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In this work, we extend the analysis of the pion axioproduction, aN → πN, to include the impact of the
Roper resonance N�ð1440Þ together with the previously studied Δð1232Þ resonance. Our theoretical
framework is a chiral Lagrangian approach with explicit resonance fields to account for their respective
impacts. We find that the N�ð1440Þ also leads to an enhancement of the cross section within its energy
range for various axion models. This enhancement given by the N�ð1440Þ maintains stability even when
the parameter sin2 β of the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model undergoes variations. In
contrast, the enhancement given by the Δð1232Þ gradually diminishes and finally disappears as sin2 β
approaches 1. Furthermore, the resonance peaks given by the Δð1232Þ are approximately the same in both
the Kim-Shifman-Vainstein-Zakharov (KSVZ) model and the DFSZ model with sin2 β ¼ 1

2
, while the

resonance peak given by the N�ð1440Þ in the former model is much more pronounced.

DOI: 10.1103/PhysRevD.109.075050

I. INTRODUCTION

The axion is a well-motivated paradigm for physics
beyond the Standard Model, simultaneously providing a
solution to the strong CP problem [1–4] and serving as a
potential candidate for dark matter [5–7]. The original
(“visible”) Peccei-Quinn-Weinberg-Wilczek (PQWW)
axion with a decay constant fa at the electroweak scale
(or equivalently a mass ma ≈ 5.7 × ð106 GeV=faÞ eV in
the keV=MeV region) was quickly ruled out by experi-
ments on astrophysical grounds (axion emission from the
sun and red giants) [8,9]. Thus, the “invisible” axion was
introduced with an extraordinarily large decay constant
traditionally estimated to be 109 GeV≲ fa ≲ 1012 GeV
(corresponding to an axion mass between a few μeV and

0.1 eV) [10], such as the Kim-Shifman-Vainstein-Zakharov
(KSVZ) axion model [11,12] or the Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) axion model [13,14].
Astrophysical observations can place stringent bounds

on the properties of the axion. For instance, a core-collapse
supernova (SN), e.g. SN 1987A, can emit axions in
addition to neutrinos as an extra cooling mechanism of the
associated neutron star. Consequently, the suppression of
the neutrino luminosity due to axion emission would
discernibly alter the observed neutrino events to provide
stringent bounds on the axion-nucleon couplings [15,16].
Recently, Carenza et al. [17] revisited the axion emis-

sivity due to the pion-induced process π−p → an and
pointed out that SNe can emit axions with energies up
to 500 MeV, which in turn can produce pions in water
Cherenkov detectors via the aN → πN process. At these
energies, an enhanced cross section of the pion axiopro-
duction can be expected due to the intermediate resonances.
Note that we use the term axioproduction in analogy with
terms like pion electro- or photoproduction. Pion axiopro-
duction hence means pion production induced by axions. In
Ref. [18], by conducting a study on the P33 partial wave
cross section of this process, the authors confirmed the
existence of such an enhancement in the Delta resonance
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Δð1232Þ region, which can be accessed when the axion
energy Ea ≃ 200–300 MeV. They also pointed out that the
Δð1232Þ contribution to the aN → πN process breaks
isospin symmetry with the amplitude proportional to
ðmd −muÞ=ðmd þmuÞ. Thus, the enhancement of the cross
section of pion axioproduction estimated in Ref. [17] is
reduced by 1 to 5 orders of magnitude.
In this work, we take a step further by considering also

the effects of the Roper resonance N�ð1440Þ on this
process, whose contribution conserves isospin. This is
motivated by the simple observation that the invariant
mass of the initial aN system falls within the N�ð1440Þ
region when the axion energy Ea is approximately in the
range of 400–500 MeV, which is on the right shoulder
of the bump of the SN emitted axion number spectrum from
the π−p → an process derived in Ref. [17]. Furthermore,
the N�ð1440Þ decays into πN with a large branching
fraction of ð55 − 75Þ% [19]. Hence, it is imperative for
us to consider its impact. While the N�ð1440Þ does not
couple as strongly as the Δð1232Þ to the pion-nucleon
system, the fact that the pion axioproduction via the
N�ð1440Þ is isopsin-conserving counteracts this suppres-
sion. In fact, we will demonstrate that the N�ð1440Þ also
leads to an enhancement in the cross section, and further
implications for experimental detection of the axion are
discussed.
We employ a chiral Lagrangian framework with explicit

resonance fields. The chiral Lagrangian is the leading order
(LO) one in chiral perturbation theory (ChPT), which is a
low-energy effective theory of quantum chromodynamics
(QCD) [20,21]. In ChPT, the pions and nucleons, rather
than the more fundamental quarks and gluons, are treated
as the effective degrees of freedom, while the axion can be
incorporated through external sources. Additionally, we
explicitly introduce resonance fields, namely the Δð1232Þ
and N�ð1440Þ fields, following Ref. [22], to account for
their effects. This framework enables us to draw upon
established knowledge of hadronic processes while at the
same time preserve the consequences of the spontaneously
broken chiral symmetry of QCD.
The outline of this paper is as follows: In Sec. II, we

collect the necessary kinematics concerning pion axiopro-
duction. In Sec. III, we outline the main steps for incor-
porating the axion into ChPT. The Lagrangians describing
the axion-nucleon and axion-resonance interactions are
collected in Sec. IV where we also evaluate their contri-
butions to the scattering amplitude. Subsequently, we
assemble these contributions and proceed to analyze the
obtained results in Sec. V.

II. KINEMATICS

In this section, we give a short discussion of the general
isospin structure of the scattering amplitude of pion
axioproduction and its partial wave decomposition, follow-
ing closely Ref. [18]. This serves to set our notation and to

keep the manuscript self-contained. The process under
consideration is

aðqÞ þ NðpÞ → πbðq0Þ þ Nðp0Þ; ð1Þ

where a denotes an axion, N a nucleon, either proton or
neutron, and πb a pion with the Cartesian isospin index b.
As usual, we define the Lorentz-invariant Mandelstam
variables:

s ¼ ðpþ qÞ2; t ¼ ðp− p0Þ2; u ¼ ðp− q0Þ2: ð2Þ

These invariants fulfill the on-shell relation,

sþ tþ u ¼ 2m2
N þm2

a þM2
π; ð3Þ

which can be used to eliminate one of the three variables,
which we choose to be u. In what follows, we will take
the isospin-averaged nucleon mass mN ¼ 938.92 MeV
and the isospin-averaged pion mass Mπ ¼ 138.03 MeV.
Throughout this paper, we use the center-of-momentum
(c.m.) frame, for which the three-momenta obey the
relation pþ q ¼ p0 þ q0 ¼ 0. Using the well-known
Källén function,

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc; ð4Þ

one has

jpj ¼ jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

N;m
2
aÞ

p
2

ffiffiffi
s

p ;

jp0j ¼ jq0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

N;M
2
πÞ

p
2

ffiffiffi
s

p ; ð5Þ

and the c.m. energies of the incoming and outgoing
nucleons can be written as

Ep ¼ sþm2
N −m2

a

2
ffiffiffi
s

p ; Ep0 ¼ sþm2
N −M2

π

2
ffiffiffi
s

p : ð6Þ

Moreover, setting z ¼ cos θ, where θ is the c.m. scattering
angle, we have

p · p0 ¼ jpjjp0jz; ð7Þ

so we can reexpress the second Mandelstam variable t as

t ¼ 2
�
m2

N − EpEp0 þ jpjjp0jz�: ð8Þ

In the following, we consider the scattering amplitude
Tb
aN→πN . According to the isospin structure, it can be

parametrized as
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Tb
aN→πN ¼ 1

2
fτb; τ3gTþ þ 1

2
½τb; τ3�T− þ τbT3; ð9Þ

which is similar to the case of πN elastic scattering with
isospin violation, see, e.g. Ref. [23]. Any of the four
possible scattering amplitudes can then be expressed in
terms of the three amplitudes Tþ=−=3:

Tap→π0p ¼ Tþ þ T3;

Tan→π0n ¼ Tþ − T3;

Tap→πþn ¼
ffiffiffi
2

p
ðT− þ T3Þ;

Tan→π−p ¼ −
ffiffiffi
2

p
ðT− − T3Þ: ð10Þ

Furthermore, according to the Lorentz structure, each of the
three amplitudes Tþ=−=3 can be decomposed as (the super-
scripts are suppressed for simplicity)

Tðs; t; λ0; λÞ ¼ ūðp0; λ0Þ
�
Aðs; tÞ þ Bðs; tÞ 1

2
ð=qþ =q0Þ

�

× uðp; λÞ; ð11Þ

where λð0Þ, appearing in the Dirac spinor, denotes the heli-
city of the incoming (outgoing) nucleon. The partial wave
amplitudes Tl�ðsÞ, where l refers to the orbital angular
momentum and the superscript � to the total angular
momentum j ¼ l� 1=2, are given in terms of the functions
Aðs; tÞ and Bðs; tÞ via

Tl�ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þmN

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 þmN

p
2

×
�
AlðsÞ þ ð ffiffiffi

s
p

−mNÞBlðsÞ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep −mN

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 −mN

p
2

×
�
−Al�1ðsÞ þ ð ffiffiffi

s
p þmNÞBl�1ðsÞ�; ð12Þ

where

AlðsÞ ¼
Z þ1

−1
dz Aðs; tðs; zÞÞPlðzÞ;

BlðsÞ ¼
Z þ1

−1
dz Bðs; tðs; zÞÞPlðzÞ: ð13Þ

The total cross section can be expanded in terms of the
partial wave cross sections as [24]

σ ¼
X
l�

σl�; ð14Þ

where

σl� ¼ 1

32πs
jp0j
jpj ð2l� 1þ 1ÞjTl�j2: ð15Þ

In this work, we perform the calculation of the S1, P1,
and P3 partial wave cross sections while neglecting the
higher ones with l ≥ 2, as those are suppressed in the
energy region under consideration. Throughout, we make
use of the notation l2j, with l ¼ S; P;D; � � � the orbital
angular momentum, and j the total angular momentum.
Each of the partial waves contains both the isospin-
conserving ðI ¼ 1=2Þ and isospin-breaking (I ¼ 3=2) con-
tributions. That is, S1 refers to the sum of both S11 and S31
(in the usual l2I;2j notation) partial waves, and so on. Since
the Δ is a spin-3

2
, positive-parity resonance and the Roper is

a spin-1
2
, positive-parity resonance, it is reasonable to expect

an enhancement in the P3 and P1 partial wave cross
sections in the energy region of the Δ and Roper reso-
nances, respectively. Of course, we are well aware that the
Roper does not show up as a bump in the pion-nucleon
cross section and the P11 phase shift crosses 90° at an
energy higher than 1.44 GeV. In case of pion axioproduc-
tion, matters can be different as the background is much
suppressed.

III. INCORPORATION OF THE AXION
INTO ChPT

In this section, we give a brief presentation of how the
axion can be incorporated into ChPT. For a more detailed
discussion, we refer to Refs. [25–28]. Consider the general
QCD Lagrangian with axion below the Peccei-Quinn (PQ)
symmetry breaking scale

LQCD ¼ LQCD;0 þ
a
fa

	
g
4π



2

Tr½GμνG̃
μν� þ q̄γμγ5

∂μa

2fa
Xqq;

ð16Þ

where q ¼ ðu; d; s; c; b; tÞT collects the quark fields, a
refers to the axion field, and fa is the axion decay constant.
Depending on the underlying axion model, the coupling
constants of the axion-quark interactions in the matrix
Xq ¼ diagðXqÞ are given by

XKSVZ
q ¼ 0;

XDFSZ
u;c;t ¼ 1

3

x−1

xþ x−1
¼ 1

3
sin2 β;

XDFSZ
d;s;b ¼ 1

3

x
xþ x−1

¼ 1

3
cos2 β; ð17Þ

for the KSVZ-type and DFSZ-type axion, respectively,
where x ¼ cot β is the ratio of the vacuum expectation
values (VEVs) of the two Higgs doublets in the latter
model. After a suitable axial rotation of the quark fields
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to remove the axion-gluon coupling term, the whole
axion-quark interactions read

Laq ¼−
�
q̄LMaqRþH:c:

�þ q̄γμγ5
∂μa

2fa
ðXq−QaÞq; ð18Þ

where

Ma ¼ exp

	
i
a
fa

Qa



Mq;

Qa ¼
M−1

q

hM−1
q i ≈

1

1þ zþ w
diagð1; z; w; 0; 0; 0Þ; ð19Þ

with Mq ¼ diagfmqg the quark mass matrix and
z ¼ mu=md, w ¼ mu=ms. We take z ¼ 0.485 and w ¼
0.025 [29].
It is from the interaction Lagrangian (18) that one has to

determine the axial-vector external sources aμ (isovector)

and aðsÞμ (isoscalar) that enter ChPT. In the SU(2) case, this
can be achieved by separating the 2-dimensional flavor
subspace of the two lightest quarks from the rest and by
decomposing the matrixXq −Qa into a traceless part and a
part with nonvanishing trace, which results in

Laq ¼ −ðq̄LMaqR þ H:c:Þ

þ
	
q̄γμγ5

	
cu−d

∂μa

2fa
τ3 þ cuþd

∂μa

2fa
1



q



q¼ðu;dÞT

þ
X

q¼fs;c;b;tg

	
q̄γμγ5cq

∂μa

2fa
q


; ð20Þ

with

cu�d ¼
1

2

	
Xu � Xd −

1� z
1þ zþ w



;

cs ¼ Xs −
w

1þ zþ w
; cc;b;t ¼ Xc;b;t: ð21Þ

Let ci, i ¼ f1;…; 5g, refer to the isoscalar couplings
fuþ d; s; c; b; tg, then one finds

aμ ¼ cu−d
∂μa

2fa
τ3; aðsÞμ;i ¼ ci

∂μa

2fa
1: ð22Þ

With the usual SU(2) matrix containing the three pions,

u ¼
ffiffiffiffi
U

p
¼ exp

	
i
πaτa
2F



; ð23Þ

where F is the pion decay constant in the chiral limit, for
which we take the physical value Fπ ¼ 92.4 MeV as the
difference only amounts to effects of higher orders than
those considered here, one forms the following building
blocks of ChPT:

Dμ ¼ ∂μ þ Γμ; with

Γμ ¼
1

2

�
u†∂μuþ u∂μu† − iu†aμuþ iuaμu†

�
;

uμ ¼ i
�
u†∂μu − u∂μu† − iu†aμu − iuaμu†

�
;

uμ;i ¼ i
�
−iu†aðsÞμ;iu − iuaðsÞμ;i u

†� ¼ 2aðsÞμ;i : ð24Þ

Notice that, in principle, the axion can also enter ChPT
through the building block,

χ� ¼ u†χu† � uχ†u; with χ ¼ 2BMa; ð25Þ

where B is a constant related to the quark condensate
Σ ¼ −hūui in the chiral limit via B ¼ Σ=F2. However,
as this building block only appears in the interaction
Lagrangians beyond leading order, it will not be considered
in what follows.

IV. EVALUATION OF THE RELEVANT
FEYNMAN DIAGRAMS

In this section, we calculate several contributions to the
scattering amplitude Tb

aN→πN . First, we consider the contact
and nucleon-mediated diagrams, Fig. 1, arising from the
lowest order pion-nucleon Lagrangian. These diagrams
start to contribute at OðqÞ. At Oðq2Þ and Oðq3Þ, there are
contributions arising from the pion-nucleon Lagrangians
beyond leading order. However, since axions have not
been observed so far, some of the LECs of these higher-
order interaction Lagrangians remain undetermined. In our
approach, such higher order contributions in the near-πN-
threshold region are approximated by the explicit exchange
of theΔð1232Þ and of the N�ð1440Þ resonances, see Figs. 2
and 3. This is a sensible assumption as explained in
Ref. [30], where the dimension-two LECs were fixed from
data and it was shown that resonance saturation allows to
explain these values. The amplitudes in addition possess
resonance poles in the energy region of interest that cannot
be generated by a momentum expansion up to any finite
order. Finally, we will then consider the contributions from
the pion rescattering loop diagram, Fig. 4. It is known that
this type of contribution is most relevant for many pro-
cesses at one-loop order, with the notable exception of
neutral pion photoproduction off protons or neutrons [31].

A. Contact term and graphs with
an intermediate nucleon

In what follows, we only need the lowest order pion-
nucleon Lagrangian, which is given by

Lð1Þ
πN ¼ Ψ̄N

�
i =D − m̊N þ ̊gA

2
=uγ5 þ

̊gi0
2

=uiγ5

�
ΨN; ð26Þ

where ΨN ¼ ðp; nÞT is an isodoublet containing the proton
and the neutron, m̊N is the nucleon mass in the chiral limit,
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and ̊gA and ̊gi0’s are the axial-vector isovector and isoscalar
coupling constants, all also in the chiral limit. In Eq. (26)
and what follows, a summation over repeated i, the index
of isoscalar couplings, is implied. Again, to the order we

are working, we can identify these parameters with their
physical values:

̊gA → gA ¼ Δu − Δd;

̊guþd
0 → guþd

0 ¼ Δuþ Δd;

̊gq0 → gq0 ¼ Δq; for q ¼ s; c; b; t; ð27Þ

where sμΔq ¼ hpjq̄γμγ5qjpi, with sμ the spin of the proton
and the superscript μ denoting the polarization direction.
For these matrix elements, we take the recent values
from Ref. [29],

FIG. 2. Diagrams for aN → πN with the (a) s-channel and (b) u-channel exchange of the Δ resonance.

FIG. 3. Diagrams for aN → πN with the (a) s-channel and (b) u-channel exchange of the N� resonance.

FIG. 4. The pion rescattering loop diagram for aN → πN.

FIG. 1. Tree-level diagrams for aN → πN arising from the lowest order pion-nucleon Lagrangian: (a) contact (Weinberg-Tomozawa)
term, (b) s-channel N exchange, and (c) u-channel N exchange.
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Δu ¼ 0.847; Δd ¼ −0.407; Δs ¼ −0.035; ð28Þ

and ignore Δq for q ¼ c, b, t. The relevant diagrams from

Lð1Þ
πN are depicted in Fig. 1.
The contact (Weinberg-Tomozawa) diagram, Fig. 1(a),

only gives a contribution to B−:

B−
1aðs; tÞ ¼

cu−d
2faFπ

: ð29Þ

For the s-channel nucleon-mediated diagram, Fig. 1(b),
we find

Aþ
1bðs; tÞ ¼ A−

1bðs; tÞ ¼ gAcu−d × ANðs; tÞ;
A3
1bðs; tÞ ¼ gi0ci × ANðs; tÞ;

Bþ
1bðs; tÞ ¼ B−

1bðs; tÞ ¼ gAcu−d × BNðs; tÞ;
B3
1bðs; tÞ ¼ gi0ci × BNðs; tÞ; ð30Þ

where we have defined

ANðs; tÞ ¼
gAmN

2faFπ
;

BNðs; tÞ ¼ −
gA

4faFπ

	
4m2

N

s −m2
N
þ 1



: ð31Þ

The u-channel diagram of Fig. 1(c) can be obtained from the former by crossing:

Aþ
1cðs; tÞ ¼ þAþ

1bðu; tÞ; A−
1cðs; tÞ ¼ −A−

1bðu; tÞ; A3
1cðs; tÞ ¼ þA3

1bðu; tÞ;
Bþ
1cðs; tÞ ¼ −Bþ

1bðu; tÞ; B−
1cðs; tÞ ¼ þB−

1bðu; tÞ; B3
1cðs; tÞ ¼ −B3

1bðu; tÞ; ð32Þ

where u needs to be understood as uðs; tÞ via Eq. (3).

B. Intermediate Delta and Roper resonances

Next, we consider the exchange of the Δ resonance.
The interactions of the Δ with axions, pions and nucleons
are given by the following effective Lagrangian, which
is the leading term of an appropriate chiral invariant
Lagrangian [32–34],

LΔπN ¼ g
2
Δ̄μTa†ðgμν þ z0γμγνÞhτauνiΨN þ H:c:; ð33Þ

where H.c. stands for the Hermitian conjugate and h� � �i
denotes the trace in flavor space. Here,

Δμ ¼

0
BBBB@

Δþþ
μ

Δþ
μ

Δ0
μ

Δ−
μ

1
CCCCA ð34Þ

collects the four Δ charge eigenstates, each of which is
represented by a spin-3

2
vector-spinor field, and Ta’s are the

isospin-1
2
→ 3

2
transition matrices. The propagator of the Δ

with four-momentum pμ is then given by [35,36]

−i
=pþmΔ

p2−m2
Δ


gμν−

1

3
γμγνþ 1

3mΔ
ðpμγν− γμpνÞ− 2

3m2
Δ
pμpν

�
;

ð35Þ

with mΔ the mass of the Δ, for which we take
mΔ ¼ 1232 MeV. For simplicity, we take here the Breit-
Wigner rather than the pole mass, which is sufficient for
the accuracy of our calculation. Moreover, the interaction
Lagrangian (33) contains two coupling constants g ¼
−1.366 and z0 ¼ −0.42, whose values are taken from
Ref. [22]; see Fit 2 in Table 1 therein. Values from other
fits in Ref. [22] will be used for an error estimate. Notice
that in the notation employed for the Δ-pion-nucleon
Lagrangian in Ref. [22], see Eq. (3.5) therein, two coupling
constants gΔπN and Z appear. They are related with the
ones in Eq. (33) via g ¼ − Fπ

Mπ
gΔπN and z0 ¼ −ðZ þ 1

2
Þ. We

further note that the parameter z0 can be eliminated, but this
would just change the value of g. Here, we prefer to work
with the notation employed in Eq. (33).
For the contributions from the direct exchange of the Δ,

Fig. 2(a), we find

Aþ
2aðs; tÞ ¼ −2A−

2aðs; tÞ ¼ AΔðs; tÞ;
A3
2aðs; tÞ ¼ 0;

Bþ
2aðs; tÞ ¼ −2B−

2aðs; tÞ ¼ BΔðs; tÞ;
B3
2aðs; tÞ ¼ 0; ð36Þ

with
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AΔðs; tÞ ¼
2g2cu−d
3faFπ

�
2z0
3m2

Δ

�
mΔ þ ½mN þ 2mΔ�z0

��
s −m2

N

�þ 1

s − μ2Δ


ðmN þmΔÞ

	
1

2

�
m2

a þM2
π − t

�
−
1

3

�
s −m2

N

�


−
1

6m2
Δ

�½mN þmΔ�
��
m2

a þM2
π

��
s −m2

N

�þm2
aM2

π

�þm2
aM2

πmΔ þmN

�
s −m2

N

�
2
���

; ð37Þ

and

BΔðs; tÞ ¼
2g2cu−d
3faFπ

�
−

z0
3m2

Δ

�
m2

a þM2
π þ 2

�
s −m2

N

�½1þ z0� þ 4mNmΔ½1þ z0� þ 4mN ½mN þmΔ�z0
�

þ 1

s − μ2Δ

	
1

2

�
m2

a þM2
π − t

�
−
1

6
m2

a þ
1

6mΔ
½mN þmΔ�

�
4mNmΔ −M2

π

�


−
1

6m2
Δ

��
m2

a þM2
π þ 2mNmΔ

��
s −m2

N

�þm2
a

�
mNmΔ þM2

π

�þ �
s −m2

N

�
2
���

: ð38Þ

Notice that Eqs. (37) and (38) have a pole appearing at c.m.
energies around the Δ mass. To avoid unnecessary intri-
cacies associated with this, we use a Breit-Wigner propa-
gator with a complex mass squared,

μ2Δ ¼ m2
Δ − imΔΓΔ; ð39Þ

with ΓΔ ¼ 117 MeV the width of the Δ [19]. Here, the
same comment with respect to the pole value as already
made for the mass applies. A more refined treatment could,
e.g., be given by including theΔ self-energy in the complex
mass scheme [33], but that is not required here. For the
contributions from the exchange of the Δ in the crossed
channel, Fig. 2(b), analogous relations as the ones shown in
Eq. (32) hold.
Let us consider now the exchange of the N� resonance.

The Lagrangian for the N�πN and N�aN interactions
is [37–40]

LN�πN ¼
ffiffiffiffi
R

p

2
Ψ̄N�

�
gA
2

=uγ5 þ
gi0
2

=uiγ5

�
ΨN þ H:c:; ð40Þ

with ΨN� the isodoublet Dirac field describing the Roper
and

ffiffiffiffi
R

p ¼ 0.79 determined in Ref. [22].
The resulting contributions from the Roper-mediated

diagrams, Figs. 3(a) and 3(b), are similar to those from the
nucleon-mediated diagrams, see Eqs. (30) and (32), with
the only difference being the need to replace AN and BN
with AN� and BN� , respectively,

AN� ðs; tÞ ¼ RgAðmN þmN�Þ
16faFπ

s−m2
N

s− μ2N�
;

BN� ðs; tÞ ¼ −
RgA

16faFπ

	
2m2

N þ 2mNmN�

s− μ2N�
þ s−m2

N

s− μ2N�



; ð41Þ

where again we used a complex mass squared in the
propagator,

μ2N� ¼ m2
N� − imN�ΓN� ; ð42Þ

with mN� ¼ 1440 MeV and ΓN� ¼ 350 MeV the Breit-
Wigner mass and width of the Roper resonance [19]. We
are well aware that such a simple parametrization does not
quite represent the dynamics of the Roper in pion-nucleon
scattering, see, e.g., Ref. [41] for a more refined treatment,
but given the exploratory nature of our investigation, it
should suffice to estimate the corresponding contribution to
pion axioproduction for c.m. energies below 1.5 GeV.

C. Pion rescattering

The pion rescattering loop diagram is depicted in Fig. 4.
The resulting contributions to the partial wave amplitudes
TIl�
an→πN (I denotes the isospin of the final πN system) can

be approximated by

TIl�;rescatt:
an→πN ðsÞ ≈ TIl�;tree

an→πNðsÞ × gðsÞ × TIl�
πN→πNðsÞ: ð43Þ

The first factor, TIl�;tree
an→πNðsÞ, corresponds to the left vertex

which leads to the axion-pion conversion and, therefore,
basically comprises the contributions from Fig. 1. The
second factor, gðsÞ, is the usual two-point loop function
involving one pion and one nucleon:

gðsÞ ¼ 1

16π2

�
ãðμÞ þ log

	
M2

π

μ2



− xþ log

	
xþ − 1

xþ




− x− log

	
x− − 1

x−


�
;

x� ¼ sþm2
N −M2

π

2s

� 1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sþM2

π −m2
N

�
2 − 4s

�
M2

π − i0þ
�q
; ð44Þ

where we fix the regularization scale at μ ¼ mN and take
the subtraction constant ã ¼ −0.84 as in Ref. [22]. Finally,
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the last factor, TIl�
πN→πNðsÞ, reflects the effect of the right

vertex which leads to the rescattering of the pion. Since
there have been many studies of pion-nucleon scattering,
we do not repeat the computation of TIl�

πN→πNðsÞ here and
adopt the results of Ref. [22], see Eq. (4.11) therein.

V. RESULTS

In this section, we show and discuss the results of the
total and partial wave cross sections of the an → π−p
process. The final state of the an → π−p process consists of
two charged particles, which can be more easily detected
than neutral particles in most experiments. The results for
the other three processes listed also in Eq. (10) are provided
in the Appendix. As advocated in Sec. II, the total cross
section can be approximated by the sum of the first three
partial wave cross sections,

σ ≈ σS1 þ σP1 þ σP3 : ð45Þ

Each partial wave cross section can be calculated by
Eq. (15), and the corresponding partial wave amplitude,
Tl�
an→π−p, can be obtained from the calculations presented in

the previous section,

Tl�
an→π−p ≈ Tl�;tree

an→π−p þ Tl�;loop
an→π−p: ð46Þ

Here, Tl�;tree
an→π−p denotes the contribution arising from the

tree diagrams and can be obtained by using Eqs. (10) and
(12) with the functions A and B given in Secs. IVA and
IV B. Tl�;loop

an→π−p denotes the contribution originating from

the loop diagram and can be expanded in terms of TIl�;rescatt
an→πN

given in Sec. IV C by using the isospin decomposition,

jπ−pi ¼ −
ffiffiffi
2

3

r
jI ¼ 1=2iπN þ

ffiffiffi
1

3

r
jI ¼ 3=2iπN: ð47Þ

In Fig. 5, we show the total as well as the three
mentioned partial wave cross sections as functions of the
c.m. energy W for the KSVZ and DFSZ models. For
comparison, we also depict by dashed lines the results
considering only contributions from the contact and
nucleon-mediated diagrams. The cross sections are multi-
plied by a factor of f2a in order to eliminate the dependence
on the unknown axion decay constant. Additionally, the
unknown axion decay constant also implicitly appears in
the terms containing the axion mass, but it has negligible
practical impact since the axion mass can safely be dis-
regarded within the typical QCD axion window. Notice that
the results of sin2 β taking value of 0 in the DFSZ model is
given for illustrative purposes only, as the allowed range for
tan β due to the perturbative constraints from the heavy
quark Yukawa couplings is [0.25, 170] [42] corresponding
to approximately sin2 β∈ ½0.06; 1.00�.

As anticipated, there is indeed an enhancement in the
partial wave cross sections of P3 and P1 whenW ∼mΔ and
W ∼mN� due to the Δ and N�, respectively. First, consider
the P3 partial wave. It is evident that the magnitude of the
resonance peak decreases as sin2 β → 1 in the DFSZ
model. This can be easily understood since the dominant
contribution to TP3

an→π−p, arising from the s-channel
exchange of the Δ, is proportional to cu−d [see Eq. (36)],
whose absolute value is a linearly decreasing function of
sin2 β [see Eq. (21)]: jcDFSZu−d ðsin2 βÞj ¼ 1

3
ð1.0116 − sin2 βÞ.

This also explains why the P3 partial wave result of the
KSVZ model closely aligns with that of the DFSZ model
when sin2 β ¼ 1

2
, as cDFSZu−d ðsin2 β ¼ 1

2
Þ ¼ cKSVZu−d . We also

find that the P3 partial wave results of our work are smaller
than the P33 partial wave results reported in Ref. [18]. This
discrepancy arises from the fact that it is the isospin
eigenstate considered as the initial/final states in that
work. Consequently, the amplitude there takes the form
of X3=2 ¼ Xþ − X− [18] with X ¼ A, B [see Eq. (12)],
which can be approximated as 3

2
XΔ [see Eq. (36)] if one

only keeps those contributions from the s-channel
exchange of the Δ. In contrast, our analysis considers
the physical initial/final states, resulting in an amplitude of

Xan→π−p ¼ −
ffiffiffi
2

p ðX− − X3Þ ≃
ffiffi
2

p
2
XΔ. As a consequence,

the peak value of the cross section reported in Ref. [18]
ought to be roughly 4.5 times larger than the one we obtain,
basically reflecting the differences.
We point out again that our total cross section peak in the

Δ region, σan→π−p ≃ 48 − 1 μbðGeV=faÞ2 (for sin2 β ¼
0 − 1), is about a factor 20 to 1000 smaller than the naive
estimate given in Ref. [17] because they did not account for
the fact that the Δ contribution is only nonvanishing when
isospin symmetry is broken. In contrast, our results align,
within the same order of magnitude, with those reported by
Ho et al. [43]. As an illustration, considering the DFSZ
model with sin2 β ¼ 0, the peak value of the total cross
section in the Δ region in our results is approximately
50 μbðGeV=faÞ2, while Ref. [43] reported a value around
80 μbðGeV=faÞ2. Taking the KSVZ model as another
example, both results indicate a peak value of approxi-
mately 20 μbðGeV=faÞ2.
In the case of P1 partial wave, due to the relatively large

decay width of the Roper, its contribution as the inter-
mediate particle in the s-channel does not entirely dominate
TP1
an→π−p. Therefore, the dependence of the magnitude of

the resonance peak on sin2 β in the DFSZ model can no
longer be straightforwardly understood through an analysis
similar to what we did in the case of P3 partial wave. In
any case, we can still draw the following two conclu-
sions directly from the second row in Fig. 5: First, the
strength of the resonance peak remains relatively stable
with variations in sin2 β, or in other words, it does not expe-
rience significant suppression at certain values of sin2 β.
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FIG. 5. The total and partial wave cross sections of an → π−p versus the c.m. energy W for the DFSZ axion at different values of
sin2 β (left panel) and the KSVZ axion (right panel). In these plots, the solid lines correspond to the cross sections obtained based on
Eq. (46), while the dashed lines correspond to the cross sections obtained considering only the contact and nucleon-mediated diagrams.
In the left panel, the red, orange, green, blue and purple lines correspond to the DFSZ model parameter sin2 β ¼ 0; 1=4; 1=2; 3=4 and 1,
respectively.
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This phenomenon offers the potential for probing the DFSZ
axion with sin2 β in the vicinity of 1, where the resonance
peak given by Δ gets highly suppressed. Taking the case
where sin2 β ¼ 1 as an example, the total cross section at
W ¼ mN� is 10.3 μbðGeV=faÞ2, one order of magnitude
larger than the total cross section atW ¼ mΔ taking a value
of 1.2 μbðGeV=faÞ2. Second, the strength of the resonance
peak given by the Roper in the KSVZ model is notably
more pronounced than that in the DFSZ model with
sin2 β ¼ 1

2
. This is in contrast to the scenario observed in

the P3 partial wave, where the strength and shape of the
resonance peak given by the Δ are approximately the
same in both the KSVZ model and the DFSZ model
with sin2 β ¼ 1

2
.

If the parameter sin2 β of the DFSZ model happens to be
around 1

2
, it would be hard to distinguish the two axion

models. To be more specific, the total cross section at
W ¼ mN� , where the two models differ most, is about
15 μbðGeV=faÞ2 in the KSVZ model. For an order of
magnitude estimate, this implies that the number of pions
produced in a megaton water Cherenkov detector will be at
Oð1Þ using fa ¼ 109 GeV and the axion number lumi-
nosity in Ref. [17] for axions emitted from an SN at 1 kpc.
Meanwhile, the total cross section at W ¼ mN� is
7.4 μbðGeV=faÞ2 in the DFSZ model with sin2 β ¼ 1

2
,

suggesting that about half the number of pions would be
produced compared to the KSVZ model under the same
conditions. A difference by a factor of only 2 might not be
enough to unambiguously distinguish models. However,
one may distinguish the DFSZ model, with sin2 β sizably
deviating from 1

2
, from the KSVZ model. In the Δ region,

approximately Oð10Þ pions would be generated in the

KSVZ model, whereas the count would be noticeably
higher (sin2 β ≃ 0) or lower (sin2 β ≃ 1) in the case of the
DFSZ model.
To assess the reliability of our results, we conduct a

rough error estimation by performing calculations on the
KSVZ axion using two sets of the pertinent Δ and Roper
couplings, selected from distinct fit outcomes presented in
Ref. [22]. We find that the maximal numerical deviation
from the mean value is about 30%, while the line shapes of
the total cross sections remain almost unchanged (up to
normalization), see Fig. 6.

VI. SUMMARY

In this work, we investigated the impact of the Δ and
N�ð1440Þ as intermediate particles on the cross section of
pion axioproduction. The axions from SNe, that transform
into pions in water Cherenkov detectors, can reach energies
as high as 500 MeV, making the effects of these resonances
non-negligible. We adopt a chiral Lagrangian framework
with the explicit inclusion of resonance fields. Based on
the assumption of resonance saturation, we were able to
essentially account for the effects of these resonances by
explicitly considering the exchange of them in s-channel
and u-channel, thereby avoiding the ignorance of LECs
related to the higher-order interactions. The results indicate
that an enhanced cross section is indeed present in the
region of the Δ and N�ð1440Þ. However, these effects are
drastically reduced compared to the earlier work of Ref. [17].
Experimental observations at W ∼mN� are crucial for
detecting the DFSZ axions with sin2 β close to 1, while
the Δ region may be used to discern between the KSVZ
axions and the DFSZ axions with sin2 β significantly
different from 1=2.
Finally, considering the inverse process of pion axio-

production, πN → aN, as suggested to be the dominant
mechanism compared to nucleon bremsstrahlung,
NN → aNN, for axion production in SNe [17], it would
be intriguing to explore the influence of these resonances
on πN → aN, which may offer new insights into exper-
imental axion searches.
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FIG. 6. The total cross section of the KSVZ model with two
different sets of resonance parameters. The red and blue lines
correspond to using the parameters of Fit 2 in Tables 1 and 2,
respectively, in Ref. [22]. The dashed line corresponds to the
relative deviation from the mean value.
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APPENDIX: ADDITIONAL RESULTS

In this appendix, we show the results for three additional processes, ap → π0p, an → π0n and ap → πþn, which have
neutral particles in the final state. The total and partial wave cross sections of these three processes for the DFSZ and KSVZ
axions are similar to those of an → π−p in Fig. 5 and are shown in Figs. 7–9, respectively.

FIG. 7. The total and partial wave cross sections of ap → π0p for the DFSZ axion at different values of sin2 β (left panel) and the
KSVZ axion (right panel). See the caption of Fig. 5.

PION AXIOPRODUCTION REVISITED PHYS. REV. D 109, 075050 (2024)

075050-11



The cross section peak of the P3 partial wave for ap →
π0p and an → π0n is approximately twice as large as the
ones for ap → πþn and an → π−p. This observation can
be explained by considering that the amplitudes of the

former two processes can be approximated as XΔ, while

those of the latter two can be approximated as ∓ ffiffi
2

p
2
XΔ, if

one considers only theΔ contributions in the s-channel. We
also observe that the cross section peak of the P1 partial

FIG. 8. The total and partial wave cross sections of an → π0n for the DFSZ axion at different values of sin2 β (left panel) and the
KSVZ axion (right panel). See the caption of Fig. 5.
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wave for ap → π0p and ap → πþn is significantly higher
than that of an → π0n and an → π−p. This is attributed
to the contributions of the Roper, which include both
isospin-conserving components (present in T3) and

isospin-breaking components (present in Tþ and T−).
These two components undergo coherent enhancement
in the former two processes, while experiencing coherent
cancellation in the latter two.

FIG. 9. The total and partial wave cross sections of ap → πþn for the DFSZ axion at different values of sin2 β (left panel) and the
KSVZ axion (right panel). See the caption of Fig. 5.
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