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In this paper, we determine a basis for the on-shell four-point amplitudes VVVV for Standard Model

gauge bosons V = W*,Z, v, g. Following previous work, this completes the analysis of three- and four-
point amplitudes for the Standard Model and could be used for model-independent searches for beyond the
Standard Model physics at colliders. Our results include a Lagrangian parametrization for the “primary”
amplitudes, where including additional derivatives leads to the Mandelstam “descendant” amplitudes, and
upper bounds on the coupling constants from imposing unitarity. We also perform an estimate for the

sensitivity for new Z decays at the High-Luminosity LHC, finding that Z — yZ¢ could be searched for, but
that other decay modes, like Z — (yyy,ygg), are too small to be discovered after imposing unitarity

constraints.
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I. INTRODUCTION

Recently, there has been enormous progress in determin-
ing the general structure of on-shell amplitudes for the
Standard Model [1-7]. In addition to being of interest
theoretically, these results could enable broad model-
independent searches for beyond the Standard Model
(BSM) physics, without relying on the standard effective
field theory (EFT) parametrizations [i.e., Standard Model
EFT (SMEFT) [8,9] and Higgs EFT [10] ]. Indeed, ampli-
tudes may be a better way to connect experiment and
theory, given the direct connection to experimental analyses
and since amplitudes do not require the EFT assumptions of
power counting and do not suffer from ambiguous basis
issues of Lagrangian operators.

In Refs. [6,7], the full structure of on-shell three- and
four-point amplitudes involving the Higgs and top quark
were determined. This leaves four-point gauge boson
amplitudes as the remaining ones to be analyzed. In this
paper, we complete this study for both massive (W*, Z) and
massless (y, g) gauge boson interactions. At the High-
Luminosity LHC (HL-LHC) and future colliders (e.g.,
eTe™ colliders at the Z pole), we stand to increase our
sample of W/Z particles by orders of magnitude. Our study
of the amplitudes then allows us to consider if there are
interesting amplitudes for three-body decays like Z — yyy
beyond those considered in the past.
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This work confirms and extends existing work on
parametrizing these amplitudes, so we will now describe
the overlapping work. The three-point amplitudes that we
list in Egs. (1) and (2) were derived in [2]. Of the four-point
amplitudes we studied, the amplitudes for Zggg were
derived in [1] and the amplitudes for ffVh were derived
in [2]. Four-point primary operators up to dimension eight
have been derived in operator form in [4] and in spinor
structure form in [5].

The rest of this paper is organized as follows: Section II
describes what amplitudes we will explore and how to
determine independent amplitudes. Section III discusses
the Hilbert series results for our gauge boson operators. In
Sec. IV, we discuss some relevant phenomenological issues,
such as unitarity bounds on coupling strengths and also rough
estimates for Z decays at the HL-LHC. Section V is the main
body of results, where we list the operators for the primary
amplitudes. In Sec. VI, we estimate which Z decay ampli-
tudes are interesting for exploration at the HL-LHC. Finally,
in Sec. VII, we conclude.

I1. FINDING INDEPENDENT AMPLITUDES/
COUPLINGS FOR ELECTROWEAK
GAUGE BOSONS

To find the most general on-shell amplitudes for gauge
bosons, we impose invariance under SU(3),. x U(1),,, and
Lorentz symmetry. For three- and four-point interactions,
this gives the following list:

3pt: ffV,hhV, hVV,VVV

apt: hhhV, FfhV, FFVV.hhVV . hVVV,VVVV, (1)
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where f is a fermion, % is a Higgs boson, and V is any
gauge boson. To fully characterize these four-point inter-
actions, we also need additional three-point interactions for
exchange diagrams, which add

3pt additional: hhh, ffh. (2)

Of these couplings, the three- and four-point couplings,
except for VVVV, have been determined (e.g., [7,11]), so in
this paper this leaves the following four-point couplings to
analyze:

VVVV: WWWW, WWZZ,ZZZZ, WWZy, ZZZy,
WWyy, WWqqg, ZZyy, 2299, Zy 99, Zyyy,
Z999.7YYY- Y799, Y999, 9999 (3)

In [7,11], an approach for determining a basis for
independent operators for three- and four-point on-shell
amplitudes was developed and explained in detail. Here,
we will briefly summarize the three-step process of
(1) enumerating an overcomplete basis of amplitudes,
(2) determining the independent primary amplitudes, and
(3) checking the result against a Hilbert series calculation.
For those interested in the details, please refer to the
discussion in [7,11].

For step 1, we use the fact that local on-shell four-point
gauge boson amplitudes are Lorentz invariants involving
gauge boson polarization and momenta contracted with the
metric or the Levi-Civita tensor. For processes with mass-
less gauge bosons, we use the associated field strength
tensors to maintain gauge invariance and satisfy the Ward
identity. We distinguish amplitudes that have no factors of
Mandelstam variables from those with such factors. We
refer to the former as primary amplitudes and the latter as
descendant amplitudes, following the terminology of
[7,11]. Note that our construction of amplitudes parallels
that of [2,3] and that our primary amplitudes are equivalent
to what were called stripped contact terms in [3]. By allowing
for arbitrary Mandelstam factors in the descendants [12],
we parametrize the most general on-shell four-point ampli-
tudes. However, for on-shell three-point amplitudes, all
Mandelstam invariants can be written in terms of the particle
masses, so there are only primary amplitudes. A process with
amplitude M can then be written as a linear sum M =
> CuM,, of these parametrized amplitudes M. Each M,
will have an associated Lagrangian operator O, with mass
dimension dy and a dimensionless coupling c,. The asso-
ciated Lagrangian terms can then be written as

Ca
‘Camp = Z W O, (4)

The factors of Higgs vacuum expectation value (VEV) in the
denominator are chosen such that the coupling remains
dimensionless at any given mass dimension.

For the four-point amplitudes we consider here, there are
commonly two or more identical bosons. In such cases, the
amplitudes need to be symmetric under crossing exchange
of the identical bosons. Assume we have the process
pi(er) + pa(€a) = ps(€3) + pa(es), where the incoming
particles are identical (note that, for the moment, we are not
assuming any gauge charges for them), with the amplitude
M(12;34), where i = 1...4 is shorthand for p;, ¢;. We can
then form symmetric and antisymmetric combinations
under 1,2 exchange,

Mo (12;34) = - [M(12;34) £ M(21;34)],  (5)

N[ =

and we can use these to construct general amplitudes with
Mandelstam invariants. Since under 1 <> 2, s is invariant
and ¢ <> u, the most general 1 <> 2 symmetric amplitude is

Mip(12;34) = M5(21;34) = F (s, (1 — u)*) M, (12;34)
+ (t—u)G(s, (t—u)*)M_(12;34),  (6)

where the polynomial functions F and G are 1 < 2
exchange symmetric.

For the case of three identical bosons, the amplitudes
should first be symmetrized for the first two bosons and
then that result should be symmetrized with respect to
exchanges with the third particle. The result of this yields

Mip3(12;34) = H(s, (1 — u)*) M5(12;34)
+ H(t, (s — u)?) M5(13;24)
+H(u, (1= 5)*)M2(32;14),  (7)

where exchange of incoming and outgoing particles has a
minus sign and complex conjugation, e.g., 1 <> 3 takes
py — —p3.€; = €; and p3; = —p;,e; — €. The argu-
ments of H have been chosen such that, under i <> j
exchange, with i, j = 1, 2, 3, the sum of the three terms is
invariant, i.e., M,3(12;34) is invariant under the permuta-
tions of 1, 2, 3 in the argument of the function. This follows
since under 1 <> 3 exchange, s <> u and under 2 <> 3
exchange, s <> . Finally, for the case of four identical bosons,
the previous result needs to be symmetrized with respect
to the fourth particle. This requires replacing M ,(12;34)
with M 34(12;34) = $[M5(12;34) + M,(12;43)].

For step 2, we take this overcomplete basis of amplitudes
and find the independent ones. To do this, we will work
in increasing mass dimension for O,. In the center-of-
mass frame for the 1 + 2 — 3 + 4, the weighted amplitude
E! .M is a polynomial of the kinematic variables E_ , ,
cos ac.mn sin ec‘m.’ Ipinitial|’ Ipﬁnal|'[13] To proceed’ we sim-
plify the amplitude by replacing even powers of sin6, , ,
Pinitial|» [Pfinal| With their solution in terms of cos 6, ,, and
E_ ., leading to the general amplitude
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EgmM =P+0 sin ec.m. + Rlpinitiall + Slpﬁnal|
+T sin ec.m. [pinitial| +U sin gc.m. Ipfinal|
+ leinitial| [pﬁnal| + Wsin gc.m. Ipinitial| Ipﬁnal

(8)

where P,Q,R,S,T,U,V,W are polynomials in cosé, , ,
E_ ... As argued in [11], for a redundancy to occur, i.e.,
M =0, one needs each of the P, ..., W polynomials to
independently vanish. Since the coefficients in the poly-
nomials depend on the couplings c¢,, one can use a
numerical singular value decomposition to find how many
redundancies there are and, by process of elimination, find
an independent set of couplings c, with corresponding
amplitudes M.

The third step provides a complementary constraint
on the number of independent amplitudes. To do so, we
determine the number of independent Lagrangian operators
|

2g* +16¢° +22¢% +7¢'° - 2¢"?

H = C Hywy, =
WWWWwW (1 _ qz)(l _ q4) Wwzz
H :q4+4q6+8q8—|—11q10—|—5q12—2q14 i _
4g° +14¢® +22¢"° + 129" + (4 - 2)g"*
Hzz7, =

(1-¢*)(1-¢% ’
3q6+13q8+7q10_2q12

(I-¢*)(1-¢")
448 +10g"0 + 84" + (4—2)g"

Hzzyy = Hzz49 = Zrgg =

HWWyy = HWng =

using the Hilbert series, which counts the number of
operators at each mass dimension [14-20]. Since there is
one-to-one correspondence between nonredundant opera-
tors O, and amplitudes M, (e.g., [1]), this counting can be
used to check the numerical analysis. More will be said
about the specifics of the Hilbert series in the next section.

ITI. HILBERT SERIES

The Hilbert series is a tool that provides the number of
gauge invariant independent operators in a given EFT
[14,16-21]. The Hilbert series counts the number of
independent operators while taking into account symmetry
constraints, equations of motion, and redundancies due to
integration by parts. In Eq. (9), we list the Hilbert series for
four-point interactions involving only electroweak gauge
bosons (the Hilbert series for the other three- and four-point
operators aforementioned can be found in [7,11]):

2g* +27¢% 4+ 404% + 144¢'0 — 2¢4"2
(1-¢*)(1-q" ’
_ 22¢°+344% + (2-4)q"°
(1-¢*) ’
3¢° +19¢% + 144" + (2 - 2)q"?
(1-¢*)(1-q") ’

12 + 129"+ (2-2)q"

(I-g)(1=g")

_ 6¢°+18¢4'0+ 169" + (8 —2)g"* 4 24"°

Hom =0 ga—g 0 T (=414 |
Hyyyy:3q8+5qu+q12_2ql4’ :7q8+5q10_2q12’

(1-¢")(1-4°) (=g (1-¢")
b 4¢° +12¢"° + 8¢ + (6 =2)¢'"* +44'° 9¢° +14¢"° +164" +(9-2)¢" + (2-4)¢"* ©)

7999 —

(1-¢")(1-¢% ’

The correct way to interpret these Hilbert series is to take
the exponent of each ¢ to be the mass dimension and the
corresponding coefficients to be the number of independent
operators minus the number of redundancies at that mass
dimension. When evaluating the Hilbert series, one cannot
tell if there is such a cancellation. Only by looking at the
independent amplitudes can we resolve this ambiguity; so
using those results we have written out terms with a
cancellation explicitly, e.g., (6 —2)¢'* in the H,,,, shows
that there are six new primaries and two redundancies
appearing at dimension 14. The appearance of these
negative terms in the coefficients means that descendants
of primary operators at a lower mass dimension become
redundant to operators at the corresponding mass dimen-
sion of the negative term and that the higher-dimensional

9999 —

(1—¢*)(1-¢°

|
operators and their descendants should be discarded from
the set of independent operators.

To illustrate this in a specific example, take the Hilbert
series for WWWW. The numerator looks like

2g* +164° +224¢% +7¢'° — 24" (10)

So in terms of primary operators, at dimension four there
are two operators, at dimension six there are 16 operators,
at dimension eight there are 22 operators, at dimension ten
there are seven operators, and at dimension 12 there are two
redundancies. Now, to see the descendant structure of each
operator, the denominator should be Taylor expanded. For
example, the negative term turns out to be
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2q12
H . S
T - ) (1-¢Y)

=2¢"(1+¢@+q¢" +--)1+q" +¢ +--).
(11)

This says that, if we consider the channel WtW+ —
W~=W~, then there are two redundant operators at dimen-
sion 12 that have descendant structures of the form
s"(t —u)*"O. The reason that they follow that specific
structure is because of the exchange symmetries that the
operators have to obey, namely, a symmetry under 1 < 2
and 3 < 4. We will later find out that the redundant
operators are descendants of two dimension-eight opera-
tors, allowing us to rewrite the negative term, along with the
positive dimension-eight term, as

i R 22¢° —2¢"  204° +24%(1 - ¢*)
T -1 -gY)  (1-g)(1-4")
2048 248

= +
(I-g*)(1-¢*) (1-4%

=201+ q*+q¢*+--)(1+q¢*" +4*+--)
+2¢*(1+q* +¢*+---). (12)

From this we see that the correct interpretation of the
independent operators is that two dimension-eight primary
operators have a descendant structure of s"O, while the
other 20 dimension-eight primaries have a descendant
structure of s”(¢ — u)?" (. This means that, for the former
two primary operators, we can throw out their descendants
of the form s"(t — u)*"O for n >0 and m > 1 and still
have an independent set of operators. Again, this Hilbert
series interpretation must be checked with the amplitudes to
confirm this explanation. As another example for what the
denominators mean, consider the denominator for the
Hilbert series for yyyy,

1

(T A

X(14+4¢°+q"%+---). (13)

The first set of parentheses says that there are powers of a
four-dimensional function of Mandelstam variables and the
second set of parentheses says that are powers of a six-
dimensional function of Mandelstam variables. Because the
yyyy interaction should have exchange symmetries between
all pairs of particles, the descendant structure should have
the form (s> + >+ u?)"(stu)™, in agreement with the
dimensional analysis.

As mentioned earlier, some of the coefficients in the
Hilbert series are written as a positive integer minus a
negative integer. For example, this occurs in the Hilbert
series for the ZZZy interaction at dimension 14 as shown

by the term (4 — 2)g'*. When evaluating the Hilbert series,
this coefficient would be 2, but in this case, by studying the
amplitudes, we find that there are four new primary
operators and two redundancies at mass dimension 14,
so we write the coefficient in this way to make this explicit.
This also means that, for a given interaction, at mass
dimensions higher than what we have explored, there could
be terms with coefficients of zero, not because there are no
primary operators present, but because there are the same
number of redundancies as primaries at that dimension. An
example of this happening occurs for the Zygg interaction
at mass dimension 12, which we have written the term as
(2 —2)q'. Therefore, it is not guaranteed that we have
enumerated all possible primary operators, since there can
be cancellations with the redundancies. However, because
those would appear at very high mass dimension, they are
phenomenologically unimportant and so do not warrant
much concern. This possibility is the reason why we
have analyzed operators up to at least the first mass
dimension that has a zero coefficient in the numerator
and up to dimension 16 for operators of Zggg, yggg, and
gggg interactions.

IV. PHENOMENOLOGY
A. Unitarity

As in [7,11], we use unitarity constraints to place upper
bounds on the couplings of the operators we have enu-
merated. We know that the Standard Model (SM) does not
violate tree-level unitarity at high energies (e.g., [22,23]);
therefore, a deviation from the SM will violate it at some
high energy scale E,,c. Our constraints will depend upon
this scale and we roughly expect E,,,, above a TeV to be
consistent with current LHC analyses, but values lower than a
TeV to possibly be in tension. To compute the bounds, we
follow the same techniques developed by [24-26] (see
also [27]).

For each operator, we create a schematic SMEFT
realization of it in order to compute our unitarity
bounds. To illustrate this, we turn to the WWWW inter-
action where there is a dimension-six primary operator
iWWijDMW‘”W"’ + H.c. To realize this operator in
SMEFT, one needs at least four Higgs doublets. The
nonfield strength W’s come from covariant derivatives
acting on the doublets, leading to four covariant derivatives,
which by integration by parts can act on just three of the
doublets. The dual field strength tensor W,‘j,, needs to be
contracted with the SU(2) generators 7¢. This leads to a
SMEFT operator, which we simplify into a schematic form,

iH'T*D*HW{,DYH'D’H — D*H*W4,.  (14)

Primary operators that have either zero or one field
strength tensor have a SMEFT operator with at least four
Higgs doublets by the following argument where we try to
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use only two Higgs doublets. If there are no field strength
tensors, the SMEFT operator has the schematic form
D"(HTH) and, by integration by parts, can always be
reduced to factors of D*D, acting on one of the Higgs
doublets. Using the equations of motion, each D*D,, can be
removed and replaced with expressions that involve no
gauge bosons. By iterating, we see that this does not realize
the four gauge boson amplitude we wanted, thus we need
operators with four Higgs doublets, like D"(HTHH'H).
Since there are four Higgs doublets, it is not possible to
write all Lorentz invariants in terms of D*D,’s, so the
above argument cannot be applied. A similar argument
works for operators with one field strength, D" (H'W,, H),
since derivative pairs on the three fields can also be moved
on to individual fields. From Lorentz invariance, these are
either of the form (1) W*(D,D,H) « W*'W,,H, and thus
actually have two field strengths, or (2) (D*D,H) or
(D"D,W 4), which can be reduced by equations of motion
to expressions with fewer covariant derivatives or more
than one field strength, respectively. For operators with two
or three field strength tensors, these arguments no longer
work and we only need two Higgs doublets instead of
four for the SMEFT operator. Finally, if we have four field
strength tensors, then we do not need any Higgs doublets
for the SMEFT operator.

To calculate the coupling constraints, we need to
estimate two quantities: the scattering amplitude and
phase space factor for the highest and lowest particle
multiplicity of an interaction process. By using these
two quantities, we can put upper bounds on the coupling
strengths of operators. Note that because we are calculating
approximate bounds we only care about factors of » and
neglect O(1) factors like /2, g, ¢, sin @y, and cos 6y,. At
high energy our amplitudes will then be of the form

m

My = bss =) ~ oo (15)
v

where E is the total energy, v is the Higgs VEV, £ is the total
number of incoming particles, and n is the total number of
particles. The allowed values of n are determined by the
SMEFT operator and can be varied by setting Higgs doublets
to their VEV. To obtain m, we count the energy scaling of the
various quantities in the schematic SMEFT operator. The
scaling behavior of various quantities are

D~E,  B,~E  Wi4,~E  Gh~E (16
The value of m is just the total energy scaling of the operator
and the power of v is given by dimensional analysis. Next, the
unitarity bound on the amplitude depends on the phase space

factor of the initial and final states,

1
M(py - = Pryr - bu) < . (50, () (17)

where @, (E) is the total phase space for k particles with
center-of-mass energy E. We follow [11] and work in the
massless limit where, approximately,

O, (E) ~ % (%) “ (18)

Since unitarity is violated at some energy E,,,, we get that
the unitarity bound on the couplings is

¢, < 2(4n)"3 <L> S (19)

E max

Now, recall that the interaction of the operator
iWH W, ,D,WW= + H.c. has a schematic SMEFT form
of D*H*W¢,. We now evaluate the amplitudes at high energy
by using the equivalence theorem, using the Nambu-
Goldstone bosons in H for longitudinal W’s and Z’s. We
find that the best bounds come from using the derivative part
of the covariant derivatives and not the transverse gauge
bosons. Thus, for the schematic operator D*H* Wl‘jy, we can
have the five-point process ¢p¢p — Pp¢pW or the four-point
process ¢¢p — W, where ¢ is a Nambu-Goldstone
boson. Under our approximation, these have amplitudes
Mg — pdWr) ~c, 55 and M(pd — ¢Wr) ~ ¢, .
For the first case n =5, m = 5, and for the second case
n =4, m = 5. Respectively, these lead to the bounds ¢, <
z @SBy

where Et.y = E./TeV. Thus, the
TeV

higher multiplicity amplitude is more stringent for higher
Etev and the lower multiplicity is more stringent for lower
Etey, where they cross at E., =4zv for the bound
¢, < 2(4m)'=™. In this way, we proceed to calculate unitarity
bounds on coupling strengths for all enumerated operators.

007 and ¢ <002

B. Electroweak gauge boson decays

In this subsection, we give estimates for modifications to
electroweak gauge boson decays. Two-body decays of the
Z are quite well covered, as Z — (yy, gg) are forbidden by
the Landau-Yang theorem and Z — ff were studied at
LEP1 for vector and axial couplings [28]. This leaves only
the dipole couplings to fermions, which interfere with the
Standard Model with a rate proportional to the fermion
mass [29]. We will now discuss the on-shell three-body
decay modes of Z bosons that are allowed by the SM,
which are

Z - (yrr.v99.999. ffr. ff9)- (20)

These decay modes occur in the Standard Model at higher
order, so there can be interference with the new amplitudes.

We ignore the masses of the fermions, so that the mass
of the Z is the only relevant energy scale. Then we can
approximate the new decay amplitudes as
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CO  do—4
MO(Z - 3) = pdo—4 mZO >

(21)

where v is the Higgs VEV, ¢ are couplings, and m is the
mass of the Z boson. If the SM amplitude is larger than the
BSM one, then interference between the SM and BSM
amplitudes forms the most significant contribution to the
total decay amplitude. Making the same approximations as
in [7], we estimate that the branching ratios including
interference are

m
BR(Z — 3)gey ~ m IM(Z = 3)em

+ M(Z = 3)gsml®

, (22)

where we have approximated both the SM and BSM
amplitudes as constants.

V. INDEPENDENT AMPLITUDES FOR
ELECTROWEAK GAUGE BOSONS

In this section, we discuss the independent primary
operators for VVVV interaction amplitudes. We will also
check the number of operators and redundancies with the
Hilbert series for each interaction. In the second column of
Tables I-XXI, we list the operators for the primary
amplitudes. In addition, we give the amplitude’s CP
transformation, the dimension of the operator, the sche-
matic form of a SMEFT operator realization, and the

TABLE L

unitarity bounds on the coupling strength. An example
of how these unitarity bounds are calculated can be found
in Sec. IVA. Primary operators and their descendants are
SU(3), x U(1),,, invariant so the covariant derivatives
only involve the gluon and photon, whereas the covariant
derivatives for the SMEFT operators are SU(3), x
SU(2), xU(1), invariant. Finally, for operators that
have nontrivial SU(3) contractions, we will add a column
to specify this. In the following, we discuss each inter-
action’s table(s) in detail and describe how the amplitudes
and their redundancies agree with the Hilbert series
in Eq. (9).

Tables I and II list the primary operators for
WHW*W~W~ interactions up to dimension ten. To analyze
the amplitude, we assume the process Wi W3 — Wi W;.
In terms of primary operators, the Hilbert series predicts
that there should be 2 dimension-four operators, 16
dimension-six operators, 22 dimension-eight operators, 7
dimension-ten operators, and 2 redundancies appearing
at dimension 12. From our amplitude enumeration pro-
cedure, we find agreement with the Hilbert series and
find that the dimension-12 descendant operators s>OY."WW
and s*O3""V are redundant, with s = (py+ + pw;)>.
Because descendants of redundant operators continue
to be redundant, the operators s"(z — u)*"O¥""W and
s"(t — u)*m OYYYW for n > 2, m > 0 should be removed
in order to form a set of independent operators. Remember

that, since 1= (py:+ — py:)* and u = (py: — pw;),

Primary dimension-four and -six operators for W W*W~W~ interactions.

i oywww CcP do, SMEFT operator form ¢ Unitarity bound
1 WHW W Wy +
" v 4 74 0.09
2 WHW W, Wy + 4 b Efy
3 DPWHHW Y (W;BPW;) + H.c. +
4 D,W*D,WHW>W; + H.c. -
5 WHWHW="D,W, +H.c. + DSH*
6 D,W*D,W*W™W; + H.c. +
7 WHWHD, W; W + H.c. -
8 D,WHW*D,WPW; + oo
9 ig"° D, W W, D,W; W5 + H.c. + 6 eDCH* B,
10 iD,WHD, W WW; + H.c. -
1 iWHW WD, W, + H.c. - D°H*
12 iD,WHD, W W=W; + H.c. -
13 gwrep wiw: (W;DaW;) +He. - DSH
14 gD, W W, D, W; W5 + H.c. -
15 iWHW,D,W*W= + H.. +
16 iDMW W Wy, W 4 He. + 6 R 002 007
17 WHW,,D,W*W~ + H.c. - w Ery’ Bty
18 DWW, W, , W~ + H.c. -
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TABLE II. Primary dimension-eight and -ten operators for the WTW*TW~W~ interaction. There are two
redundancies that appear at dimension 12 such that, in order to form a set of independent operators,
s"(t—u)?m OYYWW and 5" (1 — u)>" O¥WYW  with n > 2, m > 0, should be omitted.

i orwww CP dp, ~ SMEFT operator form ¢ Unitarity bound
Y p,wep,we(D,weD W, ) + He. *
20 D, WD, W (WD Wy ) + He. +
21 D, Wi Wi (D”W‘PB”W‘”> +He + DY
2 D, WH D, WHW-W= + H.c. +
23 D,,W*D,,WHW-W- + H.c. +
24 D, WD, W*D,W>W= + H.c. +
25 D,,WHW+ D, WPW= + H.c. +
26 gwwop WHD,W; (iW;f)aW;> +He T -
2T gwep, WHD,WY (iW;BaW;) +He T g 310
0 e
28 Dy WHDWH (iWD'W;) + Hee. -
o D3H*

29 D,,WWD”W“(iDyw-ﬂD W,;) +He.
30 iD,,, WD, WHW=W + H.c. -
31 o _wa

&7 D, WD WS (W, D'W; ) + He,
2 gwep, WHD,Wi (W;B“W;) +He.
33 <a eD8H*

6‘/41410DWW+/3WD+ (D/)W;D W;) + H.c.
34 er°D, WD, W DsW; W, + H.c. -
35 DWW, D, WPW, -
36 D, WD, Wy, (W"’BGW_”) +He. + DeH'Wy,
37 DW D, W, (WD W) + He. +

i 8 oL G

38 DY WD, W Wy W7 4 He. + DOH, Er " Ehy
39 iDPWHWD,, W W + Hee, +
40 DPWHW*D,, W, W= + H.c. -
41 e, +

DWWWDWWﬂ(W 'DW ) Y Hc. o
2D, WD, W (wa-ﬂﬁaw—ﬂ) +He T
3 SN +

7D,y WD, W (szD W(,) tHc. i

MDD, W (iD, WD Wy ) +He 10 24
45 Dypa W+”D,MW+” (l'W_pDaW_U) + Hc. D10H4
¥ D, WHD,W (iD,W+D" W) + He.
47 8ﬂypaD”ﬂrw+aDyaw+ﬂ (W;BTW;) L He. — eDO 4
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TABLE III.  Primary dimension-four and -six operators for the ZZW* W~ interaction.
i OFZWW CcpP do, SMEFT operator form ¢ Unitarity bound
1 "z, WrwWy +
u v 4y4 0.09
2 ZrZPWEW + 4 b Etey
3 a”Z"Z"(W*D W; + Hec. ) +
4 0,2"0,Z" wte W, +
5 Z”ZV(W_H)D”DW + H.c. ) +
6 0,2/9,2*(W*W; + H.e.) +
DOH*
7 240,,2" (W+ﬂw— +He. ) +
8 WZ”Z”(W*D W5 + Hee. ) +
9 2007/ (Wi D,W; + H.e.) +
10 3,212, (W W) T
1 9,219, Z,(WW= + H..) +
12 i0°0, 70,7, W W; + 6 0.006
TeV
13 gﬂl//maazﬂzy (iW;DaW; + HC) + €D6H4
14 oy 707, (iW;DGW; n H.c.) +
15 v _ —
29,7/ (WD, W; + He.)
16 . _ _
#7:0,7 (Wi W; + Hee.) .
17 #2:7(iW;D,W; +He.) -
18 . _ _
2207/ (iWiD,W; +He.)
19 70,72, 7, (W;BaW; + H.c.) -
20 eDOH*
00,2, (W;DQW; + H.c.) -
21 iZ70, 2" W Wy +
22 Zh 7 (inD,W— Y He ) + D*HAWe,
23 ZﬂZ"(zWﬂ’D W, + He. ) +
24 749 Z””(1W+W +He. ) - D*H*Wy,
25 FI"Z, (W; W, + H.c. ) - 6 002 0.07
Bl Frey
26 77w (W*D W5 + Hee. ) -
27 0,27 (WiW; +He.) - DAHWe,
28 29,2, (W; W™ + H.e.) -
29 0,27, (Wi W + He.) -
s and (t — u)? are the Mandelstam invariants that respect  that for these there should be 2 dimension-four operators,

the interchanges W{ < W3 and W5 < W;.

In Tables III-V we list the primary operators for the
ZZW*T W~ interactions up to dimension ten after consid-
ering the process ZZ — W*W~. The Hilbert series states

27 dimension-six operators, 40 dimension-eight opera-
tors, 14 dimension-ten operators, and 2 redundancies that
appear at dimension 12. Our findings are in agreement
with the Hilbert series. The redundancies and their
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descendants are given by the operators s"(1r—u)>"O5"W

and s" (1 — u)*" Q"W for n > 2 and m > 0. To form a set
independent operators, they should all be omitted.

We list the primary operators for ZZZZ interactions up to
dimension 12 in Table VI. We achieve full agreement with
the Hilbert series, from which we expect that there should
be 1 dimension-four operator, 4 dimension-six operators, 8
dimension-eight operators, 11 dimension-ten operators, 5

dimension-12 operators, and 2 redundancies appearing at
dimension 14. Operators x"y"O5%Z and x"y™O54%% for
n>1, m >0 are redundant, where x = s% + 2 + u? and
y = stu, and should not be included in a set of independent
operators.

In Tables VII and VIII, by using the process
WTW~ — Zy, we enumerate the primary operators for
the WHW~Zy interaction up to dimension ten. We agree

TABLE IV. Primary dimension-eight operators for the ZZW* W~ interaction.

i Q7w CP do, SMEFT operator form ¢ Unitarity bound
0 yzraze (WHD,D,W; +He.) +
31 0,,2"0,2" (W*F’55W‘ +He. ) +
32 PP T (W+D D,W; +Hc. ) +
33 aMZ”Z”(Wm D,W; +H. c) +
34 FTPT (W D,W; + He. ) + DSH*
35 0ypa 0,24 (WP W) n
36 0,y 210,024 (W W 6) n
37 0,240, Z”(W+/’D W + H.c. ) +
38 0,02 Z" (Wﬂ)wa—o +Hec. > +
39 0,240,2" (W*PD W + H.ec. ) +
40 - . _ +

00,207, (iW; D"DyW; + Hee.) -
Aoy, 7002, (WD W 1 He) T
4 e -

0,2/9,,2* (iW*D'W; + He.) . 0
43 e B _ Erey
a‘fzﬂa"ZU(lW;DﬁDDW/, + H.c.)
a4 Pz (iW+B D,W; + H.c.) -
45 ; _
FoZHo Z”(zW*D W +Hc) DSE

46 027, (iW; D,W; + He.) -
47 0°29,2*(iW; D,W; + He.) -
48 r740, ZV(:WW) Ws +H. c) -
49 249,57 (WD, W™ + He.) -
30 00,700y Z, (W D'W; ) -
> e°0,,700,2, (W D'W; ) -
52 — 8D8H4

e°0,7,0,7" (W;B{ID(,W/; + H.c.)
3 09,200,720 (W; DyW, + He.)
S 00,707, (WiD W+ He.) -

(Table continued)
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TABLE 1V. (Continued)

i oy cp do, SMEFT operator form ¢ Unitarity bound

5 029,70 (Wi D, W ) + DSH*WS,

% 032" Z,, (iw+ﬂBaW; + H.c.) +

37 0, ZP 7 (iW,jD"D,,W; + H,c,) +

B 27 (iwiDW; ) +

59 aﬂﬂZaZ;w (iW,’,"DaW_ﬁ + H.C.) +

60 aazﬂaﬂZ‘u (l.WjBaW—ﬂy + HC) +

ol aﬂazﬁzﬂ (iW;rBaW_”” + H.c.) +

62 0,2%0,2" (iWiD/;VV‘”” + H.c.) + 8 i 0001 0001
D6H4wa TeV TeV

63 . Y + )24

Z(la;mZﬂ (leDﬂW o H.C.)

o4 07470 (Wi D,D,Wj + He) -

65 7200, (W; D, W;) -

06 0,749, 7* (WH'W; + He.) -

67 aazuzﬂ (W+uBaDﬁW;b + HC) _

o8 0,770,728 (W W + Hec.) -

69 aﬂzazﬂ <WjD(1}W_ﬂu -+ HC) -

with the Hilbert series that there are 22 dimension-six
operators, 34 dimension-eight operators, 2 dimension-ten
operators, and 4 redundancies that appear at dimension ten.
These redundancies and their descendants correspond
to operators s"tmOmwﬂ, s”t’"(’)r;wyz, s"t”’(’)?:‘wyz, and
s”tm(’)sﬁgwﬂ, with n > 1, m > 0. To form a complete set
of independent operators they should be removed.

In Tables IX and X we list the primary operators for
the ZZZy interaction up to dimension 14. We obtain full
agreement with the Hilbert series. There are 4 dimension-
six operators, 14 dimension-eight operators, 22 dimension-
ten operators, 12 dimension-12 operators, 4 dimension-14
operators, and 2 redundancies that appear at dimension 14.
To form a set of independent operators, x”y’”(’)ggz I and
x”ym(9§9zzy, with x = s + > +u®, y=stu, n>1, and
m > 0, should be omitted.

The primary operators for the WTW~yy interaction up
to dimension 12 are listed in Table XI and they agree with
the expectations from the Hilbert series. There are 3
dimension-six operators, 19 dimension-eight operators,
14 dimension-ten operators, 2 dimension-12 operators,
and 2 redundancies that show up at dimension 12. Note
that, in this case, the coefficient for ¢'? exactly cancels
between the two operators and two redundancies. The
following operators and their descendants should be

removed to maintain an independent set of operators:
s"'(t—u)? Oy ™ and 5" (1 —u)>" O, with n >0,
and m > 1. The primary operators for the WTW~gg
interaction up to dimension 12 can be obtained by replacing
F, - G;‘y and contracting the SU(3) indices with d,45. The
redundancies of the WTW~yy interaction apply to the
corresponding operators of the WHW~gg interaction.

Primary operators for the ZZyy interaction up to dimen-
sion ten are tabulated in Table XII. Our results agree
with the Hilbert series, from which we expect there to be
3 dimension-six operators, 13 dimension-eight operators,
7 dimension-ten operators, and 2 redundancies appear-
ing at dimension 12. The operators and descendants
s"(t = )" OF77 and s"(t —u)*" O, with n >0 and
m > 1, should be omitted in order to form a set of
independent operators. The primary operators for the
ZZgg interaction up to dimension 12 can be obtained by
making the replacement F,, — G,/jy and contracting the
SU(@3) indices with §45. The redundancies of the ZZyy
interaction apply to the corresponding operators of the
ZZgg interaction.

Table XIII lists the primary operators for the Zygg
interaction up to dimension 12. Agreeing with the
Hilbert series, we find 12 dimension-eight operators, 12
dimension-ten operators, 2 dimension-12 operators, and
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TABLE V. Primary dimension-ten operators for the ZZW*W~ interaction. Two redundancies, which are
descendants of dimension-eight operators, appear at dimension 12. To form an independent set of operators,
s"(t—u)?mOZYY and 5" (t — u)?"OZFWY, with n > 2, m > 0, should be omitted.

i o CP  dp, SMEFT operator form ¢ Unitarity bound
70 0upaZV 0, 2" (W+ﬂﬁaw-ﬂ + H,C,) +
71 v n” - +
0,420, 2* (iW*D"D, W7 + H.e.) o
<
2 ay/”mZ”Z” (W_H}D D” W= + H.C.) +
73 0,2V 0,2" (WerBHDMW_H + H.C.) +
74 vpoc a . pigd — +
e°0,,2%0,, 2" (sz;D DWW + H,c.) R
e gﬂvﬂﬂaﬂﬁ‘[zazu (ZW/J;D szW_ﬁ) + 10 22]](5)*5
TeV
76 aupaazﬂ 0”Zb (iW+pDa W_‘T) -
T w29,z (WD DLW 4 He) T DO
B2z (iwHD DW + He.) -
79 90,5, 7270, 7b (W p Bf W;) _
£D10H4
80 T _
g, 79, 7" (W;D D,W; + H,c,)
81 appazﬂaﬂzy (l‘W;—BaWipa + H.C.)
82 a/)aZﬂZU (l.Wj;BaD;wW_pg + HC) + 10 D8H4wa 8230’5 , 32}&)’4
TeV TeV
83 —

0ypaZ'Z" (WgD“D,, Wro H.c.)

TABLE VI. Primary operators for the ZZZZ interaction up to dimension 12. Two redundancies, which are
descendants of dimension-ten operators, appear at dimension 14. To form an independent set of operators,
x"ymO%22Z and x"y"mO%2%Z, where x = 5?4+ 1> + u® and y = stu, with n > 1 and m > 0, should be removed.

i 0722z CP do, SMEFT operator form ¢ Unitarity bound
1 17,77 4174 0.09
27, - 4 D*H o
2 P 7Y (zﬁﬂzu) T
6 4 0.006
3 0,2/9,2°2°Z, + 6 b G
4 270,,2°Z, +
Suv 7p - AT74T 002 007
5 v 709,2,7, 6 D*H4WS, 2, o
6 0,2/9,2° (a,,zv a”zy) +
7 0,2'9,2(7:9°Z,) * DSH*
8 0,)70,, 720 2 n
9 i N ] 3x107*
0°72/0,2*(7,0,7.,) Bl
10 -

woey 79,7 (z 'z )
. 7004, 2P 2, via » eDSH*
704,200, 7(2,0 2,

(Table continued)
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TABLE VL. (Continued)

i 0zzzz CcpP do, SMEFT operator form ¢ Unitarity bound
12 - (s S + 6 yya
P Zﬂaﬂzf’(zyaazp) . DSH*WS, oot oan
13 aﬂﬂZ"a(,Z/’Z””ZD - D6H4WZ;/ Etey 7 Etey
14 Oypa 200 2" (zfa"’z”) +
15 v . +
02,2 (0,200 2°)
16 a ZH aﬂpo_zy (a Z/)a ZU) + D10H4
17 0P Z1,,2" (a 200,27, ) +
18 02,1 2" (Zpagz,,> + 10 zﬁgvs
19 70,3, 20,7/ (2,0 2, -
0 e0,200,2(0,2,0°2,) -
8D10H4
21 < _
0052004, Z,, (ZD aaz,,)
22 e 700, 7, < z,0, Zu) -
23 0740, 7 (7,0,7,) i DEH'W,,
<z 10 B0 3x10
24 0.2%0,,Z" (0,32”00 V4 ) - DSH4WS, Bty Eiy
25 #1070,y 7, (2,077 +
26 B zu ) ﬁzy(a Z a Z ) D2H4
27 170,07 (0,200,2°) + 12 Ll
ETcV
28 PN 790, 0nZ (Zp a,zg) -
29 _ 8D12H4

720 0yenZy (2,042, )

2 redundancies at dimension 12. To form a set of independent

operators, the operators and descendants s” (7 — u)zm(’)fygg ,

s"(t — u)szgmg , with n > 0, m > 1, should be removed.
The primary operators for the Zyyy interaction up to
dimension 14 are enumerated in Table XIV. The Hilbert
series predicts that there are 4 dimension-eight operators,
10 dimension-ten operators, 8 dimension-12 operators, 4
dimension-14 operators, and 2 redundancies that appear at
dimension 14. Our results are in agreement with this
prediction. In order to form a set of independent operators,
the operators and descendants x"y"O%""" and x"y" O,
with x = s + > + u?, y = stu, n > 1, and m > 0, should
be omitted. Symmetric (in any g <> g particle exchange of
their kinematic variables) primary operators for the Zggg
interaction up to dimension 14 can be obtained by making
the replacement F,, — Gﬁy and contracting SU(3) indices
with the fully symmetric structure constant tensor d,pc-

The redundancies of the Zyyy interaction apply to the
corresponding operators of the Zggg interaction.

In Table XV, we list the antisymmetric (in any g <> g
particle exchange of kinematics) primary operators for the
Zggg interaction up to dimension 16. Note that the SU(3)
indices of the gluon field strengths G4, are suppressed in
our notation and taken to be contracted with the fully
antisymmetric structure constant tensor f ¢, so that under
the combined color and kinematic exchange, the gluons
obey Bose-Einstein statistics. When taken with the sym-
metric Zggg operators obtained from modifications to
operators in Table XIV, which was discussed in the last
paragraph, our results agree with the Hilbert series. We find
that there are 6 dimension-eight operators, 18 dimension-
ten operators, 16 dimension-12 operators, 8 dimension-14
operators, 2 dimension-16 operators, and 2 redundancies
that appear at dimension 14. These redundancies come
from operators involving the fully symmetric structure
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TABLE VII. Primary dimension-six operators for the W W~Zy interaction.
i (’)l-WWZ’ Ccp do, SMEFT operator form ¢ Unitarity bound
1 - -
(wHD,W; +He ) oz,
2 - -
(WiD, W5 + He.) iz
3 _ + 4 174 puv
(WHD,W; +He ) oz, D*H*B
4 (wow= 4 He.)o,F,, 2 +
> (WiD, Wi +He ) Foze +
6 (WD, W7 + He) 7, + )
D4H4B;w
7 . _ .
(iw D, W, + He ), 2, +
8 vpoc s a — +
g (zw;D W+ H.c.)F/,aZa o
9 ghero (iW;D,,W‘” + H.c.) FouZ, +
10 - 6 2502’ 2607
(l'WJr/‘D W;) FPUZ” Tev Erev
1 . : _
(WD W - He ) F,Z, o
12 , _ _
(W W + He)o,F,, 70
13 (iW*"Dﬂ W+ H.c.)FW,Z” -
14 (WD, W7 + He) Pz, -
15 (W+”W; n H.c.)a,,szp - DA HA B
16 (wD,W; +He ) oz, -
17 pho (W; DeW; + H.c.) FruZ, -
eD*H* B
18 o (WITDDW*“ n H.c.)FWz,, -
19 (Wiws, +He. ) Foze D’H*Wy, B
20 (W= +He )F,2, D>H*W;, B"
6 2172 2;'09
21 (iW*"W‘”" n H.c.)sz,, - D2H2W¢, B -
22 (Wi 4 He.)F,2Z, - D2H2W, B

constant tensor d,gc and can be obtained from Table XIV.
They, along with their descendants, should be removed to
form a set of independent operators.

In Table X VI, we have a list of the primary operators for
the yyyy interaction up to dimension 12. The Hilbert series
predicts 3 dimension-eight operators, 5 dimension-ten
operators, 1 dimension-12 operator, and 2 redundancies
at dimension 14, which are the results that we find. We can
form a set of independent operators by removing the
descendants x"y"OF"" and x"y"OY", with n>1 and
m >0, x = s>+ 1> + u?, y = stu which are redundant.

In Table XVII, we can find the primary operators for the
yygg interaction up to dimension ten. There are seven
dimension-eight operators and five dimension-ten opera-
tors. This result is consistent with the corresponding Hilbert
series. At dimension 12, there are two redundancies such
that we should omit the descendants s"(¢ — u)*"O7* and
s" (= u)?"OF%, with n > 0 and m > 1, in order to have
a list of independent operators.

In Tables X VIII and XIX, we enumerate a set of primary
operators for the yggg interaction up to dimension 16.
We find 4 dimension-eight operators, 12 dimension-ten
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operators, 8 dimension-12 operators, 6 dimension-14 oper-
ators, 4 dimension-16 operators, and 2 redundancies at
dimension 14, agreeing with the Hilbert series. We should
remove the descendant operators x"y™ O, x"ym O,
with x = s2 + 2 + u?, y=stu, n>1, and m >0 to
exclude redundancies. In this case, we are including in
the tables the fully symmetric and antisymmetric structure
constants d,pc and fapc, respectively, which implicitly
contract the SU(3) indices of the Gf},,’s.

Four-gluon scattering proceeds as in Fig. 1. An
example Lagrangian operator for four-gluon interac-
tions is f(T4,T® TC, TGy, G GS,GP#, where we
have chosen a structure for the contraction of the

TABLE VIIIL.

Lorentz indices and f represents a configuration of the
trace of the generators. In this case, we have two ways to
express f (up to trivial permutations) to keep the ampli-
tude invariant: Tr(TATE)Tr(TCTP) and Tr(TATBTCTP).
Considering that the gluons are identical, this gives two
different possible amplitudes,

M2 (1A2B;3CAD) = Tr(TATE)Tr(TCTP) M, (12; 34)
+ Tr(TATC)Tr(TBTP) M2 (13;24)
+ Tr(TATP)Tr(TETC) M2 (14:23),
(23)

Primary dimension-eight and -ten operators for the W+ W~Zy interaction. At dimension ten there are

four redundancies, which are descendants of dimension-eight operators. In order to form a set of independent
operators, s" tmOmW}'Z, s”tm(’)rgwyz, s”t’”(’)?ﬁlw”z, and s”t’”(’)sugw”z, with n > 1, m > 0, should be omitted.

i oW CcP do, SMEFT operator form ¢ Unitarity bound
23 (DDWWDWW—” + H.c.) Frez, +

24 (D/’ WD, W™ + H.c.) 0,F,,2° +

25 (W;Dﬂﬂw-v T+ H.c.)aVF,,(,Z" +

26 (W+I4D/’ W= + H.c.) O A + Db L4 prv
27 (DGWWDWW—” + H.c.)F,wZD +

28 (DMWWD,, Wy + H.c.)F”/’Z" +

29 (W+ﬂDp0W—v + H,c,) 0,2, +

30 (DWW+"DpW; + H.c.)F”/’Z" +

31 ghpo (,’DgWJrﬂD/jW; + H.c.)FpaZ,, +

30 pipo (iD,, W;{D"/jW,,_ I H.C.)F,,,,Z,; + eDOH* BH
33 o (,-W; DIW + H,c.) 0F puZs + 8 95001 ’ %004
34 (iD,,WJr”DWW‘” + H.c.)F””Za B

B (iDwD, W 4 He ) 2 -

36 (iWIjDW’W‘” + H.c.) 0, F ,o2° a

37 (iW+”D”W_” I H.C.)a”prgZO- - DO HA B
38 (iD, WD, W + He)Froz, -

39 (iDﬂ,,Wﬂ'DMW; + H.c.) Fze -

40 (iw+ﬂD/’"W‘” + H.c.) 0F,,Z, a

W e (Dgw DWW He )z, T

42 £Hpo (D,, W;;Daﬁ Wy + H.c.) FouZ, - eD°H*B"

43 ghvpo (W;ng wr + H.C.) a/fF/mzZ(r B

(Table continued)
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TABLE VIIL (Continued)

i (’)I-WWZy cp do SMEFT operator form ¢ Unitarity bound
44 (DGW“D;, Wy, + H.c.) Fwze + D*H*W;, B
45 (iD” WD, Wre 4+ H.c.) F,Z, +
46 W DR PO ) +
(iws D 4 He. ) F o, DR B
47 (iDﬂW*ﬂ W H.c.) 0,F,pZ, +
48 (iW DW= 4 Hie.)0,F, 7, +
49 (iDO_WwLyDH W;p + H.C.) Fwze - 8 D4H2W;l,,B#b OEQ&
TeV
50 (0w D, 4 e ) F, 2, -
sl (W;“D”ﬂW—w + H.c.)F,,DZ,; -
52 (WD 4 He)o,F, 7, - D*H2 W, B
53 (DW= 4 He)o,F, 7, -
54 (wa;D,, W 4 H‘c.) 7z, -
55 (iD Wi, W + e ) o7, +
8 D2H2 wa Wa B* 0%02 , 0.607
36 (DWW + He. ) Pz, - oV By By
57 (Dbp”WJr;lDﬂaw—u + H.C.) Froze + 10 D8H4B/4b 8230—5 , 3211“0—4
TeV TeV
B (D WD W + He )Pz, - 10 DSHWe, B 20
TeV
TABLE IX. Primary dimension-six, -eight, and -ten operators for the ZZZy interaction.
i OiZZZ” Ccp do, SMEFT operator form ¢ Unitarity bound
1 7/0,2,Z,F* + DAHA B
(1 vp 0.02 0.07
2 Z aﬂZuZﬂIj‘ + 6 - B By
3 740,2,7,F* - D*H*B"
5 0,210,,2" Z,F*° +
6 #219,2°2°0,F ,, +
7 Z,0°72°0,F ,, +
8 Z;tapzyzn—a”b Fp(7 + DO H*Br
9 0,2"0,,2" Z, F" +
10 0°70,,2,7,,F*" + 8 yany
11 0°Z,0,,Z,Z" F* +
12 0°2"0,,2,Z,F" - DSH*B
13 e 2 7P0,7,7 ,F -
" pev&ol pa 6 174 puv
14 090, 7,007, 7, F s - eD°H"B
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TABLE IX. (Continued)

i OiZZZy CcpP do, SMEFT operator form ¢ Unitarity bound
15 #7Y0,2'°Z,F,, -
16 Z,0v2"Z,F, - 8 D*H>W¢, B >
17 0,2,0,2"°Z, F" - )
v=uvp (2

FVG up — 2172i7a X v 0.02 0.07
18 0,2,,2°Z, F’ 8 D*H*W4,Wé,B* B
19 AL AAD L +
20 08710,,4 2" Z, FP° +
21 07210, Z'Z°0,F ,, +
22 02,02 Z°0,F ,, +
23 daZ”d"”Z”Z"dMF,,H + D8H4B/w
24 0972"0,,a 2" Z, FF° +
25 Opoalt Oy Z, L7 F*P +

-5 —4
26 0, 2" 97" Z,0,F,, + 10 st h
27 0,002V 0% Z, ZOF*P +
28 0°* 210,542, Z,F*" +
29 070,02, 2, F*° - D3H*B"
30 00 7P 05, 7, 7 F -
31 %0, 2507 Z,Z,F - eD¥H*B*
32 &°0,2,05 2P Z ,04F -
33 0%210,u Z,,Z° F*" + DOH*W4,B"
34 0,)2"0,, 2" Z , F'* -
35 240, L Z,F - o
36 0,2, 77 F - 10 N —
e ol pv D6H4wu BH TeV

37 210,72 Z,0,F,, - e
38 0,2'*7"°Z,0,F,, -
39 09Z,0,, 2 Z,F** -
40 020222y - 10 DR W, Wi, B Q001 00s

TeV. TeV

TABLE X. Primary dimension-12 and -14 operators for the ZZZy interaction. At dimension 14, two descendant
operators become redundant. To form a set of independent operators, x"y™ 02;82 “ and x"y™ (’)592 “r | with
x=s>4+1>+u* y=stu,n>1,and m > 0, should be omitted.

i OiZ 2zy CP d o; SMEFT operator form ¢ Unitarity bound
41 OupopZV HraZ? 2° FP +

42 0210,y 20 Z, FP° +

43 710,05 Z" Z°0,F + DIOg4 gy

44 042,07 Z°0,F ,, +

45 VupZ' ¥ P 770, F g + 12 S 2
46 0,6 210,43 2, Z° F* +

47 e°0,% " 2P 0pn Z,Z F g -

48 90, 230" 2,7, F - eD'"H*B"

49 ghvpo am Zﬂ ab arm Zﬂ Z(r aﬁ Fp(z —

(Table continued)
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TABLE X. (Continued)

i Oizzz;/ Ccp do, SMEFT operator form ¢ Unitarity bound
NI D e eewe
52 OvupZyp 00 727 2, ¥ - DSH2W, B/ B Byr? s
5 20l 227 : J—

(am,,Zﬂa a,,pa/’zv)z,,arFﬂﬁ 14 e oo
P (g 350,3,,,4) Zo0sF e eD'2H B S
56 Ouppe 2Oy 2 Z, P - 14 D'YH>W4,B" L

TeV

TABLE XI. Operators up to dimension 12 for the W™ W~yy interaction. At dimension 12, there are two
redundancies such that, in order to form a set of independent operators, s™ (1 — u)2"Oy """ and 5" (t — u)*" O},
with n >0 and m > 1, should be omitted. Operators for W W~ gg interactions can be obtained by replacing F,,’s
with Gﬁb’s contracted with §,5. The same redundancies apply to the corresponding operators.

i oV CP  do, ~ SMEFT operator form ¢ Unitarity bound
1 Wt W;FWFW, -+ D2H?2BH B
2 WHW,F,,F*” + 6 22‘09
3 (W Wy + e ) F o - D2H2B B "
4 W W Frog,, F +
5 W W=, FP0,F,, +
6 (W*“D,,W‘” + H.c.) Fr9,F,, +
4 172 puv puv

7 (WHDoW; + He. ) Fr0,F,, + D HBTB
8 — +

(WD, "W, + Hee. ) FeF,,
? (WiD'W + He.)o,FF,, +
10 (iW:{DpW—u + H.c.)INW‘"d,,FW, + D4HzBHuBllb

o _ 4 172 puv puv 0.006
T e (WD, W= + Hee. ) Ff0,F + 8 eD'H*B" B i,
12 (iW*”D,;W‘” + H.c.)Fﬂ”a,,FW, - Jo——
13 (iWHDW; + He. ) F29,F,, -
14 <o : -

(WWD W+ H.c.)dﬁFﬂﬂFW [——
15 (W;W—” n H.c.)dyFMa”F”P -
16 &7 (W DW; + Hee. ) Fud, F -
17 B eD*H*B" B

g (W:{Bﬁ Wy + H.c.)dﬁF"pFw

(Table continued)
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TABLE XI. (Continued)

i oMV CP  dp,  SMEFT operator form ¢ Unitarity bound
18 (W+ﬂD6WD_[1 + HC) FDPFO‘;J + D2H2W,al,,B/‘bB/4u
19 (WD, W + He ) FrF,, + D*H>W;, B" B"
20 (W;Dp Wb_o' + HC) i;';lp Fve — 8 D2H2 W’awBﬂbEHl/ 2502 ’ %07
TeV TeV
21 (W;W‘”” n H.c.) Fr0,F,, -
3 D>H>W¢, B B
22 (WiD, W+ He )P, -
23 ca . +
(WHD W + He.) 0, F0,F r——
24 (WWD“D,, W 4 H.c.) 0,F"0,F,,
25 o (IWIBTD/}W; + HC) aTF/)aa(;Faﬁ + EDéHzBﬂUBMD
26 (iW*”BaW‘” +H.e.)0,F0, F,, - e
< 10 .
7 (iwnD'D, W+ He )0, T D°H?B"B" Frev
¥ (iWHDDW 4 e )HF0F,,
29 ehvpo (W;BTW;> 9%t Fpﬂ aﬂ Faa -
. eD°H?B* B"
N0 o (WD DIWS + He.)0F pF
31 D - v o +
(WiDuDoW;, + e )o o Fon DrHwWS B
32 (WWDHW;D n H.c.) Frog,, Fo +
33 (W DD, Wy, + He.)oFeoFre + D*H>Wy, B" B
10 0.001 0.004
34 . +<_) Tr—uy a c + E’T‘eV ’ E'Ef"ev
iWHD, W + H..)o*FPo,F,,
33 (Wi DD W + e ) o F,, Fr7 + D*H2We, B B
36 (WﬂDﬂaW;U n H.c.) FoQF,, -
37 (iW+”Bﬂ DWW 4 He ) yF P, Foy  ~ 12 DSH2B B 210t
TeV
B (D or i e g T 12 DSH2 W, BH B Bj0t 310
TeV TeV
M, (1A2B;3C4D) = Tr(TATETCTP) My, (12;34) + Tr(TATETPTC) My, (12;43)
+ Tr(TATCTBTP )M 1, (13;24) + Tr(TATCTPTE) M1, (13;42)
+ Tr(TATPTETC) My, (14;23) + Tr(TATPTCTE) M, (14;32), (24)

where the right-hand side factorizes the amplitude into  exchange of kinematics, Mry.2(12;34)=Mp2(21;34)=
color factors and subamplitudes that only depend on kine- ~ M2 (12;43) =M 1,2(21;43)=M1,2(34;12) =M 1,2(43;12) =
matics and polarizations. Given the structure of the oper- — Mq2(34;21) =M2(43;21) and M (12;34) =
ators, the subamplitudes have the following identities under ~ My, (23;41) = M1, (34;12) = M(,41;23). By forming
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TABLE XII.

Operators up to dimension ten for the ZZyy interaction. At dimension 12, there are two redundancies

such that, in order to form a set of independent operators, s"(t — u)*" Q5" and s" (1 — u)*" %", with n > 0 and
m > 1, should be omitted. Operators for ZZgg interactions can be obtained by replacing F,,’s with G,’jb’s contracted
with d,5. The same redundancies apply to the corresponding operators.

i o cp do, SMEFT operator form ¢ Unitarity bound
1 Z”ZMFW)FW, + DZHZBW/B;(D
2 'L F,, F*P + 6 &09
3 ZMZL,FW,FVF — D2H2Bbe;w TeV
4 7M7Y F9,,F,, +
5 70740, Fr°0,F ,, +
6 709,27V Fr°9,F,, +
4 172 puv pu
7 ZF°Z,F*0,F ,, + D*H*B*B"
8 7¢9,°7,,FF,, n
©o 0.006
J (Z,, 0 Z”) 0, F*F,, + 8 By
10 Z,7V0,F ,,0° F#* - D*H?B" B
11 097 047, F )0, F -
12 <p _ £D4H2 BHY BHY
e7(2,0° 2, ) 04F F oy
13 Z”()O-ZW)FDPFU” + DZHZBﬂuBﬂbB;w
14 2,0,Z,,F** F*° - 8 002 0.07
15 ZMZI’DFPGagFDP — D2H2 B g v B .,
16 Z,0,Z"FF°F,, -
17 (749" 7)0,uFre0,F
Hax v po DGHZB;wB;w

18 (79"0,2")0,F0,F,,
19 < 10 32}10’4

&7 (2,0.2,) 0 F g F - -
20 or eDSH*B" B+

£Hrpo ( Z,0 9% Zu) 0.F 5 F 5 -
21 249,27 F°9, F,, +
22 < } . D*H2 B B B

up 76 0.001 0.004
(2,040,2., ) FoFor 10 01 ggos

23 Zﬂap“Z/‘”FaaabF/”’ — D4HZB/41/B;u,B/w

candidate subamplitudes with the correct symmetries
under the exchange of kinematics, we can find the indepen-
dent M1,2(12;34) and M, (12;34). These will, respectively,
lead to an independent set of My.2(1A2B;3C4D) and
M+ (1A2B;3C4D). However, it is possible that there will
still be redundancies between the two types of amplitudes
M2 (1A2B;3C4D) and M+, (1A2B;3C4D).

In the following, we show that, if there is a redundancy
between the subamplitudes of the two types, then there
will be a redundancy among the full amplitudes after
putting in the color factors. To see this, assume that there
is a redundancy between two subamplitudes M(12;34) =
Mrp2(12;34) = M, (12;34). Now M is invariant under
both of the permutation symmetries of the two subampli-
tudes and one can show that this means M is invariant under

arbitrary permutations of the four particles. Then we can
show that

My (1A2B;3C4D) = (Tr(TATE)Tr(TCTP)
+Tr(TATC)Tr(TETP)
+Tr(TATP)Tr(TPTC)) M (12;34)

= (Tr(TATBTCTP) +Tr(TATETPTC)
+Tr(TATCTETP) + Tr(TATCTPT?)
+Tr(TATPTBTC)
+Tr(TATPTCTE)) M (12;34)

= M+, (1A2B;3C4D), (25)
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TABLE XIIL

Primary operators up to dimension 12 for the Zy gg interaction. There are two redundancies that both

appear at dimension 12. To form a set of operators that are independent, s (r — u)>" O™, s"(t — u)*" O5"%, with

n >0, m>1, should be omitted.

i o9 cpP do, SMEFT operator form ¢ Unitarity bound
1 G"D,G,,FZ° +
2 G"D,G,,F*Z, +
3 G”DDUGMPFDO.Z‘D + DZHQG/AL/G/H/B;ID
4 G"D,G, F°Z, +
5 G"G*?0,F,,Z, +
6 G"G,,F,,Z2° +
vp LHe — w Y 0.02 0.07
7 D,G,,G"F*Z, 8 D*H’G"G"B" B B
8 G}wGﬂia/)FMUZU - D2H2G;4yé;4bBﬂy
9 G"D,G"F,,Z, -
10 &G D,G¥F 47, -
11 G, G0, F 7, - eD*H>G" G B
12 S”DP“GWD"G,,"F/,/,Z,, -
13 G"D,,G*?0,F ,,Z* +
14 D,G" DG, Fr°Z* +
15 (G’”’DaDUGW;) 0,F,PZ° +
<~ 4 172 pv (U RUY
16 (G’“’DaDDG/’”) 0uF 1y 2, + D*H-G*G" B
17 (G’“’B{ZD”GW)) aanng/4 +
18 (G””BaGﬂ”) 0yaF o2, +
~ 0.001 0.004
19 G"D,G,40,"FZ, - 10 Ery By
20 (G"”D DyGl,ﬂ)a,,Fﬂﬂzg - D*H2GH G B
21 Ca o —
(GuwD"G*)0,uF*Z,
22 D°G,,D"*G*F ,,Z, - D*H*>G" G B"
23 vpo 7 af
e G,D D,G*)0.F 57,
o - eD*H*GM G B
ghvpo (G;m DT Gyﬂ) a/}r Fpa Zo -
25 (G’“’B,,D”“GW,> V'F,,Z, + D°H’G" G B ~ ~
- 5 12 8x10 > 3x10 4
26 (G;uxDﬂDa Gﬂp) abp Faaza - D6 H2 Grv GMuBﬂb Etev Etev

which shows that the full amplitudes are also redundant. In
the second equality, we have used the group theory identity
for SU(3),

D

six distinct perms

Tr(TATETCTP)

Tr(TATE)Tr(TCTP)

three distinct perms

(26)

with the distinct permutations given in (23) and (24). This
implies that it is enough to look for the independent

subamplitudes of both types to characterize the indepen-
dent full amplitudes.

For simplicity, we adopt the notation Tr(7?)Tr(7?)
and Tr(T*) to represent Tr(TAT®)Tr(TCTP) and
Tr(TATBTCTP), respectively. In Tables XX and XXI,
we show a set of primary operators for gggg interactions,
up to dimension 16. We find 9 dimension-eight operators,
14 dimension-ten operators, 16 dimension-12 operators, 9
dimension-14 operators, 2 dimension-16 operators, 2
redundancies at dimension 14, and 4 redundancies at
dimension 16, which agrees with the corresponding
Hilbert series. The redundancies are the operators and
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TABLE XIV. Primary operators up to dimension 14 for the Zyyy interaction. At dimension 14, two operators
become redundant to operators at dimension ten. To form a set of independent operators, x"y” 05" and x"y" O},
with x = s* + 2 + u?, y = stu, n > 1, and m > 0, should be omitted. Replacing all F,,’s with G7,’s contracted
with dypc yields the symmetric (in exchange of gluon kinematics) primary operators up to dimension 14 for the
Zggg interaction. The same redundancies apply to the corresponding operators.

i o CP do, SMEFT operator form ¢ Unitarity bound
1 F”DaanprUZ” + D2 H?2BHY BHv BrY
2 FYooF,,F,,2° + 002 00
- ~ X 07
3 0,F FPEZ, - 8 D?H’B"B"B" Fiw " P
4 er°F  FP0,Fy 7, eD*H*B" B" B"
5 0paF" 0, F, FP°Z” +
6 Opo " OF,, F¥ , Z° +
7 d”F"”amFW,F’”’Zﬂ + D*H?B+ BHv Brv
8 0 F"0°°F,,F 2P +
U o
9 O F* 0, F70,F 2, + 10 0.001 0.004
10 F*"9,F ,,0,°F*Z, - ~ Efey ” Bl
11 aﬂFﬂbaﬁ”F"”Fﬂ“Z{, = D*H*B* B B"
12 0poF 0" FPFHZ,, -
13 &0 F 0, F*PF ,7 -
naPvr pp-o 4 172 puv RUY RpUY

14 ehvpo ge F;m aT Frz/i ab F/)ﬂ Zo— _ eD*H-B*BHY B
15 a/}a/}F/Juaﬂ/iFﬂprth(l +
16 d(,aﬂF””d”’ﬂFW,F"”Z" +

, . D6H2B/wBﬂbB;w
17 0% pu OpupF oy F*°Z, +
18 (F”” P! ,,,a“"FW,) IF, 7, +

~ -5 3 —4
20 0pﬂFuvaﬁ/beﬂa{7paZa - -
21 0papF W, 0P FPFroZ, - DS H?B" B B
22 'y p foop -
F*0430,F,, | 0% F*Z,
23 MTF””aﬂaﬂ,F’)”OUFMZ" + DSHZBMDB/M/B;H/
24 a}pa/)"rFﬂuan'ﬁTFﬂuF;pﬁZa + 14 5><}|0‘6 2><}2()'5
T v (2 a —_ )

25 P FH 0/,/;,Fﬂ,,~0y Frez, DS H2 B B v Eryv 7 Efey
26 0,/"F,,0,5." FF*F'°Z, -

descendants given by x"y"™ O, x"ym O xmym QX
xnymo.ll/zqy’ xnymofl].fgl!l!]’ xnymo.leg.fl!l, with x = S2 + 2‘2 + u2’
y = stu, n >0, and m > 1, and should be removed if we
want a set of independent operators.

VI. DECAYS OF THE Z BOSON

Now that we have the amplitudes and unitarity bounds,
we can continue the analysis of modifications to the decays
of the Z boson, taking into account the upper bounds on
coupling strengths from the tables. First, we start with the
decays Z — ff(y.g). Such decays occur in the Standard
Model through radiation of the gauge boson off of the
fermions. Such emissions are collinear enhanced, so there

could be hope that the contact amplitudes in Ref. [7]
could be distinguished in differential distributions. In
this part of phase space, we estimate BRgy(Z — 7ff) ~
£ BRgy(Z — ff). Assuming just the irreducible back-
ground from the Standard Model in the channel Z — yjiu,
we find that to get a 1o fluctuation at the HL-LHC with
~6 x 10° Z bosons would require unitarity violation at
about 5 TeV for the dimension-six and dimension-seven
amplitudes, which have two field strengths. Of course,
reducible backgrounds will reduce this estimate, but
this suggests that for reasonably high unitarity violating
scales, this could be searched for at the LHC. For Z — ffg,
the fermions would need to be a quark-antiquark pair,
for which the b quark would be the most promising.
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TABLE XV. Antisymmetric (in exchange of gluon kinematics) primary operators up to dimension 16 for the Zggg
interaction. Note that SU(3) indices are suppressed, where the G,j‘,,’s are contracted with the fully antisymmetric

structure constant tensor fpc.

i Ol-zggg‘A CcP do, SMEFT operator form ¢ Unitarity bound
1 G*D,G,,G"Z, + D*H*GM GG
8 002 007
2 G DDGW)GpUZO_ DZ HZGWGWG/M/ Etey E(%ev
3 D*G"D,,G,,G,Z° +
4 DaG”DDbaGpaGl/)ZG + D4H2G;¢DG;4DGW
5 D*G" D,,G,,G"Z, +
Hv Ny Y o
6 G*D aGﬂﬂD (},,,,Z + 10 0.001 0.004
7 D*G*D,,G,,G"Z, - } Efey " Erey
8 DaGWDaGbﬂDpGWZG — D*H2GH* GH GH
9 G*D,G,,D,'G"Z, -
10 e””/’”DTG”aDD,G“ﬁGpﬂZU - eD*H*>G" G GH
11 DG DG ,,G,PZ° +
12 DFG* D 4G, D’ G, Z° +
I O LJ2 (pv (IpY (IUY
13 (G"” Dﬂ DﬂaG,,g) DGy 2 + D°H*G*G" G
14 (D oD'p,G ,,)D,,GP"Z“ +
P H ~ 12 8><ll()‘5 3x10~™*
15 D¥GmD,, +G,,G"Z, - Erw * Ery
16 D’G*D,,G,,D,'G"Z, -
hig ~ _ 6 L2 (Y (Y Y
17 (G”UDﬂDﬂG;t(z)Du/faGpgza DEH GGG
18 OB S _
(D,G*D' D, ) 0,62
19 D/}TG’ZZ?UU,[;TGWDPGwZa + DSH2GH GH GHv
20 (D’G””D D,MTG/"’) DG, 2" +
s 14 5x10~° 2x107°
21 D¥*G*D,,G,,D, GZ, - Efy * Eny
o s _ DSH*GH G G*
22 (D’G’“’DﬁDmGﬂa)Dbﬂ Gz,
<p 10 g2 Iyl v
23 (DmGﬂUD/ D”M”Gllo) DuﬂGp(rZa + DYH~G*GM* G
16 3x1077 9x10~7
24 - G

<p -
(D”’G’”’D Dm,,G,m) D, Gz,

TeV

DOE2 GHY G G/w

However, these would have substantial QCD backgrounds,
so our optimistic analysis would be entirely too unrealistic.

We now turn to Z decays into three gauge bosons.
The Z — 3y decay is allowed in the SM, but is a higher-
order process that is only possible through at least a
single W boson or fermion loop [30-37], leading to a pre-
dicted branching ratio of ~5 x 107'° [37,38]. Most recen-
tly, an ATLAS search found the bound BR(Z — 3y) <
2.2 x 107% [39]. In this analysis, the background consists
of airreducible part with three or more prompt photons and a
reducible component of a combination of photons and
electrons or hadronic jets misidentified as photons. With
the HL-LHC luminosity of ~3000 fb~! [40,41], this bound
should naively improve to about BR(Z — 3y) <3 x 107",

This is much larger than the SM prediction, so we need the
BSM amplitude to dominate, which we estimate requires
unitarity violation at 500 (330) GeV for dimension-eight
(ten) operators. Such low unitarity violating scales would
require new physics to hide itself from LHC searches and so
disfavors the possibility of observing this at the HL-LHC
without substantial improvements in reducing reducible
backgrounds. In fact, if we impose our unitarity bounds to
be violated at a TeV, this predicts BR(Z — 3y) <2 x 107°
for dimension-eight amplitudes, which is extremely chal-
lenging to observe at a hadron collider. However, one could
hope that a future lepton collider producing 10'? Z’s might
have more controllable backgrounds that could reach these
small branching ratios.
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TABLE XVI. Operators up to dimension 12 for the yyyy interaction. At dimension 14, there are two redundancies
such that, in order to have a set of independent operators, x"y" OF"" and x"y" OF"  with x = s> + 1> + u?, y = stu,
n > 1, and m > 0, should be omitted.

i o CP do, SMEFT operator form ¢ Unitarity bound

1 FM”F”pFw_FUP + BHY BHV BHV BHY

2 F*F, F,, Fr° s 8 o

3 F*F, F,, F* - BH B Bi B

4 0yF* 0, F,, F* F +

5 aaF}wao-prFpo-FaM + DzBle/‘DB-“yB/”’

6 F" 0y, F,,F F, + 10 0005

7 FF¥3,F, F,,F? - "
oo r . SDZB;wB;wB;wB;w

8 PO F, FP0,Fp,F,, -

9 0,/ F*0,4F,, F/F®, + 12 D*B* B* B* B 0

TeV

TABLE XVII. Operators up to dimension ten for the yygg interaction. At dimension 12, there are two
redundancies that should be omitted, along with their descendants, if we want to have a list of independent
operators. The corresponding redundancies are given by s" (¢ — u)?" O} and s™*!(t — u)**OF*, with n > 0 and

m>1.

i o cp do, SMEFT operator form ¢ Unitarity bound

1 F””F”DG/’”GM +

2 FYFrG,,G,, + BB GG

3 F"F,,G"G,, +

4 {'ﬂbF{m Gb/} G(w 4 8 1:941

5 Ij}wFﬂpraG/m - BMuBqu;wG;w et

6 FYF? GG,y -

7 F*F,,G"G,, - BB GH G

8 “F"o°F,,GP Gy +

9 Fro*, Fl/ﬂ Gre Gau + D2 BHY BHY GHY GHY

10 FHega pro Dp G;w G(m + 10 (;:;(6)()6

11 8;«woF,,(,arﬂFaﬁG/,,, G, - - Tev
£

12 8’”’”"67FWF"ﬂDGGﬁM G, -

TABLE XVIII. Primary dimension-eight and -ten operators for the yggg interaction. Gf}b’s are contracted with the
fully symmetric structure constant tensor d,pc and the fully antisymmetric structure constant tensor f,pc.

{ o cp do, SU@G) SMEFT operator form ¢ Unitarity bound
1 GHv G;w G, F” + GHY GHY GHY BV

2 G"G,, G, F” +

3 GWG,,/,G,,JF/’” — 8 dABC GH G Grv BHY Eof‘rlv

4 G"G,,G"F,, - GG G B

(Table continued)
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TABLE XVIIIL. (Continued)

i o1 cp do, SU@3) SMEFT operator form ¢ Unitarity bound
5 D,G*D,G,,G’ ,F* ¥
6 D*G*D,G,,G"F, n J
P H ABC

7 G”VDO.(IGW)G“MFDW + D2GH GHY GHY BV
8 D,G*D’G,,,G,,F* + _
9 D,G"D,G"G,,F?, + Fine
10 DGR G D, G, F oy + oo
11 D"G*G,,G, F 4, - 10 dyse P
12 DPGMUD{’GW(}”{;FWI - DZG;wayGuDByu
13 DPG*DyGyy Gy F a Sasc
14 G"D,G,,D’G,,F* -

vpe T aff —
15 e D*G,,G¥D,Gp, Fo, dpe eD*GH GV GHY B

16 ¢°G,,D'G?D,G,4F,, -

TABLE XIX. Primary dimension-12, -14, and -16 operators for the yggg interaction. There are two redundancies
that appear at dimension 14. We can form a set of independent operators by removing the operators and descendants,
x"ym ORI xnym 999 with x = s* 4+ 1 + u?, y = stu, n > 1, and m > 0, which are redundant.

i 1999 CP dp. SU@B) SMEFT operator form ¢ Unitarity bound
i O; P y
17 D"ﬁG”DDGﬁiGDpG/"’Fa” + dapc
18 D/;G”LD(,{Z/ GDPGPGFH” + D4G;4b GH GHv BV
19 DﬁG"”DD"ﬁG’”’Gﬁ,FW + fagc
20 Dp[} G D Gﬂb ?paFaa + 12 4x10~4
21 Dr**G*D,G,,G,°F - Etev
P oa dABC 4 ~.
22 DpﬁGﬂyD“ﬂG"”GWF{m - DG GG B
23 D/'ﬂG””DaﬂGWGG”FM - 7
24 DG,y D" 1, GP G, o, - ABC eDr GG Gr B
25 Dy, G"D,*G,,G"F,, + dapc
6
26 Daﬁr G;wDD/fr Gre Gﬂp Fe, 4 Fane DOGHY GHY GHY BHY
27 D /}T?ﬂb Dya[ir Gro g/’/‘ F{m + " 105
apt (2 — 10
28 Dr* G Dy G,,G, F 5 dapc DS G G v g Erey
29 DGR D15, G, G F° - ;
30 8’“”’”D”’7G/,HDT{,,",G“ﬂGﬂ”Fn, - ABC eDOGH G GH BHY
30 (p=,60D'Dp,,,G,, DG F
a ne = vp B H D8 Gyv G/w GyuB/w
32 (Drﬂ GﬂbDﬂDatﬂﬂGW,) Dﬂ Gp”Faﬂ + »
13 op ~ _ 16 Sagc 8 (gt s gt }g?z
(Dp(l‘[ﬂ' G/IUD DT”GUp) DﬁGﬂo-Fo-(I D G G G B TeV
(—)5 — v v v v
34 £Hpo (DmnGpaD DﬂnGaﬂ)Dm’eGﬁ”FW eD8GH GHY GHY BF
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TABLE XX. Primary dimension-eight and -ten operators for the gggg interaction. G;‘}D’s are contacted with trace
factors, where Tr(T2)Tr(T?) represents Tr(TATE)Tr(TCTP), and Tr(T*) represents Tr(TATETCTP).

i 0y CP do  SUQ)trace  SMEFT operator form ¢ Unitarity bound
1 GGt G GP, +
Auv (3Bpo (~C D
2 GGG, Gy, + Tr(T?)Tr(T?)
3 G*GE, G GP,, + G G GHY G
4 GA;wGB/mGCW)GD(w +
5 GA””GB””GC”DGD/,G + 8 Tr(T4) EO41
6 G Gh,,GC,,GPr +
~B o _ 2 2
7 G*GP, G GP, Tr(T%)Tr(T?)
Auv (3Bpo (3C (3D — G GHrGr G
8 q wGoeGt,,G" Tr(T4)
9 GAMLGBDPGC/MGDU” —
10 p*G*D,G8,G"GP,, +
1t p*G*p,G"%°G¢,,G",, +
12 Dp*G*D,G?,GGP,, + Tr(T?)Tr(T?)
a YAuv po (2C
13 p*G"D,G*°G,,G",, +
14 <GA;(DD{ZGBPG> DaGC/wGDpG + DZG[JDGMDG/AI/G/H/
15 DGAGBrop G uw GP o +
16 p*G*G*,D,G,,G"" + .
17 A 1y (Cpo B (D + 10 Tr(T) e
(G DG )D(ZG WGP Ey
18 D,G*D,G?,G?,GP™ +
19 DaGA/wDaGBHb GCpoGDlm — Tr(TZ)Tr(TZ)
a w G . — D2 (Gl € Cug GMU
20 DUGMGED,GE, G Tr(T*)
21 DaGA;w GBW,DU,GC/)GGD o —
22 glwpaDrGApaGBa/jDo'GC/}ﬂGDﬂ/ - TI‘(TZ )Tr(TZ)
_ 8D2 GHY GHY GHY GHY
23 gwoDG,,GPD,GC,GP,, - Tr(T4)
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TABLE XXI.

Primary dimension-12, -14, and -16 operators for the gggg interaction. There are two redundancies that appear at

dimension 14 and four at dimension 16. To form a set of independent operators, the operators and descendants x"y™ 099, x"y™ O,
X"y O xnym O, xrym O, xym 0999, with x = s> + 1> + u?, y = stu, n > 0, and m > 1, should be omitted.

i O CP  dp, SUQ3) trace SMEFT operator form ¢ Unitarity bound
24 (6*D"6",,) Doy GHGP,, +
25 Amxeaﬂ Bpa) C D +
(645" GP7) DG, GO, TH(T?)Te(T?)
26 (GAnyaﬁGBW)Da/}GCﬂaGD(m +
27 (DﬁGAm,B"DﬁGBpg) DaGCubGDpo- +
28 (GA”DBaﬂGCW) Da/;GB/mGD/m_ + D4G/u/G;wGubG/w
29 <af +
(GA/H/D GC,,”)D(Z/;GBW,GD'DG
30 (D/GYD"DyG) D, 6", 6P, * Tr(T*)
31 D,;G*D,G8, ,DP G ,GPoe + 12 4x107*
32 <P + Efoy
(DaGA;wD GCpﬂ) DGﬁGBWGDaa
33 D,,G™ DG ,,G G +
34 (GAﬂyBaﬁGB,w) DaﬂGCngDp{; - TI‘(TZ)TI"(TZ)
35 aw B e . - D*G" GGG
(G o HG,, "”)D”"Ggp GOpr Tr(T*)
36 (DﬂaGAﬂl/D GC’M) DﬁGBW,GD(m -
37 EuupﬁDmGAﬂaD”GBaﬁDcGCﬁ” GDru — TI‘(TZ)TI"(Tz)
38 o D=GA GBI D, GC 5, GP,, - , eD* GGG G
o — Tr(T
39 ghvpo (DTGA/MD D,)-GC/;”) D,,GBaﬂGDTV 1'( )
<afit
40 (GA/wD ! GB/’G> D GC,, G,y + Te(7?)Te(7?)
H (6*D™ G Dy G?u G, -
< fr 1yall v
42 (DGGAHDD/ GC'D#) DOﬁTGBZ,pGDGa + Tr(T4) DOGH GHY GHY G
43 (DaTGA”UBﬁDTGCp”>DUﬁGBD/)GDD-a +
(06w D D,GP, ) Dy G, GO T B
45 (D/;aTGA;wBﬂD‘rGC”G) DﬂGBDpGDJa - TI'(T4) D6G’"/G”DG”DG/’D
46 £hpo (DrGAmB””GB(,ﬁ) D,;;mGC/inDw - Tr(TZ)Tr(TZ)
47 Hpo (DTGApaB””DaGCﬂy) D””GBaﬂGDn - , 8D4G;wG;usz/G;w
on Tr(T%)
48 ghvro (D’”GA,,,,D D(mGCﬁﬂ) D”GBrzﬂGDn -
< frr I
49 (DaGA;wD/ GCp#) D(,/;T,,GBW,GDCW + DgG’wGWG’DG’w .
50 o pen _ 16 Tr(7*) i 10;
(D/)aGA;wD Gc;w) Dﬂ‘mGBDp GD(m DS GH GHY GHY GHY TeV
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A1 C,3

B,?2 D, 4
FIG. 1. Four-gluon interaction. Labels correspond to color
indices, momenta, and polarization and we consider the process
(A, 1)+ (B,2) - (C,3) + (D, 4).

Next, we look at Z — ygg and Z — ggg decays. The
branching ratios are predicted to be ~4.9 x 1070 [34,42,43]
and ~1.8 x 1075 [34,35,42,43], respectively. Since our uni-
tarity bound estimates are the same for Z — (yyy,v99, 999),
even if we optimistically assume that there is only the
irreducible background from the Standard Model predic-
tion and that unitarity is violated at a TeV, we find that there
is at most a 2¢ fluctuation for the HL-LHC run for the
dimension-eight interactions. Since these would be likely to
have substantial reducible backgrounds, this shows that
these are unlikely to be observable. Such a conclusion was
also reached in [34], which showed that measuring the
associated gg — Zg interaction at a hadron collider was
“rather remote” due to there being too much background,
particularly from qg — Zg, qg — Zq, and gg — Zg proc-
esses. They also concluded that attempts at measuring the
coupling from observations of the Z — ggg process at a
lepton collider would suffer too greatly from Z — ggg
background.

VII. CONCLUSIONS

This paper has determined the allowed on-shell ampli-
tudes for four-point interactions of gauge bosons in the
Standard Model. Following [6,7], this has completed
the analysis of all three- and four-point interactions for
the Standard Model content. For certain couplings, this

required studying Lagrangian operators up to mass dimen-
sion 16, which demonstrates the efficacy of the numerical
approach used in these papers.

The characterization of these amplitudes holds the
promise of allowing the most general model-independent
collider searches by studying the interactions of Standard
Model particles. They also serve as a useful intermediary
between experimental and theoretical analyses since, in
comparison to EFT operators, they are interpretable and do
not suffer from basis ambiguities. As an illustration of
phenomenological study, we investigated the potential for
discovering new physics in Z decays. In these estimates, we
showed that Z — y£7 is of interest at the HL-LHC, but
other modes like Z — yyy would require unitarity violation
well below a TeV, which are likely in violation of direct
search constraints.

Moving forward, it will be useful to perform realistic
phenomenological studies at the HL-LHC and future
colliders. Another direction is to use the Mandelstam
descendants as a model for theoretical uncertainties.
Finally, the utilization of on-shell amplitudes in realistic
analyses will undoubtedly require solutions to practical
challenges along the way. We and our collaborators are
currently exploring such questions and hope that this work
has motivated others to do the same.

Note added. Recently, an updated reference [44] for the
Standard Model predictions for the Z branching ratios to
massless gauge bosons was brought to our attention. These
new results do not affect our conclusions.

ACKNOWLEDGMENTS

We would like to thank M. Luty for useful discussions.
The work of C.A. and S.C. was supported in part by
the U.S. Department of Energy under Award No. DE-
SC0011640.

[1] Y. Shadmi and Y. Weiss, Effective field theory amplitudes
the on-shell way: Scalar and vector couplings to gluons,
J. High Energy Phys. 02 (2019) 165.

[2] G. Durieux, T. Kitahara, Y. Shadmi, and Y. Weiss, The
electroweak effective field theory from on-shell amplitudes,
J. High Energy Phys. 01 (2020) 119.

[3] G. Durieux, T. Kitahara, C. S. Machado, Y. Shadmi, and Y.
Weiss, Constructing massive on-shell contact terms, J. High
Energy Phys. 12 (2020) 175.

[4] Z.-Y. Dong, T. Ma, J. Shu, and Z.-Z. Zhou, The new
formulation of Higgs effective field theory, J. High Energy
Phys. 09 (2023) 101.

[5] H. Liu, T. Ma, Y. Shadmi, and M. Waterbury, An EFT
hunter’s guide to two-to-two scattering: HEFT and
SMEFT on-shell amplitudes, J. High Energy Phys. 05
(2023) 241.

[6] S. Chang, M. Chen, D. Liu, and M. A. Luty, Primary
observables for indirect searches at colliders, J. High Energy
Phys. 07 (2023) 030.

[7] L. Bradshaw and S. Chang, Primary observables for top
quark collider signals, Phys. Rev. D 108 (2023).

[8] W. Buchmuller and D. Wyler, Effective Lagrangian analysis
of new interactions and flavor conservation, Nucl. Phys.
B268, 621 (1986).

075046-27


https://doi.org/10.1007/JHEP02(2019)165
https://doi.org/10.1007/JHEP01(2020)119
https://doi.org/10.1007/JHEP12(2020)175
https://doi.org/10.1007/JHEP12(2020)175
https://doi.org/10.1007/JHEP09(2023)101
https://doi.org/10.1007/JHEP09(2023)101
https://doi.org/10.1007/JHEP05(2023)241
https://doi.org/10.1007/JHEP05(2023)241
https://doi.org/10.1007/JHEP07(2023)030
https://doi.org/10.1007/JHEP07(2023)030
https://doi.org/10.1103/PhysRevD.108.015019
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/0550-3213(86)90262-2

ARZATE, CHANG, and JACOBO

PHYS. REV. D 109, 075046 (2024)

[9] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
Dimension-six terms in the standard model Lagrangian,
J. High Energy Phys. 10 (2010) 085.

[10] F. Feruglio, The chiral approach to the electroweak inter-
actions, Int. J. Mod. Phys. A 08, 4937 (1993).

[11] S. Chang, M. Chen, D. Liu, and M. A. Luty, Primary
observables for indirect searches at colliders, J. High Energy
Phys. 07 (2023) 030.

[12] For processes with identical particles, these Mandelstam
factors must be invariant under the relevant crossing
symmetries, as we will discuss later.

[13] In some cases, there can be inverse factors of E, , , which
we can get rid of by taking the power n to be large enough.

[14] L. Lehman and A. Martin, Hilbert series for constructing
Lagrangians: Expanding the phenomenologist’s toolbox,
Phys. Rev. D 91 (2015).

[15] B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert
series and operator bases with derivatives in effective field
theories, Commun. Math. Phys. 347, 363 (2015).

[16] L. Lehman and A. Martin, Low-derivative operators of the
standard model effective field theory via Hilbert series
methods, J. High Energy Phys. 02 (2016) 081.

[17] B. Henning, X. Lu, T. Melia, and H. Murayama, 2, 84, 30,
993, 560, 15456, 11962, 261485, ...: Higher dimension
operators in the SM EFT, J. High Energy Phys. 08 (2017)
016; 09 (2019) 19(E).

[18] B. Henning, X. Lu, T. Melia, and H. Murayama, Operator
bases, s-matrices, and their partition functions, J. High
Energy Phys. 10 (2017) 199.

[19] L. Graf, B. Henning, X. Lu, T. Melia, and H. Murayama, 2,
12, 117, 1959, 45171, 1170086, ...: A Hilbert series for
the QCD chiral Lagrangian, J. High Energy Phys. 01
(2021) 142.

[20] L. Graf, B. Henning, X. Lu, T. Melia, and H. Murayama,
Hilbert series, the Higgs mechanism, and HEFT, J. High
Energy Phys. 02 (2023) 064.

[21] B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert
series and operator bases with derivatives in effective field
theories, Commun. Math. Phys. 347, 363 (2016).

[22] J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, Derivation
of gauge invariance from high-energy unitarity bounds on
the s matrix, Phys. Rev. D 10, 1145 (1974).

[23] D. Liu and Z. Yin, Gauge invariance from on-shell massive
amplitudes and tree-level unitarity, Phys. Rev. D 106,
076003 (2022).

[24] S. Chang and M. A. Luty, The Higgs trilinear coupling
and the scale of new physics, J. High Energy Phys. 03
(2020) 140.

[25] F. Abu-Ajamieh, S. Chang, M. Chen, and M. A. Luty, Higgs
coupling measurements and the scale of new physics,
J. High Energy Phys. 07 (2021) 056.

[26] F. Abu-Ajamieh, The scale of new physics from the
Higgs couplings to yy and yz, J. High Energy Phys. 06
(2022) 091.

[27] A. Falkowski and R. Rattazzi, Which EFT, J. High Energy
Phys. 10 (2019) 255.

[28] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP
Electroweak Working Group, SLD Electroweak Group,
SLD Heavy Flavour Group Collaborations), Precision
electroweak measurements on the Z resonance, Phys.
Rep. 427, 257 (2006).

[29] R. S. Gupta, A. Pomarol, and F. Riva, BSM primary effects,
Phys. Rev. D 91, 035001 (2015).

[30] M. Baillargeon and F. Boudjema, Contribution of the
bosonic loops to the three-photon decay of the z, Phys.
Lett. B 272, 158 (1991).

[31] F.-x. Dong, X.-d. Jiang, and X.-j. Zhou, Partial decay width
of the z into three photons via w loops, Phys. Rev. D 46,
5074 (1992).

[32] M.-Z. Yang and X.-J. Zhou, The decay of the Z boson into
three photons via W boson loops, Phys. Rev. D 52, 5018
(1995).

[33] M.L. Laursen, K.O. Mikaelian, and M. A. Samuel, Z°
decay into three gluons, Phys. Rev. D 23, 2795 (1981).

[34] J.J. Van der Bij and E. W. N. Glover, Z boson production
and decay via gluons, Nucl. Phys. B313, 237 (1989).

[35] W. Bernreuther, M. J. Duncan, and E. W. N. Glover, Rare Z
decays, https://cds.cern.ch/record/199833.

[36] Z Physics at LEP-1. Workshop, edited by G. Altarelli, R.
Kleiss, and C. Verzegnassi, Standard Physics, CERN Yellow
Reports: Conference Proceedings, (CERN, Geneva, 1989),
Vol. 1, 10.5170/CERN-1989-008-V-1.

[37] E. W.N. Glover and A.G. Morgan, Z boson decay into
photons, Z. Phys. C 60, 175 (1993).

[38] See [45] for a study of effective Lagrangians for the Zyyy
interaction and [46] for a study where the decay is mediated
by a scalar loop in a two Higgs doublet model using a
minimally supersymmetric Standard Model.

[39] G. Aad et al. (ATLAS Collaboration), Search for new
phenomena in events with at least three photons collected
in pp collisions at /s = 8 TeV with the ATLAS detector,
Eur. Phys. J. C 76, 210 (2016).

[40] O. Briining and L. Rossi, The high-luminosity Large
Hadron Collider, Nat. Rev. Phys. 1, 241 (2019).

[41] G. Arduini, R. Bruce, R. De Maria, M. Giovannozzi, G.
Tadarola, J. Jowett, E. Métral, Y. Papaphilippou, and R.
Tomas Garcia, Machine layout and performance, CERN
Yellow Reports: Monographs (2020), https://e-publishing
.cern.ch/index.php/CYRM/article/view/1154.

[42] M. L. Laursen, M. A. Samuel, G. B. Tupper, and A. Sen, 70
decay into two gluons and a photon for massive quarks,
Phys. Rev. D 27, 196 (1983).

[43] M. A. Pérez, G. Tavares-Velasco, and J.J. Toscano, New
physics effects in rare Z decays, Int. J. Mod. Phys. A 19, 159
(2004).

[44] D. d’Enterria and V. Dung Le, Rare and exclusive few-body
decays of the Higgs, Z, W bosons, and the top quark,
arXiv:2312.11211.

[45] M. Stohr and J. Hotejsi, Effective Lagrangians for z boson
decay into photons, Phys. Rev. D 49, 3775 (1994).

[46] H. Konig, Contribution of scalar loops to the three-photon
decay of the z, Phys. Rev. D 50, 602 (1994).

075046-28


https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1142/S0217751X93001946
https://doi.org/10.1007/JHEP07(2023)030
https://doi.org/10.1007/JHEP07(2023)030
https://doi.org/10.1103/PhysRevD.91.105014
https://doi.org/10.1007/s00220-015-2518-2
https://doi.org/10.1007/JHEP02(2016)081
https://doi.org/10.1007/JHEP08(2017)016
https://doi.org/10.1007/JHEP08(2017)016
https://doi.org/10.1007/JHEP09(2019)019
https://doi.org/10.1007/JHEP10(2017)199
https://doi.org/10.1007/JHEP10(2017)199
https://doi.org/10.1007/JHEP01(2021)142
https://doi.org/10.1007/JHEP01(2021)142
https://doi.org/10.1007/JHEP02(2023)064
https://doi.org/10.1007/JHEP02(2023)064
https://doi.org/10.1007/s00220-015-2518-2
https://doi.org/10.1103/PhysRevD.10.1145
https://doi.org/10.1103/PhysRevD.106.076003
https://doi.org/10.1103/PhysRevD.106.076003
https://doi.org/10.1007/JHEP03(2020)140
https://doi.org/10.1007/JHEP03(2020)140
https://doi.org/10.1007/JHEP07(2021)056
https://doi.org/10.1007/JHEP06(2022)091
https://doi.org/10.1007/JHEP06(2022)091
https://doi.org/10.1007/JHEP10(2019)255
https://doi.org/10.1007/JHEP10(2019)255
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1103/PhysRevD.91.035001
https://doi.org/10.1016/0370-2693(91)91029-U
https://doi.org/10.1016/0370-2693(91)91029-U
https://doi.org/10.1103/PhysRevD.46.5074
https://doi.org/10.1103/PhysRevD.46.5074
https://doi.org/10.1103/PhysRevD.52.5018
https://doi.org/10.1103/PhysRevD.52.5018
https://doi.org/10.1103/PhysRevD.23.2795
https://doi.org/10.1016/0550-3213(89)90317-9
https://cds.cern.ch/record/199833
https://cds.cern.ch/record/199833
https://cds.cern.ch/record/199833
https://doi.org/10.5170/CERN-1989-008-V-1
https://doi.org/10.1007/BF01650444
https://doi.org/10.1140/epjc/s10052-016-4034-8
https://doi.org/10.1038/s42254-019-0050-6
https://e-publishing.cern.ch/index.php/CYRM/article/view/1154
https://e-publishing.cern.ch/index.php/CYRM/article/view/1154
https://e-publishing.cern.ch/index.php/CYRM/article/view/1154
https://e-publishing.cern.ch/index.php/CYRM/article/view/1154
https://doi.org/10.1103/PhysRevD.27.196
https://doi.org/10.1142/S0217751X04017100
https://doi.org/10.1142/S0217751X04017100
https://arXiv.org/abs/2312.11211
https://doi.org/10.1103/PhysRevD.49.3775
https://doi.org/10.1103/PhysRevD.50.602

