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The predictivity of many nonthermal dark matter (DM) models is marred by the gravitational production
background. Nevertheless, if the reheating temperature TR is low, the gravitationally produced relics can be
diluted. We study the freeze-in dark matter production mechanism at temperatures below the dark matter
mass. In this case, the coupling to the thermal bath has to be significant to account for the observed dark
matter relic density. As a result, the direct DM detection experiments already probe such freeze-in models,
excluding significant parts of parameter space.
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I. INTRODUCTION

The nature of dark matter is one of the most puzzling
questions in modern physics. While the weakly interacting
massive particle (WIMP) paradigm may potentially explain
the magnitude of the DM relic density, it has come under
pressure from ever-improving direct DM detection experi-
ments [1]. Although certain classes of WIMP models
remain viable [2], one is motivated to explore alternatives.
An interesting possibility is known as the “freeze-in”
mechanism [3–5], in which case dark matter abundance
builds up gradually due to its very weak coupling to the
Standard Model (SM) thermal bath, while DM itself
remains nonthermal. The main challenges for this frame-
work are (1) it is very difficult to test due to the small
couplings, and (2) it assumes zero initial DM abundance,
which is a strong assumption in a world with gravity.
Concerning the second point, particles are efficiently
produced by classical and quantum gravitational inter-
actions during and immediately after inflation, when the

relevant energy scales are not far from the Planck scale.
This creates an important background for nonthermal dark
matter studies [6].
In our current work, we suggest how both of these

problems could be addressed in a straightforward manner,
at least in part of the parameter space. The reheating
temperature of the Universe, TR, can be quite low, which
dilutes the gravitationally produced relics. In this case, the
dark matter mass may easily be above TR such that DM
production is Boltzmann-suppressed and necessitates larger
couplings, up toOð1Þ, without thermalizing the dark sector.
This opens up the possibility of direct detection of freeze-in
dark matter, even in the simplest setups.

II. MOTIVATION: GRAVITATIONAL
PRODUCTION BACKGROUND

Typical models of nonthermal dark matter suffer from
the problem of gravitational particle production back-
ground [6]. Feebly coupled particles are abundantly pro-
duced by gravity during and immediately after inflation,
thereby affecting their eventual density. To give an exam-
ple, consider a feebly interacting scalar s of mass ms
minimally coupled to gravity in an expanding universe (see,
e.g., [7]). As long as its mass is below the Hubble rate H,
the field experiences quantum fluctuations. Depending on
the size of the self-coupling λs, these fluctuations reach an
equilibrium value according to the Starobinsky-Yokoyama
distribution [8]. At the end of inflation, they can be
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interpreted as a condensate of the long wavelength modes,
which can subsequently be converted into the particle
number density using simple scaling arguments [9,10].
Since the interactions of the scalar are feeble, it does not
thermalize and the total particle number is conserved at late
times. When it becomes nonrelativistic, s can contribute
significantly to the Universe’s energy density.
The resulting abundance of s-relics is typically very large

for standard large-field inflation models [6]. Since the relics
are relativistic at the end of inflation, their energy density
can be “diluted” if the Universe expands as nonrelativistic
matter for a long enough period. This is the case, for
example, when the energy density is dominated by the
inflaton ϕ oscillating in a quadratic potential 1

2
m2

ϕϕ
2 and

having very small couplings to other fields. Since the
inflaton decays at late times, e.g., via its small Higgs
coupling ϕH†H, the resulting reheating temperature is low,
possibly in the GeV range.
The consequent constraint on cosmological models is best

formulated in terms of the relic abundance of the s-particles,

Y ¼ n
sSM

; sSM ¼ 2π2g�
45

T3; ð1Þ

where g� is the number of degrees of freedom in the SMandn
is the number density of the s-quanta. The observational
constraint on the dark matter abundance is Yobs ¼ 4.4 ×

10−10 ðGeVms
Þ [11]. Requiring the s-relic abundance not to

exceed that of dark matter, the constraint on the duration of
the nonrelativistic expansion period reads [6],1

ΔNR ≳ 107λ−3=4s

�
Hend

MPl

�
3=2

�
ms

GeV

�
; ð2Þ

where λs is the self-coupling (ΔV ¼ 1
4
λss4), Hend is the

Hubble rate at the end of inflation and the “dilution” factor
ΔNR characterizes the duration of the nonrelativistic expan-
sion period,

ΔNR ≡
�
Hend

Hreh

�
1=2

≃
T inst

TR
: ð3Þ

Here the Hubble rate scales as a−3=2 after inflation until
reheating occurs, at which point it is given by Hreh. The
dilution factor can also bewritten as the ratio of the reheating
temperature in case of instant reheating, T inst, and the actual
reheating temperature, TR. Clearly, this factor can be very
large, reaching 1018 in the extreme case of a 4MeV reheating
temperature [12]. To illustrate the strength of this constraint,

let us take Hend ∼ 1014 GeV characteristic of large field
inflation models. In this case, the scalar masses only far
below a GeV are allowed for ΔNR ∼ 1. Therefore, a long
enough nonrelativistic expansion period is required to allow
for stable relics with masses above 1 GeV.
Gravitational particle production continues during the

inflaton oscillation epoch, albeit via a different mechanism.
Inflaton oscillations induce an oscillating component in the
scale factor aðtÞ, which results in particle production [13].
More importantly, quantum gravitational effects are
expected to induce all gauge invariant operators including
Planck-suppressed couplings between the inflaton ϕ and
dark matter [14], e.g.,

C
ϕ4s2

M2
Pl

; ð4Þ

where C is a Wilson coefficient. After inflation, ϕ under-
goes coherent oscillations, which leads to efficient particle
production. At weak coupling, the production is nonreso-
nant and can be computed perturbatively [15–17], which
yields the constraint [6],

ΔNR ≳ 106C2
ϕ8
0

H5=2
endM

11=2
Pl

ms

GeV
; ð5Þ

where ϕ0 is the inflaton field value at the end of inflation.
Takingϕ0 ∼MPl andHend ∼ 1014 GeV, we get a very strong
bound ΔNR ≳ 1017C2 ms

GeV. Unless the quantum gravity
effects are well under control and C ≪ 1, ΔNR is required
to be extremely large for the GeV scale DM masses.2

The corresponding reheating temperature would have to
be very low, down to the GeV range. Such a low-scale
reheating can be achieved with a very small inflaton-Higgs
coupling σϕhϕH†H, which yields TR ∼ σϕh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPl=mϕ

p
.

These considerations apply more generally to dark
matter with significant couplings, which however does
not thermalize. If the number density of the quanta
produced at high energy is low, their interaction rate would
be below the Hubble scale. In this case, the system would
never thermalize despite significant couplings.

III. BOLTZMANN-SUPPRESSED FREEZE-IN

There is no observational evidence that the temperature
of the SM thermal bath has ever been very high. In fact, the
reheating temperature could be as low as 4 MeV [12]. This
motivates us to study the possibility that the dark matter
mass is significantly above the reheating temperature. In
this case, DM never thermalizes and can be produced via

1This assumes that the scalar field reaches the Starobinsky-
Yokoyama distribution [8] during the de Sitter phase. Relaxing
this assumption makes the bound somewhat weaker, without
affecting any of the conclusions [6].

2Depending on the inflaton mass and C, the ϕ4s2 interaction
can also lead to resonant DM production and important collective
effects, which have been studied with the help of lattice
simulations in [14].
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freeze-in. Since its production rate is Boltzmann-sup-
pressed, the coupling to the SM thermal bath can be
substantial, which opens up prospects for direct detection
of frozen-in dark matter. In what follows, we illustrate this
statement with a simple model using the instant reheating
approximation, which is adequate when the maximal and
reheating temperatures are close (see the Appendix for
justification).
Consider real scalar dark matter s of mass ms which

couples to the SM fields via the Higgs portal [18,19],

VðsÞ ¼ 1

2
λhss2H†H þ 1

2
m2

ss2: ð6Þ

Suppose that the initial abundance of dark matter before
reheating is negligible, while the reheating temperature is
much lower than ms. In this case, s is produced via
scattering of energetic SM quanta, although the process
is Boltzmann suppressed.
The leading production process is the Higgs and vector

boson pair annihilation into the scalars. Forms ≫ mh, these
modes can be accounted for by using four Higgs degrees of
freedom in accordance with the Goldstone equivalence
theorem. The DM number density n is found via the
Boltzmann equation,

ṅþ 3Hn ¼ Γðhihi → ssÞ − Γðss → hihiÞ; ð7Þ

where Γ is the reaction rate per unit volume and i ¼ 1;…; 4
labels the Higgs field components. At very weak coupling,
the inverse reaction rate is negligible, however in general it
can be significant.
If the temperature of the SM bath T is far below ms, only

the particles at the Boltzmann tail, E=T ≫ 1, have enough
energy for DM pair production. Therefore, the effects of
quantum statistics [20,21] can safely be neglected. The
hihi → ss reaction rate is given by [22]

Γðhihi → ssÞ ¼ hσðhihi → ssÞvrin2h
¼ 1

ð2πÞ6
Z

σvre−E1=Te−E2=Td3p1d3p2

¼ 2π2

ð2πÞ6
Z

∞

4m2
s

ds σðs − 4m2
hÞ

ffiffi
s

p
K1

� ffiffi
s

p
T

�
;

ð8Þ

where σ is the hihi → ss cross section, vr is the relative
velocity of the colliding quanta with energies E1, E2 and
momenta p1, p2, nh is the Higgs boson number density;
h…i denotes a thermal average, s is the Mandelstam
variable, and K1ðxÞ is the modified Bessel function of
the first kind. The cross section is

σ ¼ 4 ×
λ2hs
32πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

h

p ; ð9Þ

where we have included the Higgs multiplicity factor 4
directly in σ. At the threshold s ¼ 4m2

s , the cross section
vanishes. Therefore, the integrand peaks just above s ¼
4m2

s due to the Boltzmann suppression. At z ¼ ffiffiffi
s

p
=T ≫ 1,

we may approximate K1ðzÞ ≃
ffiffiffiffi
π
2z

p
e−z. Then, the fast

varying functions in the integrand are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

p
and

e−
ffiffi
s

p
=T , while the other factors can be approximated by

constants, setting s ¼ 4m2
s . The resulting integral reduces

to the Gamma function Γð3=2Þ and for m2
s ≫ m2

h we get

Γðhihi → ssÞ ≃ λ2hsT
3ms

27π4
e−2ms=T; ð10Þ

for four Higgs degrees of freedom (d.o.f.). The reaction rate
drops exponentially with temperature, as expected.
Let us assume for now that the coupling is weak enough

and the inverse reaction ss → hihi is unimportant. In this
case, the Boltzmann equation can easily be solved. Let us
write it in the form,

d
dT

n
T3

¼ −
Γðhihi → ssÞ

HT4
; ð11Þ

which assumes that the number of degrees of freedom in the
SM stays approximately constant at relevant energies, so
that a3T3 ¼ const and dt ¼ −dT=ðHTÞ. Given that

H ¼
ffiffiffiffiffiffiffi
π2g�
90

q
T2

MPl
, the Boltzmann equation can be integrated

analytically in terms of elementary functions. Starting with
zero DM density at TR, the eventual DM abundance Y ¼
n=sSM is found to be

Y ¼
ffiffiffiffiffi
90

p
45

29π7g3=2�

λ2hsMPl

TR
e−2ms=TR; ð12Þ

with four effective Higgs d.o.f. Imposing the constraint
Yobs ¼ 4.4 × 10−10 ðGeVms

Þ, we obtain

λhs ≃ 3 × 10−11ems=TR

ffiffiffiffiffiffi
TR

ms

s
; ð13Þ

where we have taken g� ≃ 107. We observe that the
required coupling is a function of the ratio ms=TR and
the smallness of the prefactor in (13) can easily be
compensated by ems=TR. Thus, order one couplings are
allowed by this mechanism. Clearly, the result also applies
to high reheating temperatures as long as DM production is
Boltzmann-suppressed. In contrast, the coupling required
by the conventional freeze-in production is in the range of
10−11 [23]. If TR ≳ms, we recover this result.
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An important ingredient in our analysis is the assumption
of Higgs thermalization. It is certainly satisfied at the GeV
scale and above, mainly due to the reaction b̄b → h whose
rate is above the Hubble scale, Γðb̄b → hÞ > 3Hnh. We
also note that reactions of the type b̄b → ss do not
contribute significantly to DM production. The reason is
that, although b-quarks are more abundant than the
Higgses, only particles at the Boltzmann tail E=T ≫ 1
contribute (see Eq. (8), exactly as in the Higgs case. Since
there is an additional Yukawa coupling and ðvEW=msÞ2
suppression compared to the Higgs reaction, such proc-
esses are unimportant.
Finally, the hihi → ss contribution at second order in λhs

is suppressed by the factor λhsðvEW=msÞ2, which makes it
insignificant in the region of interest. Analogously, the s-
channel Higgs exchange contribution is suppressed by
λhv2=m2

s . Our full numerical analysis shows that the above
approximation is adequate for m2

s ≫ m2
h.

IV. DARK MATTER ANNIHILATION EFFECT

The hihi → ss reaction is efficient only for a short
period, after which its rate drops exponentially. During
this period, it populates the dark sector. Depending on the
coupling, the density of dark matter can be high enough to
enable its annihilation in the SM states. Let us study the
evolution of DM abundance after the hihi → ss mode has
become inefficient. The s-quanta are nonrelativistic and
their annihilation reaction rate is given by

Γðss → hihiÞ ¼ σðss → hihiÞvr n2;

σðss → hihiÞvr ¼ 4 ×
λ2hs

64πm2
s
; ð14Þ

for m2
s ≫ m2

h and four Higgs d.o.f. It is clear that if
annihilation is efficient initially, n drops quickly and the
reaction stops. At late times, Γðss → hihiÞ ∝ n2 ∝ T6 is
below Hn ∝ T5, and this reaction can be neglected in the
Boltzmann equation.
Let us estimate the effect analytically. Equation (11) in

our regime can be written as

d
dT

n
T3

¼ α

�
n
T3

�
2

; ð15Þ

where the constant α≡
ffiffiffiffiffiffiffi
π2g�
90

q
σðss→hihiÞvr=MPl. Defining

T� as the temperature at which DM production stops, we
integrate this equation from T� to 0 and obtain the final
abundance,

Y ¼ YðT�Þ
1þ βYðT�Þ

; ð16Þ

where β ¼ 6.5 × 10−3g1=2� λ2hs
MPlT�
m2

s
. If βYðT�Þ ∼ 1, the anni-

hilation effect is important. As λhs grows, both β and YðT�Þ
increase, leading to an upper bound on the DM abundance,

Y ≲ 1

β
; ð17Þ

at large λhs. Beyond some critical coupling, the abundance
does not grow. A rough estimate of this coupling can be
obtained by approximating YðT�Þ with the expression (12)

and T� ∼ TR, in which case λhs ∼ 90 ×
ffiffiffiffiffiffi
ms
MPl

q
ems=ð2TRÞ for

g� ≃ 107. For example, atTR ∼ 10 GeV andms ∼ 200 GeV,
the limiting coupling is of order10−1. Increasing the coupling
beyond this value does not lead to a solution of Y ¼ Yobs.
This is a feature of the Boltzmann equation of the type
y0ðxÞ ¼ −ae−b=x=x3 þ cy2, witha,b, c > 0 anda ∝ c as the
coupling grows.
One may wonder whether significant hihi → ss and

ss → hihi rates lead to thermalization of dark matter.
However, below the critical λhs, this is not the case since
these reactions are active at different times and

Γðhihi → ssÞ ≠ Γðss → hihiÞ ð18Þ

apart from one point T�. Below T�, only the annihilation
mode is active and YðTÞ evolves according to (15). Thus,
darkmatter never equilibrateswith the SM thermal bath. This
can also be shownby comparing the numerical solutionYðTÞ
to the corresponding equilibrium value YeqðTÞ.
This is illustrated in Fig. 1, which shows evolution of the

reaction rates (per unit volume) and 3Hn. The chosen
parameters lead to the correct DM relic abundance. We
observe that the DM production mode is active only for a
short period ΔT corresponding to a few percent of TR and
its efficiency drops exponentially. In the top panel, the
effect of DM annihilation is never significant, whereas in
the bottom panel, the annihilation mode is important for an
extended period and the resulting abundance is close to the
maximal possible value at given TR andms. We note that in
the temperature range where nontrivial dynamics take
place, the number of the SM degrees of freedom remains
nearly constant such that our approximation is adequate.
In the vicinity of the critical coupling, the solution to

Y ¼ Yobs develops a second branch with lower masses,
which exhibits the scaling,

λhs ∝ ms: ð19Þ

On this branch, Γðhihi → ssÞ ¼ Γðss → hihiÞ for an
extended period of time, and dark matter thermalizes.
The relic abundance becomes independent of TR and is
fully controlled by the annihilation cross-section, which
leads to the above relation (see, e.g., [24]).
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V. CONSTRAINTS

The main constraint on the model is due to the direct
detection bounds, as is common to Higgs portal models
(see a review in [24]). The DM scattering on nucleons is
mediated by the Higgs, with the cross section being

σsN ≃
λ2hsf

2
N

4π

m4
N

m4
hm

2
s
; ð20Þ

where fN ≃ 0.3 andmN ≃ 1 GeV. The latest direct detection
bound is due to Lux-Zeplin (LZ) 2022 [1]. For instance, at
ms ¼ 100 GeV, theLZ bound is as strong as 3 × 10−47 cm2,
which constrains the coupling at the level of 10−2.
The LHC and indirect detection bounds are superseded

by the direct detection constraints in the region of interest
[24]. Finally, DM is cold such that there are no significant
structure formation constraints. Figure 2 displays the most
interesting region of parameter space of the model for
electroweak scale reheating temperatures (TR ≳ 10 GeV).
Along the curves, the correct DM relic density is repro-
duced for a fixed TR. These results are obtained by solving
numerically the full Boltzmann equation (7). We observe
that at lower couplings, the curves follow the pure freeze-
in scaling law (13), while for larger couplings and lower
masses, a second branch (19) develops due to DM

thermalization. The latter corresponds to frozen-out dark
matter.
The shaded area is excluded by the direct detection

constraint. We see that LZ 2022 is already sensitive to
freeze-in DM masses up to 2–3 TeV. Forthcoming experi-
ments such as XENONnT [25] and DARWIN [26] will be
able to probe much of the area above the “ν fog” line, which
represents the neutrino background. Unlike in the standard
WIMP case, the entire parameter space below the exclusion
limit corresponds to viable DM models, and new experi-
ments will continuously probe it. The sensitivity to DM can
be extended beyond the neutrino floor using more sophis-
ticated techniques, e.g., directional detection [27]. Clearly,
the model allows for very small couplings and very large
masses as well, yet such regions would be very difficult to
probe, if possible at all.
Finally, let us note that certain freeze-in models with

observable signatures have been built before, although
these are more complicated and involve a nontrivial dark
sector with a specific spectrum [28–31]. The Higgs portal
model at low TR was considered in [32], although it
focused on light DM, which is strongly constrained by the
Higgs invisible decay. In this work, we explore a rather
generic phenomenon of Boltzmann-suppressed freeze-in
dark matter, whose main signature would be a direct
detection signal in the upcoming experiments. This
phenomenon was first observed in the context of spin
3=2 DM [33], where the reheating temperature is required
to be below to avoid overproduction.

VI. CONCLUSION

Gravitational particle production creates a background
for many models of nonthermal dark matter, thereby
impeding their predictivity. This problem can be avoided

FIG. 1. Evolution of the individual terms appearing in the
Boltzmann equation. Top: TR ¼ 10 GeV, ms ¼ 223.5 GeV,
λhs ¼ 0.05. Bottom: TR¼120GeV, ms¼2.81TeV, λhs ¼ 0.82.

FIG. 2. Parameter space of the Higgs portal freeze-in DM
model. Along the curves, the correct DM relic abundance is
reproduced. The curves are marked by the reheating temperature
in GeV, while the purple line corresponds to thermal DM. The
shaded area is excluded by the direct DM detection experiment
LZ 2022. The neutrino background for direct detection is
represented by the dashed line “ν fog”.
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if the reheating temperature TR is relatively low. We study
the simplest example of the Higgs portal dark matter, in
which DM is produced via freeze-in at electroweak scale
temperatures. If its mass scale lies above TR, which we
assume to be close to the maximal temperature, the
production is Boltzmann suppressed and the coupling to
the thermal bath can reach Oð1Þ, as required by the
observed relic abundance. In this case, dark matter remains
nonthermal, while direct detection experiments provide a
sensitive probe of such a freeze-in scenario. In particular,
LZ 2022 already excludes a significant part of parameter
space, while XENONnT and DARWIN will probe lower
couplings, down to the “neutrino floor”. These conclusions
also apply to more general freeze-in models that exhibit
Boltzmann-suppressed DM production.
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APPENDIX: EVOLUTION OF THE STANDARD
MODEL BATH TEMPERATURE

In this work, we have taken a low energy effective
approach to dark matter creation, without specifying its
possible UV completions. The crucial underlying assump-
tions are that the temperature of StandardModel thermal bath
has never been high and that dark matter production can be
computed using instant reheating approximation. The pur-
pose of this appendix is to clarify under what circumstances
this approach is justified.
The evolution of the Standard Model sector temperature

depends on how exactly the SM fields are generated after
inflation. Currently, this aspect of the early Universe
dynamics remains essentially unconstrained and there are
a number of viable options. For example, the SM sector can
be generated directly via its interactions with the inflaton
field ϕ, e.g., by inflaton decay. An equally viable option is
that the inflaton decays predominantly into other species,
for instance, the right handed neutrinos νR, whose decay
subsequently produces the SM fields. Which option is
realized in a particular model depends on the couplings
strength of ϕH†H versus that of ϕνRνR. The SM sector
temperature evolution exhibits qualitatively different
behavior in the two cases: in the former case, it quickly
reaches a high maximum and then decreases, while in the
latter case, it reaches a plateaux and stays constant for a

long time before decreasing. It is the second option that
motivates the freeze-in scenario proposed in our paper.
Let us consider a general case of the SM radiation

production via decay of some species χ with decay width
Γχ . Denoting the SM energy density by ρ and that of χ by
ρχ , we have

ρ̇þ 4Hρ ¼ Γχρχ ;

H ¼ H0=am;

ρχ ¼ ρ0χ=an: ðA1Þ
Here n and m parametrize the scaling of the Hubble rate
and ρχ , and are not necessarily related. The label “0” refers
to the end of inflation, corresponding to a ¼ 1. The
solution with the boundary condition ρða ¼ 1Þ ¼ 0 is

ρðaÞ ¼ Γχρ
0
χ

ð4 − nþmÞH0

�
1

an−m
−

1

a4

�

→
Γχρ

0
χ

ð4 − nþmÞH0

1

an−m
; ðA2Þ

at a ≫ 1 since n −m < 4 for all cases of interest.
Depending on n −m, the SM energy density can grow,
stay constant or decrease in time. So does the associated
SM bath temperature,

T ≃
�

30

g�π2

�
1=4

ρ1=4; ðA3Þ

where g� is the number of the SM degrees of freedom.
If χ corresponds to the inflaton, n ¼ 2m and ρ ∝ a−m. In

this case, the temperature decreases and one expects the
maximal temperature to be far above the reheating temper-
ature, Tmax ≫ TR (see e.g., [34,35]). However, if χ is
associated with feebly interacting right-handed neutrinos,
the situation is very different. The above calculation
applied to the inflaton-νR system shows that ρν ∝ 1=a2

for the ϕ4 inflaton potential and ρν ∝ 1=a3=2 for the ϕ2

case. Using νR as the source for the SM fields, e.g., via
νR → Hl, we therefore find,

n −m ¼ 0 ⇒ T ¼ const; ðA4Þ
as long as νR remains a subdominant energy component.
Hence, one can have Tmax and TR of similar size, and they
can even coincide,

Tmax ≃ TR; ðA5Þ
depending on the relation between the inflaton and neutrino
decay widths. Therefore, the SM bath temperature has
never been significantly higher than the reheating temper-
ature, justifying the scenario considered in this work.
The detailed analysis of the full ϕ − νR − SM system

will be presented in our follow-up paper [36]. Below we list
our most relevant results.
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The numerical solution to the full system of Boltzmann
equations for a quadratic inflaton potential is shown in
Fig. 3. For illustration, we take Γϕ ∼ Γν. We observe that
the SM energy density remains approximately constant
until reheating, which realizes Tmax ≃ TR.

In this case, dark matter is produced efficiently only in
the vicinity of the reheating point. This is due to the dilution
of the DM density produced earlier and Boltzmann
suppression of its production later. The same applies to
the DM thermalization; it is most efficient at the reheating
point due to the lower Hubble rate at the same SM
temperature. We find that the results obtained using the
complete system are very close to those presented in
the paper.
More generally, if Tmax and TR are different, the DM

production is dominated by temperatures close to Tmax and,
to leading order, one can simply relabel,

TR → Tmax; ðA6Þ

in the parameter space plots. More precisely, the DM
abundance receives a rescaling factor computed in [36].
We therefore conclude that dark matter freeze-in at

stronger coupling can be realized in a broad class of UV
complete models, where the SM sector is produced by decay
of a subdominant component in the energy density of the
Universe.
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