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In this paper, we determine a basis for the on-shell four-point amplitudes VVVV for Standard Model
gauge bosons V ¼ W�; Z; γ; g. Following previous work, this completes the analysis of three- and four-
point amplitudes for the Standard Model and could be used for model-independent searches for beyond the
Standard Model physics at colliders. Our results include a Lagrangian parametrization for the “primary”
amplitudes, where including additional derivatives leads to the Mandelstam “descendant” amplitudes, and
upper bounds on the coupling constants from imposing unitarity. We also perform an estimate for the
sensitivity for new Z decays at the High-Luminosity LHC, finding that Z → γll could be searched for, but
that other decay modes, like Z → ðγγγ; γggÞ, are too small to be discovered after imposing unitarity
constraints.
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I. INTRODUCTION

Recently, there has been enormous progress in determin-
ing the general structure of on-shell amplitudes for the
Standard Model [1–7]. In addition to being of interest
theoretically, these results could enable broad model-
independent searches for beyond the Standard Model
(BSM) physics, without relying on the standard effective
field theory (EFT) parametrizations [i.e., Standard Model
EFT (SMEFT) [8,9] and Higgs EFT [10] ]. Indeed, ampli-
tudes may be a better way to connect experiment and
theory, given the direct connection to experimental analyses
and since amplitudes do not require the EFTassumptions of
power counting and do not suffer from ambiguous basis
issues of Lagrangian operators.
In Refs. [6,7], the full structure of on-shell three- and

four-point amplitudes involving the Higgs and top quark
were determined. This leaves four-point gauge boson
amplitudes as the remaining ones to be analyzed. In this
paper, we complete this study for both massive (W�; Z) and
massless (γ, g) gauge boson interactions. At the High-
Luminosity LHC (HL-LHC) and future colliders (e.g.,
eþe− colliders at the Z pole), we stand to increase our
sample ofW=Z particles by orders of magnitude. Our study
of the amplitudes then allows us to consider if there are
interesting amplitudes for three-body decays like Z → γγγ
beyond those considered in the past.

This work confirms and extends existing work on
parametrizing these amplitudes, so we will now describe
the overlapping work. The three-point amplitudes that we
list in Eqs. (1) and (2) were derived in [2]. Of the four-point
amplitudes we studied, the amplitudes for Zggg were
derived in [1] and the amplitudes for ffVh were derived
in [2]. Four-point primary operators up to dimension eight
have been derived in operator form in [4] and in spinor
structure form in [5].
The rest of this paper is organized as follows: Section II

describes what amplitudes we will explore and how to
determine independent amplitudes. Section III discusses
the Hilbert series results for our gauge boson operators. In
Sec. IV, we discuss some relevant phenomenological issues,
such as unitarity boundson coupling strengths andalso rough
estimates for Z decays at the HL-LHC. Section V is the main
body of results, where we list the operators for the primary
amplitudes. In Sec. VI, we estimate which Z decay ampli-
tudes are interesting for exploration at the HL-LHC. Finally,
in Sec. VII, we conclude.

II. FINDING INDEPENDENT AMPLITUDES/
COUPLINGS FOR ELECTROWEAK

GAUGE BOSONS

To find the most general on-shell amplitudes for gauge
bosons, we impose invariance under SUð3Þc × Uð1Þem and
Lorentz symmetry. For three- and four-point interactions,
this gives the following list:

3pt∶ f̄fV; hhV; hVV; VVV

4pt∶ hhhV; f̄fhV; f̄fVV; hhVV; hVVV; VVVV; ð1Þ
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where f is a fermion, h is a Higgs boson, and V is any
gauge boson. To fully characterize these four-point inter-
actions, we also need additional three-point interactions for
exchange diagrams, which add

3pt additional∶ hhh; f̄fh: ð2Þ
Of these couplings, the three- and four-point couplings,
except for VVVV, have been determined (e.g., [7,11]), so in
this paper this leaves the following four-point couplings to
analyze:

VVVV∶ WWWW;WWZZ; ZZZZ;WWZγ; ZZZγ;

WWγγ;WWgg; ZZγγ; ZZgg; Zγgg; Zγγγ;

Zggg; γγγγ; γγgg; γggg; gggg: ð3Þ

In [7,11], an approach for determining a basis for
independent operators for three- and four-point on-shell
amplitudes was developed and explained in detail. Here,
we will briefly summarize the three-step process of
(1) enumerating an overcomplete basis of amplitudes,
(2) determining the independent primary amplitudes, and
(3) checking the result against a Hilbert series calculation.
For those interested in the details, please refer to the
discussion in [7,11].
For step 1, we use the fact that local on-shell four-point

gauge boson amplitudes are Lorentz invariants involving
gauge boson polarization and momenta contracted with the
metric or the Levi-Civita tensor. For processes with mass-
less gauge bosons, we use the associated field strength
tensors to maintain gauge invariance and satisfy the Ward
identity. We distinguish amplitudes that have no factors of
Mandelstam variables from those with such factors. We
refer to the former as primary amplitudes and the latter as
descendant amplitudes, following the terminology of
[7,11]. Note that our construction of amplitudes parallels
that of [2,3] and that our primary amplitudes are equivalent
towhatwere called stripped contact terms in [3]. By allowing
for arbitrary Mandelstam factors in the descendants [12],
we parametrize the most general on-shell four-point ampli-
tudes. However, for on-shell three-point amplitudes, all
Mandelstam invariants can bewritten in terms of the particle
masses, so there are only primary amplitudes. A process with
amplitude M can then be written as a linear sum M ¼P

a CaMa of these parametrized amplitudesMa. EachMa
will have an associated Lagrangian operator Oa with mass
dimension dO and a dimensionless coupling ca. The asso-
ciated Lagrangian terms can then be written as

Lamp ¼
X
a

ca
vdO−4

Oa: ð4Þ

The factors of Higgs vacuum expectation value (VEV) in the
denominator are chosen such that the coupling remains
dimensionless at any given mass dimension.

For the four-point amplitudes we consider here, there are
commonly two or more identical bosons. In such cases, the
amplitudes need to be symmetric under crossing exchange
of the identical bosons. Assume we have the process
p1ðϵ1Þ þ p2ðϵ2Þ → p3ðϵ3Þ þ p4ðϵ4Þ, where the incoming
particles are identical (note that, for the moment, we are not
assuming any gauge charges for them), with the amplitude
Mð12; 34Þ, where i ¼ 1…4 is shorthand for pi, ϵi. We can
then form symmetric and antisymmetric combinations
under 1,2 exchange,

M�ð12; 34Þ ¼
1

2

�
Mð12; 34Þ �Mð21; 34Þ�; ð5Þ

and we can use these to construct general amplitudes with
Mandelstam invariants. Since under 1 ↔ 2, s is invariant
and t ↔ u, the most general 1 ↔ 2 symmetric amplitude is

M12ð12;34Þ ¼M12ð21;34Þ ¼ F
�
s; ðt− uÞ2�Mþð12; 34Þ

þ ðt− uÞG�s; ðt− uÞ2�M−ð12; 34Þ; ð6Þ

where the polynomial functions F and G are 1 ↔ 2
exchange symmetric.
For the case of three identical bosons, the amplitudes

should first be symmetrized for the first two bosons and
then that result should be symmetrized with respect to
exchanges with the third particle. The result of this yields

M123ð12; 34Þ ¼ H
�
s; ðt − uÞ2�M12ð12; 34Þ

þH
�
t; ðs − uÞ2�M12ð13; 24Þ

þH
�
u; ðt − sÞ2�M12ð32; 14Þ; ð7Þ

where exchange of incoming and outgoing particles has a
minus sign and complex conjugation, e.g., 1 ↔ 3 takes
p1 → −p3; ϵ1 → ϵ�3 and p3 → −p1; ϵ3 → ϵ�1. The argu-
ments of H have been chosen such that, under i ↔ j
exchange, with i, j ¼ 1, 2, 3, the sum of the three terms is
invariant, i.e., M123ð12; 34Þ is invariant under the permuta-
tions of 1, 2, 3 in the argument of the function. This follows
since under 1 ↔ 3 exchange, s ↔ u and under 2 ↔ 3
exchange, s ↔ t. Finally, for the case of four identical bosons,
the previous result needs to be symmetrized with respect
to the fourth particle. This requires replacing M12ð12; 34Þ
with M12;34ð12; 34Þ ¼ 1

2
½M12ð12; 34Þ þM12ð12; 43Þ�.

For step 2, we take this overcomplete basis of amplitudes
and find the independent ones. To do this, we will work
in increasing mass dimension for Oa. In the center-of-
mass frame for the 1þ 2 → 3þ 4, the weighted amplitude
En
c:m:M is a polynomial of the kinematic variables Ec:m:;

cos θc:m:; sin θc:m:; jpinitialj; jpfinalj.[13] To proceed, we sim-
plify the amplitude by replacing even powers of sin θc:m:;
jpinitialj; jpfinalj with their solution in terms of cos θc:m: and
Ec:m: leading to the general amplitude
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En
c:m:M ¼ PþQ sin θc:m: þ Rjpinitialj þ Sjpfinalj

þ T sin θc:m:jpinitialj þ U sin θc:m:jpfinalj
þ Vjpinitialjjpfinalj þW sin θc:m:jpinitialjjpfinalj;

ð8Þ

where P;Q; R; S; T; U; V;W are polynomials in cos θc:m:;
Ec:m:. As argued in [11], for a redundancy to occur, i.e.,
M ¼ 0, one needs each of the P;…;W polynomials to
independently vanish. Since the coefficients in the poly-
nomials depend on the couplings ca, one can use a
numerical singular value decomposition to find how many
redundancies there are and, by process of elimination, find
an independent set of couplings ca with corresponding
amplitudes Ma.
The third step provides a complementary constraint

on the number of independent amplitudes. To do so, we
determine the number of independent Lagrangian operators

using the Hilbert series, which counts the number of
operators at each mass dimension [14–20]. Since there is
one-to-one correspondence between nonredundant opera-
torsOa and amplitudesMa (e.g., [1]), this counting can be
used to check the numerical analysis. More will be said
about the specifics of the Hilbert series in the next section.

III. HILBERT SERIES

The Hilbert series is a tool that provides the number of
gauge invariant independent operators in a given EFT
[14,16–21]. The Hilbert series counts the number of
independent operators while taking into account symmetry
constraints, equations of motion, and redundancies due to
integration by parts. In Eq. (9), we list the Hilbert series for
four-point interactions involving only electroweak gauge
bosons (the Hilbert series for the other three- and four-point
operators aforementioned can be found in [7,11]):

HWWWW ¼ 2q4 þ 16q6 þ 22q8 þ 7q10 − 2q12

ð1− q2Þð1− q4Þ ; HWWZZ ¼ 2q4 þ 27q6 þ 40q8 þ 14q10 − 2q12

ð1− q2Þð1− q4Þ ;

HZZZZ ¼ q4 þ 4q6 þ 8q8 þ 11q10 þ 5q12 − 2q14

ð1− q4Þð1− q6Þ ; HWWZγ ¼
22q6 þ 34q8 þ ð2− 4Þq10

ð1− q2Þ2 ;

HZZZγ ¼
4q6 þ 14q8 þ 22q10 þ 12q12 þ ð4− 2Þq14

ð1− q4Þð1− q6Þ ; HWWγγ ¼HWWgg ¼
3q6 þ 19q8 þ 14q10 þ ð2− 2Þq12

ð1− q2Þð1− q4Þ ;

HZZγγ ¼HZZgg ¼
3q6 þ 13q8 þ 7q10 − 2q12

ð1− q2Þð1− q4Þ ; HZγgg ¼
12q8 þ 12q10 þ ð2− 2Þq12

ð1− q2Þð1− q4Þ ;

HZγγγ ¼
4q8 þ 10q10 þ 8q12 þ ð4− 2Þq14

ð1− q4Þð1− q6Þ ; HZggg ¼
6q8 þ 18q10 þ 16q12 þ ð8− 2Þq14 þ 2q16

ð1− q4Þð1− q6Þ ;

Hγγγγ ¼
3q8 þ 5q10 þ q12 − 2q14

ð1− q4Þð1− q6Þ ; Hγγgg ¼
7q8 þ 5q10 − 2q12

ð1− q2Þð1− q4Þ ;

Hγggg ¼
4q8 þ 12q10 þ 8q12 þ ð6− 2Þq14 þ 4q16

ð1− q4Þð1− q6Þ ; Hgggg ¼
9q8 þ 14q10 þ 16q12 þ ð9− 2Þq14 þ ð2− 4Þq16

ð1− q4Þð1− q6Þ : ð9Þ

The correct way to interpret these Hilbert series is to take
the exponent of each q to be the mass dimension and the
corresponding coefficients to be the number of independent
operators minus the number of redundancies at that mass
dimension. When evaluating the Hilbert series, one cannot
tell if there is such a cancellation. Only by looking at the
independent amplitudes can we resolve this ambiguity; so
using those results we have written out terms with a
cancellation explicitly, e.g., ð6 − 2Þq14 in the Hγggg shows
that there are six new primaries and two redundancies
appearing at dimension 14. The appearance of these
negative terms in the coefficients means that descendants
of primary operators at a lower mass dimension become
redundant to operators at the corresponding mass dimen-
sion of the negative term and that the higher-dimensional

operators and their descendants should be discarded from
the set of independent operators.
To illustrate this in a specific example, take the Hilbert

series for WWWW. The numerator looks like

2q4 þ 16q6 þ 22q8 þ 7q10 − 2q12: ð10Þ

So in terms of primary operators, at dimension four there
are two operators, at dimension six there are 16 operators,
at dimension eight there are 22 operators, at dimension ten
there are seven operators, and at dimension 12 there are two
redundancies. Now, to see the descendant structure of each
operator, the denominator should be Taylor expanded. For
example, the negative term turns out to be
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HWWWW ⊃ −
2q12

ð1 − q2Þð1 − q4Þ
¼ −2q12ð1þ q2 þ q4 þ � � �Þð1þ q4 þ q8 þ � � �Þ:

ð11Þ

This says that, if we consider the channel WþWþ →
W−W−, then there are two redundant operators at dimen-
sion 12 that have descendant structures of the form
snðt − uÞ2mO. The reason that they follow that specific
structure is because of the exchange symmetries that the
operators have to obey, namely, a symmetry under 1 ↔ 2
and 3 ↔ 4. We will later find out that the redundant
operators are descendants of two dimension-eight opera-
tors, allowing us to rewrite the negative term, along with the
positive dimension-eight term, as

HWWWW ⊃
22q8 − 2q12

ð1 − q2Þð1 − q4Þ ¼
20q8 þ 2q8ð1 − q4Þ
ð1 − q2Þð1 − q4Þ

¼ 20q8

ð1 − q2Þð1 − q4Þ þ
2q8

ð1 − q2Þ
¼ 20q8ð1þ q2 þ q4 þ � � �Þð1þ q4 þ q8 þ � � �Þ
þ 2q8ð1þ q2 þ q4 þ � � �Þ: ð12Þ

From this we see that the correct interpretation of the
independent operators is that two dimension-eight primary
operators have a descendant structure of snO, while the
other 20 dimension-eight primaries have a descendant
structure of snðt − uÞ2mO. This means that, for the former
two primary operators, we can throw out their descendants
of the form snðt − uÞ2mO for n ≥ 0 and m ≥ 1 and still
have an independent set of operators. Again, this Hilbert
series interpretation must be checked with the amplitudes to
confirm this explanation. As another example for what the
denominators mean, consider the denominator for the
Hilbert series for γγγγ,

1

ð1 − q4Þð1 − q6Þ ¼ ð1þ q4 þ q8 þ � � �Þ

× ð1þ q6 þ q12 þ � � �Þ: ð13Þ

The first set of parentheses says that there are powers of a
four-dimensional function of Mandelstam variables and the
second set of parentheses says that are powers of a six-
dimensional function of Mandelstam variables. Because the
γγγγ interaction should have exchange symmetries between
all pairs of particles, the descendant structure should have
the form ðs2 þ t2 þ u2ÞnðstuÞm, in agreement with the
dimensional analysis.
As mentioned earlier, some of the coefficients in the

Hilbert series are written as a positive integer minus a
negative integer. For example, this occurs in the Hilbert
series for the ZZZγ interaction at dimension 14 as shown

by the term ð4 − 2Þq14. When evaluating the Hilbert series,
this coefficient would be 2, but in this case, by studying the
amplitudes, we find that there are four new primary
operators and two redundancies at mass dimension 14,
so we write the coefficient in this way to make this explicit.
This also means that, for a given interaction, at mass
dimensions higher than what we have explored, there could
be terms with coefficients of zero, not because there are no
primary operators present, but because there are the same
number of redundancies as primaries at that dimension. An
example of this happening occurs for the Zγgg interaction
at mass dimension 12, which we have written the term as
ð2 − 2Þq12. Therefore, it is not guaranteed that we have
enumerated all possible primary operators, since there can
be cancellations with the redundancies. However, because
those would appear at very high mass dimension, they are
phenomenologically unimportant and so do not warrant
much concern. This possibility is the reason why we
have analyzed operators up to at least the first mass
dimension that has a zero coefficient in the numerator
and up to dimension 16 for operators of Zggg, γggg, and
gggg interactions.

IV. PHENOMENOLOGY

A. Unitarity

As in [7,11], we use unitarity constraints to place upper
bounds on the couplings of the operators we have enu-
merated. We know that the Standard Model (SM) does not
violate tree-level unitarity at high energies (e.g., [22,23]);
therefore, a deviation from the SM will violate it at some
high energy scale Emax. Our constraints will depend upon
this scale and we roughly expect Emax above a TeV to be
consistentwith currentLHCanalyses, but values lower than a
TeV to possibly be in tension. To compute the bounds, we
follow the same techniques developed by [24–26] (see
also [27]).
For each operator, we create a schematic SMEFT

realization of it in order to compute our unitarity
bounds. To illustrate this, we turn to the WWWW inter-
action where there is a dimension-six primary operator
iWþμW̃þ

νρDμW−νW−ρ þ H:c: To realize this operator in
SMEFT, one needs at least four Higgs doublets. The
nonfield strength W’s come from covariant derivatives
acting on the doublets, leading to four covariant derivatives,
which by integration by parts can act on just three of the
doublets. The dual field strength tensor W̃a

μν needs to be
contracted with the SU(2) generators Ta. This leads to a
SMEFToperator, which we simplify into a schematic form,

iH†TaDμHW̃a
νρDν

μH†DρH → D4H4W̃a
μν: ð14Þ

Primary operators that have either zero or one field
strength tensor have a SMEFT operator with at least four
Higgs doublets by the following argument where we try to
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use only two Higgs doublets. If there are no field strength
tensors, the SMEFT operator has the schematic form
DnðH†HÞ and, by integration by parts, can always be
reduced to factors of DμDμ acting on one of the Higgs
doublets. Using the equations of motion, eachDμDμ can be
removed and replaced with expressions that involve no
gauge bosons. By iterating, we see that this does not realize
the four gauge boson amplitude we wanted, thus we need
operators with four Higgs doublets, like DnðH†HH†HÞ.
Since there are four Higgs doublets, it is not possible to
write all Lorentz invariants in terms of DμDμ ’s, so the
above argument cannot be applied. A similar argument
works for operators with one field strength, DnðH†WμνHÞ,
since derivative pairs on the three fields can also be moved
on to individual fields. From Lorentz invariance, these are
either of the form (1) WμνðDμDνHÞ ∝ WμνWμνH, and thus
actually have two field strengths, or (2) ðDμDμHÞ or
ðDμDμWαβÞ, which can be reduced by equations of motion
to expressions with fewer covariant derivatives or more
than one field strength, respectively. For operators with two
or three field strength tensors, these arguments no longer
work and we only need two Higgs doublets instead of
four for the SMEFT operator. Finally, if we have four field
strength tensors, then we do not need any Higgs doublets
for the SMEFT operator.
To calculate the coupling constraints, we need to

estimate two quantities: the scattering amplitude and
phase space factor for the highest and lowest particle
multiplicity of an interaction process. By using these
two quantities, we can put upper bounds on the coupling
strengths of operators. Note that because we are calculating
approximate bounds we only care about factors of v and
neglect Oð1Þ factors like ffiffiffi

2
p

, g, g0, sin θW , and cos θW . At
high energy our amplitudes will then be of the form

Mðϕ1 � � �ϕk → ϕkþ1 � � �ϕnÞ ∼ ca
Em

vmþn−4 ; ð15Þ

where E is the total energy, v is the Higgs VEV, k is the total
number of incoming particles, and n is the total number of
particles. The allowed values of n are determined by the
SMEFToperator and can be varied by settingHiggs doublets
to their VEV. To obtainm, we count the energy scaling of the
various quantities in the schematic SMEFT operator. The
scaling behavior of various quantities are

D ∼ E; Bμν ∼ E; Wa
μν ∼ E; Gb

μν ∼ E: ð16Þ

The value ofm is just the total energy scaling of the operator
and thepower ofv is givenbydimensional analysis.Next, the
unitarity bound on the amplitude depends on the phase space
factor of the initial and final states,

Mðϕ1 � � �ϕk → ϕkþ1 � � �ϕnÞ≲ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦkðEÞΦn−kðEÞ

p ; ð17Þ

where ΦkðEÞ is the total phase space for k particles with
center-of-mass energy E. We follow [11] and work in the
massless limit where, approximately,

ΦkðEÞ ∼
1

8π

�
E
4π

�
2k−4

: ð18Þ

Since unitarity is violated at some energy Emax, we get that
the unitarity bound on the couplings is

ca ≲ 2ð4πÞn−3
�

v
Emax

�
mþn−4

: ð19Þ

Now, recall that the interaction of the operator
iWþμW̃þ

νρDμW−νW−ρ þ H:c: has a schematic SMEFT form
ofD4H4W̃a

μν.We now evaluate the amplitudes at high energy
by using the equivalence theorem, using the Nambu-
Goldstone bosons in H for longitudinal W’s and Z’s. We
find that the best bounds come from using the derivative part
of the covariant derivatives and not the transverse gauge
bosons. Thus, for the schematic operator D4H4W̃a

μν, we can
have the five-point process ϕϕ → ϕϕWT or the four-point
process ϕϕ → ϕWT , where ϕ is a Nambu-Goldstone
boson. Under our approximation, these have amplitudes
Mðϕϕ → ϕϕWTÞ ∼ ca

E5

v6
and Mðϕϕ → ϕWTÞ ∼ ca

E5

v5
.

For the first case n ¼ 5, m ¼ 5, and for the second case
n ¼ 4, m ¼ 5. Respectively, these lead to the bounds ca ≲
0.07
E6
TeV

and ca ≲ 0.02
E5
TeV
, where ETeV ≡ Emax=TeV. Thus, the

higher multiplicity amplitude is more stringent for higher
ETeV and the lower multiplicity is more stringent for lower
ETeV, where they cross at Emax ¼ 4πv for the bound
ca ≲ 2ð4πÞ1−m. In this way, we proceed to calculate unitarity
bounds on coupling strengths for all enumerated operators.

B. Electroweak gauge boson decays

In this subsection, we give estimates for modifications to
electroweak gauge boson decays. Two-body decays of the
Z are quite well covered, as Z → ðγγ; ggÞ are forbidden by
the Landau-Yang theorem and Z → f̄f were studied at
LEP1 for vector and axial couplings [28]. This leaves only
the dipole couplings to fermions, which interfere with the
Standard Model with a rate proportional to the fermion
mass [29]. We will now discuss the on-shell three-body
decay modes of Z bosons that are allowed by the SM,
which are

Z → ðγγγ; γgg; ggg; f̄fγ; f̄fgÞ: ð20Þ

These decay modes occur in the Standard Model at higher
order, so there can be interference with the new amplitudes.
We ignore the masses of the fermions, so that the mass

of the Z is the only relevant energy scale. Then we can
approximate the new decay amplitudes as
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MOðZ → 3Þ ≃ cO
vdO−4

mdO−4
Z ; ð21Þ

where v is the Higgs VEV, cO are couplings, and mZ is the
mass of the Z boson. If the SM amplitude is larger than the
BSM one, then interference between the SM and BSM
amplitudes forms the most significant contribution to the
total decay amplitude. Making the same approximations as
in [7], we estimate that the branching ratios including
interference are

BRðZ → 3ÞBSM ≈
mZ

512π3ΓZ
jMðZ → 3ÞSM

þMðZ → 3ÞBSMj2; ð22Þ

where we have approximated both the SM and BSM
amplitudes as constants.

V. INDEPENDENT AMPLITUDES FOR
ELECTROWEAK GAUGE BOSONS

In this section, we discuss the independent primary
operators for VVVV interaction amplitudes. We will also
check the number of operators and redundancies with the
Hilbert series for each interaction. In the second column of
Tables I–XXI, we list the operators for the primary
amplitudes. In addition, we give the amplitude’s CP
transformation, the dimension of the operator, the sche-
matic form of a SMEFT operator realization, and the

unitarity bounds on the coupling strength. An example
of how these unitarity bounds are calculated can be found
in Sec. IVA. Primary operators and their descendants are
SUð3Þc × Uð1Þem invariant so the covariant derivatives
only involve the gluon and photon, whereas the covariant
derivatives for the SMEFT operators are SUð3Þc ×
SUð2ÞL × Uð1ÞY invariant. Finally, for operators that
have nontrivial SU(3) contractions, we will add a column
to specify this. In the following, we discuss each inter-
action’s table(s) in detail and describe how the amplitudes
and their redundancies agree with the Hilbert series
in Eq. (9).
Tables I and II list the primary operators for

WþWþW−W− interactions up to dimension ten. To analyze
the amplitude, we assume the process Wþ

1 W
þ
2 → Wþ

3 W
þ
4 .

In terms of primary operators, the Hilbert series predicts
that there should be 2 dimension-four operators, 16
dimension-six operators, 22 dimension-eight operators, 7
dimension-ten operators, and 2 redundancies appearing
at dimension 12. From our amplitude enumeration pro-
cedure, we find agreement with the Hilbert series and
find that the dimension-12 descendant operators s2OWWWW

25

and s2OWWWW
35 are redundant, with s ¼ ðpWþ

1
þ pWþ

2
Þ2.

Because descendants of redundant operators continue
to be redundant, the operators snðt − uÞ2mOWWWW

25 and
snðt − uÞ2mOWWWW

35 , for n ≥ 2, m ≥ 0 should be removed
in order to form a set of independent operators. Remember
that, since t ¼ ðpWþ

1
− pWþ

3
Þ2 and u ¼ ðpWþ

1
− pWþ

4
Þ2,

TABLE I. Primary dimension-four and -six operators for WþWþW−W− interactions.

i OWWWW
i CP dOi

SMEFT operator form c Unitarity bound

1 WþμWþ
μ W−νW−

ν þ
4 D4H4 0.09

E4
TeV2 WþμWþνW−

μW−
ν þ

3 DρWþμWþν
	
W−

μD
↔

ρW−
ν



þ H:c: þ

6

D6H4

0.006
E6
TeV

4 DνWþμDμWþνW−ρW−
ρ þ H:c: þ

5 WþμWþνW−ρDμνW−
ρ þ H:c: þ

6 DνWþμDμWþρW−νW−
ρ þ H:c: þ

7 WþμWþνDμρW−
νW−ρ þ H:c: þ

8 DρWþμWþνDμW−ρW−
ν þ

9 iεμνρσDμWþαWþ
ν DαW−

ρW−
σ þ H:c: þ εD6H4

10 iDνWþμDμWþνW−ρW−
ρ þ H:c: −

D6H4
11 iWþμWþνW−ρDμνW−

ρ þ H:c: −
12 iDνWþμDμWþρW−νW−

ρ þ H:c: −
13 εμνρσDαWþ

μ Wþ
ν

	
W−

ρD
↔α

W−
σ



þ H:c: −

εD6H4

14 εμνρσDμWþαWþ
ν DαW−

ρW−
σ þ H:c: −

15 iWþμW̃þ
νρDμW−νW−ρ þ H:c: þ

6 D4H4W̃a
μν

0.02
E5
TeV
, 0.07
E6
TeV

16 iDμWþνWþ
ν W̃−

μρW−ρ þ H:c: þ
17 WþμW̃þ

νρDμW−νW−ρ þ H:c: −
18 DμWþνWþ

ν W̃−
μρW−ρ þ H:c: −
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TABLE II. Primary dimension-eight and -ten operators for the WþWþW−W− interaction. There are two
redundancies that appear at dimension 12 such that, in order to form a set of independent operators,
snðt − uÞ2mOWWWW

25 and snðt − uÞ2mOWWWW
35 , with n ≥ 2, m ≥ 0, should be omitted.

i OWWWW
i CP dOi

SMEFT operator form c Unitarity bound

19 DσWþμDμWþν
	
DνW−ρD

↔σ
W−

ρ



þ H:c: þ

8

D8H4

3×10−4

E8
TeV

20 DρσWþμDμWþν
	
W−ρD

↔σ
W−

ν



þ H:c: þ

21 DρσWþ
μ Wþ

ν

	
DμW−ρD

↔σ
W−ν



þ H:c: þ

22 DνρσWþμDμWþνW−ρW−σ þ H:c: þ
23 DνρWþμDμσWþνW−ρW−σ þ H:c: þ
24 DρWþμDμσWþνDνW−ρW−σ þ H:c: þ
25 DρσWþμWþνDμνW−ρW−σ þ H:c: þ
26 εμνρσDμαWþβDβWþ

ν

	
iW−

ρD
↔α

W−
σ



þ H:c: þ

εD8H4

27 εμνρσDμαWþβDνW
þ
β

	
iW−

ρD
↔α

W−
σ



þ H:c: þ

28 DρσWþμDμWþν
	
iW−ρD

↔σ
W−

ν



þ H:c: −

D8H4
29 DσWþμDμWþν

	
iDνW−ρD

↔σ
W−

ρ



þ H:c: −

30 iDνρσWþμDμWþνW−ρW−σ þ H:c: −
31 εμνρσDμαWþβDβWþ

ν

	
W−

ρD
↔α

W−
σ



þ H:c: −

εD8H4

32 εμνρσDμαWþβDνW
þ
β

	
W−

ρD
↔α

W−
σ



þ H:c: −

33 εμνρσDμαWþβWþ
ν

	
DρW−

βD
↔α

W−
σ



þ H:c: −

34 εμνρσDμWþαDναWþβDβW−
ρW−

σ þ H:c: −
35 εμνρσDμβWþαWþ

ν DραW−βW−
σ −

36 DσWþμDμWþ
νρ

	
W−ρD

↔σ
W−ν



þ H:c: þ

8

D6H4Wa
μν

0.001
E7
TeV

; 0.004E8
TeV

37 DσWþμDμW̃þ
νρ

	
iW−νD

↔σ
W−ρ



þ H:c: þ

D6H4W̃a
μν

38 iDνρWþμDμWþ
ν W̃−

ρσW−σ þ H:c: þ
39 iDρWþμWþνDμνW̃−

ρσW−σ þ H:c: þ
40 DρWþμWþνDμνW̃−

ρσW−σ þ H:c: −

41 DνραWþμDμσWþν
	
W−ρD

↔α
W−σ



þ H:c: þ

10

D10H4

2×10−5

E10
TeV

42 DρσαWþμDμWþν
	
DνW−ρD

↔α
W−σ



þ H:c: þ

43 εμνρσDμβτWþαDναWþβ
	
iW−

ρD
↔τ

W−
σ



þ H:c: þ

εD10H4

44 εμνρσDμτWþαDνWþβ
	
iDαβW−

ρD
↔τ

W−
σ



þ H:c: þ

45 DνραWþμDμσWþν
	
iW−ρD

↔α
W−σ



þ H:c: −

D10H4

46 DρσαWþμDμWþν
	
iDνW−ρD

↔α
W−σ



þ H:c: −

47 εμνρσDμβτWþαDναWþβ
	
W−

ρD
↔τ

W−
σ



þ H:c: − εD10H4
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s and ðt − uÞ2 are the Mandelstam invariants that respect

the interchanges Wþ
1 ↔ Wþ

2 and Wþ
3 ↔ Wþ

4 .
In Tables III–V we list the primary operators for the

ZZWþW− interactions up to dimension ten after consid-
ering the process ZZ → WþW−. The Hilbert series states

that for these there should be 2 dimension-four operators,
27 dimension-six operators, 40 dimension-eight opera-
tors, 14 dimension-ten operators, and 2 redundancies that
appear at dimension 12. Our findings are in agreement
with the Hilbert series. The redundancies and their

TABLE III. Primary dimension-four and -six operators for the ZZWþW− interaction.

i OZZWW
i CP dOi

SMEFT operator form c Unitarity bound

1 ZμZμWþνW−
ν þ

4 D4H4 0.09
E4
TeV2 ZμZνWþ

μ W−
ν þ

3
∂
ρZμZν

	
Wþ

μ D
↔

ρW−
ν þ H:c:


 þ

6

D6H4

0.006
E6
TeV

4 ∂νZμ
∂μZνWþρW−

ρ þ
5 ZμZν

	
WþρDμνW−

ρ þ H:c:

 þ

6
∂ρZμ

∂μZν
	
WþρW−

ν þ H:c:

 þ

7 Zμ
∂μρZν

	
WþρW−

ν þ H:c:

 þ

8
∂
ρZμZν

	
Wþ

ν DμW−
ρ þ H:c:


 þ
9 Zμ

∂
ρZν

	
Wþ

ν DμW−
ρ þ H:c:


 þ
10 ∂νρZμZμðWþνW−ρÞ þ
11 ∂νZμ

∂ρZμðWþνW−ρ þ H:c:Þ þ
12 iεμνρσ∂μZα

∂αZνWþ
ρ W−

σ þ
εD6H413 εμνρσ∂αZμZν

	
iWþ

ρ DσW−
α þ H:c:


 þ
14 εμνρσ∂μZαZν

	
iWþ

ρ DσW−
α þ H:c:


 þ
15 Zμ

∂μZν
	
iWþρDνW−

ρ þ H:c:



−

D6H4
16

∂
μZν

∂νZρ
	
iWþ

μ W−
ρ þ H:c:



−

17
∂
μZνZρ

	
iWþ

ρ DνW−
μ þ H:c:



−

18 Zμ
∂
ρZν

	
iWþ

ν DμW−
ρ þ H:c:



−

19 εμνρσ∂αZμZν

	
Wþ

ρ D
↔α

W−
σ þ H:c:


 −
εD6H4

20 εμνρσ∂μZαZν

	
Wþ

ρ DαW−
σ þ H:c:



−

21 iZα
∂αZ̃μνWþ

μ W−
ν þ

6

D4H4W̃a
μν

0.02
E5
TeV
, 0.07
E6
TeV

22 ZμZ̃νρ
	
iWþ

ν DρW−
μ þ H:c:


 þ
23 ZμZν

	
iWþρDμW̃−

νρ þ H:c:

 þ

24 Zμ
∂μZνρ

	
iWþ

ν W−
ρ þ H:c:



− D4H4Wa

μν

25
∂
ρZ̃μνZμ

	
Wþ

ρ W−
ν þ H:c:



−

D4H4W̃a
μν

26 ZμZ̃νρ
	
Wþ

ν DμW−
ρ þ H:c:



−

27
∂νZμZ̃νρ

	
Wþ

μ W−
ρ þ H:c:



−

28 Zμ
∂μZν

	
Wþ

ρ W̃−νρ þ H:c:



−

29
∂μZρZρ

	
Wþ

ν W̃−μν þ H:c:



−
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descendants are given by the operators snðt−uÞ2mOZZWW
39

and snðt − uÞ2mOZZWW
54 , for n ≥ 2 andm ≥ 0. To form a set

independent operators, they should all be omitted.
We list the primary operators for ZZZZ interactions up to

dimension 12 in Table VI. We achieve full agreement with
the Hilbert series, from which we expect that there should
be 1 dimension-four operator, 4 dimension-six operators, 8
dimension-eight operators, 11 dimension-ten operators, 5

dimension-12 operators, and 2 redundancies appearing at
dimension 14. Operators xnymOZZZZ

22 and xnymOZZZZ
23 for

n ≥ 1, m ≥ 0 are redundant, where x ¼ s2 þ t2 þ u2 and
y ¼ stu, and should not be included in a set of independent
operators.
In Tables VII and VIII, by using the process

WþW− → Zγ, we enumerate the primary operators for
the WþW−Zγ interaction up to dimension ten. We agree

TABLE IV. Primary dimension-eight operators for the ZZWþW− interaction.

i OZZWW
i CP dOi

SMEFT operator form c Unitarity bound

30
∂
σZμ

∂μZν
	
WþρD

↔

σDνW−
ρ þ H:c:


 þ

8

D8H4

3×10−4

E8
TeV

31
∂ρσZμ

∂μZν
	
WþρD

↔σ
W−

ν þ H:c:

 þ

32
∂
σZμ

∂
ρZν

	
Wþ

μ D
↔

σDνW−
ρ þ H:c:


 þ

33
∂
ρσZμZν

	
Wþ

μ D
↔

σDνW−
ρ þ H:c:


 þ

34
∂
νσZμ

∂
ρZμ

	
Wþ

ν D
↔

σW−
ρ þ H:c:


 þ

35 ∂νρσZμ
∂μZνðWþρW−σÞ þ

36 ∂νρZμ
∂μσZνðWþρW−σÞ þ

37
∂σZμ

∂μρZν
	
WþρDνW−σ þ H:c:


 þ
38

∂ρσZμZν
	
WþρDμνW−σ þ H:c:


 þ
39

∂σZμ
∂ρZν

	
WþρDμνW−σ þ H:c:


 þ
40 εμνρσ∂μαZβZν

	
iWþ

ρ D
↔α

DβW−
σ þ H:c:


 þ
εD8H4

41 εμνρσ∂μβZα
∂αZν

	
iWþ

ρ DσW−β þ H:c:

 þ

42
∂σZμ

∂μρZν
	
iWþρD

↔σ
W−

ν þ H:c:

 −

D8H4

43
∂
σZμ

∂
ρZν

	
iWþ

μ D
↔

σDνW−
ρ þ H:c:


 −

44
∂
ρσZμZν

	
iWþ

μ D
↔

σDνW−
ρ þ H:c:


 −

45
∂
ρσZμ

∂μZν
	
iWþ

ν D
↔

σW−
ρ þ H:c:


 −

46
∂
νρσZμZμ

	
iWþ

ν D
↔

σW−
ρ þ H:c:


 −

47
∂
ρσZμ

∂μZν
	
iWþ

ρ DνW−
σ þ H:c:



−

48
∂
σZμ

∂μρZν
	
iWþρDνW−

σ þ H:c:



−

49 Zμ
∂μρσZν

	
iWþρDνW−σ þ H:c:



−

50 εμνρσ∂μαZβ
∂βZν

	
Wþ

ρ D
↔α

W−
σ


 −

εD8H4

51 εμνρσ∂μαZβ
∂νZβ

	
Wþ

ρ D
↔α

W−
σ


 −

52 εμνρσ∂αZμ∂νZβ
	
Wþ

ρ D
↔α

DσW−
β þ H:c:


 −

53 εμνρσ∂μZα
∂ναZβ

	
Wþ

ρ DβW−
σ þ H:c:



−

54 εμνρσ∂μβZαZν

	
Wþ

ρ DσαW−β þ H:c:



−

(Table continued)
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with the Hilbert series that there are 22 dimension-six
operators, 34 dimension-eight operators, 2 dimension-ten
operators, and 4 redundancies that appear at dimension ten.
These redundancies and their descendants correspond
to operators sntmOWWγZ

44 , sntmOWWγZ
49 , sntmOWWγZ

54 , and
sntmOWWγZ

55 , with n ≥ 1, m ≥ 0. To form a complete set
of independent operators they should be removed.
In Tables IX and X we list the primary operators for

the ZZZγ interaction up to dimension 14. We obtain full
agreement with the Hilbert series. There are 4 dimension-
six operators, 14 dimension-eight operators, 22 dimension-
ten operators, 12 dimension-12 operators, 4 dimension-14
operators, and 2 redundancies that appear at dimension 14.
To form a set of independent operators, xnymOZZZγ

28 and
xnymOZZZγ

29 , with x ¼ s2 þ t2 þ u2, y ¼ stu, n ≥ 1, and
m ≥ 0, should be omitted.
The primary operators for the WþW−γγ interaction up

to dimension 12 are listed in Table XI and they agree with
the expectations from the Hilbert series. There are 3
dimension-six operators, 19 dimension-eight operators,
14 dimension-ten operators, 2 dimension-12 operators,
and 2 redundancies that show up at dimension 12. Note
that, in this case, the coefficient for q12 exactly cancels
between the two operators and two redundancies. The
following operators and their descendants should be

removed to maintain an independent set of operators:
snðt − uÞ2mOWWγγ

9 and snðt − uÞ2mOWWγγ
17 , with n ≥ 0,

and m ≥ 1. The primary operators for the WþW−gg
interaction up to dimension 12 can be obtained by replacing
Fμν → GA

μν and contracting the SU(3) indices with δAB. The
redundancies of the WþW−γγ interaction apply to the
corresponding operators of the WþW−gg interaction.
Primary operators for the ZZγγ interaction up to dimen-

sion ten are tabulated in Table XII. Our results agree
with the Hilbert series, from which we expect there to be
3 dimension-six operators, 13 dimension-eight operators,
7 dimension-ten operators, and 2 redundancies appear-
ing at dimension 12. The operators and descendants
snðt − uÞ2mOZZγγ

9 and snðt − uÞ2mOZZγγ
12 , with n ≥ 0 and

m ≥ 1, should be omitted in order to form a set of
independent operators. The primary operators for the
ZZgg interaction up to dimension 12 can be obtained by
making the replacement Fμν → GA

μν and contracting the
SU(3) indices with δAB. The redundancies of the ZZγγ
interaction apply to the corresponding operators of the
ZZgg interaction.
Table XIII lists the primary operators for the Zγgg

interaction up to dimension 12. Agreeing with the
Hilbert series, we find 12 dimension-eight operators, 12
dimension-ten operators, 2 dimension-12 operators, and

TABLE IV. (Continued)

i OZZWW
i CP dOi

SMEFT operator form c Unitarity bound

55
∂
σZμ

∂μZνρ
	
Wþ

ν D
↔

σW−
ρ


 þ

8

D6H4Wa
μν

0.001
E7
TeV

; 0.004E8
TeV

56
∂αβZ̃μνZμ

	
iWþβD

↔α
W−

ν þ H:c:

 þ

D6H4W̃a
μν

57
∂αZβZ̃μν

	
iWþ

μ D
↔α

DβW−
ν þ H:c:


 þ

58
∂μαZβZ̃μν

	
iWþ

β D
↔α

W−
ν þ H:c:


 þ

59
∂μβZαZ̃μν

	
iWþ

ν DαW−β þ H:c:

 þ

60
∂αZβ

∂βZμ

	
iWþ

ν D
↔α

W̃−μν þ H:c:

 þ

61
∂μαZβZβ

	
iWþ

ν D
↔α

W̃−μν þ H:c:

 þ

62
∂μZα

∂αZβ
	
iWþ

ν DβW̃−μν þ H:c:

 þ

63 Zα
∂μαZβ

	
iWþ

ν DβW̃−μν þ H:c:

 þ

64
∂
αZ̃μνZβ

	
Wþ

μ D
↔

αDνW−
β þ H:c:


 −

65
∂
αZρ

∂ρZ̃μν
	
Wþ

μ D
↔

αW−
ν


 −

66
∂νρZμ

∂μZ̃νσ
	
WþρW−

σ þ H:c:



−

67
∂
αZμZβ

	
WþνD

↔

αDβW̃−
μν þ H:c:


 −

68
∂μβZα

∂αZβ
	
Wþ

ν W̃−μν þ H:c:



−

69
∂μZαZβ

	
Wþ

ν DαβW̃−μν þ H:c:



−
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TABLE V. Primary dimension-ten operators for the ZZWþW− interaction. Two redundancies, which are
descendants of dimension-eight operators, appear at dimension 12. To form an independent set of operators,
snðt − uÞ2mOZZWW

39 and snðt − uÞ2mOZZWW
54 , with n ≥ 2, m ≥ 0, should be omitted.

i OZZWW
i CP dOi

SMEFT operator form c Unitarity bound

70
∂νραZμ

∂μσZν
	
WþρD

↔α
W−σ þ H:c:


 þ

10

D10H4

2×10−5

E10
TeV

71
∂ναZμ

∂ρσZν
	
iWþρD

↔α
DμW−σ þ H:c:


 þ
72

∂νρσαZμZν
	
WþρD

↔α
DμW−σ þ H:c:


 þ
73

∂ραZμ
∂σZν

	
WþρD

↔α
DμνW−σ þ H:c:


 þ
74 εμνρσ∂μτZα

∂ναZβ
	
iWþ

ρ D
↔τ

DβW−
σ þ H:c:


 þ
εD10H4

75 εμνρσ∂μβτZαZν

	
iWþ

ρ D
↔τ

DσαW−β

 þ

76
∂νρσαZμ

∂μZν
	
iWþρD

↔α
W−σ


 −

D10H477
∂σαZμ

∂μρZν
	
iWþρD

↔α
DνW−σ þ H:c:


 −

78
∂ρσαZμZν

	
iWþρD

↔α
DμνW−σ þ H:c:


 −

79 εμνρσ∂μβτZα
∂ναZβ

	
Wþ

ρ D
↔τ

W−
σ


 −
εD10H4

80 εμνρσ∂μτZα
∂νZβ

	
Wþ

ρ D
↔τ

DαβW−
σ þ H:c:


 −

81
∂νραZμ

∂μZν
	
iWþ

σ D
↔α

W̃−ρσ þ H:c:

 þ

10 D8H4W̃a
μν

8×10−5

E9
TeV

; 3×10
−4

E10
TeV

82
∂ραZμZν

	
iWþ

σ D
↔α

DμνW̃−ρσ þ H:c:

 þ

83
∂νραZμZν

	
Wþ

σ D
↔α

DμW̃−ρσ þ H:c:

 −

TABLE VI. Primary operators for the ZZZZ interaction up to dimension 12. Two redundancies, which are
descendants of dimension-ten operators, appear at dimension 14. To form an independent set of operators,
xnymOZZZZ

22 and xnymOZZZZ
23 , where x ¼ s2 þ t2 þ u2 and y ¼ stu, with n ≥ 1 and m ≥ 0, should be removed.

i OZZZZ
i CP dOi

SMEFT operator form c Unitarity bound

1 ZμZμZνZν þ 4 D4H4 0.09
E4
TeV

2
∂
ρZμZν

	
Zμ ∂

↔

ρZν


 þ
6 D6H4 0.006

E6
TeV

3 ∂νZμ
∂μZνZρZρ þ

4 ZμZν
∂μνZρZρ þ

5 Z̃μνZρ
∂ρZμZν − 6 D4H4W̃a

μν
0.02
E5
TeV
, 0.07
E6
TeV

6
∂σZμ

∂μZρ
	
∂ρZν

∂

↔σ
Zν


 þ

8

D8H4

3×10−4

E8
TeV

7
∂νσZμ

∂μZρ
	
Zν

∂

↔σ
Zρ


 þ
8 ∂νρZμ

∂μσZνZρZσ þ
9

∂
ρσZμ

∂σZν
	
Zμ ∂

↔

ρZν


 þ
10

εμνρσ∂ασZβ
∂βZμ

	
Zν ∂

↔α
Zρ


 −
εD8H4

11 εμνρσ∂αρZβ
∂σZβ

	
Zμ ∂

↔α
Zν


 −

(Table continued)
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2 redundancies at dimension 12. To form a set of independent
operators, the operators and descendants snðt − uÞ2mOZγgg

4 ,
snðt − uÞ2mOZγgg

9 , with n ≥ 0, m ≥ 1, should be removed.
The primary operators for the Zγγγ interaction up to

dimension 14 are enumerated in Table XIV. The Hilbert
series predicts that there are 4 dimension-eight operators,
10 dimension-ten operators, 8 dimension-12 operators, 4
dimension-14 operators, and 2 redundancies that appear at
dimension 14. Our results are in agreement with this
prediction. In order to form a set of independent operators,
the operators and descendants xnymOZγγγ

9 and xnymOZγγγ
13 ,

with x ¼ s2 þ t2 þ u2, y ¼ stu, n ≥ 1, and m ≥ 0, should
be omitted. Symmetric (in any g ↔ g particle exchange of
their kinematic variables) primary operators for the Zggg
interaction up to dimension 14 can be obtained by making
the replacement Fμν → GA

μν and contracting SU(3) indices
with the fully symmetric structure constant tensor dABC.

The redundancies of the Zγγγ interaction apply to the
corresponding operators of the Zggg interaction.
In Table XV, we list the antisymmetric (in any g ↔ g

particle exchange of kinematics) primary operators for the
Zggg interaction up to dimension 16. Note that the SU(3)
indices of the gluon field strengths GA

μν are suppressed in
our notation and taken to be contracted with the fully
antisymmetric structure constant tensor fABC, so that under
the combined color and kinematic exchange, the gluons
obey Bose-Einstein statistics. When taken with the sym-
metric Zggg operators obtained from modifications to
operators in Table XIV, which was discussed in the last
paragraph, our results agree with the Hilbert series. We find
that there are 6 dimension-eight operators, 18 dimension-
ten operators, 16 dimension-12 operators, 8 dimension-14
operators, 2 dimension-16 operators, and 2 redundancies
that appear at dimension 14. These redundancies come
from operators involving the fully symmetric structure

TABLE VI. (Continued)

i OZZZZ
i CP dOi

SMEFT operator form c Unitarity bound

12
∂
σZμ

∂μZνρ
	
Zν ∂

↔

σZρ


 þ
8

D6H4Wa
μν

0.001
E7
TeV

; 0.004E8
TeV13 ∂μβZα

∂αZβZ̃μνZν − D6H4W̃a
μν

14
∂νραZμ

∂μσZν
	
Zρ

∂

↔α
Zσ


 þ

10

D10H4

2×10−5

E10
TeV

15
∂ρσαZμ

∂μZν
	
∂νZρ

∂

↔α
Zσ


 þ
16

∂αZμ
∂μρσZν

	
∂νZρ

∂

↔α
Zσ


 þ
17

∂
αβZμ

∂μαZν
	
∂νZρ

∂

↔

βZρ


 þ
18

∂
αρσZμ

∂μαZν
	
Zρ ∂

↔

σZν


 þ
19

εμνρσ∂μβτZα
∂ναZβ

	
Zρ ∂

↔τ
Zσ


 −

εD10H4

20
εμνρσ∂μτZα

∂νZβ
	
∂αβZρ ∂

↔τ
Zσ


 −

21
εμνρσ∂ατσ Zβ

∂βτZμ

	
Zν ∂

↔

αZρ


 −

22 εμνρσ∂ατρ Zβ
∂στZβ

	
Zμ ∂

↔

αZν


 −

23
∂
ασZμ

∂μαZνρ
	
Zρ ∂

↔

σZν


 þ
10

D8H4Wa
μν

8×10−5

E9
TeV

; 3×10
−4

E10
TeV24

∂τZα
∂μαZβ

	
∂βZ̃μσ

∂

↔τ
Zσ


 − D8H4W̃a
μν

25
∂
νραβZμ

∂μσβZν

	
Zρ ∂

↔

αZσ

 þ

12

D12H4

1×10−6

E12
TeV

26
∂
ρσαβZμ

∂μβZν
	
∂νZρ ∂

↔

αZσ


 þ
27

∂
αβZμ

∂μρσβZν
	
∂νZρ

∂

↔

αZσ

 þ

28
εμνρσ∂βτπμ Zα

∂ναπZβ

	
Zρ ∂

↔

τZσ


 −
εD12H4

29
εμνρσ∂ατπρ Zβ

∂στπZβ

	
Zμ ∂

↔

αZν


 −
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constant tensor dABC and can be obtained from Table XIV.
They, along with their descendants, should be removed to
form a set of independent operators.
In Table XVI, we have a list of the primary operators for

the γγγγ interaction up to dimension 12. The Hilbert series
predicts 3 dimension-eight operators, 5 dimension-ten
operators, 1 dimension-12 operator, and 2 redundancies
at dimension 14, which are the results that we find. We can
form a set of independent operators by removing the
descendants xnymOγγγγ

6 and xnymOγγγγ
7 , with n ≥ 1 and

m ≥ 0, x ¼ s2 þ t2 þ u2, y ¼ stu which are redundant.

In Table XVII, we can find the primary operators for the
γγgg interaction up to dimension ten. There are seven
dimension-eight operators and five dimension-ten opera-
tors. This result is consistent with the corresponding Hilbert
series. At dimension 12, there are two redundancies such
that we should omit the descendants snðt − uÞ2mOγγgg

4 and
smþ1ðt − uÞ2nOγγgg

6 , with n ≥ 0 andm ≥ 1, in order to have
a list of independent operators.
In Tables XVIII and XIX, we enumerate a set of primary

operators for the γggg interaction up to dimension 16.
We find 4 dimension-eight operators, 12 dimension-ten

TABLE VII. Primary dimension-six operators for the WþW−Zγ interaction.

i OWWZγ
i CP dOi

SMEFT operator form c Unitarity bound

1
	
WþμDνW−

μ þ H:c:


FνρZρ

þ

6

D4H4Bμν

0.02
E5
TeV
, 0.07
E6
TeV

2
	
Wþ

μ DρW−
ν þ H:c:



FρμZν þ

3
	
WþμDμW−

ν þ H:c:


FνρZρ

þ
4

	
WþμW−ν þ H:c:



∂νFμρZρ þ

5
	
Wþ

μ DρW−
ν þ H:c:



FμνZρ þ

6
	
iWþμDμW−

ν þ H:c:


F̃νρZρ

þ
D4H4B̃μν

7
	
iWþμDνW−

μ þ H:c:


F̃νρZρ

þ
8 εμνρσ

	
iWþ

μ DαW−
ν þ H:c:



FραZσ

þ
εD4H4Bμν

9 εμνρσ
	
iWþ

μ DνW−α þ H:c:


FραZσ

þ
10

	
iWþμD

↔ρ
W−

μ



FρσZσ −

D4H4Bμν
11

	
iWþμDρW−ν þ H:c:



FμρZν

−

12
	
iWþμW−ν þ H:c:



∂νFμρZρ −

13
	
iWþμDμW−ν þ H:c:



FνρZρ −

14
	
WþμDμW−

ν þ H:c:


F̃νρZρ

−

D4H4B̃μν15
	
WþμW−

ν þ H:c:


∂μF̃νρZρ

−

16
	
WþμDνW−

μ þ H:c:


F̃νρZρ

−

17 εμνρσ
	
Wþ

μ DαW−
ν þ H:c:



FραZσ

−
εD4H4Bμν

18 εμνρσ
	
Wþ

μ DνW−α þ H:c:


FραZσ

−

19
	
Wþ

μ W−
νρ þ H:c:



FνρZμ þ

6

D2H2Wa
μνBμν

0.09
E4
TeV

20
	
iWþμW̃−νρ þ H:c:



FνμZρ

þ D2H2W̃a
μνBμν

21
	
iWþμW−νρ þ H:c:



FνρZμ

− D2H2Wa
μνBμν

22
	
WþμW̃−νρ þ H:c:



FνμZρ

− D2H2W̃a
μνBμν
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operators, 8 dimension-12 operators, 6 dimension-14 oper-
ators, 4 dimension-16 operators, and 2 redundancies at
dimension 14, agreeing with the Hilbert series. We should
remove the descendant operators xnymOγggg

8 , xnymOγggg
16 ,

with x ¼ s2 þ t2 þ u2, y ¼ stu, n ≥ 1, and m ≥ 0 to
exclude redundancies. In this case, we are including in
the tables the fully symmetric and antisymmetric structure
constants dABC and fABC, respectively, which implicitly
contract the SU(3) indices of the GA

μν’s.
Four-gluon scattering proceeds as in Fig. 1. An

example Lagrangian operator for four-gluon interac-
tions is fðTA; TB; TC; TCÞGA

μνGBνρGC
ρσGDσμ, where we

have chosen a structure for the contraction of the

Lorentz indices and f represents a configuration of the
trace of the generators. In this case, we have two ways to
express f (up to trivial permutations) to keep the ampli-
tude invariant: TrðTATBÞTrðTCTDÞ and TrðTATBTCTDÞ.
Considering that the gluons are identical, this gives two
different possible amplitudes,

MTr2ð1A2B; 3C4DÞ ¼ TrðTATBÞTrðTCTDÞMTr2ð12; 34Þ
þ TrðTATCÞTrðTBTDÞMTr2ð13; 24Þ
þ TrðTATDÞTrðTBTCÞMTr2ð14; 23Þ;

ð23Þ

TABLE VIII. Primary dimension-eight and -ten operators for theWþW−Zγ interaction. At dimension ten there are
four redundancies, which are descendants of dimension-eight operators. In order to form a set of independent
operators, sntmOWWγZ

44 , sntmOWWγZ
49 , sntmOWWγZ

54 , and sntmOWWγZ
55 , with n ≥ 1, m ≥ 0, should be omitted.

i OWWZγ
i CP dOi

SMEFT operator form c Unitarity bound

23
	
DνWþμDμρW−ν þ H:c:



FρσZσ

þ

8

D6H4Bμν

0.001
E7
TeV

; 0.004E8
TeV

24
	
DρWþμDμW−ν þ H:c:



∂νFρσZσ þ

25
	
Wþ

μ DμρW−ν þ H:c:


∂νFρσZσ þ

26
	
WþμDρW−ν þ H:c:



∂μνFρσZσ þ

27
	
DσWþμDμρW−ν þ H:c:



FρσZν

þ
28

	
DρσWþμDμW−

ν þ H:c:


FνρZσ þ

29
	
WþμDρσW−ν þ H:c:



∂νFμρZσ

þ
30

	
DνσWþμDρW−

μ þ H:c:


FνρZσ þ

31 εμνρσ
	
iDα

μWþβDβW−
ν þ H:c:



FραZσ

þ
εD6H4Bμν32 εμνρσ

	
iDμW

þ
β D

αβW−
ν þ H:c:



FραZσ

þ
33 εμνρσ

	
iWþ

μ Dα
νW−β þ H:c:



∂βFραZσ

þ
34

	
iDνWþμDμρW−ν þ H:c:



FρσZσ

−

D6H4Bμν

35
	
iDρWþμDμW−ν þ H:c:



∂νFρσZσ −

36
	
iWþ

μ DμρW−ν þ H:c:


∂νFρσZσ −

37
	
iWþμDρW−ν þ H:c:



∂μνFρσZσ −

38
	
iDσWþμDμρW−ν þ H:c:



FρσZν

−

39
	
iDρσWþμDμW−

ν þ H:c:


FνρZσ −

40
	
iWþμDρσW−ν þ H:c:



∂νFμρZσ

−

41 εμνρσ
	
Dα

μWþβDβW−
ν þ H:c:



FραZσ

−

εD6H4Bμν42 εμνρσ
	
DμW

þ
β D

αβW−
ν þ H:c:



FραZσ

−

43 εμνρσ
	
Wþ

μ Dα
νW−β þ H:c:



∂βFραZσ

−

(Table continued)
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TABLE VIII. (Continued)

i OWWZγ
i CP dOi

SMEFT operator form c Unitarity bound

44
	
DσWþμDμW−

νρ þ H:c:


FνρZσ þ

8

D4H2Wa
μνBμν

0.006
E6
TeV

45
	
iDμWþνDνW̃−ρσ þ H:c:



FρμZσ

þ

D4H2W̃a
μνBμν

46
	
iWþ

ν DνμW̃−ρσ þ H:c:


FρνZσ

þ
47

	
iDρWþμW̃−νσ þ H:c:



∂μFνρZσ

þ
48

	
iWþμDρW̃−νσ þ H:c:



∂μFνρZσ

þ
49

	
iDσWþμDμW−

νρ þ H:c:


FνρZσ − D4H2Wa

μνBμν

50
	
DμWþνDνW̃−ρσ þ H:c:



FρμZσ

−

D4H2W̃a
μνBμν

51
	
Wþ

ν DνμW̃−ρσ þ H:c:


FρνZσ

−

52
	
WþμDρW̃−νσ þ H:c:



∂μFνρZσ

−

53
	
DρWþμW̃−νσ þ H:c:



∂μFνρZσ

−

54
	
DνWþ

μ DρW̃−νσ þ H:c:


FμρZσ

−

55
	
iDνWþ

μρW̃−νσ þ H:c:


FμρZσ

þ
8 D2H2Wa

μνW̃a
μνBμν 0.02

E5
TeV

; 0.07
E6
TeV56

	
DνWþ

μρW̃−νσ þ H:c:


FμρZσ

−

57
	
DνρσWþμDμαW−ν þ H:c:



FραZσ þ 10 D8H4Bμν 8×10−5

E9
TeV

; 3×10
−4

E10
TeV

58
	
DνρWþμDμαW̃−νσ þ H:c:



FραZσ

− 10 D6H2W̃a
μνBμν 3×10−4

E8
TeV

TABLE IX. Primary dimension-six, -eight, and -ten operators for the ZZZγ interaction.

i OZZZγ
i CP dOi

SMEFT operator form c Unitarity bound

1 Zμ
∂νZμZρFνρ þ

6
D4H4Bμν

0.02
E5
TeV
, 0.07
E6
TeV

2 Zμ
∂μZνZρFνρ þ

3 Zμ
∂μZνZρF̃νρ − D4H4B̃μν

4 ZμZ̃νρZρFνμ − 6 D2H2W̃a
μνBμν 0.09

E4
TeV

5 ∂νZμ
∂μρZνZσFρσ þ

8

D6H4Bμν

0.001
E7
TeV

; 0.004E8
TeV

6 ∂
ρZμ

∂μZνZσ
∂νFρσ þ

7 Zμ∂
μρZνZσ

∂νFρσ þ
8 Zμ

∂
ρZνZσ

∂μνFρσ þ
9 ∂σZμ

∂μρZνZνFρσ þ
10 ∂

σZμ
∂νσZμZρFνρ þ

11 ∂
σZμ∂ρσZνZνFρμ þ

12 ∂
σZμ

∂νσZμZρF̃νρ − D6H4B̃μν

13 εμνρσ∂αμZβ
∂βZνZσFρα −

εD6H4Bμν
14 εμνρσ∂μZβ∂

αβZνZσFρα −

(Table continued)
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TABLE IX. (Continued)

i OZZZγ
i CP dOi

SMEFT operator form c Unitarity bound

15 ∂
μZν

∂νZ̃ρσZσFρμ −
8 D4H2W̃a

μνBμν 0.006
E6
TeV

16 Zμ∂
μνZ̃ρσZσFρν −

17 ∂νZμ∂ρZ̃νσZσFμρ −

18 ∂νZμρZ̃νσZσFμρ − 8 D2H2Wa
μνW̃a

μνBμν 0.02
E5
TeV

; 0.07
E6
TeV

19 ∂νρσZμ
∂μαZνZσFρα þ

10

D8H4Bμν

8×10−5

E9
TeV

; 3×10
−4

E10
TeV

20 ∂
α
νZμ

∂μραZνZσFρσ þ
21 ∂

ραZμ
∂μαZνZσ

∂νFρσ þ
22 ∂αZμ∂

μραZνZσ
∂νFρσ þ

23 ∂αZμ
∂
ραZνZσ

∂μνFρσ þ
24 ∂

α
σZμ

∂μραZνZνFρσ þ
25 ∂ρσαZμ

∂
α
μZνZσFνρ þ

26 ∂αZμ
∂
ρσαZνZσ∂νFμρ þ

27 ∂νσαZμ
∂
α
ρZμZσFνρ þ

28 ∂
σαZμ

∂νσαZμZρFνρ þ
29 ∂

ραZμ
∂νραZμZσF̃νσ − D8H4B̃μν

30 εμνρσ∂ατμ Zβ
∂βτZνZσFρα −

εD8H4Bμν31 εμνρσ∂μτZβ∂
αβτZνZσFρα −

32 εμνρσ∂τZμ∂
ατ
ν ZβZσ∂βFρα −

33 ∂
α
σZμ

∂μαZνρZσFνρ þ

10

D6H2Wa
μνBμν

3×10−4

E8
TeV

34 ∂νρZμ
∂μαZ̃νσZσFρα −

D6H4W̃a
μνBμν

35 ∂
μαZν

∂ναZ̃ρσZσFρμ −
36 ∂αZμ∂

μναZ̃ρσZσFρν −
37 ∂

ραZμ
∂αZ̃νσZσ∂μFνρ −

38 ∂αZμ
∂
ραZ̃νσZσ∂μFνρ −

39 ∂
α
νZμ∂ραZ̃νσZσFμρ −

40 ∂ναZμρ∂
αZ̃νσZσFμρ − 10 D4H2Wa

μνW̃a
μνBμν 0.001

E7
TeV

; 0.004E8
TeV

TABLE X. Primary dimension-12 and -14 operators for the ZZZγ interaction. At dimension 14, two descendant
operators become redundant. To form a set of independent operators, xnymOZZZγ

28 and xnymOZZZγ
29 , with

x ¼ s2 þ t2 þ u2, y ¼ stu, n ≥ 1, and m ≥ 0, should be omitted.

i OZZZγ
i CP dOi

SMEFT operator form c Unitarity bound

41 ∂νρσβZμ
∂
β
μαZνZσFρα þ

12

D10H4Bμν

5×10−6

E11
TeV

; 2×10
−5

E12
TeV

42 ∂
αβ
ν Zμ

∂μραβZνZσFρσ þ
43 ∂

ραβZμ
∂μαβZνZσ

∂νFρσ þ
44 ∂αβZμ∂

μραβZνZσ
∂νFρσ þ

45 ∂αβZμ
∂
ραβZνZσ

∂μνFρσ þ
46 ∂νσ

αβZμ
∂ραβZμZσFνρ þ

47 εμνρσ∂μ
ατπZβ

∂βτπZνZσFρα −
εD10H4Bμν48 εμνρσ∂μτπZβ∂

αβτπZνZσFρα −
49 εμνρσ∂τπZμ∂ν

ατπZβZσ∂βFρα −

(Table continued)
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TABLE X. (Continued)

i OZZZγ
i CP dOi

SMEFT operator form c Unitarity bound

50 ∂νρ
βZμ

∂μαβZ̃νσZσFρα −
12 D8H2W̃a

μνBμν 2×10−5

E10
TeV51 ∂

μαβZν
∂ναβZ̃ρσZσFρμ −

52 ∂ναβZμρ∂
αβZ̃νσZσFμρ − 12 D6H2W̃a

μνBμνBμν 8×10−5

E9
TeV

; 3×10
−4

E10
TeV

53 ∂νρσβτZμ
∂μα

βτZνZσFρα þ

14
D12H4Bμν

3×10−7

E13
TeV

; 9×10
−7

E14
TeV

54
	
∂ναβZμ

∂

↔τ
∂μρ

αβZν


Zσ∂τFρσ þ

55 εμνρσ
	
∂μ

ατπZβ
∂

↔δ
∂βτπZν



Zσ∂δFρα

− εD12H4Bμν

56 ∂νρβτZμ
∂μα

βτZ̃νσZσFρα − 14 D10H2W̃a
μνBμν 1×10−6

E12
TeV

TABLE XI. Operators up to dimension 12 for the WþW−γγ interaction. At dimension 12, there are two
redundancies such that, in order to form a set of independent operators, snðt − uÞ2mOWWγγ

9 and snðt − uÞ2mOWWγγ
17 ,

with n ≥ 0 and m ≥ 1, should be omitted. Operators for WþW−gg interactions can be obtained by replacing Fμν’s
with GA

μν’s contracted with δAB. The same redundancies apply to the corresponding operators.

i OWWγγ
i CP dOi

SMEFT operator form c Unitarity bound

1 WþμW−
μFνρFνρ þ

6
D2H2BμνBμν

0.09
E4
TeV

2 WþμW−
ν FμρFνρ þ

3
	
WþμW−

ν þ H:c:


FμρF̃νρ − D2H2BμνB̃μν

4 WþμW−νFρσ
∂μνFρσ þ

8

D4H2BμνBμν

0.006
E6
TeV

5 WþμW−ν
∂μFρσ

∂νFρσ þ
6

	
WþμDσW−ν þ H:c:



Fρσ

∂μFνρ
þ

7
	
WþμDσW−

ν þ H:c:


Fνρ

∂μFρσ
þ

8
	
WþμDρ

σW−
μ þ H:c:



FνρFνσ

þ
9

	
Wþ

μ D
↔σ

W−ν þ H:c:


∂σFμρFρν

þ
10

	
iWþ

μ DρW−ν þ H:c:


F̃μσ

∂νFσρ
þ D4H2BμνB̃μν

11 εμνρσ
	
iWþ

μ DνW−α þ H:c:


Fρ

β
∂αFσβ

þ εD4H2BμνBμν

12
	
iWþμDσW−ν þ H:c:



Fρσ

∂μFνρ
−

D4H2BμνBμν

13
	
iWþμDσW−

ν þ H:c:


Fνρ

∂μFρσ
−

14
	
WþμD

↔σ
W−

ν þ H:c:


∂σFμρF̃νρ −

D4H2BμνB̃μν

15
	
Wþ

μ W−ν þ H:c:


∂νFρσ∂

σF̃μρ −

16 εμνρσ
	
Wþ

μ DβW−
ν þ H:c:



Fρα∂σFαβ −

εD4H2BμνBμν
17 εμνρσ

	
Wþ

μ D
↔β

W−
ν þ H:c:



∂βFα

ρFασ
−

(Table continued)
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MTrð1A2B; 3C4DÞ ¼ TrðTATBTCTDÞMTrð12; 34Þ þ TrðTATBTDTCÞMTrð12; 43Þ
þ TrðTATCTBTDÞMTrð13; 24Þ þ TrðTATCTDTBÞMTrð13; 42Þ
þ TrðTATDTBTCÞMTrð14; 23Þ þ TrðTATDTCTBÞMTrð14; 32Þ; ð24Þ

where the right-hand side factorizes the amplitude into
color factors and subamplitudes that only depend on kine-
matics and polarizations. Given the structure of the oper-
ators, the subamplitudes have the following identities under

exchange of kinematics, MTr2ð12;34Þ¼MTr2ð21;34Þ¼
MTr2ð12;43Þ¼MTr2ð21;43Þ¼MTr2ð34;12Þ¼MTr2ð43;12Þ¼
MTr2ð34;21Þ¼MTr2ð43;21Þ and MTrð12; 34Þ ¼
MTrð23; 41Þ ¼ MTrð34; 12Þ ¼ MðTr41; 23Þ. By forming

TABLE XI. (Continued)

i OWWγγ
i CP dOi

SMEFT operator form c Unitarity bound

18
	
WþμDσW−

νρ þ H:c:


FνρFσμ

þ

8

D2H2Wa
μνBμνBμν

0.02
E5
TeV

; 0.07
E6
TeV

19
	
iWþ

μ DρW̃−μσ þ H:c:


FνρFσν

þ D2H2W̃a
μνBμνBμν

20
	
Wþ

μ DρW−
νσ þ H:c:



F̃μρFνσ − D2H2Wa

μνBμνB̃μν

21
	
Wþ

μ W̃−μν þ H:c:


Fρσ

∂σFνρ
−

D2H2W̃a
μνBμνBμν

22
	
Wþ

μ DσW̃−μν þ H:c:


FρσFνρ

−

23
	
WþμD

↔α
W−ν þ H:c:



∂μαFρσ

∂νFρσ
þ

10

D6H2BμνBμν

3×10−4

E8
TeV

24
	
WþμD

↔α
DσW−ν þ H:c:



∂αFρσ

∂μFνρ
þ

25 εμνρσ
	
iWþ

μ D
↔τ

DβW−
ν þ H:c:



∂τFρα∂σFαβ þ εD6H2BμνBμν

26
	
iWþμD

↔α
W−ν þ H:c:Þ∂αFρσ

∂μνFρσ
−

D6H2BμνBμν27
	
iWþμD

↔α
DσW−ν þ H:c:



∂αFρσ

∂μFνρ
−

28
	
iWþμD

↔

αDρW−ν þ H:c:


∂
αFνσ∂

σFμρ
−

29 εμνρσ
	
Wþ

μ D
↔

τW−
ν



∂
ατFρβ∂

βFσα
−

εD6H2BμνBμν
30 εμνρσ

	
Wþ

μ D
↔τ

DαβW−
ν þ H:c:Þ∂τFρβFσα

−

31
	
Wþ

μ D
↔

αDσW−
νρ þ H:c:



∂
αFνρFσμ þ

10

D4H2Wa
μνBμνBμν

0.001
E7
TeV

; 0.004
E8
TeV

32
	
WþμDσW−

αν þ H:c:


Fρσ

∂μρFαν þ
33

	
iWþ

μ D
↔

αDρW−
νσ þ H:c:



∂
αFνσF̃μρ þ D4H2Wa

μνBμνB̃μν

34
	
iWþ

μ D
↔

αW̃−μν þ H:c:


∂
αFρσ

∂σFνρ
þ

D4H2W̃a
μνBμνBμν35

	
iWþ

μ D
↔

αDσW̃−μν þ H:c:


∂
αFνρFρσ þ

36
	
WþμDρ

αW̃−
μν þ H:c:



Fσα

∂
νFρσ

−

37
	
iWþμD

↔β
Dρ

σW−ν þ H:c:


∂βFαρ

∂μνFασ
− 12 D8H2BμνBμν 2×10−5

E10
TeV

38
	
iWþ

μ D
↔β

Dσ
αW̃−μν þ H:c:



∂βFρσ∂νFρα þ 12 D6H2W̃a

μνBμνBμν 8×10−5

E9
TeV

; 3×10
−4

E10
TeV
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candidate subamplitudes with the correct symmetries
under the exchange of kinematics, we can find the indepen-
dentMTr2ð12; 34Þ andMTrð12; 34Þ. These will, respectively,
lead to an independent set of MTr2ð1A2B; 3C4DÞ and
MTrð1A2B; 3C4DÞ. However, it is possible that there will
still be redundancies between the two types of amplitudes
MTr2ð1A2B; 3C4DÞ and MTrð1A2B; 3C4DÞ.
In the following, we show that, if there is a redundancy

between the subamplitudes of the two types, then there
will be a redundancy among the full amplitudes after
putting in the color factors. To see this, assume that there
is a redundancy between two subamplitudes M̂ð12; 34Þ ¼
MTr2ð12; 34Þ ¼ MTrð12; 34Þ. Now M̂ is invariant under
both of the permutation symmetries of the two subampli-
tudes and one can show that this means M̂ is invariant under

arbitrary permutations of the four particles. Then we can
show that

MTr2ð1A2B;3C4DÞ¼ ðTrðTATBÞTrðTCTDÞ
þTrðTATCÞTrðTBTDÞ
þTrðTATDÞTrðTBTCÞÞM̂ð12;34Þ

¼ ðTrðTATBTCTDÞþTrðTATBTDTCÞ
þTrðTATCTBTDÞþTrðTATCTDTBÞ
þTrðTATDTBTCÞ
þTrðTATDTCTBÞÞM̂ð12;34Þ

¼MTrð1A2B;3C4DÞ; ð25Þ

TABLE XII. Operators up to dimension ten for the ZZγγ interaction. At dimension 12, there are two redundancies
such that, in order to form a set of independent operators, snðt − uÞ2mOZZγγ

9 and snðt − uÞ2mOZZγγ
12 , with n ≥ 0 and

m ≥ 1, should be omitted. Operators for ZZgg interactions can be obtained by replacing Fμν’s with GA
μν’s contracted

with δAB. The same redundancies apply to the corresponding operators.

i OZZγγ
i CP dOi

SMEFT operator form c Unitarity bound

1 ZμZμFνρFνρ þ
6

D2H2BμνBμν

0.09
E4
TeV

2 ZμZνFμρFνρ þ
3 ZμZνFμρF̃νρ − D2H2BμνB̃μν

4 ZμZνFρσ
∂μνFρσ þ

8

D4H2BμνBμν

0.006
E6
TeV

5 ZμZν
∂μFρσ

∂νFρσ þ
6 Zμ

∂σZνFρσ
∂μFνρ þ

7 Zμ
∂
σZνFνρ

∂μFρσ þ
8 Zμ

∂ρ
σZμFνρFνσ þ

9
	
Zμ ∂

↔σ
Zν



∂σFμρFρν

þ
10 ZμZν

∂νFρσ∂
σF̃μρ − D4H2BμνB̃μν

11 εμνρσZμ∂βZνFρα∂σFαβ −
εD4H2BμνBμν12

εμνρσ
	
Zμ ∂

↔β
Zν



∂βFα

ρFασ
−

13 Zμ
∂
σZνρFνρFσμ þ

8

D2H2BμνBμνBμν

0.02
E5
TeV

; 0.07
E6
TeV

14 Zμ∂ρZνσF̃μρFνσ −
D2H2BμνBμνB̃μν15 ZμZ̃μνFρσ

∂σFνρ −
16 Zμ∂σZ̃μνFρσFνρ −

17
	
Zμ

∂

↔α
Zν



∂μαFρσ

∂νFρσ
þ

10

D6H2BμνBμν

3×10−4

E8
TeV

18
	
Zμ

∂

↔α
∂σZν



∂αFρσ

∂μFνρ
þ

19 εμνρσ
	
Zμ ∂

↔

τZν



∂
ατFρβ∂

βFσα
−

εD6H2BμνBμν
20

εμνρσ
	
Zμ ∂

↔τ
∂
αβZν



∂τFρβFσα

−

21 Zμ
∂ρZναFρσ

∂μσFνα þ
10

D4H2BμνBμνBμν

0.001
E7
TeV

; 0.004E8
TeV

22
	
Zμ ∂

↔

α∂σZνρ



∂
αFνρFσμ þ

23 Zμ∂ρ
αZ̃μνFσα∂νFρσ − D4H2BμνBμνB̃μν
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which shows that the full amplitudes are also redundant. In
the second equality, we have used the group theory identity
for SU(3),

X
six distinct perms

TrðTATBTCTDÞ

¼
X

three distinct perms

TrðTATBÞTrðTCTDÞ ð26Þ

with the distinct permutations given in (23) and (24). This
implies that it is enough to look for the independent

subamplitudes of both types to characterize the indepen-
dent full amplitudes.
For simplicity, we adopt the notation TrðT2ÞTrðT2Þ

and TrðT4Þ to represent TrðTATBÞTrðTCTDÞ and
TrðTATBTCTDÞ, respectively. In Tables XX and XXI,
we show a set of primary operators for gggg interactions,
up to dimension 16. We find 9 dimension-eight operators,
14 dimension-ten operators, 16 dimension-12 operators, 9
dimension-14 operators, 2 dimension-16 operators, 2
redundancies at dimension 14, and 4 redundancies at
dimension 16, which agrees with the corresponding
Hilbert series. The redundancies are the operators and

TABLE XIII. Primary operators up to dimension 12 for the Zγgg interaction. There are two redundancies that both
appear at dimension 12. To form a set of operators that are independent, snðt − uÞ2mOZγgg

4 ; snðt − uÞ2mOZγgg
9 , with

n ≥ 0, m ≥ 1, should be omitted.

i OZγgg
i CP dOi

SMEFT operator form c Unitarity bound

1 GμνDσGμρFν
ρZσ þ

8

D2H2GμνGμνBμν

0.02
E5
TeV

; 0.07
E6
TeV

2 GμνDσGνρFρσZμ þ
3 GμνDσGμρFνσZρ þ
4 GμνDρGμνFρσZσ þ
5 GμνGρσ

∂ρFμνZσ þ
6 GμνGμρ∂

ρFνσZσ þ
7 DρGμνGνρF̃μσZσ − D2H2GμνGμνB̃μν

8 GμνG̃ρσ
∂ρFμνZσ − D2H2GμνG̃μνBμν

9 GμνDνG̃
ρσFμρZσ −

10 εμνρσGμαDνGαβFρβZσ −
εD2H2GμνGμνBμν11 εμνρσGμαGαβ

∂νFρβZσ −
12 εμνρσGμαDβGν

αFρβZσ −

13 GμνDμαGρσ
∂νFρσZα þ

10

D4H2GμνGμνBμν

0.001
E7
TeV

; 0.004E8
TeV

14 DρGμνDσαGμνFρσZα þ
15

	
GμνD

↔α
DσGμρ



∂αFν

ρZσ þ
16

	
GμνD

↔α
DνGρσ



∂αFμρZσ

þ
17

	
GμνD

↔α
DσGνρ



∂αFρσZμ

þ
18

	
GμνD

↔α
Gρσ



∂ναFμρZσ

þ
19 GμνDρGμα∂ν

αF̃ρσZσ −

D4H2GμνGμνB̃μν20
	
GμνD

↔α
DνGμρ



∂αF̃ρσZσ

−

21
	
GμνD

↔α
Gνρ



∂ραF̃μσZσ

−

22 DαGμνDνρG̃μσFραZσ − D4H2GμνG̃μνBμν

23 εμνρσ
	
GμαD

↔τ
DνGαβ



∂τFρβZσ

−
εD4H2GμνGμνBμν

24 εμνρσ
	
GμαD

↔

τGνβ



∂
βτFρ

αZσ
−

25
	
GμνD

↔

βDσαGμρ



∂
ρβFνσZα

þ
12

D6H2GμνGμνBμν

8×10−5

E9
TeV

; 3×10
−4

E10
TeV26

	
GμνD

↔

βDαGμρ



∂ν

ρβ
F̃ασZσ

− D6H2GμνGμνB̃μν
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descendants given by xnymOgggg
4 , xnymOgggg

9 , xnymOgggg
12 ,

xnymOgggg
14 , xnymOgggg

19 , xnymOgggg
20 , with x ¼ s2 þ t2 þ u2,

y ¼ stu, n ≥ 0, and m ≥ 1, and should be removed if we
want a set of independent operators.

VI. DECAYS OF THE Z BOSON

Now that we have the amplitudes and unitarity bounds,
we can continue the analysis of modifications to the decays
of the Z boson, taking into account the upper bounds on
coupling strengths from the tables. First, we start with the
decays Z → f̄fðγ; gÞ. Such decays occur in the Standard
Model through radiation of the gauge boson off of the
fermions. Such emissions are collinear enhanced, so there

could be hope that the contact amplitudes in Ref. [7]
could be distinguished in differential distributions. In
this part of phase space, we estimate BRSMðZ → γf̄fÞ≈
α
4πBRSMðZ → f̄fÞ. Assuming just the irreducible back-
ground from the Standard Model in the channel Z → γμ̄μ,
we find that to get a 1σ fluctuation at the HL-LHC with
∼6 × 109 Z bosons would require unitarity violation at
about 5 TeV for the dimension-six and dimension-seven
amplitudes, which have two field strengths. Of course,
reducible backgrounds will reduce this estimate, but
this suggests that for reasonably high unitarity violating
scales, this could be searched for at the LHC. For Z → f̄fg,
the fermions would need to be a quark-antiquark pair,
for which the b quark would be the most promising.

TABLE XIV. Primary operators up to dimension 14 for the Zγγγ interaction. At dimension 14, two operators
become redundant to operators at dimension ten. To form a set of independent operators, xnymOZγγγ

9 and xnymOZγγγ
13 ,

with x ¼ s2 þ t2 þ u2, y ¼ stu, n ≥ 1, and m ≥ 0, should be omitted. Replacing all Fμν’s with GA
μν’s contracted

with dABC yields the symmetric (in exchange of gluon kinematics) primary operators up to dimension 14 for the
Zggg interaction. The same redundancies apply to the corresponding operators.

i OZγγγ
i CP dOi

SMEFT operator form c Unitarity bound

1 Fμν
∂σFνρFρσZμ þ

8

D2H2BμνBμνBμν

0.02
E5
TeV

; 0.07
E6
TeV

2 Fμν
∂
σFμρFνσZρ þ

3 ∂ρFμνFνρF̃σμZσ − D2H2BμνBμνB̃μν

4 εμνρσFμαFαβ
∂νFβρZσ − εD2H2BμνBμνBμν

5 ∂ραFμν
∂σFμνFρσZα þ

10

D4H2BμνBμνBμν

0.001
E7
TeV

; 0.004E8
TeV

6 ∂σαFμν
∂
αFνρFρ

μZσ þ
7 ∂

αFμν
∂σαFνρFρσZμ þ

8 ∂αFμν
∂
σαFμρFνσZρ þ

9 ∂
αFμν

∂αFρσ
∂ρFμνZσ þ

10 Fμν
∂ρFμσ∂ν

σF̃ραZα −
D4H2BμνBμνB̃μν11 ∂ρFμν∂σ

νF̃μαFρσZα −
12 ∂ραFμν∂

αFνρF̃μσZσ −
13 εμνρσ∂τFμα∂ντFαβFρβZσ −

εD4H2BμνBμνBμν
14 εμνρσ∂τFμα∂τFαβ

∂νFρβZσ −

15 ∂ραβFμν
∂σ

βFμνFρσZα þ

12

D6H2BμνBμνBμν

8×10−5

E9
TeV

; 3×10
−4

E10
TeV

16 ∂σαβFμν
∂
αβFνρFρ

μZσ þ
17 ∂

αβFμν
∂σαβFνρFρσZμ þ

18
	
Fμν

∂

↔

β∂
ασFμρ



∂
ρβFνσZα

þ
19 ∂

βFμν
∂ρβFμσ∂ν

σF̃ραZα −

D6H2BμνBμνB̃μν

20 ∂ρ
βFμν∂σβ

νF̃μαFρσZα −
21 ∂ραβFμν∂

αβFνρF̃μσZσ −
22

�
Fμν

∂

↔

β∂ρFμα

�
∂
αβ

νF̃σρZσ
−

23 ∂
βτFμν

∂μαβτFρσ
∂νFρσZα þ

14

D8H2BμνBμνBμν

5×10−6

E11
TeV

; 2×10
−5

E12
TeV

24 ∂ραβτFμν
∂σ

βτFμνFρσZα þ
25 ∂

βτFμν
∂ρβτFμσ∂ν

σF̃ραZα −
D8H2BμνBμνB̃μν

26 ∂ρ
βτFμν∂σβτ

νF̃μαFρσZα −
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However, these would have substantial QCD backgrounds,
so our optimistic analysis would be entirely too unrealistic.
We now turn to Z decays into three gauge bosons.

The Z → 3γ decay is allowed in the SM, but is a higher-
order process that is only possible through at least a
single W boson or fermion loop [30–37], leading to a pre-
dicted branching ratio of ∼5 × 10−10 [37,38]. Most recen-
tly, an ATLAS search found the bound BRðZ → 3γÞ <
2.2 × 10−6 [39]. In this analysis, the background consists
of a irreducible part with three or more prompt photons and a
reducible component of a combination of photons and
electrons or hadronic jets misidentified as photons. With
the HL-LHC luminosity of ∼3000 fb−1 [40,41], this bound
should naively improve to about BRðZ → 3γÞ ≲ 3 × 10−7.

This is much larger than the SM prediction, so we need the
BSM amplitude to dominate, which we estimate requires
unitarity violation at 500 (330) GeV for dimension-eight
(ten) operators. Such low unitarity violating scales would
require new physics to hide itself from LHC searches and so
disfavors the possibility of observing this at the HL-LHC
without substantial improvements in reducing reducible
backgrounds. In fact, if we impose our unitarity bounds to
be violated at a TeV, this predicts BRðZ → 3γÞ ≲ 2 × 10−9

for dimension-eight amplitudes, which is extremely chal-
lenging to observe at a hadron collider. However, one could
hope that a future lepton collider producing 1012 Z’s might
have more controllable backgrounds that could reach these
small branching ratios.

TABLE XV. Antisymmetric (in exchange of gluon kinematics) primary operators up to dimension 16 for the Zggg
interaction. Note that SU(3) indices are suppressed, where the GA

μν’s are contracted with the fully antisymmetric
structure constant tensor fABC.

i OZggg;A
i CP dOi

SMEFT operator form c Unitarity bound

1 GμνDσGνρGρσZμ þ
8

D2H2GμνGμνGμν

0.02
E5
TeV

; 0.07
E6
TeV2 GμνDνGμρG̃

ρσZσ − D2H2GμνGμνG̃μν

3 DαGμνDσαGμρGν
ρZσ þ

10

D4H2GμνGμνGμν

0.001
E7
TeV

; 0.004E8
TeV

4 DαGμνDναGρσGμ
ρZσ þ

5 DαGμνDσαGνρGρσZμ þ
6 GμνDσ

αGμρDρGνσZα þ
7 DαGμνDναGμρG̃

ρσZσ −
D4H2GμνGμνG̃μν8 DαGμνDαGνρDρG̃

μσZσ −
9 GμνDαGμρDν

ρG̃σαZσ −
10 εμνρσDτGμαDντGαβGρβZσ − εD4H2GμνGμνGμν

11 DαβGμνDναβGρσGμ
ρZσ þ

12

D6H2GμνGμνGμν

8×10−5

E9
TeV

; 3×10
−4

E10
TeV

12 DβGμνDσ
αβGμρDρGνσZα þ

13
	
GμνD

↔β
DμαGρσ



DνβGρσZα þ

14
	
DραGμνD

↔β
DσGμν



DβGρσZα þ

15 DαβGμνDναβGμρG̃
ρσZσ −

D6H2GμνGμνG̃μν

16 DβGμνDαβGμρDν
ρG̃σαZσ −

17 ðGμνD
↔β

DρGμαÞDνβ

α
G̃ρσZσ

−

18
	
DρGμνD

↔β
DναG̃μσ



DβGραZσ −

19 DβτGμνDσ
αβτGμρDρGνσZα þ

14

D8H2GμνGμνGμν

5×10−6

E11
TeV

; 2×10
−5

E12
TeV

20
	
DτGμνD

↔β
DματGρσ



DνβGρσZα þ

21 DβτGμνDαβτGμρDν
ρG̃σαZσ −

D8H2GμνGμνG̃μν22
	
DτGμνD

↔β
DρτGμα



Dνβ

α
G̃ρσZσ

−

23
	
DτπGμνD

↔β
DματπGρσ



DνβGρσZα þ

16
D10H2GμνGμνGμν

3×10−7

E13
TeV

; 9×10
−7

E14
TeV24

	
DτπGμνD

↔β
DρτπGμα



Dνβ

α
G̃ρσZσ

− D10H2GμνGμνG̃μν
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TABLE XVI. Operators up to dimension 12 for the γγγγ interaction. At dimension 14, there are two redundancies
such that, in order to have a set of independent operators, xnymOγγγγ

6 and xnymOγγγγ
7 , with x ¼ s2 þ t2 þ u2, y ¼ stu,

n ≥ 1, and m ≥ 0, should be omitted.

i Oγγγγ
i CP dOi

SMEFT operator form c Unitarity bound

1 FμνFμρFνσFσρ þ
8

BμνBμνBμνBμν

0.1
E4
TeV

2 FμνFρσFμνFρσ þ
3 FνσFσρF̃μνFρμ − BμνBμνBμνB̃μν

4 ∂βFμν
∂αFνρFρ

μFαβ þ

10

D2BμνBμνBμνBμν

0.006
E6
TeV

5 ∂αFμν
∂σFνρFρσFα

μ þ
6 Fμν

∂ασFνρFρσFα
μ þ

7 ∂
νFσμ

∂αFμνF̃ρσFαρ −
εD2BμνBμνBμνBμν

8 εμνρσ∂τFραFαβ
∂σFβμFτν −

9 ∂α
βFμν

∂σβFνρFρσFα
μ þ 12 D4BμνBμνBμνBμν 4×10−4

E8
TeV

TABLE XVII. Operators up to dimension ten for the γγgg interaction. At dimension 12, there are two
redundancies that should be omitted, along with their descendants, if we want to have a list of independent
operators. The corresponding redundancies are given by snðt − uÞ2mOγγgg

4 and smþ1ðt − uÞ2nOγγgg
6 , with n ≥ 0 and

m ≥ 1.

i Oγγgg
i CP dOi

SMEFT operator form c Unitarity bound

1 FμνFμνGρσGρσ þ

8

BμνBμνGμνGμν

0.1
E4
TeV

2 FμνFρσGμνGρσ þ
3 FμνFνρGρσGσμ þ
4 FμνFρσGνρGσμ þ
5 F̃μνFμνGρσGρσ − BμνB̃μνGμνGμν

6 F̃μνFρσGμνGρσ −
7 FμνFμνG̃

ρσGρσ − BμνBμνGμνG̃μν

8 ∂
αFμν

∂
σFνρGρ

μGσα þ

10

D2BμνBμνGμνGμν

0.006
E6
TeV

9 Fμν
∂
α
σFνρGρσGαμ þ

10 Fμν
∂
αFρσDρGμνGασ þ

11 εμνρσFρα∂
τ
σFαβGβμGτν −

εD2BμνBμνGμνGμν
12 εμνρσ∂τFραFαβDσGβμGτν −

TABLE XVIII. Primary dimension-eight and -ten operators for the γggg interaction. GA
μν’s are contracted with the

fully symmetric structure constant tensor dABC and the fully antisymmetric structure constant tensor fABC.

i Oγggg
i CP dOi

SU(3) SMEFT operator form c Unitarity bound

1 GμνGμρGνσFρσ þ

8 dABC

GμνGμνGμνBμν

0.1
E4
TeV

2 GμνGμνGρσFρσ þ
3 GμνGνρG̃μσFρσ − GμνGμνG̃μνBμν

4 GμνGνρGρσF̃σμ − GμνGμνGμνB̃μν

(Table continued)

PRIMARY OBSERVABLES FOR GAUGE BOSON … PHYS. REV. D 109, 075046 (2024)

075046-23



TABLE XVIII. (Continued)

i Oγggg
i CP dOi

SU(3) SMEFT operator form c Unitarity bound

5 DαGμνDσGνρGρ
μFσα þ

10

dABC
D2GμνGμνGμνBμν

0.006
E6
TeV

6 DαGμνDσGνρGρσFαμ þ
7 GμνDσ

αGνρGρσFαμ þ
8 DαGμνDσGμρGνσFαρ þ
9 DαGμνDνGρσGμρFα

σ þ fABC
10 DαGμνGρσDνGρμFασ þ
11 DραGμνGνρG̃μ

σFσα − dABC
D2GμνGμνG̃μνBμν12 DρGμνDαGνρG̃μσFσα −

13 DρGμνDαGνρG̃σμFασ − fABC
14 GμνDαGνρDρG̃σμFασ −
15 εμνρσDτGραGαβDσGβμFτν −

dABC εD4GμνGμνGμνBμν
16 εμνρσGραDτGαβDσGμβFτν −

TABLE XIX. Primary dimension-12, -14, and -16 operators for the γggg interaction. There are two redundancies
that appear at dimension 14. We can form a set of independent operators by removing the operators and descendants,
xnymOγggg

8 , xnymOγggg
16 , with x ¼ s2 þ t2 þ u2, y ¼ stu, n ≥ 1, and m ≥ 0, which are redundant.

i Oγggg
i CP dOi

SU(3) SMEFT operator form c Unitarity bound

17 DαβGμνDσβGνρGρσFαμ þ

12

dABC
D4GμνGμνGμνBμν

4×10−4

E8
TeV

18 DβGμνDσ
αβGνρGρσFαμ þ

19 DβGμνDν
αβGρσGρμFασ þ fABC

20 DρβGμνDαβGμνGρσFσα þ
21 DραβGμνDβGνρG̃μ

σFσα − dABC D4GμνGμνG̃μνBμν22 DρβGμνDαβGνρG̃μσFσα −
23 DρβGμνDαβGνρG̃σμFασ −

fABC24 εμνρσDπGραDτ
σπGαβGβμFτν − εD4GμνGμνGμνBμν

25 DβτGμνDσ
αβτGνρGρσFαμ þ

14

dABC
D6GμνGμνGμνBμν

2×10−5

E10
TeV

26 DαβτGμνDν
βτGρσGμρFα

σ þ fABC
27 DβτGμνDν

αβτGρσGρμFασ þ
28 DραβτGμνDβτGνρG̃μ

σFσα − dABC D6GμνGμνG̃μνBμν

29 DρβτGμνDαβτGνρG̃σμFασ −
fABC30 εμνρσDπηGραDτ

σπηGαβGβμFτν − εD6GμνGμνGμνBμν

31
	
Dτπ

αGμνD
↔β

DτπσGνρ



DβGρ

μFσα þ

16 fABC

D8GμνGμνGμνBμν

10−6

E12
TeV

32
	
DτπGμνD

↔β
Dα

στπGνρ



DβGρσFαμ

þ
33

	
DρατπGμνD

↔β
DτπGνρ



DβG̃μ

σFσα
− D8GμνGμνG̃μνBμν

34 εμνρσðDτπηGραD
↔ξ

DπηGαβÞDσξGβμFτν
− εD8GμνGμνGμνBμν
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TABLE XX. Primary dimension-eight and -ten operators for the gggg interaction. GA
μν’s are contacted with trace

factors, where TrðT2ÞTrðT2Þ represents TrðTATBÞTrðTCTDÞ, and TrðT4Þ represents TrðTATBTCTDÞ.
i Ogggg

i CP dOi
SU(3) trace SMEFT operator form c Unitarity bound

1 GAμνGB
μνGCρσGD

ρσ þ

8

TrðT2ÞTrðT2Þ
GμνGμνGμνGμν

0.1
E4
TeV

2 GAμνGBρσGC
μνGD

ρσ þ
3 GAμνGB

νρGCρσGD
σμ þ

4 GAμνGBρσGC
νρGD

σμ þ
5 GAμνGBρσGC

μνGD
ρσ þ TrðT4Þ

6 GAμνGB
νρGC

σμGDρσ þ
7 GAμνG̃B

μνGCρσGD
ρσ − TrðT2ÞTrðT2Þ

GμνGμνGμνG̃μν8 GAμνGBρσG̃C
μνGD

ρσ −
TrðT4Þ9 G̃AμνGB

νρGCρσGD
σμ −

10 DαGAμνDαGB
μνGCρσGD

ρσ þ

10

TrðT2ÞTrðT2Þ

D2GμνGμνGμνGμν

0.006
E6
TeV

11 DαGAμνDαGBρσGC
μνGD

ρσ þ
12 DαGAμνDαGB

νρGCρσGD
σμ þ

13 DαGAμνDαGBρσGC
νρGD

σμ þ
14

	
GAμνD

↔α
GBρσ



DαGC

μνGD
ρσ

þ

15 DαGAμνGBρσDαGC
μνGD

ρσ þ

TrðT4Þ
16 DαGAμνGB

νρDαGC
σμGDρσ þ

17
	
GAμνD

↔α
GCρσ



DαGB

μνGD
ρσ

þ

18 DαGAμνDσGB
νρGCρ

μGDσα þ
19 DαGAμνDαG̃

B
μνGCρσGD

ρσ − TrðT2ÞTrðT2Þ
D2GμνGμνGμνG̃μν

20 DαGAμνGBρσDαG̃
C
μνGD

ρσ − TrðT4Þ
21 DαG̃AμνGB

νρDαGCρσGD
σμ −

22 εμνρσDτGA
ραGBαβDσGC

βμGD
τν − TrðT2ÞTrðT2Þ

εD2GμνGμνGμνGμν

23 εμνρσDτGA
ραGBαβDσGC

βμGD
τν − TrðT4Þ
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TABLE XXI. Primary dimension-12, -14, and -16 operators for the gggg interaction. There are two redundancies that appear at
dimension 14 and four at dimension 16. To form a set of independent operators, the operators and descendants xnymOgggg

4 , xnymOgggg
9 ,

xnymOgggg
12 , xnymOgggg

14 , xnymOgggg
19 , xnymOgggg

20 , with x ¼ s2 þ t2 þ u2, y ¼ stu, n ≥ 0, and m ≥ 1, should be omitted.

i Ogggg
i CP dOi

SU(3) trace SMEFT operator form c Unitarity bound

24
	
GAμνD

↔αβ
GB

μν



DαβGCρσGD

ρσ
þ

12

TrðT2ÞTrðT2Þ

D4GμνGμνGμνGμν

4×10−4

E8
TeV

25
	
GAμνD

↔αβ
GBρσ



DαβGC

μνGD
ρσ

þ
26 ðGAμνD

↔αβ
GB

νρÞDαβGCρσGD
σμ

þ
27

	
DβGAμνD

↔α
DβGBρσ



DαGC

μνGD
ρσ

þ
28

	
GAμνD

↔αβ
GC

μν



DαβGBρσGD

ρσ
þ

TrðT4Þ

29
	
GAμνD

↔αβ
GC

σμ



DαβGB

νρGDρσ þ
30

	
DβGAμνD

↔α
DβGCρσ



DαGB

μνGD
ρσ

þ
31 DαβGAμνDσGB

νρDβGCρ
μGDσα þ

32
	
DαGAμνD

↔β
GCρ

μ



DσβGB

νρGDσα þ
33 DαβGAμνDσ

βGB
νρGCρ

μGDσα þ
34

	
GAμνD

↔αβ
G̃B

μν



DαβGCρσGD

ρσ
− TrðT2ÞTrðT2Þ

D4GμνGμνGμνG̃μν35
	
GAμνD

↔αβ
G̃C

μν



DαβGBρσGD

ρσ
−

TrðT4Þ
36

	
Dρ

αGAμνD
↔β

G̃C
μσ



DβGB

νρGDσα −

37 εμνρσDτπGA
ραDπGBαβDσGC

βμGD
τν − TrðT2ÞTrðT2Þ

εD4GμνGμνGμνGμν38 εμνρσDτπGA
ραGBαβDσπGC

βμGD
τν −

TrðT4Þ39 εμνρσ
	
DτGA

ραD
↔π

DσGC
βμ



DπGBαβGD

τν
−

40
	
GAμνD

↔αβτ
GBρσ



DαβτGC

μνGD
ρσ

þ

14

TrðT2ÞTrðT2Þ

D6GμνGμνGμνGμν

2×10−5

E10
TeV

41
	
GAμνD

↔αβτ
GCρσ



DαβτGB

μνGD
ρσ

þ

TrðT4Þ
42

	
DαGAμνD

↔βτ
GCρ

μ



DσβτGB

νρGDσα þ
43

	
DατGAμνD

↔β
DτGCρ

μ



DσβGB

νρGDσα þ
44

	
DαGAμνD

↔βτ
DσGB

νρ



DβτGCρ

μGDσα þ
45

	
Dρ

ατGAμνD
↔β

DτG̃C
μσ



DβGB

νρGDσα − TrðT4Þ D6GμνGμνGμνG̃μν

46 εμνρσ
	
DτGA

ραD
↔πη

GBαβ


DσπηGC

βμGD
τν

− TrðT2ÞTrðT2Þ

εD4GμνGμνGμνGμν47 εμνρσ
	
DτGA

ραD
↔πη

DσGC
βμ



DπηGBαβGD

τν
−

TrðT4Þ48 εμνρσ
	
DτηGA

ραD
↔π

DσηGC
βμ



DπGBαβGD

τν
−

49
	
DαGAμνD

↔βτπ
GCρ

μ



DσβτπGB

νρGDσα þ
16 TrðT4Þ

D8GμνGμνGμνGμν

10−6

E12
TeV50

	
Dρ

αGAμνD
↔βτπ

G̃C
μσ



DβτπGB

νρGDσα − D8GμνGμνGμνG̃μν
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Next, we look at Z → γgg and Z → ggg decays. The
branching ratios are predicted to be ∼4.9 × 10−6 [34,42,43]
and ∼1.8 × 10−5 [34,35,42,43], respectively. Since our uni-
tarity bound estimates are the same for Z → ðγγγ; γgg; gggÞ,
even if we optimistically assume that there is only the
irreducible background from the Standard Model predic-
tion and that unitarity is violated at a TeV, we find that there
is at most a 2σ fluctuation for the HL-LHC run for the
dimension-eight interactions. Since these would be likely to
have substantial reducible backgrounds, this shows that
these are unlikely to be observable. Such a conclusion was
also reached in [34], which showed that measuring the
associated gg → Zg interaction at a hadron collider was
“rather remote” due to there being too much background,
particularly from qq̄ → Zg, qg → Zq, and q̄g → Zq̄ proc-
esses. They also concluded that attempts at measuring the
coupling from observations of the Z → ggg process at a
lepton collider would suffer too greatly from Z → qq̄g
background.

VII. CONCLUSIONS

This paper has determined the allowed on-shell ampli-
tudes for four-point interactions of gauge bosons in the
Standard Model. Following [6,7], this has completed
the analysis of all three- and four-point interactions for
the Standard Model content. For certain couplings, this

required studying Lagrangian operators up to mass dimen-
sion 16, which demonstrates the efficacy of the numerical
approach used in these papers.
The characterization of these amplitudes holds the

promise of allowing the most general model-independent
collider searches by studying the interactions of Standard
Model particles. They also serve as a useful intermediary
between experimental and theoretical analyses since, in
comparison to EFT operators, they are interpretable and do
not suffer from basis ambiguities. As an illustration of
phenomenological study, we investigated the potential for
discovering new physics in Z decays. In these estimates, we
showed that Z → γll is of interest at the HL-LHC, but
other modes like Z → γγγ would require unitarity violation
well below a TeV, which are likely in violation of direct
search constraints.
Moving forward, it will be useful to perform realistic

phenomenological studies at the HL-LHC and future
colliders. Another direction is to use the Mandelstam
descendants as a model for theoretical uncertainties.
Finally, the utilization of on-shell amplitudes in realistic
analyses will undoubtedly require solutions to practical
challenges along the way. We and our collaborators are
currently exploring such questions and hope that this work
has motivated others to do the same.

Note added. Recently, an updated reference [44] for the
Standard Model predictions for the Z branching ratios to
massless gauge bosons was brought to our attention. These
new results do not affect our conclusions.
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