y — 7). 3 )

The coordinate transformation k* = %) k¥ of the four-
momentum to proper time and space-time rapidity coor-
dinates * = (k*, k*, k7, k') leads to

k= <mJ_ cosh(y —ny), k¥, ky,ﬂsinh(y — ns)>; (157)
T
hence k* = m cosh(y —7,) and k" = ZLsinh(y — 7).

A. The Boltzmann equation for the (0 + 1)-dimensional
boost-invariant expansion

The relativistic Boltzmann equation (8) in RTA (9) for a
longitudinally boost-invariant system reduces to

0 ? 0 1
e Do (- ),
TR

158
or T ov (158)

Z

where we assumed homogeneity in the transverse plane,
such that fy, = fy (r;m, @, v?) is a function of the proper
time 7. The momentum space is parametrized using m | =
(k2 + k2 +m})'/? and ¢, = arctan(k’/k*), while the

longitudinal component of the three-velocity relative to
the flow velocity »¢ = tanhy#, is defined as
v® = tanh(y —1y). (159)

We are interested in tracking the evolution of the
conserved particle four-current N¥, and the energy-momen-

tum tensor 7#¥. These are obtained via the following
momentum-space integrals,

:L/oodmm /znd(p /1 dvr
P2 G SRy

and

v__ 9 2" do® 0
T = (271')3/ de_WlJ_/ d(pj_/ kﬂk fk’ (161)

where we used d*°k /k® = m  dm  dg  dy.

Taking into account the above form of the particle-four
current and the diagonal structure of the energy-momentum
tensor, TYxy = diag(e, P, P, ,72P;), the particle number
density and energy density can be obtained via

1 1
n :/ dv*Fq, e :/ dv*F,,
-1 -1

while the pressure in the longitudinal and transverse
directions are given by

K fi, (160)

(162)

1 1
P, = /1 dviv?F,, P, = 5(e -P =Ty, (163)
where T, = m} [1, dv*F,.
The functions F, appearing in Eqgs. (162)—(163) are
obtained by integrating over f,

o dmﬂn”“
= d(pj_ ”+2 /szv (164)
o
and satisfy the following equation:
oF, 1 10[v*(1 — v?)F,]
-1 - DvilF, - ——m———— =~
ot * T [+ (n = 1)of] T ov*
1
=——(F, - F9). (165)
TR

The functions F;,' are obtained substituting the equilibrium
distribution function (1) into Eq. (164),

mO/T

g), (166)

1 —v;

eq _
Fy =

a
% T2 <n +2,
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where I'(n,x) = [®"!le~'dr denotes the incomplete
Gamma function. Note that the numerical algorithm for
solving Eq. (165) is presented in detail in Appendix D I.

B. Second-order fluid dynamics for the
(0 + 1)-dimensional boost-invariant expansion

In the (0 + 1)-dimensional boost-invariant expansion of
matter, the fluid-dynamical equations simplify substan-
tially. The conservation equations (21) reduce to

Dn+2 =0, (167)
T

1
De+—(e+ P;) =0. (168)
T

Here, the particle-number density and energy density were
defined in Eq. (25), while P, is the pressure component in
the longitudinal direction. The latter and the transverse
pressure component P, are related to the thermodynamic
pressure P, bulk pressure I, and the shear-stress tensor

component 7 = 7 via

P=P+T-un, PLEP—i—H—i—g. (169)

The second-order relaxation equations (32) and (34)
reduce to, see Egs. (9), (10) in Ref. [16],

IT
TRDH+H:_§_5HH_+AH7I§? (170)
T T T
4 211
b= _5 " ¢ T 20 a7
37 T 37 37

where we replaced 7 = 7, = 7. The transport coefficients
for the above equations are given in Egs. (136), (138), (139)
and (140), and (143)—(145). We note again that, for a
chosen rest mass m,, all transport coefficients only depend
on u and 7.

In the case without explicit particle-number conserva-
tion, we do not consider Eq. (167), but we solve Eq. (168)
together with the relaxation equations that follow from
Egs. (69) and (70). For a (0 + 1)-dimensional boost-
invariant expansion these correspond to the relaxation
equations (170) and (171), but with different coefficients
as explained in Sec. I B. Therefore, in this case the
corresponding transport coefficients are given in
Eqgs. (137), (138), (141)—(144), and (146). In Sec. VII A
we will study the solutions of second-order fluid dynamics
in the case of explicit particle-number conservation as well
as without it, using both the BF and the DNMR approaches
for the transport coefficients.

C. Anisotropic fluid dynamics for the
(0 + 1)-dimensional boost-invariant expansion
In this section, we turn our attention to study the
equations of leading-order anisotropic fluid dynamics in
the case of the boost-invariant expansion scenario. The
Romatschke-Strickland distribution function given in
Eq. (98) reduces to

~ .k
frs = exp <a—X\/l+§v§>.

The corresponding equation of motion for the irreducible
moments, fi +j.j0» was derived in Egs. (53) and (54) of
Ref. [28] and is reproduced below,

(172)

“ 1. . A . A
DI;yjjo+ . [+ Do+ (i =Dl jiao)]

-l ivjjo=Tivjjo)- (173)
TR

The equations for the particle-number density, the energy

density, and the longitudinal pressure component follow by

setting (4,j) = (1,0), (2, 0), and (0, 2) in Eq. (173),

respectively,

il 1
Di+—=—-—(ii—n), 174
At = (i) (174)
A PO [JPR
Dé+—(é+P)=——(é—e), (175)
T TR
and
P | N
DP;+—(3P; — Iyy) = —— (P, = P),  (176)
T TR
whereflffo is
55— [ KEGELfus. 177)

Note that in the case of particle-number conservation, the
Landau matching conditions from Eq. (97) require 7 = n,
as well as é = e; hence the right-hand side of Eqgs. (174)
and (175) vanish. If the particle number is not conserved,
then in general 71 # n. However, we still impose Landau
matching for the energy, é = e, such that the right-hand
side of Eq. (175) vanishes.

Note that instead of using Eq. (176) there are other
choices to close the conservation equations, e.g., using
higher moments of the Boltzmann equation. It was shown
in Refs. [28,41,44] that some of these choices lead to very
similar results as when using Eq. (176).

Furthermore, similarly to Egs. (169), the bulk viscous
pressure from Eq. (97) and the shear-stress tensor compo-
nent 7 are given by

076001-18



RELATIVISTIC SECOND-ORDER DISSIPATIVE AND ...

PHYS. REV. D 109, 076001 (2024)

A~ 1 A 2 .
where the transverse pressure component is
5 _ ks _ | 2
P, =l = 5(6 - P - molooo) (179)

where 55 = [dK frs.
Now introducing the integrals of the anisotropic distri-
bution function, F l,fs, similar to Eq. (164),

27 dmlanrl .
2;; do o (1= n12)/2 75 Rs
<7> C(n +2.4),
47/7 1+ ,fyz

where A = mo\/l + &0/ (A1 =02
n, é, P,, and 1240 can be obtained via

1 ~
ﬁ:/ dv FS,
-1

RS _
FRS =

(180)

, the quantities &,

1 N
1000 - / dUZFRS,
-1

é 1

A 1 N

P, :/ do? | o2 | F5S, (181)
-1

1240 v?

The integrals over »* must be computed numerically,
except for the case of 7, for which similarly to
Eq. (107) an exact analytical result can be derived [44],

. ge® mgA my
= K — . 182
"o TrE 2(/\) (182)
Note that compared to the above result, Eq. (25) of
Ref. [44] differs by a factor of 2 accounting for spin

degeneracy. The strategy for solving the equations of
anisotropic fluid dynamics is presented in Appendix D 2.

D. Initial and matching conditions

We now discuss the initial conditions for all approaches
presented in this section. At the initial time, 7,, we assume
that the momentum distribution function f, = fRs is given
by the Romatschke-Strickland distribution, Eq. (172), with
parameters (dy, Ag, &y) describing the initial number density
(in the case of the fluid with conserved particle number), the
energy density, and the pressure anisotropy P;/P .

Now applying the Landau matching conditions we look
for the connection between the parameters (d, A, &) and
(a,T) through the initial particle number and energy
densities (ng, ¢g), computed via Eq. (181). If the particle
number is conserved, we use the ¢;/n ratio in order to
eliminate dj, leading to

/1 dviT (4, ) (183

N 230(’”0/1\0)2 K, <m0>
—1 (14 &u2)?

T nohovT & T\ Ag

with 4y = mg+/1 + &2/ (Agy/1 — v2). In the case where
the particle number is not conserved a =0, while A,
follows from

gAY (1 dvT(4. do)

4r* Jo (1 + &) (184)

ey =

Both Egs. (183) and (184) are solved using a bisection
algorithm, as follows. Starting from Ay = Ty, we look for a
valid pair Ap,(Ape) such that the right-hand sides are
smaller (larger) than the left-hand sides when Ay = Ay,
(Amax)- We start the search for this window by setting
Apin = Amax = Ao and subsequently halving A, or dou-
bling Ap.. Finally, the integrals with respect to v, are
computed using the adaptive Simpson integration of
third order.

VII. RESULTS AND DISCUSSIONS

In this section, we present and discuss the temporal
evolution of a classical ideal gas of massive particles and
relevant quantities using second-order fluid dynamics in the
14-moment approximation as well as the leading-order
anisotropic fluid-dynamics framework, both with and with-
out particle-number conservation. These fluid-dynamical
results are directly compared to the exact solutions of the
Boltzmann transport equation also obtained in RTA.

In what follows, in all cases we have initialized the
system at 7, = 0.5 fm/c, with temperature T, = 0.5 GeV
and chemical potential py = g7y =0 GeV. We have
fixed the relaxation times in both the fluid-dynamical
and transport calculations to 7z =7 =7, = 0.5 fm/c.
For the particle rest mass we will use the following values:
mg = 0.01 GeV to approximate the massless limit, as well
as 1 GeV and 10 GeV. At the initial time, 477/s evaluates
to 3.18, 2.63, and 0.68 for my = 0.01, 1, and 10 GeV,
respectively. Furthermore, we will consider two different
values for the initial anisotropy, &, = 0 and 100, corre-
sponding to an isotropic and oblate spheroidal distribution
in momentum space, respectively. The initial values for
the bulk viscous pressure and shear stress are obtained
from the initial Romatschke-Strickland distribution
through Eq. (178).

A. Second-order fluid dynamics vs Boltzmann
equation in RTA

In this section we compare the results of second-order
fluid dynamics discussed in Sec. VIB with the exact
numerical solution of the Boltzmann equation. The results
are presented in Figs. 6 and 7 for fluids with and without
particle-number conservation, respectively. Here, Figs. 2
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FIG. 6. The time evolution of P;/P | (top row), bulk viscous pressure zIT (middle row), and shear viscous pressure 7z (bottom row) of
an ideal gas with conserved particle number. The particle masses correspond to my = 0.01 GeV/c? (left column), my = 1 GeV/c?
(middle column), and m, = 10 GeV/c? (right column). The results with an initial anisotropy parameter &, = 0 and &, = 100 are
represented with empty and solid symbols, respectively. The exact numerical solutions of the Boltzmann equation in RTA are shown
with black lines. The solutions of second-order fluid dynamics with transport coefficients derived using the basis-free approach are
shown as red lines with circles, while those of the DNMR approach are shown as blue lines with squares, respectively. In all cases, we
have fixed the relaxation times 7z = 7y =7, = 0.5 fm/c, while the initial temperature and chemical potential are set to

Ty = 0.5 GeV and py = 0 GeV, respectively, at 7, = 0.5 fm/c.

and 4 can be used to estimate the corresponding transport
coefficients as functions of z.

The solutions of the Boltzmann equation are shown
with black lines in all figures. The solutions of second-
order fluid dynamics with transport coefficients derived

using the BF and the DNMR approaches are plotted using
red lines with circles and blue lines with squares,
respectively.

The evolution of P;/P, is shown on the top rows of
Figs. 6 and 7. The middle row shows the time evolution of
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FIG. 7. The same as Fig. 6 but for an ideal gas without particle-number conservation; i.e., u(7) = 0 GeV.

the bulk viscous pressure multiplied by the proper time, 711,
while the bottom row shows the shear-stress pressure
multiplied by the proper time, zz. The particle rest masses
from the left column to the right column are fixed to
my = 0.01, 1, and 10 GeV/c?, respectively.

The case with explicit particle-number conservation is
shown in Fig. 6. The evolution of P;/P is equally well
reproduced by second-order fluid dynamics with either
choice of transport coefficients, especially at later times

when the gradients have already decreased. Significant
discrepancies can be observed between second-order fluid
dynamics and the exact kinetic results for the early-time
behavior of the bulk pressure. This is when the gradients as
well as the temperature are largest, while the ratio z =
mo/T is smallest. We also note that using the basis-free
transport coefficients brings the fluid-dynamical results
closer to the exact kinetic solutions than when the standard
DNMR transport coefficients are used.
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FIG. 8.
anisotropic fluid dynamics (blue lines with symbols).

On the other hand, the evolution of the shear-stress
tensor component stays in a reasonably good agreement
with the exact kinetic results in all cases presented, for both
the BF and the DNMR coefficients. This favorable agree-
ment between these two approaches is not entirely unex-
pected, since both the BF and the DNMR transport
coefficients that govern the shear-stress tensor evolution
are very similar during the whole evolution; see Figs. 4.
Notice also that the bulk viscous pressure is at least 2 orders
of magnitude smaller than the shear-stress tensor; hence its

T [fm/c] T [fm/¢]

Same as Fig. 6. Here we compare the results of the Boltzmann equation in RTA (black lines) with the results of leading-order

contribution to the P;/P ratio is less significant for the
overall evolution of the system.

We now turn our attention to the case when the particle
number is not conserved. The evolution of the P;/P | ratio
is again in very good agreement between the exact kinetic
results and our two variants of second-order transport
coefficients, as apparent from the first row of Fig. 7.
However, at very large rest mass, the fluid-dynamical
results with the BF coefficients show a better agreement
with the kinetic results. Moreover, the early-time behavior
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FIG. 9. The same as Fig. 8 but without particle-number conservation; i.e., &(z) = u(z) = 0.

of the bulk viscous pressure is in much better agreement
now than for the case with particle-number conservation.
The results improve when using the BF coefficients while
the deviation of the DNMR results from the exact kinetic
results becomes more pronounced at larger particle masses,
as can be seen in panels (e) and (f) of Fig. 7. Finally, the
evolution of shear-stress tensor is in very good agreement
with the exact solution in all cases, as shown in panels (g)
and (i) of Fig. 7.

B. Anisotropic fluid dynamics vs the Boltzmann
equation in the RTA

In this section we compare the results of leading-order
anisotropic fluid dynamics (aHydro) with the exact numeri-
cal solution of the Boltzmann equation in RTA. These
results are presented in Figs. 8 and 9 for fluids with and
without particle-number conservation, respectively. Here
we also considered two values for the initial anisotropy
parameter, namely &, = 0 and &, = 100, represented with
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TABLE 1. Values employed for the Romatschke-Strickland
distribution for a classical ideal gas without (Ay) and with
(Ao, @) particle-number conservation. The energy density e
and particle-number density n, (for the latter case) correspond to
an initial temperature 7y = 0.5 GeV and vanishing chemical
potential o = 0 GeV in the case when &, = 100. Note that when
&y =0, we have Ay = T.

my [GeV] Ay [GeV] Aoy [GeV] &

0.01 0.945 0.634 1.596
1 0.878 0.653 1.267
10 0.560 0.718 —4.338

empty and filled symbols. The numerical solutions of the
Boltzmann equation are shown with black lines.

Similarly to the second-order fluid-dynamical results, the
aHydro results (blue lines with squares) agree very well
with exact kinetic results (black lines) at the level of P;/P |
(top row) and 77 (bottom row), in all cases presented. The
agreement with the kinetic results are far better when the
particle number is conserved than otherwise. Comparing
Figs. 8 to Figs. 6 we also observe that the aHydro results are
in a better agreement with the exact kinetic solutions than
they are with second-order fluid dynamics in case the
particle number is conserved.

Furthermore, in case the particle number is not con-
served, large deviations can be observed between the exact
kinetic and the aHydro results in the bulk viscous pressure
7I1 shown in the middle rows of Figs. 8 and 9. Similarly,
comparing Figs. 9 to Figs. 7, the aHydro results are in a far
worse agreement with kinetic theory than those of second-
order fluid dynamics.

This was expected since the anisotropic fluid-dynamical
framework considered in this paper employs only two or
three free parameters, namely & A, and/or ¢, the latter only
in the case with particle-number conservation. This also
means that aHydro describes the evolution of dissipative
quantities with one equation of motion fewer than second-
order fluid dynamics. However, as shown in Ref. [45], an
additional parameter modifying the distribution function in
Eq. (98) denoted @ may be used to improve the aHydro
results for the bulk viscous pressure.

VIII. CONCLUSIONS

In this paper we studied all first- and second-order
transport coefficients of second-order fluid dynamics with
14 dynamical moments. Through explicit computations for
the case of a classical, massive ideal gas, with and without
taking into account particle-number conservation, we
compared the basis-free and the standard DNMR approx-
imations for the second-order transport coefficients arising
from the Boltzmann equation in the Anderson-Witting

relaxation-time approximation. We found that most trans-
port coefficients are insensitive to the chosen approxima-
tion for the negative-order moments, but some of them
differ in the ultrarelativistic to mildly relativistic regions, as
described by the ratio z = m/T between the particle rest
mass and the temperature.

Using these transport coefficients, we reasserted the
validity of second-order fluid dynamics in the well-known
(0 4 1)-dimensional boost-invariant Bjorken expansion
scenario for a massive ideal gas. By contrasting the
second-order transport coefficients in the BF and the
DNMR approximations, we showed that the agreement
between kinetic theory and second-order fluid dynamics is
improved in the far-from-equilibrium regime when the BF
coefficients are used. This notable improvement can be
traced back to the distinct behavior of the various transport
coefficients as function of the z = m/T ratio. Specifically,
we observed significant differences in the bulk pressure
self-coupling dpy; and shear-bulk coupling 4, coefficients
for a gas without conserved particle number, which in turn
lead to slightly different outcomes.

Finally, we also considered the equations of leading-
order anisotropic fluid dynamics (aHydro). The formu-
lation considered in this paper employs as degrees of
freedom the energy scale A, the anisotropy parameter &,
as well as the term & for the case when particle number is
conserved. We found very good agreement between the
aHydro and kinetic results at the level of the ratio P;/P
between the longitudinal and transverse pressure and the
shear-stress component z7 for a large range of particle
masses. The results for the evolution of the bulk viscous
pressure, 711, showed discrepancies compared to the RTA
results, as expected since our aHydro implementation does
not provide a separate degree of freedom for the bulk
viscous pressure.
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APPENDIX A: THE DNMR COEFFICIENTS 7.7

In this appendix we compute the coefficients y%) =F %)

defined in Eq. (30) and applied in the 14-moment
approximation.

The coefficient Hkn in Egs. (30), (31) is a polynomial in
energy of order N, — oo,

76— EDT RS 00 Al
ki = fuwm;am" ko Ay
where the polynomials of order m in energy are
Py = aulE. (A2)

r=0
The coefficients a,(f,z are obtained through the Gram-
Schmidt procedure imposing the following orthogonality
condition:

[ aka PGP =5, (A3)
where the weight w'?) is
= 1 .
o) = Gr+ ), (Akokp) foxfox-  (A4)

Using these results together with Eq. (30), the coefficients
7,0 are defined as

V(r?)) — ]:5(())) _JroD30+J 110G + 120D . (A5)
J20D29 +J30G12 + J49 D1
P =F0 = J—r+2,1f41D— Jr3.131 ’ (A6)
31
J_r
ro =Fy = (A7)
0

APPENDIX B: FIRST-ORDER TRANSPORT
COEFFICIENTS

In this appendix we discuss the positivity of the first-
order transport coefficients from Eq. (35). The shear
viscosity coefficient n = TR(Z(()Z), where a(()z) = fJ3, from
Eq. (18). Replacing the thermodynamic integral from
Eq. (4), using n = 3 and g = 2, we obtain

ﬂTR

15 fOkak( m%)z‘

(B1)

This integrand is positive definite, and hence 1 > 0.

The diffusion coefficient is given by k = TRa(l), where

ag)l) = J; — Ja;/h from Eq. (17), where h = (e + P)/n is
the enthalpy per particle. This can be rewritten as

( ) 2 1

Jll__J21+h2J31’ (B2)

where we used that J,; = nT and J3; = T(e + P), while
we added and subtracted J,, /h = J5;/h*. Now, substitut-
ing J,,, from Eq. (4), we arrive at

T dK ~ E \2
K:% Ekakak(Ei_m%)<1—hk>’ (B3)

where the integrand is positive definite, and hence x > 0.
Recalling the thermodynamic relations obtained from
integration by parts, see Eq. (4),

dl, (o, p) = (a;;‘f)ﬁdwr (a;/';") ap

= anda - ‘]n-‘rl,qdﬂ?

(B4)

and using this relation for I;; = n and I,, = e, we obtain

1
dao = — (J30dl’l - J20d€), (BS)
D20
1
dﬂ = (J20dl’l - Jlode). (B6)
D20

Using these relations the partial derivatives of the pressure,
P = 1,,, at constant particle number density and constant
energy density can be written as

oP J3 7 1 ]

oe Dzo 10~ 7,720
oP J;l 1

— —-J J
(6n> D5 < 0Fg h g0)

Therefore the speed of sound squared, cf. Eq. (116), reads

(B7)

Doy )
1 m2
=3 + 31Dy (hGyo — G) (B8)

where we used that m3J,o = J,12.0 — 3J,42.1- Similarly, in
the case without particle-number conservation, the speed of
sound squared reads
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Jy 1 J
agzi__(l—mgﬂ) (B9)
130 3 ]30
(0)

The bulk viscosity coefficient, { = rnm(z)aéo) /3, with a;
given in Eq. (16), can be written using Eq. (B8) as

T
ngn[—m%ﬂ]n+(1—3C§)(9+P)]- (B10)
Replacing m3J,; = J3; — 5J3,, we arrive at
5 2
{=m gﬁJ32—cS(e+P) ; (B11)
where the first term inside the square brackets is
5 1 [dK . -
372 =3 kaOkak(Ei —myp)?. (B12)
‘We now consider the relations,
dK ~ 3(e+ P
I oo B -y =20 (3)
Ey p
dK P
ot (B14)

f oxfoxTh = B

S

where we introduced the notation,

T :Eﬁ(flo—lfzo) Ek(fzo—llho) (B15)
K Jio =220 + 3 '

Inserting and subtracting the term c?(e + P) in Eq. (B11),
one arrives at

CZTHF/U32—ZC§(€+P)+C?(6+P)

ﬂfn

o —m} —3c2Ty)>.

fOkak( (B16)

This integrand is always positive and so { > 0. Note that
this expression agrees with Eq. (A26) of Ref. [46].

We also remark that ¢ = Tnm%&(()o) /3 > 0, where a”
was defined in Eq. (66). To show this, we use the recurrence
relation 3/, = Jo — m(Z)J_LO to rewrite £ as

ﬂmo

9 [(3 .—1)J10+m0J 10]

{=m—" (B17)
Now adding and subtracting m3Jo(1 —3¢2) = J3(1—
3¢2)? inside the square brackets leads to

_ s _ _
é’ = TH§ [(1 - 3C?)2J30 - 2m(2)(1 - 3C%>J10 + mg]_l,o].

(B13)

Finally, restoring the integral expression for the J,,,’s, we
arrive at

_ dK ~
{= %B/E_kakak[(l - 3¢;)’Ey —mg)*,  (B19)

which generalizes Eq. (58) of Ref. [47] to the case of
quantum statistics.

APPENDIX C: USEFUL THERMODYNAMIC
INTEGRALS

The thermodynamic integrals with negative power, 1_, ,
can be obtained in terms of the functions Ki, as

(C1)

where the Bickley function Ki,(z) is defined as the
repeated integral of the Bessel function Kj(z), having

the following integral representation, see Eq. (11.2.10) of
Ref. [42] and Eq. (10.43.11) of Ref. [48]:

—Zcoshx
/ PN xq\/x—— / cosh? x’ (€2)
such that
Kinle) = Kule) = Kale) |1 - 23| (€

while for the negative orders we have, see Eq. (11.2.9) of
Ref. [42],

dq

dzq — Ko(2). (C4)

More generally, one can derive the recurrence relation, see
Eq. (11.2.14) of Ref. [42],

2(2)+ (g = DKi

which holds for any non-negative integer g > 0 and allows
the higher-order functions Ki,(z) to be expressed in terms
of Ki;(z). An integration by parts of K(z) leads to

qKigyy1(2) = zKi, g-1(2) —zKiy(z), (C5)

ko= [
= 2K, (z) — zKi; (2) + Ko ()

—Kiy(z), (C6)

which then provides in agreement with Eq. (C4),
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Ki,(z)

Ki_(z) -

= Ki, (z) +

= K,(z). (C7)

The function Ki (z) can be expressed [15,49] in terms of
the modified Bessel functions and of the modified Struve
functions L, (z), see Eq. (12.2.2) of Ref. [42],

-1(2) + Ki(2)Lo(2)].  (C8)

Introducing a notation similar to that used in Eq. (110),
Hi(z) = Ki,(z)/K5(z), Eq. (C7) leads to

Kiy(z) = K(2)[zH (z) - zHi(z) —4].  (C9)
Similarly, using these formulas together with the recursion
relation (C5) we calculate

Kia(e) = K298 4 522 22 4 2)H (o
+ z(1 + Z?)Hi(z)], (C10)
Kiy(z) = —KZT(Z) [24 4+ 572 — 7(6 + 22)H(z)
+ z(3 + z»)Hi(z)]. (C11)
Now substituting into Eq. (C1) leads to
I_10=——5[4~2H(z) + ZHi(2)], (C12)
myg
Ioo= ”—4 84522 —z(2+ )H(z) + Hi(z)],  (C13)
0

Is0=—3- g[8+5z — 22+ 2)H(z) — 2(1 - )Hi(2)],
(C14)
522 - 2H(z) - 23 - DHi(z).  (CI5)

I, =
0 omdT

Using these results together with Eq. (106) for ¢ = 1 and
-2 <r <1 we obtain

I, = g 5 — zH(z) + zHi(z)]. (C16)

Iy, = —WT(% [12+5722-z(3+7%)H(z) + °Hi(z)], (C17)
L= on " 1522 - 2H(z) - 2(3 - 2)Hi(z)]

= miT 1_y. (C18)

[48 + 3072 — 5z* — z(12 + 622 — zY)H(z)

Z2)Hi(z)].

Finally, the functions /,, with ¢ =2 and 0 < r <2 are

1_ —
217 18m g
29—

(C19)

T
I, = 15 [15+ 522 = z(3 + 2%)H(z) + Z’Hi(z)],  (C20)

Iy = % [10 — 522 — 2(2 = 22)H(z) + z(5 — 2%)Hi(z)],
(C21)

nT
Iy = ———[120 + 602% — 57* — 2(30 + 122> — 2*)H (z)
90my

+ 22(15 = 2%)Hi(z)]. (C22)

Here we also list the remaining coefficients of interest,

0 el_1o , Iy
) et (C23)
0 el ro 110
%) =31, - T (C24)
and
1
all =20, ~ 1o+ 80 (C25)
I_
2% =315, — 1,0+ & = (C26)
These are followed by the relations
I I, 1 I
o) =1y, - . =1, - (e
2 2
a(_1> :Il,] —211.2, a_z) :IO.I —3102 (C28)

Using the explicit form of the thermodynamic integrals
we evaluate the first-order transport coefficients. Using
Eq. (130) together with (C13) we obtain

£_ 25 H(z) _ _l z 1(2)—K11(Z)]
E_— 3 [—Z (1-3¢2) 3 + 3—K2(Z) , (C29)
and similarly,

¢ LP[, 1 zK(z)-Kil2)

% = Z2§ [c? ~3 + g—Kz(Z) ] . (C30)

Furthermore, using Eq. (133), together with Eq. (C13)
we obtain
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3 1 - Ki

These latter two results were found by Anderson and
Witting, see Eqs. (75) and (76) of Ref. [9], as well as by
Florkowski et al., see Eqgs. (37) and (45) of Ref. [49].

The ratio of the diffusion coefficient and the relaxation
time follows from Egs. (132) and (C12),

o 3h 310
P [1 3K,(z) K(z)—Kilz)
R BN FE R AC e M

APPENDIX D: NUMERICAL METHODS

In this section we briefly present the details of the
discrete-velocity method employed to solve the Boltzmann
equation (165) of Sec. D 1. Similarly, the strategy
employed to solve the equations of anisotropic fluid
dynamics as well as the Runge-Kutta time-stepping algo-
rithm are presented in Secs. D2 and D 3, respectively. A
note on the code that we employed can be found in
Sec. D 4.

1. Discrete-velocity algorithm

The algorithm employed in this paper to solve the
relativistic Boltzmann equation is based on the relativistic
lattice-Boltzmann method introduced in Refs. [50,51] for
massless particles and in Refs. [52,53] for the case of
massive particles; see also Ref. [54] for details.

In particular, the only remaining degree of freedom »* is
discretized according to the Gauss-Legendre quadrature
method of order Q, by which v§ (1 < j £ Q) are the roots

of the Legendre polynomial Py(v*) of order Q.. This
prescription ensures the exact integration of any polyno-
mial in ¢ of order less than or equal to 20 — 1; i.e.,

1 Q
/ do(v*)" Z

1 —

(D1)

where equality is achieved when 0 < n < 2Q. The quad-
rature weights w; are computed via

Y 21 = (v3)?]
@+ P (V)]

(D2)

In our case, we have to deal with nonpolynomial
functions of v%; however the integration method becomes
systematically more accurate as Q, is increased. On the

other hand, there is a limit on the achievable accuracy due
to loss of precision in floating-point arithmetic. For
practical purposes, we employ Q. = 200 for the simula-
tions presented in this paper. The necessary roots of the
Legendre polynomials together with the corresponding
Gauss-Legendre quadrature weights can be found in the
supplementary material to Ref. [51].

Following the discretization of %, the continuous
distributions F,(v*) are replaced by a discrete set F,.;,
defined as

Fpj=w;F,(v5). (D3)
With the above discrete distributions, the macroscopic
quantities e, P;, and TZ are obtained via

Qo o
e:ZIFQ;j, Z Tﬁ:m%ZIFO’J
J= J=

(D4)

©Q

F2]a

Finally, the gradient with respect to »° appearing in
Eq. (165) is evaluated by projecting it onto the space of
Legendre polynomials, as described in Ref. [51],

(‘W(l_—”> Z K;;Fpp  (DS)

where the matrix elements of the kernel KC; i can be found
in Eq. (3.54) of Ref. [54] and are not repeated here for the
sake of brevity. To summarize, Eq. (165) becomes

Z’C/J’Fnj

oF,.. 1
nyj 1
or +T[

+(n=1)(]

1
= _;(Fn;j _FZ?/')'

2. Anisotropic fluid-dynamics algorithm

In this section, we discuss the solutions to the equations
of anisotropic fluid dynamics, Eqs. (174)—(176).

While these equations can be directly solved for 7, é, and
P,, for the sake of convenience we recast them as evolution
equations for the parameters (&, £, A). This is done generi-
cally by considering that a function f € {A, é, P,} describ-
ing the fluid properties depends only on the above
parameters, such that

Df = 04fDd + 0;fDE + 0, f DA, (D7)

where d,f = 0f /0A. This leads to the matrix equation,
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P N Dd S,
0;6  0:€  0p€ DE| =18, |, (D8)
0zP, 0:P, 0\P,) \ DA S;
with source functions,
Sn:_ﬁ_ﬂ, Se:_é+P1,
T TR T
3P, 1%, P, —P
S] _ _ 1 240 11 ] (Dg)
T TR
The derivatives with respect to @ are simply
04 = A, 0;6 = 6, 0;P, = P,. (DI10)

Taking into account the expression (182), the derivatives of
i with respect to £ and A can be obtained as

i _Afmo, (mo)
oty B-ARH() ] o
with H(z) = K3(z)/K,(z). Starting from Eq. (181), the

derivatives of é and P, with respect to & and A can be
obtained as

(o) =% Laer ()
0:8,) 87 Jo(1+&2) \o?

x [(4 4 AT (4,2) = 3403, )],

<6Aé> _ge‘fm/l do? < 1 >
Wb ) Ar (14 &v2)? \ 2
x [(4 4+ A)0(4,4) = 3aT(3, 2)].

dn il

(D12)

In deriving the above results, we employed the relations,

or (4,2
iu ):3r(3,/1)—r(4,1),
v2A A
O =—— | OpA=——. D13
20140 A A (D13)

In the case where the particle number is not conserved,
& = D@ = 0, such that only the equations for é and P, have
to be taken into account from Eq. (D8). Inverting the matrix
on the left-hand side of Eq. (D8) gives

D A& A) [ 0P, —0pé\ /S,
(on) =563 o e () om0
DA a(e, Pl) —agP, agé\ Sl
The prefactor appearing on the right-hand side of the above
equation represents the Jacobian of the transformation from

(&A) to (8.P)),

AEN) 1
0(é,P))  0:60\P, — 0,é0:P,

(D15)

In the case of particle-number conservation, i = n.y and

S, = —i/z, such that the equation for 72 admits the simple
solution,
A(r) = 200 (D16)
T

We can view this equation as fixing the & degree of
freedom, which we now seek to eliminate. Using
Eq. (D8), Dd can be obtained as

Da=—-—"Epe-"App (D17)
T N i
With the above, Eq. (D7) becomes
Df:—§+A§fD§+AAfDA, (D18)

where we introduced the following notation:

01 ozl
Sf. A== f (D19

We are now left with 2 degrees of freedom, £ and A, whose

equations of motion read

D A(E,N) [ AP, —ALé\ [ AS,

(on) =560 oty ae ) )
Azé AS;

DA)  A(6.P) \ -A.P,
where

A(EA) 1
A(é,P)) AseANP,— AyeAP)

P 2P, 1% P,—P
AS, =11 Ay, =T lao Li7h
T T TR

(D21)

3. Runge-Kutta time integrator

In this section we give a brief description of the time
stepping algorithm. In this paper, we employ the explicit
third-order total-variation diminishing (TVD) Runge-
Kutta algorithm involving two intermediate stages; see
Refs. [51,55,56] for details. For the model equation,

O _ Le. g1,

- (D22)

this scheme allows f to be advanced from time step 7, to
T,11 = T, + ot as follows:
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TABLE II. The small-z expansion of the transport coefficients from Egs. (36)—(41) and Eqgs. (71)—~(73), with L = In(e”z/2) and
y ~ 0.577 being the Euler-Mascheroni constant. The left column corresponds to the expansion of the coefficients obtained using the
basis-free method, the right column corresponds to the DNMR coefficients.

Basis-free coefficients DNMR coefficients
¢/m PL1 -3 (B-3L)2 -3 4 (B2 -312)7
&/ PRI -+ (8307 -3 + = HL)7]
S/t 2pmy (0432 4972 +32(2 4327 +22L)7° I-@yorn)?+
_(% fr_z_zg_rzr“ _ 50+2189n2L —10L%)7* +(%+ 157L + 6L2)
S . T~ ”2_ ﬂ'73 D ~7523
Orn/Tn ERa TR (54180 +20)% (24 LS+ L) - (2L +%
72 pd f/3 4 1807 79 2
+(ER - e +(27 - P)L +6L%) 5 +(5et + 5L +6L%)t
fnv/Tn —%TB ] %+(193+51L>§6 (135 +48L) % 2L 1 +3(1+ L) - =2
+(46583 1 972 + 901 — 15L2) %] +(%83 +7L) %]
v/ T ZAT[%—FL—%—F(SIS—FI”L)Z (143 +48L) 22 —ZZTT[1+(13+6L)—2—57rz3
+(1t127()28§+6 +§2§L 302)24) +(1259 21L)% ]
Anv/Tn 21+ (254 9L)2% - 9n2 + (333 + 301L) ] I - U2 g s (407 697) £
P 3 2
Aiz/ T _5_6[1 +(§+3L)2% =%+ (5 + 15 L)7] ~ T+ (g +507 - GE5-L) 2112

6
) 2 77 2 2 5
s/ U -5+ - G- B! B0-%-G0E

TABLE III. The small-z expansion of the transport coefficients from Eqs. (42)—(48) and (74). The left-column corresponds to the
expansion of the coefficients obtained using the basis-free method, the right-column corresponds to the DNMR coefficients.

Basis-free coefficients DNMR coefficients
K/Ty B =82 4 g3 - (BL_197)74]
Syv/ty 145 -2 4 (4-3L)4 1+2+ (M +0)%2
Zyn/ty 3B+ L+ Q4+ L) Yo+ (B2 4 92y 4 9] 2)2 e LS 56L) =
+(63n2—12] 4 27224105 27n2+105 L+ 27L2) %Z3 +(29 + 72L) Z 22Z
+(1897r485451r + 9597265 + (2717 J2‘14217 @)314 + 486ﬂ2+347 L2 + 87L3)§] +(1119127 + 337L + 168L2) ]
Fvalty G+ G+302 =3+ (F+1)5] wll =%~ (L)%
Tyn/Tv 3P+ L+ G+ L)3az+ (972"92% + 4207 4 T2 — DAy — (223 168L)
+(153nz—137 + 53+9,[2 3L + 54L2)7IZ3 + (11(3)%7: 18737r + gggi (94 + 144L) z
2 2
+(405n + 1551;: — %)y | MNELAI 2y 4%ZL )24 (22 105y 84OL2) ]
Tva/Ty B2[1 4 1914206L 22 _ 5n2t | (119 4 L) 4] L1+ - (37+12L)%
Avy /Ty M+ 22 -7 + (8- 1)) M+5+ M4+ 1)3]
v/ Ty _3/i [17 + L+ (5 + L)37z + (81;;2 71 1.y 54,,2+215L + 27L2)i %[1 —2nz — (%_._ 14L) 22
+(1537‘[2—142+36ﬂ +2“3L+54L2)nz + (11077[ 38277r + 13 +(2+12L)72
gt 2585 | 6ISL 2
+(810;[ ;26177;: 1(1)3221)L + 810;r16+917 312 Jr4345‘L )z 4} j_(576 + 9L+ 70L%)7 ]
Ava/Tv fll =% - G + 50’ Bl =%+ (m—%)ﬂ
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TABLE IV. The small-z expansion of the transport coefficients from Eqs. (49)—(53) and (74). The left-column corresponds to the
expansion of the coefficients obtained using the basis-free method, the right-column corresponds to the DNMR coefficients.

Basis-free coefficients

DNMR coefficients

e LU+5+G+0H

Sun/Tn 442z i+ &0

e 5 04 5-3 0iEog

Aant/ s S[1 £ 4 WAL 22 4 () 4 32 4 92L) 322 §[1— (22 +2L)7% + 32

(Prsse 85 4 (82 4 13y], 4 0L2)7Y +(BL+ 2L +6L2)z%]

Ao/, g[1+1176+9n2 5360L 2+24;:2—21&%+2()0L37TZ %[1— %—FZL)ZZ—}—S”—{
+(17627 18107r +2;g +162ﬂ320325L+6L2)§75} + %+%L+6L2)Z4]

wv /T L1+ (G+L1)92% - 9n2® + (1 + 201)2"] — {1 - 2E 32 (B _351)%]

Cav/ s —E 0+ {+L0)32 - %2 + B+ L)4Y 42 Ty s (T Ly

Ay /x — L+ (B 4 1)92 - 9n2° + (350 + WiL)24) il =T - (-0

TABLE V. The small-z expansion of the transport coefficients from Eqgs. (79)—(84) arising from the coupling of a charged fluid with
external electric and magnetic fields. The left column corresponds to the expansion of the coefficients obtained using the basis-free

method, while the right-column corresponds to the DNMR coefficients.

Basis-free coefficients

DNMR coefficients

Sve/tv el —%+nz3—(131 —76L)%]
duve/Tn 132 (| 182, _ 5(1;%30@ 263 201+ (1097’;—’1_1 6L)z* - —47”
—( - 1 g =T
Syne/Ty —%3[14‘%12"‘(1"‘11)%13 —%[1—%+%Z3+(%+4§7UZ4}
+(185T§8867r2 + (175 + 54ﬂ2) 3L 4 M)Zﬂ
Svae/Tv e fgzz +373 — (Y- 69L) %] Lol = G+ L)32> + 322 — (A5 —9L) %]
S2vE/Tx §[1+32 -3 4 (L-1)%] $[1+4+(13+10L) %]
Syp/ty P+ E+4 )z -3n2° + (55 + BE) 24 8- % + 723 — (I8 2L
2 A4

x5/ x bl1-3% — (23 +36L) %] Pa-2+%)

1 2 2, 2 T 2 For the Bjorken-flow simulations considered in this
Suer = §f nt §f not §5TL Tn f’f noe paper, we employed an adaptive time step 67, = 67(z,),

53 1 1 X determined via

sz) :an‘szzS) +Z(STL[T” +5T,sz )L

P = fu+ StLlz f). (D23)

The algorithm applies straightforwardly to systems of
equations, in particular to the equations of second-order
fluid dynamics, those of leading-order anisotropic hydro-
dynamics, as well as to the Boltzmann equation written in
the form (D6).

076001-

6t, = min(a,7,, agtg), (D24)

where we used a, = 10~ and az = 1/2 in all considered
setups (second-order hydrodynamics, leading-order aniso-
tropic hydrodynamics, kinetic theory).

4. Note on code availability

The numerical code, raw data, and scripts to generate
the plots shown in this manuscript are available as a
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code capsule on Code Ocean [57]. Note that a key
ingredient in this code is the fast and accurate evaluation
of the modified Bessel functions K,(z), as well as of the
Bickley function Ki;(z), which is performed using the
algorithms derived by D.E. Amos [58,59]. We are grateful
to OpenSpecfun for providing the AMOS package of

functions required for the evaluation of the modified
Bessel functions K, (z)."

'Source files downloaded from https://github.com/JuliaMath/
openspecfun, commit number 70239b8d1fe351042a-
d3321e33ae97923967£7b9.
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